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RESEARCH ARTICLE

Modularity for Sensorimotor Control: Evidence and a New

Prediction
Andrea d’Avella’, Dinesh K. Pai?

"Neuromotor Physiology Laboratory, Santa Lucia Foundation, Rome, Italy. 2Department of Computer Science, University of

British Columbia, Vancouver, Canada.

ABSTRACT. By combining a few modules, the CNS may learn
new control policies quickly and efficiently. Support for a mod-
ular organization of the motor system has recently come from
the observation of low dimensionality in the motor commands.
However, stronger evidence would come from testing the predic-
tions on the effect of an intervention on the mechanisms required
to implement a modular controller. Thus, the authors propose to
test the predictions of modularity on motor adaptation. They ar-
gue that unlike a nonmodular controller, a modular controller must
adapt faster to a perturbation that is compatible with the modules
(i.e., one that can be compensated by reusing the same modules),
than to an incompatible perturbation (i.e., one that requires new
modules).

Keywords: hierarchical control policy, muscle synergies, motor
adaptation, task perturbations

Sensorimotor control requires mastering the many de-
grees of freedom (DOF) of the musculoskeletal appa-
ratus (i.e., generating the appropriate motor commands to
achieve a goal given the state of the plant). It can be formal-
ized as finding a (task-specific) control policy

u(t) =Ix, g, 1).

That is, a mapping IT of a continuous state vector X into
time-varying motor commands u(f) according to task param-
eters g (i.e., the goal) and, in general, in a time-dependent
way. For example, considering visually guided reaching with
the arm, x is state of the arm and its muscles, g is the spa-
tial position of the target, and u(t) is the muscle activation
waveforms.

How does the CNS represent and acquire such a policy? As
for any mapping, it could in principle be stored in the connec-
tion weights of a neural network (possibly dynamic and re-
current). However, if the number of DOF is even moderately
high, learning the appropriate weights (e.g., using a reinforce-
ment signal) is practically impossible. Prior information on
the body and the task must be used. If the CNS had an analyt-
ical model of the musculoskeletal geometry and dynamics,
it could just learn the model’s parameters (e.g., segments’
length and inertia), plan a specific hand trajectory (desired
trajectory), compute the joint angle trajectories (inverse kine-
matics), and use the knowledge of arm and musculoskeletal
dynamics to implement a simple linear feedback controller
(computed torque) that follows that trajectory. However, it is
not clear how the CNS would construct an analytical model
and perform the necessary computations.
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Modularity may be an efficient way to incorporate and use
knowledge of the body and the task to perform sensorimotor
control. We define modular control as the construction of a
control policy through a few (V) elemental policies (®; i.e.,
modules or primitives) and a set of combination rules (\V)
depending on a few parameters («):

u(t) = Y[{®;(x, )}i=1,.. v, {ai(g, X, )}i=1,...N]

Note that the modules, ®;, do not depend on the specific goal
but may depend on the general task context; this is neces-
sary for reusing the modules for different goals. For example,
assuming time-invariant linear combinations of motor com-
mands, the policy can be expressed as:

u(t) =Y (@ Pi(x, 1),

in which u;(t) = ®; (x,t) is the ith elemental policy. The
control u could be construed directly as the muscle activa-
tion m. In the case of isometric experiments the endpoint
force f is usually considered instead; the two are related by
a state-dependent transformation. The key advantage of this
approach is that, if a small number of appropriate modules
®; exist, a policy for a new task can be acquired simply
by learning a new low-dimensional mapping between goals
(g) and modules’ parameters (c). Thus, the appropriate com-
mands in the high-dimensional motor command space are
generated in a low-dimensional linear subspace. In general,
the modular controller defines a nonlinear low-dimensional
command manifold embedded in the high-dimensional com-
mand space.

Learning and Modularity

In a modular controller learning is partitioned into two
processes: learning the modules and learning the parameters
of the modules’ combination rules. The modules, incorpo-
rating knowledge of the body and the task that can be reused
across task goals, may be acquired by unsupervised learn-
ing, extracting regularities from sensorimotor interactions
(Todorov & Ghahramani, 2003). Once appropriate modules
have been acquired, a policy can be learned efficiently us-
ing reinforcement learning or supervised learning. Thus, a
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modular control architecture implements a hierarchical con-
trol policy (Full & Koditschek, 1999; Ting, 2007; Todorov,
Li, & Pan, 2005). Moreover, because the regularity in the
musculoskeletal system captured by the modules is expected
to change slowly (e.g., during development) while the ac-
quisition of new motor skills can be rapid, it is reasonable
to assume that learning the structure of the modules occurs
more slowly than learning their combinations.

