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Abstract
Image archival is a popular and high profile Web 2.0 service.  We have examined the problem
domain of internet archival websites, particularly image hosting sites, to discover the usage and
characteristics unique to their problem domain.  We have used this knowledge to determine how
these services’ needs differ from those offered by traditional posix filesystems, and then have
constructed a tailored filesystem to better meet their needs.  Particularly, our system reduces disk
seeks caused by unnecessary meta-data and the domain’s long tailed access distribution.  Our
filesystem offers a 40 to 55% improvement in throughput over standard filesystems, which is
significant since these services are I/O bound.  Increasing I/O efficiency for these services allows
them to serve more content with fewer resources, and to scale better.

Introduction
Web 2.0 websites are built to allow users to collaborate with each other, share information, and
to create content [5].  One application of Web 2.0 is online photo albums and image hosting. 
These websites allow users to post images to their accounts to be shared with their peers or their
audience.  This feature has bene adopted by many social networking websites which allow users
to post images to be viewed by members of their social circle.

Some website place more or less of an emphasis on social networking or image hosting. 
Imageshack is strictly an image hosting site with no social component. Flickr is primarily an
image archival site with a small social component (tagging, comments, friends, and groups).
4chan is an image message board with equal emphasis on image sharing and social interaction. 
Facebook is a social networking site with an image sharing component.  Other sites such as
Photobucket, Picasa, Blogger, Google Video, and Youtube provide differing mixes of social
networking and content sharing and archival.

Facebook is currently the largest social networking site on the internet, and the 5  most popularth

website overall [6].  Though the primary function of Facebook does not appear to be image
archival, it is nevertheless the largest image archival site on the internet with over 6.5 billion
images (with 4 or 5 sizes each) occupying 540 terra-bytes of storage [2].  475,000 images are
served per second, (including 200,000 profile images per second) and 100 million images are
uploaded per week.

Facebook currently serves 99.8% of its profile requests and 92% of its photo requests through
content distribution networks (CDNs) such as Akamai and Limelight [2].  This results in
approximately 452,600 images served through CDNs per second, and 22,400 images served per
second by their own servers.  The cost of using CDNs to this extent is prohibitive, but Facebook
has had to use them due to their inability to scale their own servers and services fast enough. 
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They would like to reduce their reliance on CDNs to lower costs [2].  Facebook has 10,000
servers [3] and has had to borrow $100 million dollars to purchase more [4].

Facebook’s scale of image hosting (as well as the other image hosts) makes them an interesting
research case to discover if novel approaches to archival storage in their usage model can offer
significant improvement (in either space or throughput) over existing approaches.

Problem
Facebook began with the naive approach of storing their image files in a traditional filesystem
served over NFS by clusters of NetApp servers.  These servers became heavily I/O bound, with
as may as 15 disk reads required to serve each request [2].  The high number of reads was due to
the meta-data (data about data) used by traditional file systems.

Every time a file is opened, the file’s name and path must be resolved to an i-node which acts as
a bookmark for the file.  Each directory (a component of the path) has an i-node, and that i-node
maps to the directory’s contents on disk.  When the final component of the path is resolved, the
system gets an i-node which points to the file to be read.  Only then can the filesystem begin to
read the contents of the file.  Each of these i-nodes is a piece of data that describes how to find
the file on disk.  In a deep directory structure, a large number of directory entries and their
corresponding i-nodes are required to be read before the system can reach the requested file.

Facebook’s first optimization was to develop a system to cache the mapping of filenames to their
final i-node, and to modify the Linux kernel to allow files to be opened directly with a reference
to that i-node.  This reduced the number of required disks reads to approximately 3 reads per file
[2].  They could perform this optimization because Facebook does not allow files to be moved,
renamed or deleted within their storage system, so names would always resolve to the same i-
node.

File meta-data can be cached in other ways, but most of it is unneeded for Facebook’s
application, so caching it wastes cache space which could be used for actual file data.  Facebook,
and most other image archival sites, are driven by databases which contain nearly all of the
application’s required meta-data.  Having the filesystem duplicate this meta-data, or having it
store un-needed meta-data, wastes resources.

