
Homography Estimation
by

Elan Dubrofsky

B.Sc., Carleton University, 2007

A MASTER’S ESSAY SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

March 2009

c© Elan Dubrofsky 2009

Abstract

This essay has been written to provide the reader with a treatment of homog-
raphy estimation and its use in today’s computer vision applications. The
topic is motivated by a discussion of various situations where homography
estimation is required and an overview of other geometric transformations
so as to situate homographies in the correct context. Various algorithms
are discussed ranging from the most basic linear algorithm to statistical op-
timization. Non-linear algorithms for homography estimation are broken
down into the cost functions that they aim to minimize. Robust estimation
techniques with respect to outlier correspondences are covered as well as al-
gorithms making use of non-point correspondences such as lines and conics.
Finally, a survey of publicly available software in this area is provided.

Elan Dubrofsky. dubroe@cs.ubc.ca

ii

Table of Contents

Abstract . ii

Table of Contents . iii

Acknowledgements . 1

1 Introduction . 2
1.1 What is a homography . 2
1.2 Relation to other geometric transformations 3

1.2.1 Isometry . 3
1.2.2 Similarity transformation 3
1.2.3 Affine transformation 4
1.2.4 Projective transformation 4
1.2.5 Perspective projection 5

1.3 Situations in which solving a homography arise 6
1.3.1 Camera calibration 6
1.3.2 3D reconstruction . 7
1.3.3 Visual metrology . 7
1.3.4 Stereo vision . 8
1.3.5 Scene understanding 8

2 Algorithms for homography estimation 10
2.1 Basic DLT algorithm . 10

2.1.1 Normalization . 11
2.2 Different cost functions . 12

2.2.1 Algebraic distance . 12
2.2.2 Geometric distance 12
2.2.3 Reprojection error . 13
2.2.4 Sampson error . 13

2.3 Other features aside from points 14
2.3.1 Lines . 14
2.3.2 Lines and Points . 16

iii

Table of Contents

2.3.3 Point-centric Approach 16
2.3.4 Line-centric Approach 18
2.3.5 Conics . 19

2.4 Robust Estimation: Dealing with Outliers 20
2.4.1 RANSAC . 21
2.4.2 Least Median of Squares Regression 21
2.4.3 Future Work . 22

3 Survey of publicly available software 23

4 Conclusion . 25

Bibliography . 26

iv

Acknowledgements

I would like to express my gratitude to my co-supervisor, Robert J. Wood-
ham, for all of his assistance with the ISVC paper we published and this
essay. Also I must give thanks to Jim Little, my other co-supervisor, for the
helpful discussions we’ve had about this and other topics throughout my
masters. Others who engaged in in helpful discussions regarding this topic
with me include David Lowe, Matthew Brown and Kenji Okuma. Finally I
would like to thank Andreas Hofhauser for pointing me towards many useful
resources regarding homography estimation.

1

Chapter 1

Introduction

1.1 What is a homography

A 2D point (x, y) in an image can be represented as a 3D vector x =
(x1, x2, x3) where x = x1

x3
and y = x2

x3
. This is called the homogeneous

representation of a point and it lies on the projective plane P 2. A homogra-
phy is an invertible mapping of points and lines on the projective plane P 2.
Other terms for this transformation include collineation, projectivity, and
planar projective transformation. Hartley and Zisserman [11] provide the
specific definition that a homography is an invertible mapping from P 2 to
itself such that three points lie on the same line if and only if their mapped
points are also collinear. They also give an algebraic definition by proving
the following theorem: A mapping from P 2 → P 2 is a projectivity if and
only if there exists a non-singular 3×3 matrix H such that for any point in
P 2 represented by vector x it is true that its mapped point equals Hx. This
tells us that in order to calculate the homography that maps each xi to its
corresponding x′i it is sufficient to calculate the 3×3 homography matrix,
H.

It should be noted that H can be changed by multiplying by an arbitrary
non-zero constant without altering the projective transformation. Thus H
is considered a homogeneous matrix and only has 8 degrees of freedom even
though it contains 9 elements. This means there are 8 unknowns that need
to be solved for.

Typically, homographies are estimated between images by finding feature
correspondences in those images. The most commonly used algorithms make
use of point feature correspondences, though other features can be used as
well, such as lines or conics. Chapter 2 of this essay will discuss some
algorithms for homography estimation.

