
The Design of a Tool for Teaching
Hierarchical Control for Robot Navigation

by

Hao Ren

BCom / BSc,

The University of Auckland, New Zealand, 2005

AN ESSAY SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

December 2008

© Hao Ren

Abstract

The main goal of this project is to introduce a tool to teach students about hierarchi-

cal robotic control. The applet is designed to let students of Artificial Intelligence

write controllers in Java and experiment with the behavior of different controllers

with the help of a programming environment which includes a debugger and ex-

ample controllers. One of the example controllers makes use of value iteration,

and the controller is intelligent enough to avoid traps. The design of the interpreter

used to process Java is discussed in detail, such as why the interpreter BeanShell

is selected, and how to use BeanShell. Finally, software design for the teaching

applet is presented for future developers who will finalize the applet for the use of

AISpace.org.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . v

Acknowledgments . vii

1 Introduction . 1

2 Sample Controllers . 4
2.1 Basic Controller . 4

2.1.1 Description of Layers . 8

2.2 Using Value Iteration . 8

2.2.1 Markov Decision Process 10

2.2.2 States . 12

2.2.3 Actions, Cost Function 13

2.2.4 Goal States and Reward Function 15

2.2.5 Characteristics of the Reinforcement Learning Controller . 17

2.2.6 Detailed Description of Each Function 18

3 System and Graphical User Interface (GUI) Design 27
3.1 Prototype Applet . 28

3.1.1 Menu Options . 28

3.1.2 Tab Panels . 30

3.2 New Applet Design . 30

iii

3.2.1 Layer Editor . 31

3.2.2 Function Editor . 39

3.2.3 Layer Variables . 42

3.2.4 Executing the Controller and Selecting a Time Step 45

3.2.5 Debugging . 48

3.2.6 Random Inputs . 48

4 Interpreter . 51
4.1 Introducing BeanShell – www.beanshell.org 51

4.2 Small Size . 52

4.3 Ease of Use . 52

4.4 Feedback on Error for Debugging 52

4.5 Using the BeanShell Interpreter 53

5 Back-End Software Design . 54
5.1 Arc Variable . 55

5.1.1 Arc Variable Between Time Steps 55

5.1.2 Details of the ArcVariable class 56

5.2 Function . 58

5.2.1 Converting a Function to Java Code 59

5.2.2 Passing a Function to the Interpreter 59

5.2.3 When to Run Function 59

5.2.4 Using Interpreter to Run the Function 60

5.2.5 Details of the Function class 60

5.3 Controller . 62

5.4 Controller Application . 63

5.5 The Absence of Layer Class . 63

6 Conclusion . 64

Bibliography . 65

iv

List of Figures

1.1 Single layer of controller for GOFAIR (Mackworth et al. [6]) . . 1

1.2 Hierarchical agent controller (Mackworth et al. [6]) 2

1.3 An example of the simulated environment 3

2.1 Robot successfully reaching all goals controlled by basic controller 5

2.2 Trapped robot in prototype applet. 6

2.3 Basic controller . 7

2.4 Basic controller vs. VI controller 9

2.5 Value iteration controller . 11

2.6 Converting robot navigation applet into grid world. 12

2.7 Actions . 14

2.8 An example to show robot actions using VI. 15

2.9 The issues with VI controller and the solution. 16

2.10 Output of the top layer functions for the VI controller 19

2.11 Example outputs for the getHasWall and getHasGoal functions . . 21

3.1 Main menu . 28

3.2 Menu options from prototype applet 29

3.3 Create tab . 30

3.4 Solve tab . 30

3.5 The new drop down Edit menu 31

3.6 Layer editor . 32

3.7 Optional caption for list of figures 33

3.8 Input and output ports . 34

3.9 Editing a port . 35

v

3.10 Two ports deliver a variable through out different time steps . . . 35

3.11 Dialog to modify a selected arc. 37

3.12 Adding new layer . 38

3.13 “arrived” as an example function 39

3.14 Function editor . 40

3.15 Function with multiple inputs of the same name. 41

3.16 An example showing the use of layer variables. 43

3.17 Editor to modify layer variables. 44

3.18 Execution dialog with debug functionality 46

3.19 Explaining the elements of the execution dialog from Figure 3.18 . 47

3.20 Editor to add random input . 49

3.21 Basic controller with random input. 50

5.1 An example of a deadlock cycle. 54

5.2 Examples of “ArcVariable” between time stes. 55

5.3 An example function before conversion to Java code. 58

vi

Acknowledgments

I would like to thank my supervisor David Poole for helping me to complete the

essay; I appreciate the support from my parents and my friends Lloyd Markle,

Ali Akhavan, Marisol Flores Garrido, Massih Khorvash, Sancho McCann, Hoyt

Koepke, Cara Koepke, Dan Ray and most importantly God.

vii

Chapter 1

Introduction

With “Good Old Fashioned Artificial Intelligence and Robotics” (GOFAIR), an

intelligent agent typically features one level of controller that interacts with the

body (Figure 1.1). Mackworth et al. [6] attempts to reason that a robot controller

can be more effectively viewed as hierarchical (Figure Figure 1.2), where lower

layers are typically “reactive and synchronous on continuous state spaces” and

upper layers are “deliberative and asynchronous in symbolic, discrete spaces”.

Figure 1.1: Single layer of controller for GOFAIR (Mackworth et al. [6])

The main goal of this project is to introduce a tool to teach students about

hierarchical robotic control. The tool is designed to be easy to use by providing an

1

Figure 1.2: Hierarchical agent controller (Mackworth et al. [6])

environment where movements of the robot can be tracked and replayed, and all

the inputs and outputs of the different levels of the controller can be monitored by

a user of the applet (Section 3.2.5). We also want to emphasize the importance of

hierarchical control as seen in examples shown in Chapter 2, and how easy it is to

replace/add one layer of the controller to add functionality.

Work described here focuses on a simulated environment that consists of walls,

locations (to be used by robot as goals), and a robot moving in constant motion

(Figure 1.3). A prototype applet is already written as can be seen in Figure 2.2 on

page 6, and we attempt to improve on the prototype. A detailed explanation on the

background of the prototype “robot navigation” applet can be found in Chapter 2

of Poole & Mackworth’s text book [8], and a general discussion of the applets for

2

AISpace can be found in Knoll et al. [5].

Figure 1.3: An example of the simulated environment containing a wall, a
location (N1) used by the robot as goal location, and a moving robot

3

Chapter 2

Sample Controllers

From a user’s perspective, one needs to design a controller and then use the robot

navigation applet to run the controller to see how it works. In this section, sev-

eral such controllers are introduced as examples, all of which has already been

implemented and tested.

For the purpose of letting users to easily understand the power of hierarchi-

cal control, we intend to introduce a simple controller algorithm called the basic

controller (Section 2.1). This basic controller is based on the controller of the pro-

totype applet1. Then, we will introduce a more complicated controller based on

value iteration which is a Dijistra-like algorithm that solves the shortest path prob-

lem. This value iteration based controller adds one additional layer to the basic

controller, so it demonstrates how to modify an existing hierarchical controller by

reusing and/or modifying existing layers .

2.1 Basic Controller
This first controller is called the basic controller (Figure 2.3) because all the robot

tries to do is to go towards the nearest not yet reached goal, and whenever the

robot bumps into a wall, it just turns left. This works well for some combination

of walls and goals (see Figure 2.1), but the robot gets trapped by specially placed

configurations of walls’ positions (see Figure 2.2).

