
Program Queries

A Survey

by

Kwun Kit, Lo

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April 2010

c© Kwun Kit, Lo 2010

Abstract

Program query systems allow a user to extract program information by
viewing a program as a piece of queryable data. They have long been a
research interest and have been shown to be useful in supporting wide-
ranging software engineering tasks.

The design space of a program query system is complex. To help orga-
nize this survey, we will structure our presentation around two major design
dimensions. One dimension is the choice of language paradigm for the query
language. The other dimension is the choice of storage technologies of the
program data. In other words, these two dimensions are the front-end in-
terface and the back-end of a query system respectively. They affect other
major properties of a program query system such as expressive power, us-
ability, performance and scalability.

In this essay, we will survey the applications of program queries, as well
as explore the relative strengths and weaknesses of different query language
paradigms and storage technologies.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

List of Programs . vii

Acknowledgements . viii

1 Introduction . 1

2 Early Development . 3
2.1 FACES and FAST . 3
2.2 SCOPE . 3
2.3 OMEGA . 4
2.4 Summary . 5

3 Applications of Program Queries 6
3.1 Architectural Visualization 6

3.1.1 Hy+/Graphlog . 6
3.1.2 IAPR . 7

3.2 Design Pattern Recovery . 7
3.2.1 Pat . 8
3.2.2 FUJABA . 9
3.2.3 DPRE . 9

3.3 Design Rule Verification . 9
3.3.1 Metal/xgcc . 10
3.3.2 PDL . 11
3.3.3 PQL . 11

3.4 Debugging . 11

iii

Table of Contents

3.4.1 Coca . 12
3.4.2 On-the-fly Query-based Debugger 12
3.4.3 Omniscient Debugger 13

3.5 Summary . 13

4 Program Query Language Paradigms 14
4.1 Logical Query Languages . 14

4.1.1 CodeQuest . 15
4.1.2 JTL . 16

4.2 Relational Query Languages 17
4.2.1 OMEGA . 17
4.2.2 PTQL . 18

4.3 Syntactic Query Languages 19
4.3.1 LSME . 20
4.3.2 GENOA . 21

4.4 Visual Query Languages . 21
4.4.1 Hy+/Graphlog . 22
4.4.2 FUJABA . 22

4.5 Summary . 25

5 Program Data Storage . 26
5.1 Standard Storage Technologies 26

5.1.1 Relational Databases 26
5.1.2 Standard Logic Engines 27

5.2 Other Storage Technologies 27
5.2.1 Table-based Deductive Engine 27
5.2.2 Binary Decision Diagram (BDD) 28
5.2.3 Object-Oriented Database 30
5.2.4 XML Database . 30
5.2.5 Reflection . 31

5.3 Summary . 31

6 Summary . 33

Bibliography . 35

iv

List of Tables

4.1 A Relational Heading for Field 17

v

List of Figures

3.1 A Graphlog Query . 7
3.2 OMT Diagram for the Adapter Pattern [62] 8
3.3 Reduction Rules for the Bridge Pattern [34] 10

4.1 Define and Filter Queries in Hy+ [74] 23
4.2 Transitive Closure in Hy+ [74] 23
4.3 Association Relation in FUJABA [79] 24
4.4 Sub-patterns in FUJABA [79] 24

5.1 A Binary Decision Tree Representation of a Truth Table . . . 28
5.2 A Corresponding Binary Decision Diagram for Figure 5.1 . . 29
5.3 A BDD Reprentation of Call Relationships 29

vi

List of Programs

4.1 A Simple CodeQuest Query 15
4.2 Recursive Definition in CodeQuest 15
4.3 JTL Syntax . 16
4.4 Defining Predicate in JTL . 16
4.5 Equvalent Datalog Code for the JTL Predicate in Program 4.4 16
4.6 A Simple QUEL Query . 18
4.7 Relational Joins in QUEL . 18
4.8 PTQL Query for Querying the Starting Time and Ending

Time of a Given Method . 18
4.9 PTQL Query for Checking Consistency of equal()

with hashCode() . 19
4.10 Simple Syntactic Query with Regular Expression 19
4.11 LSME Pattern for Matching C Function Declaration 20
4.12 Action Code in LSME . 20
4.13 GENOA Query for Matching C Switch Statement 21

vii

Acknowledgements

I would like to thank my supervisor Kris De Volder, for his support, patience
and guidance that make this work possible.

viii

Chapter 1

Introduction

Source code is a complicated artifact. It is not uncommon that a software
project exceeds a million lines of code. Investigation in such a large code
base is not an easy task. Research has shown that programmers rely heavily
on navigation and search tools during development [77].

Most source code editors provide support for text searching. Some even
allow a user to express their text search as a regular expression. Text search
is useful in tasks such as locating the implementation of particular method
or renaming a particular function. However, it provides poor support for
understanding the structural relations between different code elements. For
example, a textual search cannot help to find “Java classes that override the
equals() method without overriding the hashCode() method”1.

Program query systems go a step further. They allow a user to ex-
tract program information by viewing a program as a piece of structured,
queryable data. Usually it comes with a query language that allows the user
to extract program information.

This idea has long been a research interest. Early systems can be dated
back to the 1970s. For example, Browne developed a program analysis
system that allows a user to query FORTRAN code in 1978 [16].

Since then, program queries have been applied to aid wide ranging soft-
ware engineering tasks including Architectural Visualization [57, 58, 74, 94],
Design Pattern Recovery [34, 62, 79], Design Rule Verification [6, 48, 51, 72,
76] and Debugging [41, 68, 71].

The goal of this essay is to review the applications of program queries,
as well as the design considerations involved in building a program query
system. The design space is complex. To help organize this survey, we will
structure our presentation around two major design dimensions.

One dimension is the choice of language paradigm for the query lan-
guage. The other dimension is the choice of storage technologies of the pro-
gram data. These two dimensions are significant as they affect other major

1If two objects are equal according to the equals() method, they must have the same
hashCode(). See [10] for more details.

1

Chapter 1. Introduction

properties of a program query system such as expressive power, usability,
performance and scalability.

Program query languages are the front-end interfaces of program query
systems. The choice of language paradigms affects the expressive power
and the usability of a query system. In this essay, we will review four
popular program query language paradigms: Logical, Relational, Syntactic
and Visual.

Storage technologies are the back-ends of program query systems. The
choice of storage technologies determines the performance and the scalability
of a query system. In this essay, we have selected some common storage tech-
nologies to review: from standard logic engines and relational databases, to
less well-known technologies such as Tabled Logic Engines, Binary Decision
Diagrams, Object and XML Databases and Reflection technologies.

The two design dimensions are not completely orthogonal. For example,
some storage technologies may favor some particular kinds of program query
paradigms, and vice versa. We will see more examples in Chapter 4 and 5.

The rest of this essay is organized as follows. In Chapter 2, we will
present a few early query systems to introduce the history of program
queries. Chapter 3 discusses some of the modern applications of program
queries. The next two chapters provide a survey of the design space of pro-
gram query system. Chapter 4 reviews query language paradigms. Chap-
ter 5 discusses storage technologies. Finally, Chapter 6 concludes.

2

Chapter 2

Early Development

Research in program queries can be dated back to the 1970s. In this chapter,
we will compare and discuss a few early program query systems.

2.1 FACES and FAST

In the mid-1970s, Ramamorrthy and Ho developed FACES (FORTRAN Au-
tomatic Code Evaluation System) [86] for analyzing FORTRAN program.
FACES supports a few predefined queries allowing the user to perform pro-
gram analysis such as variable tracing.

FACES parses the source code and stores the data in three tables: a
Symbol table contains the variable names and subroutine names along with
their types, a Use table stores the information of a symbol and its usage, and
a Node table records the predecessor and the successor of each statement.
So basically, FACES stores the symbol information and statement location.

FAST [16] is built on top of FACES’s table generator. Instead of creat-
ing its own data store, FAST maps the tables generated by FACES into a
commercial hierarchical database, System 2000. This can enhance the scal-
ability of the system and reduce the cost of development. Although FAST
and FACES store the same kind of data, FAST provides a query language
such that the user can have more control during analysis. For example,
FAST can handle compounded query likes “find all the modules that are
referenced modules A but not modules B”.

2.2 SCOPE

SCOPE is a programming analysis environment for LISP [73]. It supports
simple display of program structure, cross-reference, variable usage, and
side-effect queries.

In contrast to FAST, SCOPE does not use a relational database but
stores program data in some indexed data structures in memory. The au-
thors made these design choices because of several reasons: first, the data

3

2.3. OMEGA

stored in SCOPE is small so it does not require a mechanism for main-
taining large data; second, SCOPE uses binary relations for the internal
representation of a program. Tailor-made data storage could be employed
to advantage; and third, they think that the kind of retrieval request is more
complex than that normally found in database systems.

SCOPE is actually part of an integrated development environment (IDE)
called INTERLISP [96]. This makes it different in some of the design choices
when compared with the other systems. SCOPE can interact with other
modules in the INTERLISP system. For example, when a user queries about
the usage of a variable, SCOPE will allow the user to open the INTERLISP
editor and go to the lines where these usages are found.