Forms of Modularity

The general definition of modularity given previously can
be instantiated in different ways corresponding to differ-
ent types of primitives proposed for the motor system: re-
flexes (Sherrington, 1948), unit burst generators (Grillner,
1981), spinal force fields (Bizzi, Mussa-Ivaldi, & Giszter,
1991; Giszter, Mussa-Ivaldi, & Bizzi, 1993; Mussa-Ivaldi,
Giszter, & Bizzi, 1994), small pieces of endpoint trajectories
(strokes; Burdet & Milner, 1998; Flash & Henis, 1991; Krebs,
Aisen, Volpe, & Hogan, 1999; Sosnik, Hauptmann, Karni,
& Flash, 2004), kinematic synergies (Santello, Flanders, &
Soechting, 1998), and muscle synergies (d’Avella, Saltiel,
& Bizzi, 2003; Macpherson, 1991; Tresch, Saltiel, &
Bizzi, 1999) or muscle modes (Krishnamoorthy, Goodman,
Zatsiorsky, & Latash, 2003).

Linear combinations of force fields, specific patterns of
state-dependent endpoint forces (or joint torques), have been
proposed as a control mechanism implemented in the spinal
cord circuitry by synchronous recruitment of muscle syner-
gies and by force-field-preserving feedback (Giszter, Patil,
& Hart, 2007):

f() =) cilg, 1) i(x),

in which f(¢) are endpoint forces, the motor command u(?) in
this context. Assuming that the primitives depend only on the
state (e.g., limb position), time-varying motor commands are
generated by time-varying combination coefficients. How-
ever, these time-varying activation coefficients can also be
the result of a modular control policy (e.g., by selection
and combination of a few stereotypical force-field activation
pulses or premotor drives).

Two models for the generation of muscle activity patterns
as combination of muscle synergies have been proposed.
In one model, a time-invariant muscle synergy is defined
as a vector specifying a pattern of relative levels of mus-
cle activations and different synergies are combined through
coefficients that are state and time dependent:

m() =Y ci(x, g )W,

in which, in this context, the motor command u(z) is the
muscle activation m(¢). In contrast, a time-varying synergy
is defined as a sequence of vectors in muscle space, thus
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specifying a set of muscle activation profiles, and different
synergies are recruited at specific times, scaled in amplitude
by scalar coefficients, and combined:

m() =) ci(x, @) Wit — 1i(x, 2)).

i

Finally, focusing only on the temporal structure of the mus-
cle patterns, muscle synergies have also been defined as
groups of muscles with common activation onset and offset
times identified by a clustering analysis (direct components;
Krouchev, Kalaska, & Drew, 2006).

Evidence for Modularity

The organization of the force fields recorded at the ankle
in response to microstimulation of the interneuronal region
of the lumbar spinal cord of spinalized frogs has provided
evidence for modularity in the vertebrate motor system. Sur-
prisingly, only a limited number types of force fields were
found in a systematic stimulation of different regions of the
spinal cord (Bizzi et al., 1991; Giszter et al., 1993; Saltiel,
Tresch, & Bizzi, 1998). Moreover, the simultaneous stimu-
lation of two sites, in most cases, produced a field that was
the linear summation of the fields evoked from each site sep-
arately (Mussa-Ivaldi et al., 1994). Evidence for force-field
summation in a natural behavior has come from the study
of the corrective responses during wiping in frogs (Kargo &
Giszter, 2000).

