Course Reserves

Currently, we have suspended our public opening hours, so undergrads will not have access to our physical course reserve materials.

Here is a preliminary list of some licensed or open access course textbooks and reference books that you may want to consider, in the meantime. (This list is for your information, but it is not an indication that these items are currently being used or will be used in the future.)

CPSC 103/110

How to design programs : an introduction to programming and computing. 2nd ed. / Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi
optional textbook

CPSC 121

Bebop to the Boolean boogie : an unconventional guide to electronics fundamentals, components, and processes / Clive Maxfield
suggested reference in some sections

CPSC 210

optional textbook

CPSC 261

Principles of computer system design : an introduction / Jerome H. Saltzer, M. Frans Kaashoek
required textbook

CPSC 302, 303

A first course in numerical methods / Uri M. Ascher, Chen Greif
required textbook

CPSC 311

Programming languages : application and interpretation / Shriram Krishnamurthi
required textbook in some sections

CPSC 314

Foundations of 3D computer graphics / Steven J. Gortler
optional textbook in previous years
Fundamentals of computer graphics. 4th ed. / Steve Marschner, Peter Shirley
*optional textbook in previous years

OpenGL programming guide: the official guide to learning OpenGL, version 4.5 with SPIR-V. 9th ed. / John Kessenich, Graham Sellers, Dave Shreiner
*suggested reference in some sections

WebGL programming guide: interactive 3D graphics programming with WebGL / Kouichi Matsuda, Rodger Lea
*suggested reference in some sections

CPSC 320

Introduction to algorithms. 3rd ed. / Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
*suggested reference

CPSC 322/340/522

Artificial intelligence: foundations of computational agents. 2nd ed. / David L. Poole, Alan K. Mackworth
*optional textbook

CPSC 340

The elements of statistical learning: data mining, inference, and prediction. 2nd ed. / Trevor Hastie, Robert Tibshirani, Jerome Friedman
*suggested reference

Machine learning: a probabilistic perspective / Kevin P. Murphy
*suggested reference

Mining of massive datasets. 2nd ed. / Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman
*suggested reference

CPSC 344/444/544

Interaction Design: Beyond Human-Computer Interaction. 5th ed. / Helen Sharp, Jennifer Preece, and Yvonne Rogers
*required textbook (newest edition)

CPSC 406

Numerical optimization. 2nd ed. / Jorge Nocedal, Stephen J. Wright
*suggested reference

CPSC 410

Software architecture: foundations, theory, and practice / Richard N. Taylor, Nenad Medvidović, Eric M. Dashofy
*suggested reference for some sections
Visual complexity : mapping patterns of information / Manuel Lima
*suggested reference for some sections

CPSC 416

The Go programming language / Alan A. A. Donovan, Brian W. Kernighan
*optional textbook

Programming in Go : creating applications for the 21st century / Mark Summerfield
*optional textbook

CPSC 418

The art of multiprocessor programming / Maurice Herlihy, Nir Shavit
*suggested reference

An introduction to parallel programming / Peter S. Pacheco
*suggested reference

Programming massively parallel processors : a hands-on approach, 3rd ed. / David B. Kirk, Wen-mei W. Hwu
*required textbook

CPSC 425

Multiple view geometry in computer vision, 2nd ed. / Richard Hartley, Andrew Zisserman
*suggested reference

CPSC 426

Computer animation : algorithms and techniques, 3rd ed. / Rick Parent
*optional textbook in previous years

CPSC 445/545

Bioinformatics : the machine learning approach, 2nd ed. / Pierre Baldi, Soren Brunak
*suggested reference in previous years

Biological sequence analysis : probabilistic models of proteins and nucleic acids / Richard Durbin
*optional textbook in previous years

Problems and solutions in biological sequence analysis / Mark Borodovsky and Svetlana Ekiyushova
*suggested reference in previous years