Furthermore, SCOPE provides two interfaces. One is an English-like
query language that a user can use to interact with SCOPE; another one is
an API for development. Therefore, SCOPE can act as a building block for
a program analysis system.

2.3 OMEGA

Mark Linton developed OMEGA [69] in the early 1980s. It allows a user to
query structural information of Pascal-like programs.

OMEGA is an ambitious system. Compared with FAST or SCOPE,
OMEGA tries to store detailed information about a program. A table is
created for each kind of program construct in the OMEGA system, such as
call statement, ifthen statement, loop statement, etc. This allows OMEGA
to support complicated program queries like “find all the functions which
contain a variable with name x inside an if-then statement”, which is im-
possible to express in either FAST or SCOPE.

Similar to FAST, OMEGA stores the program information in an IN-
GRES relational database. The use of a database management system al-
lows OMEGA to store a large amount of data.

Instead of creating its own query language, the user has to use the rela-
tional query language of INGRES, QUEL, to query the database directly.

Due to technological limitations at the time and the large amount of
detailed information, OMEGA is extremely slow. For example, it takes 446
seconds to answer a query which displays 1000 lines of code.

4

2.4. Summary

2.4 Summary

The above systems are some of the earliest research related to program
queries. Although all the above systems are designed to support program
development and intended to support general purpose queries, their designs
were quite different. They differ in the following design aspects:

Storage Mechanism: Instead of building the storage system from scratch,
FAST and OMEGA use existing database management systems. This can
enhance the scalability of the system and allows the developers to focus on
other technical aspects during development. SCOPE stores the program
data using its own data storage system. This makes it possible to design an
optimized storage mechanism to fit its internal data representation.

Query Language: The query language of the three systems differ in
their expressiveness. OMEGA uses the relational database query language
directly. This allows the user to express complicated queries. FAST and
SCOPE invent their own query languages. They are much more restrictive
than the OMEGAs one. On the one hand, creating a new language allows
developer to fully control the languages expressiveness. On the other hand,
it is not easy to design a good language.

Granularity: Apart from the above differences. The three systems make
a different choice in data granularity. OMEGA stores the program data in
a much greater detail than the other two. This, together with an expressive
query language, allows complicated queries to be expressed.

Also we see that the implementations struggle with performance. A query
system with an expressive query language and support for fine-grained de-
tails is obviously desirable, but this may lead to unacceptable performance
as shown in the OMEGA example.

These days, program queries have been applied to various software en-
gineering areas. There is also research in query language paradigms and
storage mechanisms. In the rest of this essay, we will review these issues one
by one.

5

Chapter 3

Applications of Program
Queries

In the last chapter, we have seen a few general program query systems in the
early day. In this chapter, we will look at some of the modern applications
of program query technologies.

Program queries have been used in different areas, including Architec-
tural Visualization [57, 58, 74, 94], Design Pattern Recovery [34, 62, 79], De-
sign Rule Verification [6, 48, 51, 72, 76] and Debugging [17, 25, 41, 68, 71, 83].
In the following sections, we will review some of the research in these areas.

3.1 Architectural Visualization

Software architecture involves the description of elements from which sys-
tems are built, interactions among those elements, patterns that guide their
composition, and constraints on these patterns [92]. Having an understand-
ing of software architecture is beneficial to tasks that require a software
engineer to understand the source code, for example, software maintenance.
An Architectural Visualization tool such as SHriMp [95] presents the archi-
tectural information in graphical form. A user can browse an architectural
diagram by panning and zooming. However, the diagram is usually very
large. The user can easily get lost during navigation.

Program queries can be applied to Architectural Visualization by adding
a search function to visualization tools [57, 58, 74, 94]. This allows the user
to navigate to the targeted portion of the diagram efficiently. In this section,
we are going to look at some of the query systems in this area.

3.1.1 Hy+/Graphlog

Hy+ is a general graph visualization and query system. In [31, 74], Mendel-
zon and Sametinger demonstrated the use of the Hy+ system in Archi-
tectural Visualization. After parsing the source code into a Hy+ readable
format, Hy+ can display the architectural diagram in the user interface.

6

3.2. Design Pattern Recovery

Hy+ uses GraphLog [33] as its query language. GraphLog is a graphical
query language which can be translated to other logical languages. Hy+
provides an interface which allows users to edit their GraphLog queries in
graphical format. A user can specify the structure of interest in the query.
For example, Figure 3.1 shows a GraphLog query “find all the classes that
inherited from class DomainObject and override the toString() method”.
The GraphLog query is then processed by a logical engine and the result is
displayed in graphical format.

Figure 3.1: A Graphlog Query

3.1.2 IAPR

IAPR [58] is a program query system that based on Constraint Satisfaction
Techniques. It provides a graphical user interface that allows a user to
specify the structure of interest in graphical form. Elements in a query can
be marked as optional. This approximate matching feature is useful when a
user want to query a number of structures which are very similar in structure
but not identical.

IAPR compares the query patterns with the architectural graph using
Constraint Satisfaction Techniques. The optional structural elements are
modeled as soft constraints in the constraint solver. The result is a set
of full and near pattern matches in the architecture displayed in graphical
format.

3.2 Design Pattern Recovery

Design patterns have been widely used in software development as recurring
solutions to some common design problems. However, identifying the pat-
terns in the source code is not easy. The implementations of design patterns
are usually spread across multiple classes. There is a lot of research in design

7

3.2. Design Pattern Recovery

pattern discovery. A good survey in this area can be found in [93]. Some of
the research involves program queries [34, 62, 79].

These tools have a lot in common with the program query tools in Ar-
chitectural Visualization introduced in Section 3.1. Both involve querying
design level patterns in the architectural representation. Architectural Vi-
sualization tools such as Hy+ [74] can also be applied to Design Pattern
Recovery, but not all of them. Since design patterns are implemented across
multiple classes, query systems in design pattern recovery are required to
provide support in specifying class relationships such as inheritance, aggre-
gation, association and call dependency. In this section, we will discuss a
few design pattern recovery tools that were based on program queries.

3.2.1 Pat

Pat [62] is a system for searching for design patterns in C++ source code.
An interesting feature of Pat is that the user can define the structure of a
design pattern in an OMT diagram [88], which is a predecessor of the UML
class diagram [12]. Figure 3.2 shows an example of OMT diagram for the
Adapter Pattern.

Figure 3.2: OMT Diagram for the Adapter Pattern [62]

Pat parses the C++ header files in the source code to construct an
architectural diagram and then converts it into Prolog facts. The design
pattern diagram specified by the user is also converted into Prolog rules.
These Prolog facts and rules are processed by a Prolog engine to find the
design patterns.

As the system only analyzes the header files, it is completely unaware
of calling dependencies. Not surprisingly, the approach suffers from finding

8

3.3. Design Rule Verification

a lot of false positives. They reported the false positive rate is more than
50%.

3.2.2 FUJABA

A complication with design pattern recovery is that developer may imple-
ment a design pattern in ways that slightly differ from its formal definition.
These implementation variants are hard to recognize by structural matching
techniques. FUJABA [79] overcomes this problem by iterative querying.

Both source code and pattern queries are represented by an Abstract
Syntax Graph (ASG). This allows a user to define their query structure pat-
terns in fine-grained details. The system tries to match the query structure
to the source code ASG in an iterative process. The user can edit their
queries based on the intermediate results.

3.2.3 DPRE

DPRE [34] is design pattern recovery tool based on visual grammar parsing.
Visual grammar [36] is a formal grammar that can be parsed using LR
parsing techniques. A design pattern in DPRE is defined by step-by-step
grammar reduction rules. For example, Figure 3.3 shows the reduction rules
that instructs the parser to recognize the Bridge pattern.

Once the grammar is specified, DPRE creates a visual language parser
to recognize the grammar patterns. The parser then parses the UML repre-
sentation of the source code to recognize the design patterns. This approach
discovers the design patterns efficiently in linear time.

3.3 Design Rule Verification

Software Design Rules are constraints on the behavior and structure of a
program [76]. Enforcing design rules can help software quality. There are
certain types of errors that can be caught by design rule verification, but
are hard to discover by software testing. SQL injection vulnerability is one
example. It can be relatively easily detected by checking whether every user
input string is processed by the escape function 2. Design rule checking can
also enforce programming practices. For example, one may use a design rule
checker to make sure whether proper naming conventions are followed.

2Function that escapes the characters in a string that are treated as special operators
in the system.

9

3.3. Design Rule Verification

Figure 3.3: Reduction Rules for the Bridge Pattern [34]

Query systems in Design Rule Verification focus on different aspects of
design rule constraints. Some focus on verifying the static structure of a
program [51, 76]. Others allow the user to query runtime behavior [6, 72].

3.3.1 Metal/xgcc

Metal/xgcc [51] is an error checker based on static analysis. It provides a
language to construct a state machine for matching execution sequences in
the source code. When certain statements of interest are parsed, the system
performs an associated action as specified in a state machine. For example,
to check whether a concurrency lock is locked twice, the user can create a
state machine with 2 states (locked and unlocked). When a lock statement
is parsed, the state machine will transition to locked state. If another lock
statement is parsed while the machine is still in the locked state, an error
report action is performed. This kind of analysis is also useful in detecting
resource leak by ensuring every call of a resource allocation statement is
followed by a call of a resource free statement.