Realizing that optimizations can be made by eliminating un-needed meta-data and by dropping
support for unneeded filesystem functions can lead to a more efficient storage system for archival
websites.  The remainder of this paper will explore archival website’s usage models (particularly
image archives), and will build an efficient storage system for those models.  Finally, the
performance and characteristics of that system will be compared with traditional filesystems and
with Facebook’s solution to the same problem.

Analysis of Problem Domain
Image archival (and image portions of social networking) sites have some unique characteristics
which differentiate them from regular filesystem usage models.

Access Pattern
On social sites such as Facebook, image access patterns follow a known distribution.  Profile
pictures (photo’s identifying a user, shown in user listings, and as the main photo on a user’s

http://www.netapp.com/us/


profile) are accessed the most frequently, followed by the most recently uploaded photos,
followed by a very long tail [2].  

This access pattern presumably translates to other archival sites.  Identifying images are accessed
most frequently as they are embedded in the most number of pages, followed by the most recent
content as users distribute that content and view what is new, followed by the long tail of the
website’s archived content.  Even on image boards such as 4chan, we can imagine a similar
scenario.  Images which start a thread of conversation will be the most accessed (as they are
shown on the forum summary pages), the most recent images (which are on the first page of the
forum) will be accessed next most often, followed by the long tail of old images in old
conversation threads.

Filesystem Usage
The largest difference between archival storage systems and regular file systems is how the files
are used and what is done to them.  These systems are primarily driven by read operations where
a file is submitted once and retrieved many times.  This behavior makes an image archive like a
write-once-read-many (WORM) storage system.

When the files are added, they are submitted as complete blocks (not streams) and they are not
subsequently modified or appended.  The systems are intended to be archives, so file deletion is
rare.  Related files are often submitted in batch (through a web-form with multiple file upload
boxes), and related files are often retrieved close together (photos from the same album).

Filesystem Access
The files in the systems are always accessed by the user through a uniform resource locator
(URL).  These URLs have differing structures between systems, but they share some common
characteristics.  Example URLs are available at [1].

Analysis of these URLs reveal that they are most often not user-friendly.  The URLs often
contain some kind of volume identifier, an object identifier (OID), some kind of hash
(presumably for replication and load-balancing), and a size indicator.  The path is almost always
completely meaningless to the user, and the filename component is sometimes meaningful, but
often not.  The following table presents a summary of the characteristics of archival site URLs.
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We can conclude that users are not intended to type these URLs themselves since the paths are
meaningless to the user, and often long and complicated.  Instead, they are intended to be
embedded into generated web-pages for the user’s web browser to fetch them automatically.  The
inclusion of user meaningful filenames appears to be a convenience feature to allow users to save
images.

We also note that these URLs act as capabilities in the sense that knowing the URL grants access
to the file.  The URLs are tokens that give the holder of the URL the authority to retrieve the file. 
They do not care who holds them, they can be delegated, and they can be copied.  None of the
websites examined implement access control lists on the files or within the URLs.  Simply
knowing the URL is sufficient to retrieve the content, regardless of a user’s privacy settings.

Threat Model
Archival websites are exposed to all kinds of users, including hostile ones.  They must keep their
services available and secure for regular users despite the efforts of active malicious adversaries. 
We will consider our system to be secure if it is at least as secure as the existing systems.

For archival websites, we want regular users to be able to store any image and to retrieve any
images for which they have been given a valid URL.  Adversaries are permitted to submit any
data for storage into the system, including malicious data, and to submit any read request through
any URL, including forgeries and maliciously crafted URLs.  These users must be prevented
from reading any files where they have not been given a valid URL generated by the system.  In
security parlance, we wish to prevent existential forgery when allowing the attackers to make
chosen plaintext attacks, meaning that an adversary can chose to submit any data to the system
and to receive valid URLs for that data, but they cannot create an URL to access any other data
stored within the system.