2

1.2. Relation to other geometric transformations

1.2 Relation to other geometric transformations

One good way to understand homographies is to put them into the context
of other geometric transformations. The homography transformation has
8 degrees of freedom and there are other simpler transformations that still
use the 3×3 matrix but contain specific constraints to reduce the number
of degrees of freedom. This section presents a hierarchy of transformations
leading to the homography and will show how homographies can be broken
down into an aggregation of these simpler transformations. This is discussed
in much more detail in [11].

1.2.1 Isometry

An isometry is a transformation that preserves Euclidian distance. This
means that the distance between two points in one image will be the same
as the distance between their corresponding points in the mapped image.
The same goes for the angles between lines and areas. Isometries are made
up of only 2D rotations and 2D translations and therefore have only 3 degrees
of freedom. An isometry can be written as:

x′ =
(

R t
0T 1

)
x (1.1)

where R is a 2×2 rotation matrix, t is a translation 2-vector and 0T is a
row of 2 zeros.

1.2.2 Similarity transformation

A similarity transform is similar to an isometry except it also contains
isotropic scaling. Isotropic means that the scaling is invariant with respect
to direction. The scale adds an additional degree of freedom so a similarity
transform contains 4 degrees of freedom overall. Like with isometries, an-
gles are not affected by this transformation. The distance between points are
no longer invariant, but the ratio of distances is preserved under similarity
transformations since any scale change cancels out. A similarity transform
can be written as:

x′ =
(
sR t
0T 1

)
x (1.2)

where s is a scalar and represents the isotropic scaling.

3

1.2. Relation to other geometric transformations

1.2.3 Affine transformation

An affine transformation is like a similarity transform but instead of a sin-
gle rotation and isotropic scaling it is a composition of two rotations and
two non-isotropic scalings. It contains two more degrees of freedom than
the similarity transformation; one for the angle specifying the scaling direc-
tion and one for the ratio of the scaling parameters. Unlike the similarity
transformation, an affine transformation does not preserve the distance ra-
tios or the angles between lines. There still are some invariants though, as
parallel lines in one image remain parallel in the mapped image, and the
ratios of lengths of parallel line segments and areas are preserved. An affine
transformation can be written as:

x′ =
(

A t
0T 1

)
x (1.3)

where A is a 2×2 non-singular matrix.
A can be decomposed as:

A = R(θ)R(−φ)DR(φ) (1.4)

where R(θ) and R(φ) are rotation matrices for θ and φ respectively and D
is a diagonal matrix:

D =
(
λ1 0
0 λ2

)
(1.5)

where λ1 and λ2 can be considered as two scaling values.
The matrix A is thus a concatenation of a rotation by φ, a scaling by λ1

in the x direction, a scaling by λ2 in the y direction, a rotation back by −φ
and then another rotation by θ.

1.2.4 Projective transformation

Finally we come to projective transformations or homographies which have
already been defined above. The projective transformation is a non-singular
linear transformation of homogeneous coordinates. This transformation
would be non-linear with inhomogeneous coordinates and this is what makes
the use of homogeneous coordinates so valuable. Projective transformations
contain two more degrees of freedom than affine transformations as now the
matrix has nine elements with only their ratio significant. None of the invari-
ants from the affine transformation mentioned above hold in the projective
case, though the fact that if three points lie on the same line in one image,

4

1.2. Relation to other geometric transformations

they will be collinear in the other still holds. A projective transformation
can be written as:

x′ =
(

A t
vT v

)
x (1.6)

where v = (v1, v2)T .
The key difference between the affine and projective transformation is

the vector v, which is null in the affine case. This vector is responsible for
the non-linear effects of the projectivity. For affinities, the scalings from A
are the same everywhere in the plane, while for projectivities scaling varies
with the position in the image. Similarly, for affinities the orientation of a
transformed line depends only on the orientation of the original line while
for projectivities the position of the original line on the plane also effects
the transformed line’s orientation.

A projective transformation can be decomposed into a chain of the pre-
viously mentioned transformations:

H = HSHAHP =
(
sR t
0T 1

)(
U 0
0T 1

)(
I 0

vT v

)
=
(

A t
vT v

)
(1.7)

Here HS represents a similarity transformation, HA represents an affinity
and HP represents a projectivity. A = sRU + tvT and U is an upper-
triangular matrix normalized as det U = 1. For this decomposition to be
valid, v cannot equal 0. If s is selected as positive then this decomposition
is unique.

1.2.5 Perspective projection

So far this hierarchy has dealt with 2D to 2D (or plane to plane) trans-
formations. Another transformation that is widely studied is perspective
projection which is a projection of 3D points in space to 2D points. This is
the projection occurring when cameras take images of the world and display
the result on an image plane.