The state machine query is performed by parsing the Abstract Syntax
Tree (AST) of the source code. As a static checker, Metal/xgcc does not
track variable values or evaluate branches precisely. Loops are also analyzed
conservatively. False positives are unavoidable. Metal mitigates this prob-

10

3.4. Debugging

lem by ranking. The query results are ranked by their possibility of being
false positives and the severity of the errors. So the true errors are reported
first in the result list.

3.3.2 PDL

PDL [76] is a query language designed for checking structural design rules.
It allows a user to query static program entities such as classes, fields and
methods in the source code. By specifying the structural characteristics of
certain code smell 3, the user can check whether a program conforms with
a given coding style. However, behavioral rules such as constraints on API
calling sequences, can more naturally be expressed in Metal/xgcc than in
PDL.

PDL is designed for the .Net framework [1]. The PDL rules are compiled
by a source-to-source compiler into a C# program. This allows the compiler
to perform type-checking and optimization on the query code. The result is
then executed to validate the design rules.

3.3.3 PQL

PQL [72] is a design rule checker for verifying the runtime behavior of a
program. Since matching is done at runtime, queries in PQL are not limited
to structural program entities. Runtime variable values and exact execution
sequence are also accessible. This allows PQL to outperform Metal/xgcc in
term of accuracy.

The user queries are parsed into matching code. These matchers are
then instrumented into the target locations in the program. Analysis is
performed when the user runs the program.

3.4 Debugging

A debugger is a tool that allows a developer to control the execution of a
program. A user can set up breakpoints to stop a running program and
examine the runtime value of the variables. Most debuggers such as Vi-
sual Studio .Net and Eclipse even support conditional breakpoints. Such a
breakpoint is only activated if the condition is satisfied. However, all these
kinds of breakpoint mechanisms require the user to know the exact loca-
tions (e.g. line number) where breakpoints should be set. Furthermore, if

3A code smell is a surface indication that usually corresponds to a deeper problem in
the system [45].

11

3.4. Debugging

a breakpoint condition spans over a number of classes, e.g. setting condi-
tional breakpoints to all Observers in an Observer pattern, the user has to
set a breakpoint in every Observer class and repeat the dynamic condition
for each one. This problem can be addressed by program queries. Instead
of placing breakpoints at individual lines of code, the user can specify the
breakpoints by writing a query. A single query can specify both static and
dynamic conditions. It is the debugger’s responsibility to determine the
static breakpoints locations where the breakpoint might apply, and to at-
tach any dynamic conditions as necessary.

There are many query systems designed for debugging [17, 25, 41, 68,
71, 83]. In this section, we will review some of them.

3.4.1 Coca

Coca [41] is a query-based debugger for C programs. It is built on top of the
gcc compiler and the gdb debugger. Before allowing the user to query, Coca
has to precompile the source code. This is to enable the gdb breakpoint
mechanism and generate prolog tables for the program information that is
not available via gdb.

Coca provides a breakpoint language in Prolog. The user can specify
conditional breakpoints by predicating on the entry and exit events of the
function calls. Coca then computes a superset of lines that may correspond
to the requested event and set them as line-based breakpoints in gdb. These
gdb breakpoints are skipped by Coca if the breakpoint condition is not sat-
isfied. Once the breakpoint condition is reached, the user can query the
variable values or step to the next breakpoint using an interactive interface.

3.4.2 On-the-fly Query-based Debugger

Lencevicius et al. developed an On-the-fly query-based debugger [68] for
Java programs. It offers an SQL-like language to define the event-based
conditional breakpoints.

The debugger supports on-the-fly queries. This means that the user can
issue new query whenever a breakpoint is reached. For example, suppose a
conditional breakpoint is triggered when the program extracts an element
from a heap data structure. The user is not quite sure what happened
and therefore creates another query to monitor the inserting function. This
allows the user to further examine the breakpoint without restarting the
program. However, since the system does not store the execution history of
the program, the user cannot query an event happened in the past.

12

3.5. Summary

To support on-the-fly queries, the debugger needs to instrument the Java
byte-code at every location that may be queried in runtime. This results in
significant overhead in performance.

3.4.3 Omniscient Debugger

Pothier et al. developed the Omniscient Debugger for Java programs [83].
Similar to other query-based debugger, the Omniscient Debugger allows
user to specify dynamic breakpoints using program queries. The omniscient
debugger works on post-mortem database of stored program history. This
enabled the users to query the program state at any time and allow them
to step over the execution trace back and forth. For example, when the
program paused at a breakpoint, a user can trace back to the point in
execution “when variable x was previously assigned value y”.

Although this is very powerful, their approach requires extensive hard-
ware resources. A large amount of disk space is needed to store the execution
history of a program. To cope with this problem, the authors suggest the
use of a distributed database for efficient data storage.

3.5 Summary

In this chapter, we have reviewed research in different application areas.
Program querying technologies have been applied in supporting different
purposes, such as querying structural patterns in Architectural Visualization
and Design Pattern Recovery, specifying structural constraints in Design
Rule Verification and defining runtime conditions in Debugging.

13

Chapter 4

Program Query Language
Paradigms

Program query languages can be classified into different language paradigms.
Each language paradigms has its own strengths. In this chapter, we will re-
view some common query language paradigms used in various query systems,
as well as provide some code snippets as examples.

4.1 Logical Query Languages

Logical Query Languages represent program information in terms of logical
facts and rules. Facts are assertions about an application domain, such as
“A is a class”. Rules are sentences that allow us to deduce facts from other
facts. For example, “A is subclass of B if and only if B is the parent of A”.
Program queries in Logical Query Languages are expressed in predicates.
The answer of a query is a set of variable bindings, based on given facts and
rules that satisfy the query.

Logics have been studied extensively and there are many variants that
strike a different balance between expressiveness and performance. For ex-
ample, Prolog is a Turing complete programming language. Sometimes this
expressive power is not necessary and may even not be suitable for database
system. For example, the evaluation strategy of Prolog does not guarantee
termination when evaluating a query [22]. This is why Datalog [22, 46] was
developed. Datalog is designed specifically for querying databases. Syntac-
tically it is a subset of Prolog and does not provide any data structures such
as list. It also poses certain stratification restrictions on the use of negation
and recursion. Though less expressive, Datalog queries are more efficient to
evaluate and termination is guaranteed.

Logical Query Languages have several attractive properties. First, the
same language can be used to represent the program data and query the
program information. The same deductive engine can be used for both data
storage and query evaluation purposes. Second, deductive engines for pop-

14

4.1. Logical Query Languages

ular logical languages like Prolog and Datalog are widely available. There
is no need to reinvent a new language and a new deductive engine. Third,
logical languages are expressive. For example, although Datalog has less
expressive power than Prolog, it is able to express complex queries such
as those involving recursive definition or transitive closure. These kinds of
queries are poorly supported by Relational Query Languages, but they are
important for program queries. For example, queries about inheritance or
call graphs typically require recursion or transitive closure.

There are many query systems using Logical Query Languages [7, 8, 30,
50, 57, 61, 98, 102]. In this section, we will have a look at some of them.

4.1.1 CodeQuest

CodeQuest [50] is program query system for the Java language. It provides a
logical query language but the program information is stored in a relational
database. Although CodeQuest can store the program data in a logical
representation, it is more efficient to store it in a relational database due
to better support for query caching and optimization. A program query is
specified using Datalog. It is then translated into SQL by CodeQuest and
eventually evaluated by the database system.

In CodeQuest, queries are expressed in Datalog clauses. For example,
Program 4.1 shows a CodeQuest query which finds all methods M that write
a field with a particular type T . The query result is a set of method and
type pairs that satisfied all the clauses in the query.

Program 4.1 A Simple CodeQuest Query

1 q (M, T) :− method (M) , wr i t e (M,F) , hasType (F ,T) .

CodeQuest supports recursive definition. This is hard to achieve in other
query language paradigms. Program 4.2 shows an example of defining tran-
sitive subtype relationship hasSubTypeStar in CodeQuest. hasSubTypeStar
is satisified if and only if T and S are the same type or S is a subtype of T .

Program 4.2 Recursive Definition in CodeQuest

1 hasSubTypeStar (T, T) :− type (T) .
2 hasSubTypeStar (T, S) :− hasSubType (T, S) ;
3 hasSubType (T, MID) , hasSubTypeStar (MID, S) .

15

4.1. Logical Query Languages

4.1.2 JTL

JTL [30] is a query language for Java code. Compared to other logical query
languages, JTL does not use a Prolog-like syntax. Instead, the JTL syntax
closely mimics the Java syntax. This allows JTL query to look syntactically
intuitive to a Java programmer without scarifying the expressiveness of a
logical language. For example, Program 4.3 shows a JTL query to search
for abstract classes in which there is a field of type long or int and that
has no abstract methods.