1http://aispace.org/robot/

4

Figure 2.1: Robot successfully reaching all goals controlled by basic con-
troller

5

Figure 2.2: Trapped robot in prototype applet.
This prototype applet snapshot shows that the Robot is trapped when controlled

by basic controller. Even without the crash, the robot will loop at the corner in the
top right.

6

Figure 2.3: Basic controller

7

2.1.1 Description of Layers

The controller is split into three layers:

Top layer This layer decides the next goal for the robot to reach.

Middle layer Given a goal and current location, this layer decides what rough

direction to turn the robot (in terms of left, straight or right).

Bottom layer This layer detects if the whisker of the robot is in touch with wall,

and gives the exact new orientation and change in robot position.

For more information about this controller, readers are encouraged to read

chapter 2 of Poole & Mackworth’s textbook [8].

2.2 Using Value Iteration
We will introduce a new controller in this section to demonstrate how to modify

and reuse an existing controller to create more intelligent behaviors. Differences

between the controllers in Figure 2.4 demonstrate the parts that are modified/reused

from the basic controller to create the value iteration controller.

For the more complicated value iteration (VI) controller, VI is integrated into

the controller at higher leveled layers (Figure 2.5, page 11). VI can be used to find

an optimal policy, and the policy tells us what is the optimal action to take at any

given state. Readers interested to read further about VI and reinforcement learning

are suggested to read the journal paper by Kaelbling et al. [4], the textbook by

Ghallab et al. [3], and the original Dynamic Programming book by Bellman [1].

We use VI as a shortest path algorithm, and any other algorithm such as Dijis-

tra’s algorithm [2] can be used to replace VI.

The lower two layers from the basic controller (Figure 2.3) are extensively re–

used with slight modifications for this controller, as only the higher layers make

use of VI.

8

Figure 2.4: Differences between the basic controller and the value iteration
controller

The controller on the left is the basic controller, and the one on the right is the VI
controller. The three bold arrows point toward the functions that are reused and

modified from the basic controller. In the right side image, the second layer from
the top is a completely newly added layer.

9

2.2.1 Markov Decision Process

The controller’s design is based on Fully Observable Markov Decision Processes

(FOMDPs) with finite states and actions for an infinite time horizon. For more

background introduction on a similar system, please refer to Ren et al. [9]. The

system here is deterministic and the outcomes of all actions are fixed.

Since each action has an associated cost, and only goals have rewards, we will

use a non-standard Markov Decision Processes (MDP) consisting of the following

elements:

• a set of states S (Section 2.2.2);

• a set of goal states Γ⊆ S (Section 2.2.2);

• a set of actions A (Section 2.2.3);

• cost function c : S×A×S′→R (Section 2.2.3), cost of performing an action;

• reward function R : Γ→R (Section 2.2.4), reward of reaching a goal state;

• state transition function S×A→ S.

Value iteration is used to find the optimal policy (i.e. the optimal action to take

for each state).

Each action has a cost, and the only rewards are at goal locations, so the optimal

policy obtained from the greedy algorithm (value iteration) will result in a shortest

path to the goal states.

The following sub-sections explain how the elements for the MDP are instan-

tiated in our example domain.

10

Figure 2.5: Value iteration controller

11

2.2.2 States

The robot situated environment is divided up into a grid world. The grid world

cannot actually be seen in the simulated environment, and it is only an artificial

construct to show the states in the MDP. See Figure 2.6 for a drawing of the con-

ceptual grid world, where each square is a state. Figure 2.6 helps the reader to

understand the states but the squares are not actually present in the simulated envi-

ronment.

Figure 2.6: Converting robot navigation applet into grid world.
Note that even though the “Destination” (i.e. goal) is drawn as a rectangle, the

goal position is just a point at the center of the rectangle. The same idea goes for
the robot, even though the robot is drawn as a triangle, we only need to track its

central position. The robot’s whisker is still a line segment.

12

A state may contain one or more of the following elements:

1. Segment of wall;

2. Goal position.

As an example, in a 6× 6 grid world, properties of a state positioned at row

three and column four of the grid world can be shown as follows:

the states’s row location (int) 3

the state’s column location (int) 4

if the state contains wall (boolean) false

if the state contains goal (boolean) true

We assume that a state cannot have both a wall and a goal at the same time. If

this happens, we can either increase the number of states or shift the position of the

states to have different states containing the wall and the goal.

The robot cannot go into a state that contains a segment of wall. Within a state,

the robot can go up, down, left and right to get out of a state or inaction to stay

within the same state (more about actions in Section 2.2.3).

When value iteration is completed, each state would be assigned an optimal

action.

2.2.3 Actions, Cost Function

The actions (Figure 2.7) that the robot can perform in a state are:

• left←;

• right→;

• up ↑;

• down ↓;

• inaction (stay in current state).

13

Figure 2.7: Actions
The available actions are left, right, up, down and inaction.

The actions described so far (←, →, ↑, ↓ and inaction) are high level actions

taken in the grid world, and these actions tell which state the robot should go next.

But the robot also has to steer within a state, which involves lower leveled maneu-

vers in the simulated environment.

As can be seen from the VI controller (Figure 2.5) between the relationships of

chooseAction in the second layer from the top, steer from the third layer and

lowLevelSteer from the fourth layer, actions described in this section exist in

a higher level than the actions introduced in the basic controller (Section 2.1). The

following list is a summary of the possible return values from these three functions:

chooseAction ←,→, ↑, ↓ and inaction

steer left, right, straight

lowLevelSteer The new orientation of the robot as an angle between 0 to 360◦

This high level action from chooseAction tells the robot which state to go

next. For example in Figure 2.8 (a), the optimal action for the current state is to go

up. The steer function finds out which direction the robot needs to rotate to get

to the middle of the target state, and in the example (Figure 2.8 (a)) the direction

is left. Finally, based on the direction from steer, lowLevelSteer calculates

the new orientation, which is the current orientation (90◦) + change in orientation

to turn left (18◦) = 180◦. The change in orientation is selected to be 18◦ because

the robot’s animation seems to have smooth movements with that number. If the

steer function says to turn right, lowLevelSteer will change direction by

−18◦.

Each action is associated with a cost to ensure that the controller finds an opti-

mal path. For example, this cost for an action can be set to 0.9.

14

(a) chooseAction:up;
steer:left;
lowLevelSteer: 90+18 = 108◦

(b) chooseAction:left;
steer:left;
lowLevelSteer: 135+18 = 153◦

(c) chooseAction:up;
steer:right;
lowLevelSteer: 180−18 = 162◦

Figure 2.8: An example to show robot actions using VI.

2.2.4 Goal States and Reward Function

A state with a goal position inside has a reward value of for example 10. A state

with a wall segment is considered not beneficial and impenetrable, so such states

always have a reward value of zero. This assumption about impenetrable wall

states has the drawback that if there is an optimal path that goes through a small

gap between walls, the algorithm may not find the path since it cannot see the gap

(Figure 2.9(a)), but the problem can be solved by increasing the number of states

(Figure 2.9(b)).

As discussed in Section 2.2.2, we assume that a state cannot have both a wall

and a goal at the same time. If this assumption causes problems (see Figure 2.9(c)),

the number of states in the grid world can be increased to put goals and walls into

different states (Figure 2.9(d)). Another possible solution is to shift the states, so

that walls and goals can be split into different states.

Robot only wastes time traversing in the spaces outside of the grid world, so

they also have a reward value set fixed to zero.

15

(a) The gap between the two wall segments
is not detected, because the state contain-
ing the gap also contains wall segments.