A perspective projection can be represented with homogeneous coordi-
nates by a 3×4 camera matrix P such that:

x = PX (1.8)

where x is an image point represented by a homogeneous 3-vector and X is
a world point represented by a homogeneous 4-vector.

The camera matrix P has 11 degrees of freedom, which is the same as
the number of degrees of freedom of a 3×4 matrix defined up to an arbitrary

5

1.3. Situations in which solving a homography arise

scale. These degrees of freedom, or parameters, can be broken down into
two categories: 5 internal and 6 external parameters. The 5 internal camera
parameters are often represented by a matrix K:

K =

 αx s x0

0 αy y0

0 0 1

 (1.9)

Here αx and αy represent the focal lengths of the camera in terms of pixel
dimensions in the x and y directions respectively, (x0, y0) is the principal
point on the image plane and s is a skew parameter.

The 6 external parameters relate the camera orientation to a world co-
ordinate system and consist of 3 rotations (represented by a 3×3 matrix R)
and 3 translations (represented by a 3-vector t). Thus the camera matrix
P can be represented as:

P = K [R|t] (1.10)

Hartley and Zisserman [11] note that some assumptions can be made
about the camera model in order to reduce the number of degrees of freedom.
Assuming the camera has square pixels, and thus equal scales in both the x
and y directions allows one to set αx = αy = α. Also in many cases s can be
set to 0. Even with making these assumptions, the perspective projection
will have 9 degrees of freedom which is one more than a homography which
has 8.

1.3 Situations in which solving a homography
arise

There are many situations in computer vision where estimating a homog-
raphy may be required. In this section I explore some of these situations
and show examples of how homographies have been used in practice to solve
some of these problems. While there is a lot of overlap in the situations pre-
sented, the purpose of this section is to motivate chapter 2, as homography
estimation is indeed required in many computer vision domains.

1.3.1 Camera calibration

Camera calibration is the process of determining the intrinsic and extrinsic
parameters of the camera setup. The intrinsic parameters are those specific
to the camera, such as the focal length, principal point and lens distortion.
Extrinsic parameters refer to the 3D position and orientation of the camera.

6

1.3. Situations in which solving a homography arise

Calibration is often the primary step of many vision applications as it allows
systems to determine a relationship between what appears on an image and
where it is located in the world. Knowledge of the camera callibration
matrix, often referred to as K, is required for many basic image processing
operations such as the removal of radial distortion [9].

Zhang in [25] and Chuan et. al. in [5] both present methods to solve for
the intrinsic and extrinsic parameters using a homography estimated from
images of the same planar pattern taken from different perspectives. To
do this they take advantage of the fact that H = K[Rt] where H is the
homography matrix, K is the intrinsic parameter matrix, R is the rotation
matrix and t is the translation vector.

1.3.2 3D reconstruction

3D reconstruction is a problem in computer vision where the goal is to
reconstruct scene structures and camera positions from images of the scene.
One domain where this is extremely useful is in medical imaging, where
multiple images of a body part, such as the brain, can be used to create
a 3D model of the part being analyzed [3], [8]. Google Earth [1] recently
released a new update capable of reconstructing entire cities simply from
images. Solving for homographies is a key step in 3D reconstruction as it is
often required to obtain mappings between images of the scene.

Wright et. al. in [23] use conic correspondences to reconstruct the point
source of blood splatter in a crime scene. They point out that the shape of a
blood stain on a wall is typically an ellipse that depends on the angle between
the path of the blood drop and the surface. By estimating homographies
from coplanar ellipse correspondences, they are able to reconstruct the scene
and infer the point source from which the blood splattered.

1.3.3 Visual metrology

The goal in visual metrology is to estimate distances between and sizes of
objects from images of those objects. Metrology literally means the scientific
study of measurement, and visual metrology algorithms aim to automate the
process. This is a very important problem because sometimes important
measurements are required but it would be too difficult, expensive or time
consuming to take them manually. Homography estimation is crucial in
this domain as it allows multiple images of a plane to be transformed to a
common plane where measurements can be acquired.

Liang et. al. in [15] try to solve the problem of two-view metrology where

7

1.3. Situations in which solving a homography arise

the images are from uncalibrated cameras. They estimate the homography
between two views by first extracting point correspondences and then using
the relationship between the planar homography and the epipolar geometry
of the scene. A RANSAC algorithm is then used to remove outliers from the
set of point correspondences. Outlier removal will be discussed in more detail
in section 2.4. The estimated homography is used to solve for the height of
objects above the reference plane that the homography was estimated for.