Program 4.3 JTL Syntax

1 abs t r a c t c l a s s {
2 [long | i n t] f i e l d ;
3 no abs t r a c t method ;
4 }

Although JTL looks like a Syntactic Query Language (see Section 4.3),
we classify it under the logical language paradigm. A JTL query consists of a
set of predicate definitions. The underling language model is based on logical
relations rather than the Abstract Syntax Tree (AST) of the program. For
example, a user can define a predicate in a syntax that resembles Datalog.
Program 4.4 shows a user-defined predicate p(S) which is satisfied if and
only if an abstract class S extended another abstract class X.

Program 4.4 Defining Predicate in JTL

1 p(S) := abst ract , extends X, X abs t r a c t ;

Queries in JTL can be translated to Datalog. For example, Program 4.5
shows an equivalent Datalog code of the query shown in Program 4.4. The
resulting Datalog query can then be evaluated using a Datalog engine.

Program 4.5 Equvalent Datalog Code for the JTL Predicate in Pro-
gram 4.4

1 p(S) :− abs t r a c t (S) , extends (S ,X) , ab s t r a c t (X) .

16

4.2. Relational Query Languages

4.2 Relational Query Languages

Relational Query Languages are based on the theoretical foundation of re-
lational algebra or relational calculus [28]. The program data is viewed as
relations, which are defined as sets of tuples [27]. For example, fields in an
Object-oriented language can be represented using the relation defined in
Table 4.1.

Table 4.1: A Relational Heading for Field

Field field id type id name inClass id

Using Relational Query Languages has several advantages and limita-
tions. On the one hand, commercial strength relational database manage-
ment systems are widely available. Caching, query optimization and scal-
ability techniques have long been investigated. A query system developer
can also choose to use existing database query languages directly without
worrying about inventing a new language. On the other hand, relational
algebra cannot handle transitive closure. Queries for inheritance or call de-
pendency analysis may be impossible to express. Some Relational Query
Languages address this by providing additional language constructs. For
example, PQL [56] provided a Kleene Star operator “∗”. A transitive call
relation between p and q is expressed as Call ∗ (p, q).

Despite these complications, Relational Query Languages are popular in
program query systems [24, 42, 44, 48, 56, 60, 67, 69, 82]. We will discuss
some of them in this section.

4.2.1 OMEGA

As introduced in Chapter 2.3, OMEGA [69, 70, 84] is a program analysis
system for Pascal code. OMEGA stores the program data in a relational
database and uses the database query language, QUEL [52], as the query
language.

QUEL syntax is similar to SQL. A QUEL query consists of a set of
Range statements and Retrieve statements. The Range statement indi-
cates the relation(s) from which data is to be retrieved and the Retrieve
statement is a selection statement. For example, Program 4.6 shows a sim-
ple QUEL query for retrieving all variable names in the variables relation
table.

17

4.2. Relational Query Languages

Program 4.6 A Simple QUEL Query

1 range o f v i s v a r i a b l e s
2 r e t r i e v e (v . name)

OMEGA represents the program data in a large number of relational
tables. Querying useful program information may require a large number
of relational joins. For example, Program 4.7 shows a query for “finding all
statements that assign a value to a variable with name ‘a’ ”. This simple
query requires 4 relational joins.

Program 4.7 Relational Joins in QUEL

1 range o f v i s v a r i a b l e s
2 range o f s i s statements
3 range o f a i s asgstmts
4 range o f n i s names
5 r e t r i e v e (s . a l l) where s . stmt−id == a . id and
6 a . lhs−id == v . id and
7 v . name == n . id and
8 n . i d e n t i f i e r == ”a”

4.2.2 PTQL

PTQL is a Relational Query Language for querying execution traces of a
running program [48]. The system keeps track of every method invocation
and object allocation during execution. This is an example of how a Rela-
tional Query Language can be applied to querying runtime data.

The syntax of PTQL is similar to SQL. PTQL provides two relations,
MethodInvoc and ObjectAlloc, for retrieving runtime data. These data, in-
cluding the starting and ending time of the event, runtime values of the
variable and the id of the corresponding running thread. For example, Pro-
gram 4.8 shows a query for retrieving the starting time and the ending time
of method bar in class Foo.

Program 4.8 PTQL Query for Querying the Starting Time and Ending
Time of a Given Method

1 SELECT Y. startTime , Y. endTime
2 FROM MethodInvoc (’ Foo . bar ’) Y

18

4.3. Syntactic Query Languages

PTQL provides relational join operations for querying the timing rela-
tionships among different events. Program 4.9 shows a query for validat-
ing the consistency of the equal() and hashCode() method. It reports if
there is any instance when the two Java objects, x and y, x.equals(y) but
x.hashCode() != y.hashCode().

Program 4.9 PTQL Query for Checking Consistency of equal()
with hashCode()

1 SELECT xhc . implClass , yhc . implClass , eq . implClass
2 FROM MethodInvoc (’ Object . equals ’) eq
3 JOIN MethodInvoc (’ Object . hashCode ’) xhc
4 ON eq . r e c e i v e r = xhc . r e c e i v e r
5 JOIN MethodInvoc (’ Object . hashCode ’) yhc
6 ON eq . r e c e i v e r = yhc . r e c e i v e r
7 AND xhc . r e s u l t != yhc . r e s u l t
8 WHERE eq . r e s u l t = true

4.3 Syntactic Query Languages

In Syntactic Query Languages, queries are not specified by predicates or
relations. Instead, program queries are specified by syntactic patterns, for
example, lexical patterns on source code or structural patterns on Abstract
Syntax Trees (AST). Regular expression matching is one of the simplest ex-
amples. Program 4.10 shows a Unix grep command for finding all functions
defined in file code.c.

Program 4.10 Simple Syntactic Query with Regular Expression

1 grep −Eho ”ˆ s ∗ f unc t i on w+” code . c

Syntactic Query Languages can be further divided into 2 types [4], Con-
crete Syntax and Abstract Syntax. Their difference is illustrated in the
following example. Suppose a user wants to match the looping statements
in the source code. In Concrete Syntactic Query Languages, the user may
need to declare different patterns for matching different kinds of loops (for,
while and doWhile). In Abstract Syntactic Query Languages, an abstract
LOOP elements may be provided and the user only needs to specify one pat-
tern to match all kinds of looping constructs.

As the pattern queries follow the actual structure in the source code.

19

4.3. Syntactic Query Languages

Syntactic Query Languages are more intuitive than Logical or Relational
Query Languages in general. However, Syntactic Query Languages are usu-
ally less expressive. For example, a query like “finding all functions that
called by function A but not function B” may be hard or impossible to
express in some Syntactic Query Languages.

There are a number of query systems that adopted Syntactic Query
Languages [4, 37, 39, 64, 78, 80, 91]. In this section, we will discuss some
of them.

4.3.1 LSME

LSME is a light weight tool for quickly extracting program information [78].
The source code is not actually parsed but simply separated into tokens.
Therefore, analysis can be performed even when the source code is not en-
tirely correct.

Queries in LSME are based on lexical matching using regular expres-
sion. Therefore, matching is based on concrete syntax. For example, Pro-
gram 4.11 shows a LSME pattern for matching C function declaration. The
names within angle brackets are the variables that will be matched to to-
kens. Special characters are escaped by the backslash character. Optional
elements are indicated by square brackets.

Program 4.11 LSME Pattern for Matching C Function Declaration

1 [<type>] <functionName> \([<argumentList>] \) \{

The power of Regular expressions is sometimes too limited. So in LSME,
we can augment with action code written in the ICON [49] language. The
action will be checked when the pattern is matched. In our example, suppose
we want to exclude the functions foo, bar, baz in our analysis. We can put
some action code to check the function name matched (Program 4.12).

Program 4.12 Action Code in LSME

1 [<type>] <functionName> \([<argumentList>] \) \{
2 @ i f functionName == (” foo ” | ”bar” | ”baz ”) then f a i l @

20

4.4. Visual Query Languages

4.3.2 GENOA

GENOA [38–40] is a Syntactic Query Language. Unlike LSME which treats
the program source code as plain text, GENOA queries are matched to the
Abstract Syntax Tree (AST) of the program. Since the matching is based on
abstract syntax, queries in GENOA are less intuitive than LSME. However,
query patterns can be more precisely specified.

In GENOA, a query pattern is specified according to the AST structure.
Program 4.13 shows an example for matching a C style switch statement
in GENOA. Since the query code is based on AST traversal, the syntax
is quite verbose. The Root CFile declaration (line 2) specified that our
pattern is to be matched to the whole file. The matching starts by looking
for Switch node in the AST (line 4). If it is found, we move to the child
switchbody under Switch (line 5) and search for Block node (line 6). If it is
found, we move to its child node blockbody (line 7). And then, for each of
the Statement node (line 8) under blockbody, we search for the Case and
Default nodes (line 9 and 10). Actions such as “printing the corresponding
line number” can also be put in there.

Program 4.13 GENOA Query for Matching C Switch Statement

1 PROC cswitch
2 ROOT CFile
3 {
4 (? Switch
5 <switchbody
6 (? Block
7 <blockbody
8 {Statement
9 (? Case /∗ Do something ∗/)

10 (? Defau l t /∗ Do something e l s e ∗/)}>)>)
11 }

4.4 Visual Query Languages

In Visual Query Languages, queries are depicted by visual representations of
domains of interest. For example, using box-and-arrow diagrams or graphi-
cal icons to formulate the query [21].