(b) By increasing the number of states, the gap
problem (Figure 2.9(a) is solved

(c) Problem with goal and wall in the same state.
Note: The goal N3’s position is at the center of
the box for N3

(d) Increased number of states to solve the
problem in 2.9(c)

Figure 2.9: The issues with VI controller and the solution.
In both cases, use of a smaller square block size for the states solved the problem.
The user of the designing environment may need to experiment with multiple state

sizes to solve the problem.
16

Processing Goal States in the Top Layer

When there are multiple goals, and the robot is required to visit all goals only

once, as soon as the robot reaches a goal, that goal will be removed from the goals’

list. This is detected by the toDoChanged function (see VI control diagram

in Figure 2.5), and so value iteration can be performed again while ignoring the

reached goal, and the robot can move on towards the next goal.

2.2.5 Characteristics of the Reinforcement Learning Controller

This controller successfully avoids the trap (as shown in Figure 2.2) that posed a

problem for the basic controller. Even though modifications to the basic controller

may solve the problem, the robot may be trapped again in a different unanticipated

environment that is designed to trap the robot. The VI controller is intelligent

enough to learn for an unknown situation, and can plan optimally for any arbitrary

environment.

VI for the high level control is only called when a goal is reached, which saves

computation time.

The problem with small gaps between walls (Figure 2.9(a)) and the problem of

a goal being in the same state as a wall segment (Figure 2.9(c)) can both be solved

by increasing the number of states in the environment (Figures 2.9(b) and 2.9(d))

or by shifting locations of the states.

Due to the amount of calculations, another possible drawback with VI con-

troller is that the speed of planner is reduced as the state number is increased. But

this does not seem to be significant problem as a 150×150 grid world only takes

about one second2 each time the valueIteration function is executed to find

a new policy.

Please note that the current implementation of the VI controller assumes that

the environment does not change, i.e. the positions of the walls and goals do not

change during the execution of the controller. As discussed in Section 2.2.6 the

implementation of the top layer of controller, a new path is only calculated when

a goal is reached. If the environment changes often, there should be mechanisms

added to the controller to detect the change in the positions of the walls and/or

2Hardware: 2.4 GHz Intel Core 2 Duo, 2GB RAM

17

goals.

To improve the VI controller, one suggestion is to separately detect changes in

goals’ and walls’ positions. Changes of goals can be detected by modifications to

the toDoChanged function in the top layer (Figure 2.5). Changes of the walls can

be detected by a new function called wallsChanged in the value iteration layer,

and when any one of the walls’ position is changed, wallsChanged should be

able to trigger valueIteration function to generate a new policy. These ad-

ditions are excellent assignment exercises to help people understand the controller

better.

2.2.6 Detailed Description of Each Function

To further clarify the controller (Figure 2.5), here is a detailed description of the

functions for the VI controller. We will now explain each one of the functions with

its input parameters and output.

Top Layer (Figure 2.5)

This layer keeps track of the target goal positions, which goals the robot still needs

to visit, and the current target goal. An example of the the functions’ output values

are shown in Figure 2.10.

toDo keeps track of which goal positions are still not reached. The group of goal

positions are recorded in this function as a to–do list. When a goal is reached, it is

then removed from this list of target goals (i.e. to–do list) which is stored within

the toDo function.

Input Parameters For each input, we will list the variable type, variable

name and then a description.

• ArrayList previousTodo: Output of the toDo function from the previous

time–step3.

3Definition of time–step can be found from Section 3.2.4

18

(a) plan: A, B;
output of toDo: B, A;
output of toDoChanged:
false

(b) plan: A, B;
output of toDo: A;
output of toDoChanged:
true

(c) plan: A, B;
output of toDo: null;
output of toDoChanged:
true

(d) plan: A, B;
output of toDo: null;
output of toDoChanged:
false

Figure 2.10: An example showing values of the output of the top layer func-
tions for the VI controller.

Plan stores the locations of all the target goals regardless of a goal is reached or
not.

• float[][] plan: The entire list of goal locations. This list includes the goals

that are reached already.

• boolean arrived If the robot has reached its current goal location.

Output: Output type: ArrayList. Description: The list of target goals not yet

reached. The type used is ArrayList because it supports dynamic arrays that

can grow or shrink as needed4, where as standard arrays are of fixed length and

cannot grow or shrink. So, with ArrayList, when a goal is reached, we can

easily delete it from this list. Each goal is stored as a float[] with length of two,

e.g. [7837.0, 4031.0].

4http://java.sun.com/javase/6/docs/api/java/util/ArrayList.html

19

toDoChanged By comparing the output of the toDo function from the current

and the previous time–steps, this function finds if the to-do list from the toDo func-

tion is changed. If the to-do list is changed, the output of the toDoChanged func-

tion will then trigger the valueIteration function to generate a new shortest

path leading to the next goal.

The output of the arrived function is not used as the trigger because when

a robot stays at the final destination, it has arrived at the destination, but it will

not need to use valueIteration to generate a new path.

Normally, when a goal is reached, the goal is deleted from the to–do list. But

we always need the output of toDo for the steer function to find which direc-

tion the robot should go (straight, left, or right). So when the final destination is

reached, it is not removed from the to–Do list, so that we can have a non–empty

list. toDoChanged specializes in finding out if the to–do list is changed so that

toDo can output the actual list for steer function.

Input Parameters

• ArrayList previousTodo: Output of the toDo function from the previous

time–step.

• ArrayList toDo: Output of the toDo function from the current time–step.

Output: A boolean that is true if the to–do list of goals from the toDo func-

tion is changed. When a goal is reached, the output of this function is only true for

one time step, and this is to enable valueIteration to generate a new policy.

====================

Value Iteration Layer (second layer in Figure 2.5)

By using value iteration, this layer finds an optimal policy in the grid world, and so

the optimal actions for all the states.

20

getHasGoal finds out which states contain goals. Given the output of toDo,

which contains the goal locations in a numerical form (e.g. {[7787.0,5181.0]}),
getHasGoal records goal locations in a different format that says if a state in the

grid world contains a goal.

For an example of the output of getHasGoal, please see Figure 2.11(c).

(a) The real environment with wall positioned between the two points
: {(2438.14, -1743.59); (2438.0, -1708.66)}, goal from to-do at:
(2495.67, -1726.66)

(b) Output of getHasWall (c) Output of getHasGoal

Figure 2.11: Example outputs for the getHasWall and getHasGoal functions

Input Parameters

• ArrayList toDo

Output A two dimensional boolean boolean[][] indicating if there is a goal

in each of the row and column position of the grid world.

21

getHasWall finds out which grids contain walls. The output contains the same

information as walls, but in a different format that says if a state in the grid

world contains a wall segment.

Input Parameters

• ArrayList walls: The locations of all the walls.

Output A two dimensional boolean boolean[][] indicating if there is a wall

segment in each of the row and column position of the grid world.

currentState finds out the current state location of the robot.

Input Parameters

• float[] robotPos: Position of the robot, e.g. [2388.3333, -1726.0].

Output int[] The current index of the row and column location of the robot.

valueIteration finds out the the Q-value for each of the state in the grid world (i.e.

each square). The valueIteration function is triggered to re–learn Q-values

when the to–do list is changed.

Input Parameters

• double[][][] previousQValues: The Q-values from the previous time step.

If valueIteration is not triggered by the output of toDoChanged,

this old set of Q-values will be passed on to the next time step, since it is not

necessary to learn new Q-values.

• boolean[][] hasWall

• boolean[][] hasGoal

• boolean todoChanged

22

Output: A three dimensional double array (double[][][]) which indicates the

Q-value for a certain row, column position and action in the grid world.

chooseAction Based on the Q-values from the valueIteration function, this

function finds out the optimal actions for the current state.