We also want the system to be resistant to denial of service (DOS) attacks, but do not propose to
make the system any more resilient than existing services.  We merely want to ensure that our
system does not create new avenues for DOS attacks.

Design Goals
Existing storage systems are I/O bound in this usage scenario, so our primary design goal is to
maximize I/O efficiency.  Images such as profile pictures and recent photos are more frequently
accessed, so we can increase their throughput with replication.  This is a well understood
solution, so it will not be addressed in this paper.  The other part of the problem is the large data-
set and the long tail access pattern.  Because of their wide distribution, less frequently accessed
files cannot be efficiently replicated.  For these files, minimizing the number of disk reads and
disk seeks will be imperative to maintain throughput and I/O efficiency.

Another observation from our problem domain was that most file meta-data is not needed by
these systems, so we will try to eliminate as much of it as possible.  The elimination of the meta-
data should allow the filesystem to be more efficient, and to conserve space for storage of actual
data, both in memory caches and on disk.



Analysis of Requirements
From our above analysis, we can summarize the functional requirements specific to this domain
in seven points:
1. Paths may be non-meaningful.
2. Filenames should be meaningful.
3. Submitted files may not be altered.
4. Files must be submitted as complete blocks.
5. Files must be “deleted” only in rare cases.
6. Files must only be retrievable via a valid URL generated by the system.
7. URLs must prevent existential forgery under chosen plaintext attacks.

From these seven points, we can make observations about our desired filesystem:
1. We can encode meta-data into the path component of the URL.
2. We should preserve original filenames.
3. Files can be contiguous on disk.
4. Files can be contiguous on disk.
5. Deleting is rare, so we can do it poorly.
6. We must detect and reject altered or forged URLs.
7. We must detect and reject altered or forged URLs.

Points three and four are the biggest advantage of our filesystem over traditional filesystems. 
The need to support file fragmentation is a large source of meta-data and disk seeks.  Point one
also allows us the chance to encode meta-data into the request URL itself, eliminating that data
from disk and memory, allowing our system to be more efficient.  Point seven requires us to
verify any submitted URL, so we can trust that any meta-data contained in the URL is accurate.

Solution
The above design goals combined with the analysis of requirements suggest that the best way to
build our file system is to eliminate all meta-data.  This would ensure that any read which reaches
the disk is used to retrieve actual user data, and not meta-data, maximizing disk efficiency.  This
is possible since we can encode the meta-data into the URL of the file.

When files are guaranteed to be contiguous, all that is required to read a file is a device (or
volume), an offset into that volume for where the file is located, and the length of what is to be
read.  We propose to encode these values directly into the URL as a tuple: < volume, offset,
length >.  Since we wanted to preserve filenames, we ad that to the tuple < volume, offset,
length, name >.  Since the filename is in the tuple and we do not need it to read the file, we do
not need to store it on disk.

Just using the tuple < volume, offset, length, name > would allow attackers to submit any request
and have that request served.  For example, and attacker could submit the request < v, 0,
v.length, x > and read the entire volume.  This violates the two security requirements of our
system.

We could combat this by maintaining a list of valid start positions, but this would introduce
meta-data that our system has to maintain and check for every request, which is contrary to one
of our design goals.  Alternatively, we could encode a header at the start of every file to indicate
a starting position, but this won’t work since we allow an attacker to submit malicious data for



writing into the system.  An attacker could craft a special file containing the start-of-file header,
and then use it to read the rest of the volume.  We could cryptographically secure the header so
that it cannot be forged, but this is again adding meta-data to our system.  

We observe that we have already shifted all of our meta-data from the filesystem into the URL
given to the users, so we propose to move this cryptographic security to the URL as well.  Rather
than cryptographically securing the file header, we eliminate the idea of the file header and
instead cryptographically secure the URL given to the users.  This can be done by attaching a
message authentication code (MAC) to the < volume, offset, length, name > tuple, giving us a
new tuple of < volume, offset, length, name, mac >.  If we use a MAC which is resistant to
existential forgery under chosen plaintext attacks, then our URLs given to users will be resistant
to the same attacks.