Visual Query Languages have some advantages over Textual Query Lan-
guages. For example, human perception is more efficient to recognize rela-
tions in visual form then textual form. Visual Queries are more intuitive to

21

4.4. Visual Query Languages

represent relations between different query elements. In addition, graphical
notations such as UML diagrams are adopted in software design processes,
so it is more natural to use a Visual Query Language if the system is designed
for querying design level program data. However, complicated queries are
hard to express in Visual Query Languages. Visualization of large amount
of data is also challenging [53].

There are a number of query systems that adopted Visual Query Lan-
guages [32, 35, 58, 62, 74, 79, 85]. In this section, we are going to review
some of them.

4.4.1 Hy+/Graphlog

As introduced in Section 3.1.1, Hy+ is a software visualization and query
tool. The user can specify structural patterns using a Visual Query Lan-
guage called Graphlog [33]. A simple Graphlog query has been shown in
Figure 3.1. A node represents element constant or variable while an edge
denotes a relation.

Queries in Hy+ are divided into two types: define and filter. Both of
them using the same syntax but different in semantic meaning. The define
queries specify the structure of interest in the program while the filter queries
control which structures of interest and how the data is presented. Figure 4.1
shows an example. A define queries is enclosed by a defineGraphLog box
and a filter query is enclosed by a showGraphLog box.

Graphlog queries support transitive closure, which is useful for expressing
inheritance or call dependencies. Figure 4.2 shows an example of transitive
closure. The subclass* edge denotes that C1 can be any direct or indirect
subclass of class CompositVObject.

4.4.2 FUJABA

Niere et al. developed a design pattern recovery tool using FUJABA [79],
which is a model transformation tool that can convert UML diagrams into
Java code. In their system, query patterns are specified in terms of Abstract
Syntax Graph (ASG). For example, Figure 4.3 shows the a FUJABA query
representing a class association relationship. The structural elements are
denoted by nodes while their relations are denoted by edges.

The oval-shaped nodes represent the sub-patterns. In FUJABA, the
users can build up a complex query pattern from simple sub-patterns. For
example, creating the sub-patterns to specify some simple class relationships,
such as generalization and association, and combine them to specify some

22

4.4. Visual Query Languages

Figure 4.1: Define and Filter Queries in Hy+ [74]

Figure 4.2: Transitive Closure in Hy+ [74]

23

4.4. Visual Query Languages

Figure 4.3: Association Relation in FUJABA [79]

more complicated design patterns. For example, Figure 4.4 shows a query
pattern for the Composite Pattern. There are three sub-patterns in this
query: generalization, delegation and association.

Figure 4.4: Sub-patterns in FUJABA [79]

24

4.5. Summary

4.5 Summary

In this chapter, we have reviewed four common query language paradigms:
logical, relational, syntactic and visual. Each of these language paradigm has
its own strengths. When integration with industrial strength storage is im-
portant, Logical and Relational query languages are better choices. Among
the two, Logical query languages are more expressive while Relational query
languages are better understood in query optimization. Syntactic and Vi-
sual query languages are more intuitive to the user. Among them, Visual
query languages are even more intuitive, but they have less scalability and
expressiveness. Query System Developers should select a suitable language
paradigm which conform with the design goals.

25

Chapter 5

Program Data Storage

In the last chapter, we have seen different kinds of query language paradigms.
In this chapter, we will review some techniques that have been employed to
store the data about programs.

Many program query systems implement their own storage mechanism [4,
6, 13, 23, 40, 73, 78, 80]. However, these storage mechanisms are usually
too tailor-made to the supporting query systems and are usually not well
illustrated in the literature. We are not going to discuss them in this chapter.

Some more general storage technologies have also been applied in pro-
gram query systems. For example, relational databases and standard logical
engines are standard and popular technologies in program queries [16, 24,
30, 50, 57, 63, 69, 74, 75, 91]. In addition, some less well-known technologies,
such as Tabled Logical Engines, Binary Decision Diagrams, XML Databases,
Object Databases and Reflection, have also been used in program query sys-
tems [8, 20, 43, 50, 54, 59, 65, 67, 72, 81, 98, 102]. In the following sections,
we will have a look at them.

5.1 Standard Storage Technologies

There are numerous ways to store program data. The most standard ways
are storing the data in relational databases and standard logical engines.

5.1.1 Relational Databases

Using relation databases is a popular choice in program query systems [16,
24, 50, 63, 69, 75, 91]. The reasons for this are straightforward. First,
relational databases are natural fit for query systems that adopted relational
query languages. Second, the technology is mature and industrial strength
relation databases are available. This performance advantage is attractive.
For example, CodeQuest [50] uses a relational database for storage even
though it adopted a logical query language.

However, as mentioned in Section 4.2, relational model does not support
transitive closure. Although some database vendors do provide support for

26

5.2. Other Storage Technologies

recursive queries, not all relational database systems provide such features.

5.1.2 Standard Logic Engines

Some program query systems [30, 57, 62, 74] store their data in Standard
Logic Engines, for example, Prolog and Datalog engines. They are attractive
for the query systems that adopted logical query languages because a query
system can serve as both a query engine and a place for data storage. In
addition, unlike relational databases, recursive queries are well supported in
logic engines.

Although logic engines are widely available, some standard Prolog en-
gines suffer from efficiency and scalability problems [37]. However, there are
some more sophisticated logic engines that have been developed to address
these issues. We will review them in Section 5.2.1.

5.2 Other Storage Technologies

Besides the standard storage technologies mentioned above, some more spe-
cific storage technologies have also been applied to program queries. For ex-
ample, Tabled Logical Engines and Binary Decision Diagrams are optimized
for performance. Object and XML databases provide a better support in
storing complex structures such as Abstract Syntax Trees (AST). Reflection
is a programming language feature, but it can act as a program data repos-
itory that comes for free. In this section, we will review these technologies
one by one.

5.2.1 Table-based Deductive Engine

As mentioned earlier in Section 4.1, one of the advantages of using Logical
Query Languages is the abailability of well optimized deductive engines.
XSB [3, 89] is a logical deductive engine that supports both Prolog and
Datalog. In contrast with a standard Prolog engine, XSB employs a Tabled
Resolution strategy. The queries are evaluated bottom-up and redundant
computations are avoided using memoization. This does not only improve
evaluation efficiency, but also allows queries to terminate correctly in many
cases where Prolog does not [3, 87].

There are several logical query systems that use table-based deduc-
tive engines. For example, CodeQuest has been has been evaluated using
XSB [50, 61]. DIMPLE [8] and JQuery [98] are not using XSB. However,

27

5.2. Other Storage Technologies

the deductive engines they used (YAP [97] and TyRuBa [2]) also provide a
similar table-based evaluation feature.

The major drawback of using these deductive databases is high memory
consumption. Both XSB and JQuery have been reported as memory hungry
and lacking in scalability [50, 61].

5.2.2 Binary Decision Diagram (BDD)

A Binary Decision Diagram is a data structure for efficient representation
and manipulation for a large number of Boolean functions [18]. It has been
widely used in hardware verification and model checking which require effi-
cient storage of a large number of states [99].

Before introducing BDD, we first introduce Binary Decision Trees. A
binary decision tree is consists of decision nodes and two types of terminal
nodes (0 and 1). Each decision node represents a Boolean variable and has
2 children, which correspond to the cases where the variable is assigned to
value 0 and 1 respectively. For example, Figure 5.1 shows a truth table and
its binary decision tree representation.

X1 X2 f
0 0 1
0 1 0
1 0 1
1 1 1

Figure 5.1: A Binary Decision Tree Representation of a Truth Table

A BDD is a compressed representation of a binary decision tree. It can
be derived from a binary decision tree by merging isomorphic sub-trees and
eliminating nodes with two identical children. For example, Figure 5.2 is a
possible BDD representation for the binary decision tree shown in Figure 5.1.
Although the use of BDDs does not improve the worst case space complexity,
Burch el al. have reported that BDDs were capable to handle extremely large
number of states in practice [19].

Query systems that use BDD for storage include CrocoPat [9] and PQL [65,
72]. As a BDD can only handle binary functions, a query system has to
encode the data before storing them into BDD. For example, suppose we
have a binary relation Call over the functions {A, B,C}, where Call =

28

5.2. Other Storage Technologies

Figure 5.2: A Corresponding Binary Decision Diagram for Figure 5.1

{(A, B), (A, C), (B, A), (C, A)}. We can encode A by (0, 0), B by (0, 1) and
C by (1, 0) and result in Call′ = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
The corresponding BDD of Call′ is shown in Figure 5.3.

Figure 5.3: A BDD Reprentation of Call Relationships

In PQL, Lam et al. use a BBD to aid context-sensitive point-to analy-
sis4 [101]. This kind of analysis is challenging because there are over 1014

contexts in a typical large program. However, with the use of BDD, only
several hundreds megabyte of memory is enough to perform analysis in some
large Java projects [101].