1.3.4 Stereo vision

Stereo vision is the process in visual perception of sensing depth from multi-
ple views of a scene. These multiple views are commonly taken from different
camera positions, but can also be acquired from a fixed camera using pho-
tometric stereo. By analyzing the distance between the two images of the
same real-world point one can calculate the disparity which is inversely re-
lated to the depth of the point. Stereo is a widely researched problem in
computer vision and numerous algorithms have been proposed to solve for
the stereo properties of a scene represented by images.

A key step in most stereo algorithms is to find point correspondences in
the images. Using epipolar geometry, the search for a corresponding point
can be reduced from searching over a whole image to just searching across
a line the image, called the epipolar line. Loop and Zhang [16] compute
rectifying homographies between images in order to make their epipolar
lines axis-alligned and parallel, thus making the search for corresponding
points very efficient.

1.3.5 Scene understanding

Scene understanding can be considered in the superset of many of the situa-
tions already discussed above. What we mean by this term is simply trying
to understand what is occurring in one or a set of images in terms of both
actions and locations. Part of scene understanding can involve trying to
figure out the geometry of the situation in order to make sense of what is
going on, and that’s where the estimation of a homography may come in.

One major goal of the UBC hockey tracking system is to take in a hockey
video feed and to track the positions of the players all over the ice in order
subsequently to analyze the hockey play that is transpiring. This is made
difficult by the fact the cameras are not fixed. They are free to pan, tilt
and zoom. This introduces an important sub-goal of the system, which is
to transform all images to a standard rink model so as to negate the issue

8

1.3. Situations in which solving a homography arise

of camera motion. To accomplish this one can calculate the homography
that maps the images from the video feed into standard rink coordinates for
each frame. Okuma et al. [20] have implemented a system to accomplish
this task. The system uses point correspondences found using the Kanade-
Lucas-Tomasi (KLT) tracker [22] and the normalized DLT algorithm which
will be discussed in section 2.1.1.

Image mosaicing can also be considered an application of scene under-
standing, as the goal is to reconstruct a full view of a scene from multiple
images where each individual image only captures part of the scene. In
Brown and Lowe’s Autostitch work [2], they estimate the homography ma-
trix for each image in a set of input images order to create panoramas. They
do so using point correspondences in the images acquired as SIFT features
[18].

9

Chapter 2

Algorithms for homography
estimation

In this chapter I look at various algorithms that have been proposed for
homography estimation. At first the discussion is restricted to algorithms
that use only point correspondences, and then I broaden it to include other
features such as lines and conics.

2.1 Basic DLT algorithm

The Direct Linear Transform (DLT) algorithm is a simple algorithm used
to solve for the homography matrix H given a sufficient set of point corre-
spondences. It is explained in chapter 4.1 of [11] with a slightly different
derivation than what is presented here.

Since we are working in homogeneous coordinates, the relationship be-
tween two corresponding points x and x′ can be re-written as:

c

 u
v
1

 = H

 x
y
1

 , (2.1)

where c is any non-zero constant,
(
u v 1

)T represents x′,
(
x y 1

)T
represents x, and H =

 h1 h2 h3

h4 h5 h6

h7 h8 h9

.

Dividing the first row of equation (2.1) by the third row and the second
row by the third row we get the following two equations:

−h1x− h2y − h3 + (h7x+ h8y + h9)u = 0 (2.2)

−h4x− h5y − h6 + (h7x+ h8y + h9)u = 0 (2.3)

10

2.1. Basic DLT algorithm

Equations (2.2) and (2.3) can be written in matrix form as:

Aih = 0 (2.4)

where Ai =
(
−x −y −1 0 0 0 ux uy u
0 0 0 −x −y −1 vx vy v

)
and h =

(
h1 h2 h3 h4 h5 h6 h7 h8 h9

)T .
Since each point correspondence provides 2 equations, 4 correspondences

are sufficient to solve for the 8 degrees of freedom of H. The restriction is
that no 3 points can be collinear (i.e., they must all be in “general position”).
Four 2×9 Ai matrices (one per point correspondence) can be stacked on top
of one another to get a single 8×9 matrix A. The 1D null space of A is the
solution space for h.

In many cases we may be able to use more than 4 correspondences to
ensure a more robust solution. However many point correspondences are
used, if all of them are exact then A will still have rank 8 and there will be a
single homogeneous solution. In practice, there will be some uncertainty, the
points will be inexact and there will not be an exact solution. The problem
then becomes to solve for a vector h that minimizes a suitable cost function.