Message Authentication Codes
A message authentication code (MAC) is a short piece of information used to verify the integrity
and authenticity of a message.  A MAC paired with a message can be used to detect tampering
(either deliberate or accidental) of that message.  Any changes to the message would generate a
different MAC.

A MAC is an easily computable function of the form: mac(m) = d where m is a message, and d is
a digest of that message.  For a MAC to be secure, we insist that it is computationally infeasible
to find any two messages which correspond to the same digest.  MACs differ from digital
signatures in that they do not provide non-repudiation.

For our application, we have chosen to use a keyed-hash MAC (HMAC) to provide URL
authentication.  Other MAC schemes can easily be substituted if desired.  An HMAC combines a
public message with a fixed hash function and a secret key to securely establish the integrity and
authenticity of a message.  An HMAC is a function of the form HMAC(h,k,m) = d, where h is a
fixed hash function, k is a secret key, m is a public message, and d is the message digest.  Secure
HMACs are resistant to existential forgery under chose-plaintext attacks, and the security of an
HMAC lays in the security of the underlying hash function h, and in the secret key k.

HMAC was chosen due to its wide-spread use in other protocols, the existence of universal
standards, extensive cross-platform library support, and extensive review in the field of
cryptography.

HMAC is implemented as the following function [7]:

h,KHMAC (m) = h [ (Kropad) || h( Kripad) || m ) ]
where r is the XOR operator, || is the concatenation operator, and ipad and opad are constants.

For out initial version, we have chosen to use SHA-224.  SHA-224 is the smallest hash function
in the SHA-2 family, producing a 224 bit message digest, offering 112 bits of computational
security (see [8] for details.)

The hash function can be easily changed later as it is simply a parameter to the HMAC function. 
SHA-2 was chosen over SHA-1 and MD5 due to recent attacks against the latter algorithms, and
over RIPEMD due to SHA-2's wider use in government and industry, and more scrutiny in the
field of cryptography. Extensive cross-platform libraries for SHA-224 are available.



URL Encoding
Our URL is now a tuple of the form: < volume, offset, length, filename, mac >.  The size of each
of the fields is specified in the table below.

field bits

min max likely

volume 16 32 32

offset 32 64 64

length 32 64 32

mac 160 512 224

We cannot place the values in the URL as octets since octets are not URL safe [9], so the octets
are required to be encoded in an URL safe format.  Encoding requirements are listed in the table
below for different encoding schemes.

bits digits

decimal hex percent base64

32 10 8 12 6

64 20 16 24 11

160 49 40 60 27

224 68 56 84 38

512 155 128 192 89

For small numbers (up to 64 bits), it appears completely feasible to encode the value in
hexadecimal. Encoding the MAC in hexadecimal would require 56 digits which may result in
undesirably long URLs. Using encoding methods such as quoted-printable, uuencoding, yenc,
ascii85 or standard base64 would all generate characters that are not URL safe and therefore not
suitable for our use. An URL safe and filename safe variant of base64 [10] could reduce the
encoding length of the MAC to approximately 40 characters.

Support for File Deletion
The system as described so far does not support file deletion.  The URL for a file acts as a
capability to access that file.  As such, once the capability is given out, it cannot be revoked.  The
solution to this in capability systems is to either have expiring capabilities (which must be
renewed), or to introduce a level of indirection.  Expiring capabilities are not suitable for our
general use since URLs should be persistent.  They may be useful in cases where the URLs are
only encoded into generated web pages and not given to users directly.

Adding a layer of indirection unfortunately introduces meta-data to our system which cannot be
removed.  Either a list of deleted files must be maintained per volume, or each file must have a



file header which indicates its availability/deletion status.  We have chosen the latter approach as
it requires less meta-data to be held in memory.  Storing the deletion status in a file header should
not introduce new reads or seeks to the filesystem since the read request for the header will cause
the system to perform a read-ahead on disk to cache the data.