While BDD is powerful, Lam et al. have reported that BDDs were not
easy to use. They reported that direct implementation of BDDs caused a
memory exhaustion problem and they had spent one man-year of effort in
optimization [65]. However, this may be due to the fact that they imple-

4Point-to analysis computes which objects each variable may refer to.

29

5.2. Other Storage Technologies

mented their BDD database [100] from scratch5 and the implementation of
efficient BDD requires advanced optimization techniques [14].

5.2.3 Object-Oriented Database

An Object-Oriented Database (OODB) is a database management system
with an underlying Object-Oriented model [5]. In contrast with Relational
databases, OODBs are more suitable for storing complex, hierarchical data.
Query System such as [20, 59, 81] make use of OODB to store the Abstract
Syntax Tree (AST) of a program. The hierarchical structure of an AST
makes it hard to store in relational database. For example, the OMEGA
query system has used 57 relation tables to represent an AST [69].

However, the performance complications of using an OODB are unclear.
On the one hand, an OODB is more efficient than a relational database in
handling complex data6. This is because data retrieval in an OODB can be
done by navigation through the pointers instead of table joins [29, 66]. On
the other hand, query optimization and caching in OODB are far less well
understood than those in relational databases.

It is also unclear whether OODB can help improve the performance of
program queries. Very little research has been done in evaluating the use of
OODB in querying program data.

5.2.4 XML Database

An XML [15] document is a text document with a hierarchical tree structure.
This makes it a natural fit for storing an Abstract Syntax Tree (AST) of a
program. In addition, XML is widely adopted as an industrial standard for
electronic data interexchange. A standardized query language, XQuery [11],
is also available for querying XML documents. Due to its popularity, in-
dustrial strength XML databases are also available. They allow import and
export of XML data, and support XQuery as a query language.

Sextant [43, 90] is a program query system that uses an XML database.
It exploits the generic nature of XML. Different kinds of software artifacts,
including documents and source code, are all converted into XML repre-
sentation and stored in an XML database. This allows a user to create
cross-artifacts queries using XQuery.

5Some BDD packages are publicly available. Janssen has written a survey comparing
different existing BDD packages [55].

6However, it is not true for Object-Relational (O/R) Mapping technologies, which
convert objects into relational database tables.

30

5.3. Summary

Performance of using an XML Database in program query systems is not
well evaluated. However, Schäfer et al. have tested their Sextant system
using a Java project that consists of 200K lines of code [90]. Although
no scientific evaluation result is reported, they claimed that the speed is
satisfactory, although a large amount of memory is required.

5.2.5 Reflection

Reflection refers to the ability of a programming language to observe or
modify its structure or behavior. Unlike other storage mechanisms men-
tioned in this chapter, query systems based on reflection mechanisms do not
need to store the program data in external repositories. Instead, program
data can be accessed using some special language constructs provided by
the programming language.

There are several query systems that are based on reflection mecha-
nisms [54, 67, 102].For example, SOUL provides a logical query language for
analyzing Smalltalk program [102, 103]. Since SOUL is also implemented in
Smalltalk and Smalltalk provides a rather strong support for reflection [47],
SOUL can access the program data using reflection in Smalltalk.

While using reflection for building query systems can help reducing de-
velopment effort, the powers of the query systems are highly depend on the
reflection models supported by the underlying program languages. Some
programming languages such as C or C++ even do not support reflection
at all. However, this problem can be addressed by using reflection libraries.
For example, Hobatr and Mallory use a reflection library, OpenC++ [26],
in their C++ query-based debugger [54].

5.3 Summary

In this chapter, we have reviewed different technologies for storing data
about programs. These technologies are selected because they are general
and are not confined to any particular program query system. Relational
databases and standard logic engines are standard and popular technologies.
There are industrial strength implementations available in the market. Sev-
eral less well-known technologies have also been applied to program queries.
Tabled logical engines are logic engines that optimized for data storage.
They are better in performance and scalability when compared to standard
logic engines. Binary Decision Diagrams are special data structures that
optimized for storing huge amount of data. However, they are complicated
to use. XML databases and Object databases are more suitable for storing

31

5.3. Summary

complex structures, such as the Abstract Syntax Tree (AST) of a program.
However, their performance in program queries is not well studied. Reflec-
tion is a programming language feature, but it can also be used as a built-in
data repository for a program query system. However, the powers and ef-
ficiency of the query systems are entirely dependent on the support of the
underlying reflection models.

32

Chapter 6

Summary

Program query systems allow a user to extract program information by
viewing a program as a piece of queryable data. They have long been a
research interest and have been shown to be useful in many software engi-
neering tasks. In Architectural Visualization and Design Pattern Recovery,
program queries allow the users to specify the structures of interest. In De-
sign Rule Verification, program queries allow the users to specify structural
or behavioral constraint rules. In Debugging, program queries can be used
to specify the breakpoint conditions.

The design space of a program query system is complex. To help organize
this survey, we will structure our presentation around two major design
dimensions. One dimension is the choice of language paradigm for the query
language. The other dimension is the choice of storage technologies of the
program data.

A Program query language is the end-user interface of a program query
system. The choice of query language paradigms is important because it af-
fects the expressive power and the usability of a query system. In this essay,
we have reviewed four common query language paradigms: Logical, Rela-
tional, Syntactic and Visual. Each of each paradigm has its own strengths.
When integration with industrial strength storage is important, Logical and
Relational query languages are better choices. Among the two, Logical query
languages are more expressive while Relational query languages are better
understood in query optimization. Syntactic and Visual query languages are
more intuitive to the user. Among them, Visual query languages are even
more intuitive, but they have less scalability and expressiveness

Storage technologies are another major design dimension. The choice of
storage technologies affects the scalability and the performance of a query
system. In this essay, we have reviewed two standard storage technologies
and five less well-known technologies.

Standard logic engines and relational databases are standard and popular
storage technologies. There are many industrial strength implementations
in the market. Tabled logical engines are logic engines that optimized for
data storage. They are better in performance and scalability when com-

33

Chapter 6. Summary

pared to standard logic engines. Binary Decision Diagrams are special data
structures that optimized for storing huge amount of data. However, they
are complicated to use. XML databases and Object databases are more
suitable for storing complex structures, such as the Abstract Syntax Tree
(AST) of a program. However, their performance in program queries is not
well studied. Reflection is a programming language feature, but it can also
be used as a built-in data repository for a program query system. However,
the powers and efficiency of the query systems are entirely dependent on the
support of the underlying reflection models.

In addition, the two design dimensions are not completely orthogonal.
For example, logic engines and relational databases are natural fit for the
logical and relational language paradigms respectively, providing a unified
representation in both language and storage level. However, a program
query system designer can always choose any possible combination to fit the
design goal. For example, we have seen that CodeQuest [50] uses a relational
database for storage even though it adopted a logical query language.

34

Bibliography

[1] Microsoft .net framework developer center. http://msdn.microsoft.
com/netframework.

[2] Tyruba. http://tyruba.sourceforge.net.

[3] Xsb project summary. http://xsb.sourceforge.net/about.html.

[4] Darren C. Atkinson and William G. Griswold. Effective pattern
matching of source code using abstract syntax patterns. Softw. Pract.
Exper., 36(4):413–447, 2006.

[5] Malcolm Atkinson, David Dewitt, David Maier, Francois Bancilhon,
Klaus Dittrich, and Stanley Zdonik. The object-oriented database
system manifesto. In Readings in database systems (2nd ed.), pages
946–954. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1994.

[6] Thomas Ball and Sriram K. Rajamani. Automatically validating tem-
poral safety properties of interfaces. In SPIN ’01: Proceedings of the
8th international SPIN workshop on Model checking of software, pages
103–122, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[7] Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter.
The pan language-based editing system for integrated development.
SIGSOFT Softw. Eng. Notes, 15(6):77–93, 1990.

[8] William C. Benton and Charles N. Fischer. Interactive, scalable,
declarative program analysis: from prototype to implementation. In
PPDP ’07: Proceedings of the 9th ACM SIGPLAN international con-
ference on Principles and practice of declarative programming, pages
13–24, New York, NY, USA, 2007. ACM.

[9] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient rela-
tional calculation for software analysis. IEEE Trans. Software Eng.,
31(2):137–149, 2005.

35

http://msdn.microsoft.com/netframework
http://msdn.microsoft.com/netframework
http://tyruba.sourceforge.net
http://xsb.sourceforge.net/about.html

Chapter 6. Bibliography

[10] Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2008.

[11] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. Xquery 1.0: An xml query
language. http://www.w3.org/TR/xquery.

[12] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Model-
ing Language User Guide, The (2nd Edition) (Addison-Wesley Object
Technology Series). Addison-Wesley Professional, 2005.

[13] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. Centaur: the system. In SDE 3: Proceedings of the
third ACM SIGSOFT/SIGPLAN software engineering symposium on
Practical software development environments, pages 14–24, New York,
NY, USA, 1988. ACM.

[14] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient
implementation of a bdd package. In DAC ’90: Proceedings of the
27th ACM/IEEE Design Automation Conference, pages 40–45, New
York, NY, USA, 1990. ACM.