Input Parameters

• double[][][] qValues

• int[] currentStateLocation

Output: An integer representing the optimal action for the current state, for

example, NORT H(↑)= 0;EAST (→)= 1;SOUT H(↓)= 2;WEST (←)= 3; INACT ION =
4;

====================

Middle orientation Layer

This layer acts as a liaison between the VI and the bottom layers. Given the op-

timal action for the current grid from the VI layer, this layer finds out the general

direction action for the robot to head towards. Based on the current location, this

layer also calculates if the robot reached a goal and passes that information to the

top layer.

steer Based on the current conditions of robot location, orientation, whisker sen-

sor and goal location, this function determines which direction the robot should

steer towards.

23

Input Parameters

• float[] robotPos: Position of the robot, e.g. [2388.3333, -1726.0].

• double orientation: Current orientation of the robot in degrees, e.g. 90o.

• boolean whisker: True if the whisker of the robot is touching a wall, false

otherwise.

• int[] currentState: see output of currentState. Based on the current

state and the optimal action, the controller can calculate to steer the robot

towards the middle of the next wanted state.

• int action: The optimal action for the current state. NORT H(↑)= 0;EAST (→
) = 1;SOUT H(↓) = 2;WEST (←) = 3; INACT ION = 4;

• ArrayList toDo: see output of toDo. If there is a goal from the to-do list,

then the robot should steer towards the goal.

Output There are three possible directions for steering: left, right, straight.

arrived This function determines if the robot has arrived its current target goal

location.

Input Parameters

• float[] robotPos: Position of the robot, e.g. [2388.3333, -1726.0].

• ArrayList previousToDo

Output boolean, true if the robot has arrived a goal in the to-do list from

the previous time step. As long as the reached goal stays in the to-do list and the

robot stays at the goal, this output will be true. But if the goal is removed from

the to-do list (i.e. via toDo function), output of arrived will normally be false

during the next time step.

====================

24

Bottom Orientation Layer

This layer handles low level real time interactions with the environment.

lowLevelSteer Compared to steer, lowLevelSteer offers much more finer

grained control over the direction that the robot should steer toward.

Input Parameters

• double orientation: Current orientation of the robot in degrees, e.g. 90o.

• int steer

Output The function returns the new value for the orientation of the robot

in terms of degrees of angle. This orientation is the final orientation, but not the

change in orientation, because the final orientation could be useful to calculate the

change in position of the robot (see function changePos).

whiskerOn finds out if the robot’s whisker is in contact with any of the walls.

Input Parameters

• ArrayList walls: The locations of all the walls. Each wall contains the loca-

tion of the two end points. (e.g. {[7787.0,5181.0],[7987.0,5181.0]})

• float[] robotPos: Position of the robot, e.g. [2388.3333, -1726.0].

• double orientation: Current orientation of the robot in degrees, e.g. 90o.

Output True if the robot’s whisker is touching a wall.

changePos based on the new orientation and speed of moving one pixel per time

step, changePos finds the exact change in location for the robot to take.

25

Input Parameters

• double newOrientation

Output The change in x and y location of the robot.

26

Chapter 3

System and Graphical User
Interface (GUI) Design

There is an existing robot navigation applet prototype (Section 3.1) which relies on

prolog as the main underlying programming language. But most users of the applet

are believed to be more familiar with the Java programming language rather than

Prolog, therefore it will be more effective for them to learn how to write a controller

by saving the time spent on learning Prolog. The controller for the new applet will

be based on Java, so one of the main focuses in designing the new applet is to assist

users to program in Java. The tool is designed to assist people to write a controller,

so a “Layer Editor” (Section 3.2.1) is added to help with the visualization and the

creation of the hierarchical controller.

Another design goal is to help the user to examine details of the controller

during the execution of the simulated environment. The debugging facilities are

designed so that the user can look at the arguments passed between all the functions

at any chosen time step. This ability to check values of arguments allows the user

to examine in detail the inner workings of the controller, so during the execution

of the controller, the user can have a thorough understanding of what is going on.

27

3.1 Prototype Applet
The new applet follows the design of the existing prototype applet. The prototype

applet can be found from: http://aispace.org/robot/. Designers and

programmers of the robot navigation applet are encouraged to view all the applets

from AISpace (www.aispace.org/downloads.shtml) and the look and

feel document (http://www.aispace.org/lookAndFeel.shtml) to un-

derstand the design.

3.1.1 Menu Options

There are five menu options (Figure 3.1 and Figure 3.2). Since most of the options

will not be changed, except for the “Edit” option, we will not discuss them here,

and detailed explanations on these menu options can be found from:

http://aispace.org/robot/help/general.shtml#menu.

To change the the controller, the user of the applet will need to use the “Edit”

menu which we will concentrate on talking about.

The “Edit” menu option (Figure 3.1) will bring up the options to edit a layer

of controller source code (Figure 3.2(b)). This “Edit” menu is sufficient for a con-

troller with three fixed layers, but insufficient for an arbitrary number of layers. An

improved “Edit” menu will be talked about in Section 3.2.1.

Figure 3.1: Main menu

28

(a) File (b) Edit

(c) View (d) Robot Options (e) Help

Figure 3.2: All the file menu options from the prototype applet.

29

3.1.2 Tab Panels

In addition to the menu options, there are two major tabs/panels in the prototype ap-

plet, one is called “Create” (Figure 3.3), and the other called “Solve” (Figure 3.4).

The “Create” tab allows users to create an environment by adding/deleting walls or

goal locations. As can be seen from the buttons across the middle of Figure 3.4, the

“Solve” tab allows the user to control the execution of the robot applet (the buttons:

“Step Robot”, “Run Robot”, “Stop Robot”, “Reset Robot” etc), view the proper-

ties of the current execution plan (“View/Modify Plan”) and to obtain trace/debug

information.

Figure 3.3: Create tab

Figure 3.4: Solve tab

3.2 New Applet Design
For the new design, menu options “File”, “View”, “Robot Options” and “Help”

and creating a simulated environment under the “Create” tab will be the same as

the previous prototype design.

30

The “Edit” menu option and the “Solve” tab , however, will be significantly

modified. The major differences are that an arbitrary positive number of layers is

allowed for the controller, the function code is in Java rather than Prolog, and there

are some modifications for the debugger.

3.2.1 Layer Editor

Under either of the modes “Create” or “Solve”, the layer editor can be brought

up by selecting “Layer Editor” from “Edit” option under main menu as shown in

Figure 3.5.

Figure 3.5: The new drop down Edit menu

The layer editor (as shown in Figure 3.6) allows user of the applet to create and

modify layers, edit functions within a layer, and edit the interactions between the

functions by editing the arcs.

31

Figure 3.6: Layer editor

32

(a) Before adding any arcs or
ports

(b) Creating a port (c) Creating an arc

(d) Port added automatically (e) Continuing dragging the arc
from Figure 3.7(b)

(f) Port added automatically

(g) Continuing dragging the arc
from Figure 3.7(b)

(h) Create the pairing output port
for the port created in Figure
3.7(b)

(i) Creating arcs to pass parame-
ters between different time steps

(j) Creating arcs to pass parame-
ters between different time steps

(k) The arc’s type and name can be
shown near any of the arc segments

Figure 3.7: An example used to illustrate how to create arcs.
This example is extracted from the original Basic Controller from Figure

Figure 2.3.

33

Adding/Editing Ports

A port can be added to a layer by the “Add Port” button at the top of layer editor

(Figure 3.6). For example, compared to Figure 3.7(a), a port is added in Figure

3.7(b).