Implementation
This section of the report will summarize the implementation consequences of the proposed
solution, and will solidify interface requirements.

Volume Header
We propose that each volume within our system specifies its MAC family and algorithm in its
volume header.  This will allow for later revisions to use different MAC families (such as
UMAC, CBC-MAC, PMAC, or CMAC instead of HMAC) and different underlying algorithms
(such as SHA-1, MD5, RIPEMD, or any member of the SHA-2 family instead of SHA-224). 
Each volume should specify its own secret key K to prevent birthday attacks against different
volumes.  This key can also be stored in the volume header.

As such, a volume header is required to store the following information:
< MAC family, MAC algorithm, MAC key, next free space >

The value “next free space” holds the offset on disk of the location of the next byte of free space. 
A new file is written to this location, and the free-space pointer is advanced to the first byte after
that file.

MAC Computation
The MAC function takes the < offset, length, filename > part of the URL’s tuple as the input
message, m, along with the volume’s hash function, h, and secret key, K, to generate the MAC
for that URL.  The < offset, length > components are binary values encoded in network byte
order (little endian can be used as well, but the choice of encoding must be consistent across all
nodes in the system).  There is no additional value in encoding the < offset, length > into a
human readable representation first since that representation would contain the same entropy as
the binary representation.

The filename is not required by the system for opening a file, but it is still protected by the MAC
for two reasons: to introduce additional entropy (though the value of this is minimal since the
attacker can choose filenames), and to prevent user embarrassment through forged filenames.  If
the filename was not protected, then < volume, offset, length, mac, “meeting of math society.jpg”
> would be as valid as < volume, offset, length, mac, “meeting of flat earth society.jpg” >.

URL Encoding
The < volume, offset, length > part of the tuple are encoded into the URL as hexadecimal values. 
The MAC component of the URL is encoded in the URL/filename safe variant of base64.  An
example URL is as follows:
/nibfs/v0x001/o0x9f9c1/l0x52ee/mZ1uIWeggibsSBO_EufTbL5jP6VG_edVb4dlS9i==/

file.0x9f79a.21K.jpg

corresponding to the following values:



encoded meaning

volume ID 0x001 1

offset 0x9f9c1 653,761

length 0x52ee 21,230

h,Kmac base64u( HMAC ( nbo(offset) || nbo(length) || filename ) )

filename file.0x9f79a.21K.jpg

The position of the path components are not significant, but we feel that the placement of volume
and offset first will aid with replication and load-balancing using existing tools.

API
Write

The write call takes a collection of files as input (file descriptors, lengths, and filenames), and
returns a mapping of those files to the generated URL’s parameters.  The side effect of the write
call is that the files are stored into the volume, and the volume is prepared to accept the next files
by updating the next-free-space pointer.

Read
The read call takes the URL’s parameters and returns a reference to the file within the system. 
This reference includes a file descriptor, offset, and length (which will match the input
parameters).  

For every read request, the input parameters (the offset, length, and filename) are used to
recompute the MAC with the volume’s secret key and hash algorithm.  If this computed MAC
differs from the input MAC, then it indicates that the URL has been tampered with and should be
rejected.

If the MAC validates, then a read request is made to retrieve the file header to see if the file has
been deleted.

Result
Following this scheme requires only one disk seek to retrieve a file.  All required meta-data can
be decoded from the URL.  The file deletion header must be verified for each request, but since
deletion is rare, the system can preform a read-ahead to fetch the contents of the file on the same
seek.

Related Work
Facebook has developed their own solution (named “haystack”) to this problem [2].  Their
solution uses a similar technique of having a single, large, non-block allocated volume for
storage.  The major difference is that Facebook’s URLs are object identifiers (OIDs) which key
into an index for each volume.  This index maps the OID to the required length and offset values
required to read the file from the volume.  To mark a file as deleted, it is removed from the
index.

http://www.facebook.com


Facebook achieves URL authentication by attaching a nonce to each OID.  The nonce is verified
against an on-disk copy of the nonce stored with each file for each read operation.