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (xml) 1.0 (fifth edi-
tion). http://www.w3.org/TR/REC-xml.

[16] J. C. Browne and David B. Johnson. Fast: A second generation pro-
gram analysis system. In ICSE ’78: Proceedings of the 3rd interna-
tional conference on Software engineering, pages 142–148, Piscataway,
NJ, USA, 1978. IEEE Press.

[17] Bernd Bruegge and Peter Hibbard. Generalized path expressions:
a high level debugging mechanism. SIGSOFT Softw. Eng. Notes,
8(4):34–44, 1983.

[18] Randal E. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Trans. Comput., 35(8):677–691, 1986.

[19] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Inf. Com-
put., 98(2):142–170, 1992.

36

http://www.w3.org/TR/xquery
http://www.w3.org/TR/REC-xml

Chapter 6. Bibliography

[20] S. Burson, G. B. Kotik, and L. Z. Markosian. A program transfor-
mation approach to automating softwarere-engineering. In Computer
Software and Applications Conference, 1990. COMPSAC 90. Proceed-
ings., Fourteenth Annual International, pages 314–322, Chicago, IL,
USA, October/November 1990.

[21] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and Carlo Ba-
tini. Visual query systems for databases: A survey. Journal of Visual
Languages and Computing, 8(2):215–260, 1997.

[22] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE Trans. on Knowl. and
Data Eng., 1(1):146–166, 1989.

[23] Y.-F. R. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach. Ciao: a
graphical navigator for software and document repositories. In ICSM
’95: Proceedings of the International Conference on Software Mainte-
nance, page 66, Washington, DC, USA, 1995. IEEE Computer Society.

[24] Yih-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy. The c
information abstraction system. IEEE Trans. Softw. Eng., 16(3):325–
334, 1990.

[25] Rick Chern and Kris De Volder. Debugging with control-flow break-
points. In AOSD ’07: Proceedings of the 6th international conference
on Aspect-oriented software development, pages 96–106, New York,
NY, USA, 2007. ACM.

[26] Shigeru Chiba. Openc++ reference manual. http://opencxx.
sourceforge.net/opencxx/html/index.html.

[27] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[28] E. F. Codd. Relational completeness of data base sublanguages. In:
R. Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM
Research Report RJ 987, San Jose, California, 1972.

[29] Vincent Coetzee and Robert Walker. Experiences using an odbms for
a high-volume internet banking system. In OOPSLA ’03: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 334–338, New
York, NY, USA, 2003. ACM.

37

http://opencxx.sourceforge.net/opencxx/html/index.html
http://opencxx.sourceforge.net/opencxx/html/index.html

Chapter 6. Bibliography

[30] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. Jtl: the java tools
language. In OOPSLA ’06: Proceedings of the 21st annual ACM SIG-
PLAN conference on Object-oriented programming systems, languages,
and applications, pages 89–108, New York, NY, USA, 2006. ACM.

[31] Mariano Consens and Alberto Mendelzon. Hy+: a hygraph-based
query and visualization system. In SIGMOD ’93: Proceedings of the
1993 ACM SIGMOD international conference on Management of data,
pages 511–516, New York, NY, USA, 1993. ACM.

[32] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing
and querying software structures. In CASCON ’91: Proceedings of the
1991 conference of the Centre for Advanced Studies on Collaborative
research, pages 17–35. IBM Press, 1991.

[33] Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual
formalism for real life recursion. In PODS ’90: Proceedings of the
ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 404–416, New York, NY, USA, 1990. ACM.

[34] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine
Gravino, and Michele Risi. Design pattern recovery by visual language
parsing. In CSMR ’05: Proceedings of the Ninth European Conference
on Software Maintenance and Reengineering, pages 102–111, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[35] Gennaro Costagliola, Andrea De Lucia, Vincenzo Deufemia, Carmine
Gravino, and Michele Risi. Case studies of visual language based de-
sign patterns recovery. In CSMR ’06: Proceedings of the Conference
on Software Maintenance and Reengineering, pages 165–174, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[36] Gennaro Costagliola and Giuseppe Polese. Extended positional gram-
mars. In VL ’00: Proceedings of the 2000 IEEE International Sympo-
sium on Visual Languages (VL’00), page 103, Washington, DC, USA,
2000. IEEE Computer Society.

[37] Roger F. Crew. Astlog: a language for examining abstract syntax
trees. In DSL’97: Proceedings of the Conference on Domain-Specific
Languages on Conference on Domain-Specific Languages (DSL), 1997,
pages 18–18, Berkeley, CA, USA, 1997. USENIX Association.

38

Chapter 6. Bibliography

[38] Prem Devanbu and Laura Eaves. Gen++ - an analyzer generator for
c++ programs. Technical report, AT & T Bell Lab, New Jersey, 1994.

[39] Premkumar T. Devanbu. Genoa: a customizable language- and front-
end independent code analyzer. In ICSE ’92: Proceedings of the 14th
international conference on Software engineering, pages 307–317, New
York, NY, USA, 1992. ACM.

[40] Premkumar T. Devanbu. Genoa: a customizable language- and front-
end independent code analyzer. In ICSE ’92: Proceedings of the 14th
international conference on Software engineering, pages 307–317, New
York, NY, USA, 1992. ACM.

[41] Mireille Ducassé. Coca: an automated debugger for c. In ICSE ’99:
Proceedings of the 21st international conference on Software engineer-
ing, pages 504–513, New York, NY, USA, 1999. ACM.

[42] J”urgen Ebert, Bernt Kullbach, Volker Riediger, and Andreas Winter.
GUPRO — generic understanding of programs, an overview. Fach-
berichte Informatik 7–2002, Universit”at Koblenz-Landau, 2002.

[43] Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten Schafer.
Comprehensive software understanding with sextant. In ICSM ’05:
Proceedings of the 21st IEEE International Conference on Software
Maintenance, pages 315–324, Washington, DC, USA, 2005. IEEE
Computer Society.

[44] L. Feijs, R. Krikhaar, and R. Van Ommering. A relational ap-
proach to support software architecture analysis. Softw. Pract. Exper.,
28(4):371–400, 1998.

[45] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[46] Herve Gallaire and Jack Minker, editors. Logic and Data Bases.
Perseus Publishing, 1978.

[47] Adele Goldberg and David Robson. Smalltalk-80: the language and
its implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

39

Chapter 6. Bibliography

[48] Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. Relational
queries over program traces. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 385–402, New York, NY,
USA, 2005. ACM.

[49] Ralph E. Griswold and Madge T. Griswold. The ICON Programming
Language. Annabooks, 1996.

[50] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest:
Scalable source code queries with datalog. In Dave Thomas, editor,
ECOOP’06: Proceedings of the 20th European Conference on Object-
Oriented Programming, volume 4067 of Lecture Notes in Computer
Science, pages 2–27, Berlin, Germany, 2006. Springer.

[51] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A
system and language for building system-specific, static analyses. In
PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation, pages 69–82, New
York, NY, USA, 2002. ACM.

[52] G. D. Held, M. R. Stonebraker, and E. Wong. Ingres: a relational data
base system. In AFIPS ’75: Proceedings of the May 19-22, 1975, na-
tional computer conference and exposition, pages 409–416, New York,
NY, USA, 1975. ACM.

[53] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visual-
ization and navigation in information visualization: A survey. IEEE
Transactions on Visualization and Computer Graphics, 6(1):24–43,
2000.

[54] Chanika Hobatr and Brian A. Malloy. The design of an ocl query-based
debugger for c++. In SAC ’01: Proceedings of the 2001 ACM sym-
posium on Applied computing, pages 658–662, New York, NY, USA,
2001. ACM.

[55] Geert Janssen. A consumer report on bdd packages. In SBCCI ’03:
Proceedings of the 16th symposium on Integrated circuits and systems
design, page 217, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[56] Stan Jarzabek. Design of flexible static program analyzers with pql.
IEEE Trans. Softw. Eng., 24(3):197–215, 1998.

40

Chapter 6. Bibliography

[57] Shahram Javey, Kin’ichi Mitsui, Hiroaki Nakamura, Tsuyoshi Ohira,
Kazu Yasuda, Kazushi Kuse, Tsutomu Kamimura, and Richard Helm.
Architecture of the xl c++ browser. In CASCON ’92: Proceedings of
the 1992 conference of the Centre for Advanced Studies on Collabora-
tive research, pages 369–379. IBM Press, 1992.

[58] R. Kazman and M. Burth. Assessing architectural complexity. In
CSMR ’98: Proceedings of the 2nd Euromicro Conference on Software
Maintenance and Reengineering (CSMR’98), page 104, Washington,
DC, USA, 1998. IEEE Computer Society.

[59] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick
Pagé. Pattern-based reverse-engineering of design components. In
ICSE ’99: Proceedings of the 21st international conference on Software
engineering, pages 226–235, New York, NY, USA, 1999. ACM.

[60] Paul Klint. A Tutorial Introduction to RSCRIPT. Centrum voor
Wiskunde en Informatica, draft edition, MAY 2005.