In the context of time-invariant muscle synergies, evidence
for modularity has come in recent years from the analysis
of the regularities in the muscle patterns recorded in several
species during different behaviors (Cheung, d’Avella, &
Bizzi, 2009; Cheung, d’Avella, Tresch, & Bizzi, 2005;
d’Avella & Bizzi, 2005; d’Avella, Fernandez, Portone, &
Lacquaniti, 2008; Hart & Giszter, 2004; Ivanenko, Poppele,
& Lacquaniti, 2004; Klein Breteler, Simura, & Flanders,
2007; Krishnamoorthy et al., 2003; Saltiel, Wyler-Duda,
d’Avella, Tresch, & Bizzi, 2001; Ting & Macpherson,
2005; Ting & McKay, 2007; Torres-Oviedo, Macpherson,
& Ting, 2006; Torres-Oviedo, & Ting, 2007; Tresch et al.,
1999). A number of decomposition algorithms (PCA, FA,
NMEF, ICAM,; see Tresch, Cheung, & d’Avella, 2006) have
been used to show that most of the variation in the muscle
patterns is explained by the combination of a small number
of synergies. Typically, the correct number of synergies is
inferred from a change in slope (i.e., a knee) in the plot,
showing the percentage of variation explained as a function
of the number of synergies. Such a change in slope is inter-
preted as a transition between the structured variation due
to the synergy combination and the unstructured variation
due to noise. The fact that a small number of synergies,
with respect to the number of muscles involved, is sufficient
to capture a large fraction of the data variation has been
interpreted as evidence for muscle synergies as modules
organized by the CNS. Finally, authors of a recent simulation
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study demonstrated that it is possible to build a simple low-
dimensional controller combining time-invariant synergies
with a performance close to that of the full-dimensional
nonlinear controller (Berniker, Jarc, Bizzi, & Tresch,
2009).

Decomposition of muscle patterns using iterative op-
timization algorithms (d’Avella et al., 2003; d’Avella &
Tresch, 2002) or PCA (Klein Breteler et al., 2007) has also
provided support to time-varying muscle synergies as control
modules. In freely moving, intact frogs, a large fraction of the
variation in the hind limb muscle patterns recorded during
natural behaviors (defensive kicking, jumping, walking, and
swimming) is captured by the combinations of a few time-
varying synergies, each appropriately scaled in amplitude
and shifted in time (d’Avella & Bizzi, 2005; d’Avella et al.,
2003). In monkeys, time-varying muscle synergies within the
arm and hand muscles are modulated for reaching, grasping,
and transporting objects of different shapes and sizes (Over-
duin, d’ Avella, Roh, & Bizzi, 2008). In humans, time-varying
synergies provide a parsimonious description of the shoulder
and elbow muscle patterns during reaching in different direc-
tions and at different speeds (d’Avella et al., 2008; d’ Avella,
Portone, Fernandez, & Lacquaniti, 2006) and of hand muscle
patterns during finger spelling (Klein Breteler et al., 2007).
The muscle pattern description obtained with time-varying
synergies is parsimonious because, given the synergies, it
depends on the choice of a small number of scalar combi-
nation parameters. An insight into why simple rules for the
combination of time-varying muscle synergies can be ade-
quate for controlling movements in a variety of conditions
comes from the well-known observation of the invariance
of endpoint path and scaled tangential velocity for reaching
at different speeds (Atkeson & Hollerbach, 1985; Morasso,
1981; Soechting & Lacquaniti, 1981). The scaling of tan-
gential velocity along the same path can be simply obtained
by scaling in amplitude (by the square of the time scale) the
nongravity component of the joint torque profile (Hollerbach
& Flash, 1982). Similarly, phasic time-varying muscle syner-
gies are scaled in amplitude and time with movement speed
(d’Avella et al., 2008).

Whether the time-invariant or the time-varying synergy
model best captures the modular organization of the out-
put of the motor system is still an open question. Selective
muscle vibration during targeted wiping in spinalized frogs
has shown that the three muscle-activation bursts involved
in the behavior are modulated independently, supporting a
time-invariant rather than a time-varying model (Kargo &
Giszter, 2008). However, the two models are not exclusive
and may describe different functional levels in the motor
system or different stages in the vertebrate phylogeny. For
example, proprioceptive feedback might modulate a set of
time-invariant components (Cheung et al., 2005) that are as-
sembled into time-varying synergies by spinal central pattern
generators, which in turn can be modulated by supraspinal
structures.

2010, Vol. 42, No. 6
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Critique of the Muscle Synergy Decomposition
Approach

Despite the success of the decomposition approaches in
explaining the muscle patterns as combinations of a few syn-
ergies, whether the observed low dimensionality simply re-
flects the dimensionality of the task and whether the identified
synergies provide any valuable information on the organiza-
tion of the motor system are important issues that need to be
addressed.