The index file requires approximately 20 bytes of storage per file, and the nonce is 2 bytes,
requiring 22 bytes of extra data per file.  This does not seem like much, but with an average file
size of approximately 20 KB, and 540 TB of storage, it amounts to approximately 540 GB of
memory to store the indexes (which must be in RAM to enable fast lookup), and 54 GB of
storage for the nonce data.  The space taken in RAM by the index is space which cannot be used
to cache or preform read-ahead.

Memory requirement for file index:

Scale Volume Size Index Size

Facebook 540 TB 540 GB

Performance Server 16 TB 16 GB

Commodity Server 4 TB 4 GB

Sample Single Volume 16 GB 16 MB

As indicated in the above table, each server’s entire RAM allocation can become occupied by the
index data.  Our solution’s advantage is that it does not require the 540 GB of RAM required to
store the indexes, but trades it for the extra computation cost in verifying the MAC.  We feel that
this is a better trade-off since the system is I/O bound with CPU time to spare.

Performance
NIBFS was implemented along with Haystack for performance testing against regular file
systems.  The test environment was a simple multi-threaded web server, and an http load
generator, chosen to match the problem domain.  The server was fixed to operate with 20 threads,
and the load generator maintained 20 concurrent requests.

Fresh filesystems were created at varying sizes and filled with test data representative of the
operating environment (three images of 12K, 19K, and 22K).  The http load generator would
make concurrent requests to the http server which would fetch the file from the filesystem and
send it back to the load generator as an http response.  File were chosen at random over the entire
volume to simulate the effect of the problem domain’s long tail distribution.

NIBFS and Haystack can operate as files in existing volumes, so they were both tested on top of
two underlying filesystems, ext2 (the Linux filesystem) and XFS (Sun’s server filesystem). 
NIBFS can also operate with no underlying filesystem, but it’s performance in this scenario is
similar to when there is an underlying filesystem (provided that the underlying filesystem is not
fragmented).

To prevent large directories when testing the posix filesystem, files were hashed into two levels
of directories where each level contained 256 folders.  Not performing this hash results in
extremely poor performance for the posix filesystem.



NIBFS outperforms ext2 posix by 40 to 55%.  NIBFS outperforms XFS posix by 30 to 40%.  In
all cases, NIBFS performs approximately the same as Haystack.



Aside: Reclamation of Deleted File’s Space
When a file is deleted, the file space can be reclaimed by maintaining a list of free blocks on
disk.  When a file is submitted, the free-space table can be searched to find a block larger than
the new file.  The new file (and it’s header) can be written into this block as long as the old file’s
header remains at it’s original location.  This will prevent the old URL from being able to read
the new file in the reclaimed space.  

We decided that since file deletion is rare in our problem domain, that this functionality was not
worth it’s added complexity and meta-data.  Haystack made the same design decision.

Conclusion
Our system has tackled the problem of how to minimize meta-data in a filesystem tailored for
archival websites, thereby reducing the number of seeks required to retrieve a file to one.  This
optimization is necessary due to these site’s long tail access distribution pattern causing them to
be I/O bound.  Frequently accessed files can be cached or replicated, but the long tail cannot, so
our solution is necessary to achieve and maintain high throughput and I/O efficiency as data sets
grow.

Benchmarks of our solution show it to outperform regular filesystems by 30 to 55 percent under
the problem domain’s usage model.  This improvement will allow internet archival systems to
serve more content using fewer resources, and to scale better.

Our solution performs as well as a competing related work from Facebook, but our solution
requires far less RAM to operate.  Freeing these resources can reduce costs, allow more services
to be offered by the servers, or simply to allow the servers to perform larger read-ahead to fetch
related data.

Construction of our access URLs supports replication, load balancing, and industry standard
tools for content distribution and proxies.

Security of our scheme is maintained by industry and government standard techniques.  The
required functions are standardized and widely used, ensuring extensive, robust, library support
across platforms.  The extra computation required by our solution to maintain security is
negligible, especially considering that these servers are I/O bound with plenty of idle CPU time.  
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