Definition 1 A port resides at the edge of a layer and passes a parameter in or out

of a layer.

An input port passes a parameter into a layer, and is shown as a hollow circle

(Figure 3.8). Output port passes a parameter out of a layer, and is shown as a dark

circle (Figure 3.8).

Figure 3.8: Input and output ports

By using the “Select” button in layer editor (Figure 3.6) and then clicking on a

port, a user can change the type of the a port to either “Input” or “Output” as shown

in Figure 3.9.

Matching Ports When a variable needs to be passed from one time step1 to an-

other time step, an input port on the left of a layer can receive the variable from the

previous time step, and another port on the right side of the layer can be used to

pass the current value of the variable. This can be seen as the two ports shown in

Figure 3.10.

Definition 2 A pair of matching ports passes the same variable between time

1Definition of time–step can be found from Section 3.2.4

34

Figure 3.9: Editing a port

steps. They appear graphically at the same horizontal height as seen in Fig-

ure 3.10.

The ports can be declared to be delivering the same variable through different

time steps by using the port editor shown in Figure 3.9. An example showing the

steps to create matching ports can be seen from Figures 3.7(g) to 3.7(k).

Figure 3.10: Two ports deliver a variable through out different time steps
goalPos function is the same as in the basic controller Figure 2.3 as described

in Section 2.2.6

35

Arcs

An arc passes output from one function2 to the input parameter of another function.

For example, in Figure 3.7, the arc passes information on previousGoalPos

between the functions goalPos and arrived.

“GUI arcs” or simply “arcs” are represented by the ArcVariable class as

described in Section 5.1. An arc graphically shows the flow of a variable passed

between functions, and an ArcVariable is the actual storage of the object being

passed around.

Multiple arcs coming out of a function are stored as one object of type ArcVariable.

If a function passes a variable through different time steps, then the arc(s) go-

ing to the output port uses one ArcVariable object, and the arcs going to the

input port uses a different ArcVariable. E.g. the two arcs in Figure 3.10 are

represented by two different ArcVariables.

Adding/Editing Arcs .

We will use the standard AIspace way to create arcs, for example, the method of

creating arcs from the belief and decision networks applet found at

http://aispace.org/bayes/index.shtml

If the two functions being connected are in different layers, e.g. functions

goalPos and arrived Figure 3.7, the additional ports and arcs between the two

functions will be added automatically. i.e. when the user drags the arrow end of the

arc across different layers, the programming environment will automatically add

I/O ports at the bottom and top of the layers. As an example, when the arc (Figure

3.7(g)) between the input port (output of function goalPos) and arrived is

added, arc’s segments and ports are automatically added as shown in Figures 3.7(b)

to 3.7(g).

An arc can be edited by clicking on “Select” button from “Layer editor” (Fig-

ure 3.6), and then edit the arc using the arc dialog (Figure 3.11).

2Functions are explained in Section 3.2.2

36

Figure 3.11: Dialog to modify a selected arc. Note that the name is used
as the name of the input parameter for the function taking the input.
A name is necessary because a name is not given from the function
where the arc comes from (there is no name for a variable returned
from a method in Java).

Adding Layers

To add a layer to the existing controller, the user can click on the “Add Layer”

button, then the frame for a new layer will appear at the top of the controller editor

panels (Figure 3.12). To change the position of the layer, user can drag the new

layer to a new position.

37

Figure 3.12: After “Add Layer” is clicked, a new layer appears at the top.
This controller is based on the basic controller Figure 2.3

38

3.2.2 Function Editor

A function is very similar to a Java method, in fact, when the Java interpreter is run

for the user written controller code, a function is transformed to a Java method.

As shown in Figure 3.13 with an example using the arrived function from

the basic controller (Section 2.1), a function takes inputs and returns one single

output.

Figure 3.13: “arrived” as an example function
“arrived” function as represented as the oval shape is a function that takes

parameters from arcs with variable names: arrived, previousGoalPos, robotPos,
that are of type: boolean, float[], float[] respectively.

If a function is selected (e.g. by clicking on the “Select” button from “Layer

Editor” and then click on a function), the function editor dialog will pop up (as

shown in Figure 3.14).

Users can change the output type of the function, which is equivalent to “return

type” in Java. If the actual return type of the function differs from the specified

return type from the “Output variable type” field, an error will be thrown, and the

controller will not be executed.

39

Figure 3.14: Function editor

Input(s) of Function

Source code can also be modified in the “Function editor”. The input parameters

take the variable names and types given by the input arcs. These input parameters

are processed by the programming environment, and shown in the function editor

dialog for the users’ convenience. If one of the input arcs for a function is edited or

removed from layer editor (Figure 3.6), the “Input parameters” list in the function

editor (Figure 3.14) will reflect the change which is processed by the applet, but

the user of the applet needs to change the code for the function to make use of the

change.

40

If two inputs of a function have the same variable name (Figure 3.15), an error

message will be shown before controller is executed and the Java interpreter is

called.

(a)

(b)

Figure 3.15: Function with multiple inputs of the same name.
The error message (Figure 3.15(b)) will appear if input arcs causing the problem
are added to the function. The error message will appear again if the user clicks

on the “Run Robot” button (Section 3.2.5, Figure 3.18).

41

3.2.3 Layer Variables

A controller may need to initialize data to be used by multiple functions. As op-

posed to global variables for the entire controller, each layer may have its own set

of layer variables (see Definition 3). As shown in Figure 3.16, layer variables al-

low designers of a robot navigation controller to easily copy an existing layer to a

new controller.

Definition 3 A layer variable has its scope within a layer and is shared and acces-

sible by all functions within a layer .

Layer variables can be edited by selecting a layer, and then using the dialog

editor shown in Figure 3.17.

The programming environment will later add the layer variables to each of the

functions in the layer as local variables.

42

(a) Controller 1 (b) Controller 2

(c) Controller 3, using layers from both con-
trollers 1 and 2

Figure 3.16: An example showing the use of layer variables.
This example shows how a new controller (Figure 3.16(c)) might be created based

on two existing controllers (Figures 3.16(a) and 3.16(b)). If global variables are
defined for the entire controller instead, the two controllers 1 and 2 are likely to

have different global variables, and there will be problems when adding an
existing layer (e.g. layer 2 of controller 1) to the new controller (controller 3). We
assume that the different layers have the same ports between the layers, so that the

user do not need to edit the ports during the integration of controllers 1 and 2.

43

Figure 3.17: Editor to modify layer variables.
The layer variables shown here are for the value iteration layer of the VI

controller (Figure 2.5).

44

3.2.4 Executing the Controller and Selecting a Time Step

We use the “Solve” tab panel to execute the running of the robot. For the old applet,

please see Figure 3.4. For our new design, please see Figure 3.18. “Run Robot”

button is used to run the simulated environment.

Definition 4 A time step is a unit of simulated time between each simulation cycle,

and a unique state is normally associated with a time step.

User can select a time step by using spin box (Figure 3.19(a)), back/forward

buttons, or the slider (Figure 3.18), and then the applet will show the snapshot

of the simulated environment for that particular time step (Figure 3.19(b)). The

number (≥ 0) in the spin box (as seen in Figure 3.19(a)) in Figure 3.18 indicates

the current time step. If the robot has already been run, i.e. the elapsed number of

time steps is ≥ 1, the spin box can be used to select a past time step.

The backward/forward buttons goes backward/forward by single time steps re-

spectively.

The slider provides fast access to past time steps, with the left most side of the

slider being time step 0, and right most side of slider being the final time step when

the slider is clicked.