Low dimensionality of the muscle patterns, indicated by
the fact that a few synergies explain a large fraction of the
data variation across task conditions, may simply arise from
the low dimensionality of the task. Indeed, for example, the
muscle patterns for a task with only one condition (e.g.,
reaching in one direction at a given speed) can be captured
by a single time-varying synergy corresponding to the pat-
terns averaged over repetitions. Clearly, the intertrial varia-
tion is not accounted for by a model describing the variation
across task conditions and it may or may not be captured
by synergies (Kutch, Kuo, Bloch, & Rymer, 2008; Valero-
Cuevas, Venkadesan, & Todorov, 2009). However, if there
is substantial variability in the task conditions and they are
sampled appropriately, the dimensionality of the muscle pat-
terns is potentially much higher than the dimensionality of
the task and low dimensionality of the patterns represents a
significant observation. Considering for simplicity static mo-
tor output (e.g., the production of a constant isometric force
on a handle), if task conditions are described by D param-
eters (e.g., for D = 2 the production of an arbitrary force
on a plane) and M muscles are involved in the task, with M
in general higher than D, the control policy is represented
by a mapping from task parameter space to muscle space
whose image is a D-dimensional manifold. Such a manifold,
in general, need not be embedded in any proper subspace of
the muscle space, and may be embedded in the whole space
(i.e., have dimensionality M). If considering dynamic motor
output, even if we discretize time at low frequency, the di-
mensionality of the motor command space is the product of
M times the number of time samples and thus much higher
than D.

The fact that synergy combinations capture the muscle
pattern variations across task conditions indicates that the
synergy model is capable of describing the control policy
used by the CNS. However, the decomposition approach
provides a descriptive model of the control policy and not
a causal model (i.e., a model of the mechanisms that im-
plements the policy). The problem is not simply with the
need for data fitting, necessary for any model that depends
on some parameters. In fact, once the synergies are identi-
fied from some data, they can explain the organization of
new data (d’Avella et al., 2006; Torres-Oviedo et al., 2006;
i.e., they generalize). However, to test a causal model it is
necessary to test a prediction of an intervention affecting its
mechanisms.
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FIGURE 1. Task perturbations that are compatible or incompatible with the modular organization of a controller: an example
with a hypothetical simple task and musculoskeletal system. (A) Consider, for illustration, eight specific conditions arranged on a
circle in parameters space of a task characterized by two parameters. For example, the parameters might represent the location on
a plane of the target of a reaching movement. (B) Assume that the motor commands generated by the controller to perform the
task lie on a proper subspace of the motor command space, such as a plane (modular manifold) in three-dimensional space. (C) A
compatible perturbation of the task is one that can be compensated by generating new motor commands still on the manifold (i.e., by
recombining existing modules). One simple example is a rotation of the motor commands within the manifold. (D) An incompatible
perturbation can only be compensated by mapping the task parameters into new motor commands off the manifold. If the controller
is modular (i.e., constrained to generate motor commands on a manifold) adapting to an incompatible task perturbation requires
adjusting the structure of the modules, a process that likely occurs more slowly that the adjustment of the modules’ combinations.
Thus, differences in learning difficulty during adaptation to compatible and incompatible task perturbations discriminates between
modular and nonmodular controllers.

A New Prediction of Modularity on Motor policies by reducing the number of parameters it also con-

Adaptation strains the policies that can be learned with the modules
(i.e., there is no free lunch). Thus, policies implemented with
modules may be suboptimal. Specifically, modular policies
may be suboptimal for adapting to perturbations of the task

The approach that we are presently pursuing to test mod-
ularity as a causal model is grounded on the following ob-
servation. As modularity allows efficient learning of control

364 Journal of Motor Behavior
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Unperturbed
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span the force space.
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2

FIGURE 2. An example of compatible and incompatible perturbations in a simple system. An idealized musculoskeletal system
with two degrees of freedom (DOF; x and y) has two pairs of antagonist muscles for each DOF generating isometric forces along the
axes of the output force space (top left panel). A modular controller recruits the four muscles through three muscle synergies, each
generating a specific force (bottom left panel). Both compatible and incompatible perturbations are obtained by changing the force
generated by each one of the four muscles and thus changing the forces generated by the activation of the synergies. However, only
in the case of an incompatible perturbation the forces generated by the synergies are collinear, thus making the synergies unable to

Incompatible perturbation

conditions that are incompatible with the modules (i.e., that
cannot be compensated by recombining existing modules).
Suppose task perturbations that require similar adjustments
of the motor commands but are either compatible or incom-
patible with the modules identified by decomposition meth-
ods. If the modules are not simply a descriptive tool but are
organized by the CNS, we predict that the adaptation process
will be more difficult for incompatible perturbations than for
compatible ones.