[61] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of
logic-based infrastructures for concern detection and extraction. In
LATE ’07: Proceedings of the 3rd workshop on Linking aspect tech-
nology and evolution, page 6, New York, NY, USA, 2007. ACM.

[62] Christian Kramer and Lutz Prechelt. Design recovery by automated
search for structural design patterns in object-oriented software. Re-
verse Engineering, Working Conference on, 0:208, 1996.

[63] B. Kullbach and A. Winter. Querying as an enabling technology in
software reengineering. In Software Maintenance and Reengineering,
1999. Proceedings of the Third European Conference on, pages 42–50,
Amsterdam, Netherlands, 1999.

[64] David A. Ladd and J. Christopher Ramming. A*: A language for im-
plementing language processors. IEEE Trans. Softw. Eng., 21(11):894–
901, 1995.

[65] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Mar-
tin, Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In PODS ’05: Pro-
ceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 1–12, New York, NY,
USA, 2005. ACM.

41

Chapter 6. Bibliography

[66] Neal Leavitt. Whatever happened to object-oriented databases? Com-
puter, 33(8):16–19, 2000.

[67] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Query-
based debugging of object-oriented programs. In OOPSLA ’97: Pro-
ceedings of the 12th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 304–317,
New York, NY, USA, 1997. ACM.

[68] Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh. Dynamic
query-based debugging of object-oriented programs. Automated Soft-
ware Engg., 10(1):39–74, 2003.

[69] Mark A. Linton. Implementing relational views of programs. In SDE
1: Proceedings of the first ACM SIGSOFT/SIGPLAN software engi-
neering symposium on Practical software development environments,
pages 132–140, New York, NY, USA, 1984. ACM.

[70] Mark Andrew Linton. Queries and views of programs using a relational
database system. PhD thesis, University of California, Berkeley, 1983.

[71] Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shriram
Krishnamurthi, and Steven P. Reiss. The design and implementation
of a dataflow language for scriptable debugging. Automated Software
Engg., 14(1):59–86, 2007.

[72] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding
application errors and security flaws using pql: a program query lan-
guage. SIGPLAN Not., 40(10):365–383, 2005.

[73] Larry M. Masinter. Global program analysis in an interactive environ-
ment. PhD thesis, Stanford University, Stanford, CA, USA, 1980.

[74] Alberto Mendelzon, Alberto Mendelzon, and Johannes Sametinger.
Reverse engineering by visualizing and querying. SOFTWARE —
CONCEPTS AND TOOLS, 16:170–182, 1995.

[75] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov,
Torbjorn Ekman, Neil Ongkingco, Damien Sereni, and Julian Tibble.
Keynote address: .ql for source code analysis. In SCAM ’07: Proceed-
ings of the Seventh IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 3–16, Washington, DC, USA,
2007. IEEE Computer Society.

42

Chapter 6. Bibliography

[76] Clint Morgan, Kris De Volder, and Eric Wohlstadter. A static aspect
language for checking design rules. In AOSD ’07: Proceedings of the
6th international conference on Aspect-oriented software development,
pages 63–72, New York, NY, USA, 2007. ACM.

[77] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java
software developers using the eclipse ide? IEEE Softw., 23(4):76–83,
2006.

[78] Gail C. Murphy and David Notkin. Lightweight lexical source model
extraction. ACM Trans. Softw. Eng. Methodol., 5(3):262–292, 1996.

[79] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and
Jim Welsh. Towards pattern-based design recovery. In ICSE, pages
338–348, 2002.

[80] S. Paul and A. Prakash. A framework for source code search using
program patterns. IEEE Trans. Softw. Eng., 20(6):463–475, 1994.

[81] Santanu Paul and Atul Prakash. Querying source code using an al-
gebraic query language. In ICSM ’94: Proceedings of the Interna-
tional Conference on Software Maintenance, pages 127–136, Washing-
ton, DC, USA, 1994. IEEE Computer Society.

[82] Santanu Paul and Atul Prakash. Supporting queries on source code:
A formal framework. International Journal of Software Engineering
and Knowledge Engineering, 4, 1994.

[83] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient
debugging. SIGPLAN Not., 42(10):535–552, 2007.

[84] Michael L. Powell and Mark A. Linton. Database support for pro-
gramming environments. Technical report, University of California at
Berkeley, Berkeley, CA, USA, 1983.

[85] Ansgar Radermacher. Support for design patterns through graph
transformation tools. In AGTIVE ’99: Proceedings of the Inter-
national Workshop on Applications of Graph Transformations with
Industrial Relevance, pages 111–126, London, UK, 2000. Springer-
Verlag.

[86] C. V. Ramamoorthy and S. F. Ho. Testing large software with auto-
mated software evaluation systems. In Proceedings of the international

43

Chapter 6. Bibliography

conference on Reliable software, pages 382–394, New York, NY, USA,
1975. ACM Press.

[87] Prasad Rao, Konstantinos Sagonas, Terrance Swift, David S. War-
ren, and Juliana Freire. XSB: A system for efficiently computing
well-founded semantics. In Logic Programming And Nonmonotonic
Reasoning, volume 1265 of Lecture Notes in Computer Science, pages
430–440. Springer Berlin / Heidelberg, 1997.

[88] James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen. Object-oriented modeling and design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[89] Konstantinos Sagonas, Terrance Swift, and David S. Warren. Xsb as
an efficient deductive database engine. SIGMOD Rec., 23(2):442–453,
1994.

[90] Thorsten Schafer, Michael Eichberg, Michael Haupt, and Mira Mezini.
The sextant software exploration tool. IEEE Trans. Softw. Eng.,
32(9):753–768, 2006.

[91] Mirko Seifert and Roland Samlaus. Static source code analysis using
ocl. In the 8th International Workshop on OCL Concepts and Tools
(OCL 2008) at MoDELS 2008, volume 15, 2008.

[92] Mary Shaw and David Garlan. Software architecture: perspectives on
an emerging discipline. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996.

[93] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns
from java source code. In Proceedings - 21st IEEE/ACM International
Conference on Automated Software Engineering, ASE 2006, pages 123
– 132, Piscataway, NJ 08855-1331, United States, 2006. Pattern de-
tection tools;System behavior;Code structure;.

[94] Susan Elliott Sim, Charles L. A. Clarke, Richard C. Holt, and An-
thony M. Cox. Browsing and searching software architectures. In
ICSM ’99: Proceedings of the IEEE International Conference on Soft-
ware Maintenance, page 381, Washington, DC, USA, 1999. IEEE
Computer Society.

[95] Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside,
Marin Litoiu, and Mark Musen. Shrimp views: an interactive en-
vironment for information visualization and navigation. In CHI ’02:

44

Chapter 6. Bibliography

CHI ’02 extended abstracts on Human factors in computing systems,
pages 520–521, New York, NY, USA, 2002. ACM.

[96] W. Teitelman and L. Masinter. The interlisp programming environ-
ment. Computer, 14(4):25–33, 1981.

[97] Version No Value, Vtor Santos Costa, Lus Damas, Rogrio Reis, Rben
Azevedo, and V. Santos Costa. Yap user’s manual.

[98] Kris De Volder and Kris De Volder. Jquery: A generic code
browser with a declarative configuration language. IN PRACTI-
CAL ASPECTS OF DECLARATIVE LANGUAGES, 8TH INTER-
NATIONAL SYMPOSIUM, PADL 2006, 3819:88–102, 2006.

[99] Ingo Wegener. Branching programs and binary decision diagrams: the-
ory and applications. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[100] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
Using datalog with binary decision diagrams for program analysis. In
Programming Languages and Systems, volume 3780 of Lecture Notes in
Computer Science, pages 97–118. Springer Berlin / Heidelberg, 2005.

[101] John Whaley and Monica S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. SIGPLAN Not.,
39(6):131–144, 2004.

[102] R. Wuyts. Declarative reasoning about the structure of object-oriented
systems. In TOOLS ’98: Proceedings of the Technology of Object-
Oriented Languages and Systems, page 112, Washington, DC, USA,
1998. IEEE Computer Society.

[103] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, Pleinlaan 2,B-1050 Brussel,Belgium, 2001.

45

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Programs
	Acknowledgements
	Introduction
	Early Development
	FACES and FAST
	SCOPE
	OMEGA
	Summary

	Applications of Program Queries
	Architectural Visualization
	Hy+/Graphlog
	IAPR

	Design Pattern Recovery
	Pat
	FUJABA
	DPRE

	Design Rule Verification
	Metal/xgcc
	PDL
	PQL

	Debugging
	Coca
	On-the-fly Query-based Debugger
	Omniscient Debugger

	Summary

	Program Query Language Paradigms
	Logical Query Languages
	CodeQuest
	JTL

	Relational Query Languages
	OMEGA
	PTQL

	Syntactic Query Languages
	LSME
	GENOA

	Visual Query Languages
	Hy+/Graphlog
	FUJABA

	Summary

	Program Data Storage
	Standard Storage Technologies
	Relational Databases
	Standard Logic Engines

	Other Storage Technologies
	Table-based Deductive Engine
	Binary Decision Diagram (BDD)
	Object-Oriented Database
	XML Database
	Reflection

	Summary

	Summary
	Bibliography