45

Figure 3.18: Execution dialog with debug functionality46

(a) Spin box

(b) A snapshot of the simulated environment

Figure 3.19: Explaining the elements of the execution dialog from Fig-
ure 3.18

Figure 3.19(a) shows the spin box positioned just under the text “Please select
time step:” in Figure 3.18. Figure 3.19(b) shows a snapshot of the simulated

environment.

47

3.2.5 Debugging

The debugging facilities on the new “Solve” tab (Figure 3.18) allow the user to

examine the values of variables at a selected time step.

All the parameters between the functions are shown near the bottom of the

“Solve” tab, values of the variables are processed by the programming environ-

ment. The values of the parameters are printed by using variableName.toString();.

The programming environment should have the toString() method overridden

for predefined classes such as Arraylist.

Standard Output

Any print out from the “Standard Output” will be dumped to the Standard Output

field at the bottom of the execution dialog as shown in Figure 3.18. The example in

the figure shows the goal position that the robot is aiming at, and this goal position

is useful when there are multiple goals.

This output trace is cleared when the “Reset Robot” button (Figure 3.18) is

clicked. This field will not be changed when any of the controls under the text

of Please select time step is clicked (i.e. “step back”, “step forward”

buttons, spin box and the slider).

A Note on the Dynamic Change of the Environment

In order to facilitate the debugging tools, the final implementation of the applet

should remember all the changes in the environment during execution. E.g. when

the simulated environment is running, and the user changes the position of wall(s)

or even the robot by dragging these types of objects around, the applet needs to

remember all the changes of the locations of objects in the environment.

3.2.6 Random Inputs

A random variable editor (Figure 3.20) is provided to add random variable inputs.

This random variable editor dialog can be brought up by clicking on “Add Ran-

dom” button from “Layer editor” (Figure 3.6). Note that the “Add Random” does

not yet exist in Figure 3.6, but should be added in the final implementation of the

applet. After the random variable arc is added to the controller, the arc can then be

48

linked to a function, and be used (top left of Figure 3.21).

The user can have the option to select the type for a random variable, and

these types are from the available random variable types offered by Java: boolean;

double; float; int; long and Gaussian (normally distributed double value with mean

0.0 and standard deviation 1.0).

The user can set the seed so that the same trace of a random variable can be

used if the robot is reset. An example of a trace for a boolean random variable is

true, f alse, f alse, f alse, true, f alse. This same trace may be beneficial if the user

needs to modify some aspects of the controller to see how the robot behaves but do

not want a random variable to affect the behavior of the robot.

For an example on the use of a random variable, the basic controller (Sec-

tion 2.1) is modified to include a random controller as shown in Figure 3.21.

Figure 3.20: Editor to add random input

49

Figure 3.21: Basic controller with random input.
See randomInt at top left. Only the top layer of the controller is shown here, for

the whole controller, please refer to Figure 2.3 on page 7.

50

Chapter 4

Interpreter

One of the key differences between the new robot navigation applet and the proto-

type version is the language used by users to program the controllers. The proposed

version uses Java versus Prolog used in the previous version. Most users of the ap-

plet are believed to be more familiar with the Java programming language rather

than Prolog, therefore it will be more effective for them to learn how to write a

controller by saving the time spent on learning Prolog.

4.1 Introducing BeanShell – www.beanshell.org
BeanShell is selected as the Java interpreter for the applet. From BeanShell’s

homepage [7]:

“BeanShell is a small, free, embeddable Java source interpreter with

object scripting language features, written in Java. BeanShell dynami-

cally executes standard Java syntax and extends it with common script-

ing conveniences such as loose types, commands, and method closures

like those in Perl and JavaScript.”

The benefits of using BeanShell for the robot navigation applet are explained

in the following sections.

51

4.2 Small Size
Size is an important factor in selecting the interpreter, because during loading of the

applet’s homepage, the “Start Applet” button only appears when the entire applet

is loaded. For example, the prototype applet at url: http://aispace.org/robot/. If

the applet takes a long time to load, users may think that there is problem with the

application. The size of BeanShell interpreter is only around 280 kb, therefore it

does not dramatically increase the size/loading time of the applet.

4.3 Ease of Use
BeanShell fully supports the standard Java syntax, and we use BeanShell from the

application to execute Java code dynamically at run-time.

4.4 Feedback on Error for Debugging
BeenShell returns useful error messages, which in turn can be useful for our de-

bugging trace as described in Section 3.2.5. In BeanShell, “exception handling

using try/catch blocks works just as it does in Java” [7]. We can have an exception

handler around each of the function calls within the controller, and based on the

exceptions thrown, we can can inform the user of the programming environment

what has gone wrong.

For example, for code of the arrived function in the middle layer of the

basic controller (Figure 2.3), if one assigns a double value of 1.4 to String

variable abc, an error message will appear as follows:

Error occurred at "arrived" function in the "Middle" layer:

String myString = 1.4

Target exception: java.lang.ClassCastException: Cannot cast

primitive value to object type:class java.lang.String

BeanShell dynamically interprets Java, so the code is not compiled and errors occur

52

Listing 4.1: Example of making and calling a function by using BeanShell
1 import bsh . I n t e r p r e t e r ;
2

3 / / code f o r c l a s s and method d e c l a r a t i o n s o m i t t e d
4

5 I n t e r p r e t e r i n t e r p r e t e r = new I n t e r p r e t e r () ;
6 / / t h e c o n c a t e n a t i o n f u n c t i o n as a s t r i n g
7 S t r i n g c o n c a t F u n c t i o n S t r =
8 ” p u b l i c S t r i n g c o n c a t F u n c t i o n (S t r i n g a , S t r i n g b) { r e t u r n a+b ;} ”

;
9

10 / / h a n d l e s E v a l E r r o r e x c e p t i o n
11 t r y {
12 / / d e c l a r e s t h e f u n c t i o n i n t h e i n t e r p r e t e r
13 i n t e r p r e t e r . e v a l (c o n c a t F u n c t i o n S t r) ;
14 / / u se and run t h e f u n c t i o n
15 System . o u t . p r i n t l n (
16 i n t e r p r e t e r . e v a l (” c o n c a t F u n c t i o n (\” l e f t \” , \” r i g h t \”) ; ”)) ;
17 }
18 ca tch (E x c e p t i o n e) {
19 System . o u t . p r i n t l n (e . t o S t r i n g ()) ;
20 }
21

22

at run time after the buttons “Run Robot” or “Step Forward” (Figure 3.18) from the

“Solve” tab panel are clicked.

4.5 Using the BeanShell Interpreter
If Eclipse IDE is used, the developer can import the BeanShell jar file (bsh-2.0b4.jar)

as one of the “Referenced Libraries”.

Then the interpreter can be used after putting

import bsh.Interpreter;

in a Java source file, as shown in line 1 of Listing 4.1.

The example in Listing 4.1 declares a function in the interpreter by passing the

function as a string (lines 7,8) to the interpreter (line 13). The the function is called

at line 15. The output of the code is:

leftright

53

Chapter 5

Back-End Software Design

This chapter describes the back–end design of the software, and for the GUI design,

please refer to Chapter 3.

The design of the software is object-oriented and organized by the classes that

represent Arc Variable, Function, and Controller. Each of these classes will be

discussed in the following sub–sections. The design is based on Assumption 1.

Assumption 1 Within a time step, the relationships between functions are acyclic

This assumption is a constraint “that the graph of how one variable depends on

another has to be acyclic” [8]. This constraint ensures that a function can be called

when all of its inputs are available, and there will not be deadlock cycles where

function A waits for the output of function B which in turn waits for the output of

function A (Figure 5.1).