Consider a task (see the example in Figure 1) characterized
by D parameters (e.g., the spatial location of a reach target;
two parameters are illustrated in the figure) and assume that
the observed motor commands for solving the task lie on
a linear manifold of dimension N, with N < M, number
of muscles (shown as a plane in a three-dimensional motor
command space in the example). The low dimensionality of
the motor command manifold suggests that it is the result
of the combination of a few modules organized by the CNS
but does not exclude alternative explanations. However, we
claim that it is possible to distinguish experimentally this
explanation from the alternative explanation that the motor
commands are not generated by a modular controller and the

2010, Vol. 42, No. 6

linear manifold is simply a description of the solution found
by the nonmodular controller.

Suppose the controller is modular and the modules are
learned or adjusted more slowly than the mapping between
task parameters and modules’ combination coefficients. We
argue that in this case the adaptation to a compatible pertur-
bation (i.e., one that can be compensated by reusing existing
modules) is faster than adaptation to an incompatible per-
turbation (i.e., one that requires learning new modules). In
contrast, if the controller is not modular and the observed low-
dimensional manifold is simply a description of the solution
and not caused by the controller’s architecture, we would
expect no difference in the adaptation rates if the changes
in motor commands required to adapt to the two types of
perturbations are comparable.

A Simulated Adaptation Experiment with a Simple
System

To illustrate how the prediction of modularity can be
tested in a motor adaptation experiment, we consider a
very simple and idealized musculoskeletal system with two

365
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FIGURE 3. Simulated motor adaptation experiment with modular and nonmodular controllers. (A) A basic neural network im-
plementation of two controllers for the simple system of Figure 2. A modular controller maps a two-dimensional force target (f)
into three nonnegative synergy activations (c¢) and into four muscle activations (m). A nonmodular controller maps a force target
directly into muscle activations. All mappings are performed by matrix multiplication of input vectors by weight matrices, the
addition of an offset vector, and the transformation through a threshold nonlinearity to enforce nonnegativity. (B and C) Results
of a simulated motor adaptation experiment consisting of five phases (baseline, compatible perturbation, washout, incompatible
perturbation, washout) each comprising 50 epochs in which the controller maps 32 force targets (arranged on a circle and presented
in random order) into muscle activations. The forces corresponding to the muscle activation are those of Figure 2, with unperturbed
forces for baseline and washout phases. Constant Gaussian noise is added the force input, and signal-dependent Gaussian noise is
added to the muscle output. All network parameters are learned through on-line minimization of the squared force error by gradient
descent using the backpropagation method. The learning rate for the synergy weights (initialized as the synergies in Figure 2) is
100 times smaller than for the other weights (initialized with uniformly distributed random numbers). (B) The mean force error
over the 32 forces in each epoch for the modular and nonmodular networks quickly decreases to a plateau when no perturbation
is applied (baseline and washout phases). However, whereas for the nonmodular network there are no differences in the speed of
learning between compatible and incompatible perturbations, the modular network adapts to the incompatible perturbation much
slower than to the compatible perturbation. (C) The force targets (black dots) and the output forces generated by the networks (gray
circles) in the force plane in the last epoch of each phase illustrate the difference in learning performance of the modular network on
incompatible perturbation with respect of all other conditions, the signature of modularity in a motor adaptation experiment.

mechanical DOF and four muscles generating static iso-
metric forces through a linear mapping of nonnegative
muscle activation. The task consists of generating a two-
dimensional force vector f, through the muscle-to-force
transformation matrix H (determined by the geometry and
biomechanical characteristics of the system, see Figure 2),
f = H m, matching arbitrary target forces f* in the fea-
sible force set and available via sensory input. We con-
sider a modular controller implementing a control policy
by mapping a force target into a nonnegative linear combi-

366

nation of three time-invariant muscle synergies, m = [Wec]
¢ = [Af* + a];, with W the synergy matrix of dimen-
sions 4 x 3, ¢ the synergy combination coefficient vector,
A and a the matrix and offset vector mapping force tar-
gets into synergy coefficients, respectively, and []; posi-
tive part function to enforce nonnegativity. If the synergy
matrix is chosen appropriately (e.g., the columns of W il-
lustrated by arrows in the bottom left panel of Figure 2),
it spans the force space by nonnegative synergy combina-
tions. We also consider a nonmodular controller mapping

Journal of Motor Behavior
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directly force targets into muscle activations, m = [Bf* +
b];+, with B and b mapping matrix and offset vector,
respectively.