Figure 5.1: An example of a deadlock cycle.

54

5.1 Arc Variable
The ArcVariable class represents variables of the GUI arcs (Section 3.2.1) that

link input/output between functions.

“GUI arcs” or simply “arcs” is a GUI feature that links functions and ports,

where as an instance of ArcVariable contains the actual variable that is passed

by a GUI arc.

The ArcVariable class provides all the setter and getter methods for the

type and object of the variable.

5.1.1 Arc Variable Between Time Steps

Special care needs to be taken for ArcVariables that link different time steps.

Examples of ArcVariables between time steps can be found from Figure 5.2,

where GUI arcs with labels 1, 3, 4, and 5 are stored by one ArcVariable be-

tween time steps, and GUI arc with label 5 is stored by another ArcVariable

between time steps.

Figure 5.2: Examples of “ArcVariable” between time stes.
Extracted from Basic Controller in Figure 2.3 on page 7. Arcs with labels 1, 3, 4,
and 5, although pictorially different, are represented by the same ArcVariable
object in the back–end program. Arc with label 2, however, is stored in a different

ArcVariable object.

55

An ArcVariable between time steps has a special boolean tag called betweenTime,

and an ArcVariable between time steps is processed differently compared to

other ArcVariables.

5.1.2 Details of the ArcVariable class

The fields and methods of the ArcVariable class are documented below. Read-

ers not interested in the detailed documentation of the class can skip this subsec-

tion.

Field Summary

The following list contains type, name and descriptions of global variables.

• boolean betweenTime: True if this ArcVariable is between time steps

• ArcVariable previous: If this ArcVariable is between time steps,

and if this ArcVariable holds the value for the current time step (e.g.

ArcVariable for arc with label 2 in Figure 5.2), previous holds the

value for the ArcVariable from the previous time step (e.g. for ArcVariable

of arc 2, previous hold ArcVariable for arc 1). Otherwise, previous

is NULL.

• Object ioObject: The object that the ArcVariable is passing between

functions.

• String ioType: The type of the object that the ArcVariable is passing

between functions

• Interpreter interpreter: An instance of the BeanShell interpreter. This

interpreter can be used to declare and execute the functions written by the

users of the applet, e.g. in Listing 4.1, the function concatFunction is

declared by callinginterpreter.eval(concatFunctionStr), where

concatFuncionStr contains the string for the function.

• String name: The name of the ArcVariable.

56

Constructor Summary

• ArcVariable(String ioType, String name, Interpreter interpreter, boolean

betweenTime, ArcVariable previous): Constructs a new ArcVariable

based on the type of the object that the ArcVariable holds, the name of

the arc, an instance of the BeanShell interpreter, if the ArcVariable is a

between time steps ArcVariable, and if there is a matching ArcVariable

from the previous time step (e.g. in Figure 5.2, with ArcVariable for arc

2, previous holds the ArcVariable for arc 1).

• ArcVariable(String ioType, String name, Interpreter interpreter, boolean

betweenTime)

• ArcVariable(String ioType, String name, Interpreter interpreter)

Method Summary

The getters and setters for the global variables:

• boolean isBetweenTime()

• void setBetweenTime(boolean betweenTime)

• ArcVariable getPrevious()

• void setPrevious(ArcVariable previous)

Other methods:

• reset(): This method is called after every time step to reset the value of the

object (ioObject). Special caution needs to be taken for ArcVariables

between time steps.

• declareIO(): Declares the object that the ArcVariable is holding within

the BeanShell interpreter environment.

57

5.2 Function
The Function class represents a function and how it is to be executed. Detailed

documentation of the Function class can be found from Section 5.2.5.

Definition 5 A function in the programming environment obtains input parameters

from the arcs linking to it, contains code that is used to process the inputs, and

computes an output.

Fields of the Function class include: (please refer to Figure 5.3 for an ex-

ample, and the labels used below are from that figure)

• input ArcVariables; (see label 1 and 2)

• one output ArcVariable; (label 5)

• Java code for the function; (label 4)

• the function name; (label 3)

Figure 5.3: An example function before conversion to Java code.
The function has two input ArcVariables and one output ArcVariable.

The function simply returns a concatenation of the two input String. User uses the
design environment (e.g. editors shown in Figure 3.6, and Figure 3.11) to name

the variables, and we assume that the input variables will all have different names.
If the name are not unique, an error message (Figure 3.15(b)) will be shown to the

user of the programming environment (as discussed in Section 3.2.2).

The Function class mainly put together the Java code of a function to be run

by the interpreter, then runs the code in the interpreter, so that the function can be

called later on.

58

Listing 5.1: Final Java code made from information of graph from Figure 5.3
the text for the code is stored in a String called funcJavaCode

1 p u b l i c S t r i n g c o n c a t F u n c t i o n (S t r i n g a , S t r i n g b) {
2 re turn a+b ;
3 }

5.2.1 Converting a Function to Java Code

An example here will illustrate how to put code together. Let us say there is a

function called concatFunction that concatenates two Strings together. As

shown in Figure 5.3 there are two input arcs each having String type, and one

output arc being String type as well.

The final code combines the knowledge from the graph shown in Figure 5.3 to

produce code as shown in Listing 5.1.

5.2.2 Passing a Function to the Interpreter

Using the code generated as shown in Listing 5.1, assuming the String for the code

is called funcJavaCode, we can let the interpreter know the function by calling

Interpreter interpreter;

interpreter.eval(funcJavaCode);

Please refer to Section 5.2.5 the method called makeInterpreterCode()

for details on how funcJavaCode is made.

5.2.3 When to Run Function

Before the function can be executed, designer of the programming environment

needs to make sure that all the inputs of the function are ready.

The following method ensures that all inputs are ready for a function: Ex-

cept for input ArcVariables between time steps that just reset its value to the

previous time-step, reset all other ArcVariable’s object to null at the end of

each time-step; During the next time step, if a function has none of the input

ArcVariable having a null object, then we know that the function has all its

inputs ready, and we can run that function.

59

5.2.4 Using Interpreter to Run the Function

Designer of the programming environment can call the function as shown in the

following code segment, and set the object of the output ArcVariable.

outputArcVariable.setIoObject((Object)interpreter.eval(methodCall));

The above code assumes the output ArcVariable is called outputArcVariable,

and there is a setter method called setIoObject that sets the object of an ArcVariable,

and the function calling string called methodCall, which is generated using in-

formation from graph in Figure 5.3 on page 58.

methodCall for our example (Listing 5.1) is "concatFunction(a, b);",

where the inputs a and b are named by the user of the programming environment

when they created the controller.

5.2.5 Details of the Function class

The fields and methods of the Arc class are documented below. Readers not inter-

ested in the detailed documentation of the Function class can skip this subsec-

tion.

Field Summary

The following list contains type, name and descriptions of global variables.

• Interpreter interpreter: An instance of the BeanShell interpreter.

• String code: The code for a function of the controller. The code look like

a Java method, but does not have the signature of a method. e.g. For the

example from Listing 5.1, code would be: return a+b;

• ArcVariable[] inputArcVariables: An array pointing to all the input

ArcVariable. For example, in Figure 5.3, ArcVariables for arcs with

labels 1 and 2.

• ArcVariable outputArcVariable: The output ArcVariable. For ex-

ample, in Figure 5.3, the ArcVariable for arc with label 5.

• String name: The name of the function.

60

Constructor Summary

• Function(ArcVariable[] inputArcVariables, ArcVariables outputArcVariable,

String code, String name, Interpreter interpreter): Constructs a new Function

based on the given input ArcVariables, one output ArcVariable, the

textual code for the function, the name of the function, and an instance of

the BeanShell interpreter.

• Function(String code, String name)

Method Summary

The getters and setters for the global variables:

• String getCode()

• void setCode(String code)

• ArcVariable[] getInputArcVariables()

• void setInputArcVariables(ArcVariable[] arcVariables)

• String getName()

• void setName(String name)

• ArcVariable getOutputArcVariable()

• void setOutputArcVariable(ArcVariable outputArcVariable)

Other methods:

• boolean getHasAllInputs(): finds out if the function has all its input are

ready from the input ArcVariables. This information is useful in deter-

mining if a function is ready to be run by the interpreter.

• String makeInterpreterCode() creates Java code used for interpreter to

run the function code.

61

• void declareFunction(): declares the function with the code made by

makeInterpreterCode() in the BeanShell interpreter.

• Object execute(): executes the function and returns the object returned by

executing the function in the interpreter.

• boolean isLastFunction(): detects if the last function in the controller is

being executed. This assumes that there is always a function in the con-

troller called changePos(), and it is the last function to be executed.

changePos() specifies the change in location of the robot (examples

changePos() can be see in the basic controller (Figure 2.3) and VI con-

troller Figure 2.5). The designer of programming environment can change

how this method is currently implemented to let the user of the applet modify

this, so that it is not hard coded.

5.3 Controller
The Controller class overlooks the operations between ArcVariables and

Functions and keeps track of how many time-steps have elapsed.

The main functionality offered by the Controller class is to run the con-

troller one time-step at a time. For each time-step, the controller attempts to run all

the necessary functions.

Firstly, to run a function, we find out if all the input ArcVariable of the

function are set and ready, then we run the function in the interpreter, so that the

object of the output ArcVariable can be set the the appropriate object returned

from the interpreter. Each function only needs to be run once, since the graph is

acyclic as stated in Assumption 1.

We know all the functions are executed after the function called changePos

is executed, because changePos is the final function which gets the change in

position of the robot.

Finally, once all the functions are executed, with the exception of some of the

ArcVariables between time steps, we can reset all the ArcVariables by

setting the object of the ArcVariables to null.

62

5.4 Controller Application
The final class that brings together user input such as the graph shown in Fig-

ure 2.3 and the previously discussed classes (ArcVariable, Function, and

Controller) is the Controller Application class. This class creates all the ArcVariables

and Functions from the user input, and makes use of the Controller class to

run the controller.

5.5 The Absence of Layer Class
As the reader may have already noticed, there is no mentioning of a layer class in

this section. “Layer” is only a concept that is used to help the user of the applet to

conceptualize the hierarchical controller but is not necessary in the back–end. The

“Layer” concept should instead be present in the user interface part of the design,

and a “layer” in the UI should contain and distinguish between input/output ports.

For example, in Figure 3.8 on page 34, an input port is shown in hollow circle, and

output port is shown as filled circle.

63

Chapter 6

Conclusion

In this design document, we have described a proposed new robot navigation ap-

plet. We proposed the layout of the GUI based on factors such as a Java implemen-

tation for a controller, arbitrary number of layers for a hierarchical controller, and

the revamped debugging functionalities. The users should have all the necessary

tools to assist them to design a hierarchical controller, and all the information to

help them to understand what’s going on inside the controller during the execution

of the simulated environment.

The basic controller from the prototype controller is tested with the new applet,

furthermore, we have designed and implemented a hierarchical controller based on

value iteration which reuses many elements from the basic controller. We hope

the user can appreciate the ease to change an existing controller to accommodate a

more complex behavior of the robot. The value iteration based controller is intelli-

gent enough to avoid certain traps.

In Chapter 4, we have analyzed the benefits of using BeanShell as the Java in-

terpreter such as the small size (Section 4.2), ease of use (Section 4.3), and Bean-

Shell’s ability to provide feedback on error for debugging purposes (Section 4.4).

We explained how to use BeanShell for this applet and provided code to demon-

strate on its use.

Finally, we provided a detailed explanation of the back–end design for the ap-

plet. The design is object–oriented, and so the description of the design was based

on the classes such as Arc, Function, Controller and Controller Application.

64

Bibliography

[1] R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957. → pages 8

[2] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959. URL
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf. → pages 8

[3] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice, chapter 16, pages 411–433. Morgan Kaufmann Publishers, draft
edition, June 2003. → pages 8

[4] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, 4:237–285, 1996. → pages 8

[5] B. Knoll, Kisyński, G. Carenini, C. Conati, A. Mackworth, and D. Poole.
Aispace: Interactive tools for learning artificial intelligence. In Proceedings
of the AAAI 2008 AI Education Workshop, Chicago, IL, July 2008. URL
http://www.aispace.org/papers/Knoll2008.pdf. → pages 3

[6] A. Mackworth and Y. Zhang. A formal approach to agent design: An
overview of constraint-based agents. Constraints, 8(3):229–242, 2003. ISSN
1383-7133. doi:http://dx.doi.org/10.1023/A:1025697810124. → pages v, 1, 2

[7] P. Niemeyer. Beanshell’s homepage, October 2008. URL www.beanshell.org.
→ pages 51, 52

[8] D. Poole and A. Mackworth. Artificial Intelligence: Computational
Foundations of Intelligent Agents. Unpublished, 2008. → pages 2, 8, 54

[9] H. Ren, A. A. Bitaghsir, and M. Barley. Safe stochastic planning: Planning to
avoid fatal states. In Proceedings 3rd International Workshop on Safety and
Security in Multiagent Systems (SASEMAS), 5th International Joint

65

http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf
http://www.aispace.org/papers/Knoll2008.pdf
http://dx.doi.org/http://dx.doi.org/10.1023/A:1025697810124
www.beanshell.org

Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan,
May 2006. → pages 10

66

	Abstract
	Table of Contents
	List of Figures
	Acknowledgments
	1 Introduction
	2 Sample Controllers
	2.1 Basic Controller
	2.1.1 Description of Layers

	2.2 Using Value Iteration
	2.2.1 Markov Decision Process
	2.2.2 States
	2.2.3 Actions, Cost Function
	2.2.4 Goal States and Reward Function
	2.2.5 Characteristics of the Reinforcement Learning Controller
	2.2.6 Detailed Description of Each Function

	3 System and Graphical User Interface (GUI) Design
	3.1 Prototype Applet
	3.1.1 Menu Options
	3.1.2 Tab Panels

	3.2 New Applet Design
	3.2.1 Layer Editor
	3.2.2 Function Editor
	3.2.3 Layer Variables
	3.2.4 Executing the Controller and Selecting a Time Step
	3.2.5 Debugging
	3.2.6 Random Inputs

	4 Interpreter
	4.1 Introducing BeanShell -- www.beanshell.org
	4.2 Small Size
	4.3 Ease of Use
	4.4 Feedback on Error for Debugging
	4.5 Using the BeanShell Interpreter

	5 Back-End Software Design
	5.1 Arc Variable
	5.1.1 Arc Variable Between Time Steps
	5.1.2 Details of the ArcVariable class

	5.2 Function
	5.2.1 Converting a Function to Java Code
	5.2.2 Passing a Function to the Interpreter
	5.2.3 When to Run Function
	5.2.4 Using Interpreter to Run the Function
	5.2.5 Details of the Function class

	5.3 Controller
	5.4 Controller Application
	5.5 The Absence of Layer Class

	6 Conclusion
	Bibliography