In a simulated experiment with the two controllers, once
the task has been learned (i.e., the modular controller has ac-
quired adequate W, A, and a and the nonmodular controller
has acquired B and b, minimizing the error || Hm—f*|| 2), the
rates of adaptation to perturbations compatible and incom-
patible with the synergies W are compared. In both cases the
perturbations are obtained by changing the force generated
by each one of the four muscles (i.e., transforming the ma-
trix H, illustrated in Figure 2 by the arrows in the top left
panel). With an incompatible perturbation the forces asso-
ciated with the synergies change so that they are unable to
span the force space by nonnegative combinations (e.g., bot-
tom right panel in Figure 2). In contrast, with a compatible
perturbation the forces associated with the synergies change
but they can still span by nonnegative combinations the force
space (e.g., bottom-middle panel).

Both modular and nonmodular controllers must adjust the
mapping of target forces to synergy (A and a) or muscle (B
and b) activations to adapt to both types of perturbations.
However, the modular controller must also adjust the syner-
gies (W) in the case of incompatible perturbations and such
an adaptation process is likely to occur with a lower learn-
ing rate than the other adaptation processes. Thus, a modular
controller adapts more slowly to an incompatible than to
a compatible one, whereas a nonmodular controller adapts
with similar rates.

Figure 3 illustrates a simulated experiment with a simple
neural network implementation of the modular and nonmod-
ular controllers (Figure 3A) learning to generate 32 force
targets arranged on a unit circle and adapting to the two
perturbations of Figure 2. The learning rate of the modu-
lar network is clearly distinguishable from the nonmodular
during the adaptation to the incompatible perturbation.

Compatible and Incompatible Perturbations in a Real
Motor Task

Testing the prediction that perturbations that are incom-
patible with the modular control architecture are harder to
compensate than compatible perturbations in a real motor
task requires choosing a specific type of module, such as
time-invariant or time-varying muscle synergies, identifying
the set of specific instances of the module that best capture the
control of the task in an individual subject, and constructing
subject-specific perturbations according to those instances. In
an isometric manipulation task, perturbations compatible and
incompatible with a set of time-invariant synergies may be
generated by remapping the force generated by each synergy
at the end effector. Although this could be done by mechan-
ically altering the relationship between muscle activations
and the force generated at the end effector, these remappings
may be performed more flexibly in a virtual environment
providing the appropriate visual feedback through a simula-
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tion. Such simulation may require a detailed musculoskeletal
model (Delp et al., 2007; Sueda, Kaufman, & Pai, 2008) to
estimate the end-effector forces associated with the syner-
gies. In a movement task such as reaching, the joint torque
profiles generated by a set of time-varying synergies, which
parsimoniously capture the regularities in the motor output
(d’Avella et al., 2006) would have to be remapped into novel
torque profiles. In case of an incompatible perturbation the
remapped torque profiles of two synergies cancel each other,
generating a motor impairment that requires changing the
synergy structure. As such, instead of physically remapping
muscle to endpoint forces, the perturbation may be performed
on a simulated arm in a virtual environment with visual and
haptic feedback.

Conclusion

Building control policies by combining a few control mod-
ules may be how the CNS solves the challenging problem of
mastering the many DOF of the musculoskeletal system in-
herent in sensorimotor control. Incorporating knowledge of
the body and the task into a limited number of modules may
allow efficient implementation of an adequate control policy
as a low-dimensional mapping between task parameters and
module combination parameters. In such a hierarchical con-
trol architecture, learning a new task or adapting to a novel
perturbation may be accomplished by two separate processes
operating on different time scales. Appropriate module com-
binations may be learned quickly and efficiently through
error or reinforcement signals. When needed, new modules
may be slowly acquired or existing modules slowly adjusted
by unsupervised learning. However, to date, evidence for
modularity is indirect because it mainly relies on the obser-
vations of low dimensionality in the motor output more than
on a test of modularity as a causal model. Such a test requires
a prediction of the effect of an intervention on mechanisms
that implement the control policy. We thus propose to test a
specific prediction of modularity on the difficulty of motor
adaptation. If the modules identified from the observed regu-
larities of the motor output were a mere description of those
regularities, unrelated to the implementation of the controller,
we predict that there would be no difference in the difficulty
in compensating a perturbation that requires recombining the
existing modules (compatible) or one that requires new mod-
ules (incompatible). In contrast, if the modules capture the
controller’s actual mechanisms, we predict that adapting to
an incompatible perturbation would be more difficult than
adapting to a compatible perturbation that is similar in terms
of the required changes in the motor commands. In sum, we
have identified a novel experimental approach for testing a
causal prediction of modularity.
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