2.1.1 Normalization

Hartley and Zisserman [11] assert in chapter 4.4 that the result of the DLT
algorithm as presented above is dependent on the origin and scale of the
coordinate system in the image. This is a very undesirable property as it
makes the algorithm quite unstable. The reason for this non-invariance has
to do with how the DLT method uses the SVD of A to obtain a solution to
the overdetermined set of equations Ah = 0. This is explained in detail in
[10] but the main message is that for exact data and infinite precision the
result is fine but in the presence of noise the solution typically diverges from
the correct result.

For the point correspondence version of DLT, Hartley and Zisserman
[11] propose a normalization step to ensure that the solution converges to
the correct result. Their normalized DLT algorithm works as follows:

1. Compute a similarity transform T that takes points xi to a new set
of points x̃i such that the centroid of the points x̃i is the coordinate
origin and their average distance from the origin is

√
2.

2. Compute a similar transformation T ′ transforming points x′i to x̃′i.

11

2.2. Different cost functions

3. Apply the DLT algorithm from above using x̃i and x̃′i to obtain ho-
mography matrix H̃.

4. Set H = (T ′)−1H̃T

2.2 Different cost functions

In the case where there are more than 4 point correspondences available,
the problem is to solve for a homography that minimizes a suitable cost
function. This section discusses some of the cost functions that are used in
practice.

2.2.1 Algebraic distance

The simplest cost function is to minimize the algebraic distance. That is, we
minimize the norm ||Ah||. To ensure that the h that is selected isn’t the zero
vector we add the constraint that ||h|| = 1 (this 1 is selected arbitrarily).
The solution to this problem is the unit singular vector corresponding to
the smallest singular value of A. This can be found using Singular Value
Decomposition (SVD) analysis.

While this is a simple linear cost function that is computationally cheap,
its disadvantage is that the quantity being minimized is not geometrically
meaningful.

2.2.2 Geometric distance

The geometric distance measures the Euclidian image distance between
where the homography maps a point and where the point’s correspondence
was originally found. Another term for this is the transfer error. Assuming
there are only errors in the second image, the total transfer error for a set
of correspondences xi → x′i is:∑

i

d(x′i, Hxi)2 (2.5)

where H is the estimated homography. and d(·, ·) is the Euclidian image
distance between two points.

In the more realistic case of there being errors in both images we mini-
mize the symmetric transfer error where both the forward (H) and backward

12

2.2. Different cost functions

(H−1) transformations are taken into account. The symmetric transfer error
is calculated as: ∑

i

d(x′i, Hxi)2 + d(xi, H
−1x′i)

2 (2.6)

The estimated homgraphy H will be the one for which equation (2.6) is
minimized.

To minimize this or the following cost function, an iterative approach
is required. While the results often are more accurate, iterative techniques
have disadvantages compared to linear algorithms such the one for minimiz-
ing Algebraic distance. Iterative algorithms are slower, risk not converging
and present additional problems such as picking initial estimates and stop-
ping criteria.

2.2.3 Reprojection error

The reprojection error cost function aims to make a correction for each
correspondence. The goal is to find the homography Ĥ along with the
set of correspondence points x̂i and x̂i

′ such that the following function is
minimized: ∑

i

d(x′i, x̂i
′)2 + d(xi, x̂i)2 (2.7)

subject to x̂i
′ = Ĥx̂i.

Minimizing this cost function is more complicated than geometric dis-
tance as it requires determining both Ĥ and the set of correspondences x̂i

and x̂i
′ as opposed to just finding H. The term reprojection error is used

because this cost function is analogous to estimating a real world point X̂i

from the originally found correspondence xi ↔ xi
′ that is then reprojected

to the estimated perfectly matched correspondence x̂i ↔ x̂i
′

2.2.4 Sampson error

I have argued that the algebraic cost function is computationally cheap to
compute but doesn’t always provide intuitive results. On the other hand, the
geometric and reprojection error cost functions provide very accurate results
but their minimization algorithms are iterative and thus quite complex. The
Sampson error cost function lies in between these two extremes in terms of
computation cost and provides a close approximation to reprojection error.

A point correspondence (xi, yi) ↔ (x′i, y
′
i) can be represented as a 4D

point Xi. The reprojection error cost function can then be interpreted as
finding the algebraic variety VH that passes through the points Xi. An

13

2.3. Other features aside from points

algebraic variety is a generalization to n dimensions of an algebraic curve so
in this case we are looking for a curve in 4D. Since this will likely not exist due
to errors in the correspondences, minimizing the reprojection error involves
letting VH be a variety corresponding to a homography transformation H,
and for each Xi, letting X̂i be the closest point to Xi on VH . The function
to minimize then becomes: ∑

i

||Xi − X̂i||2 (2.8)

As mentioned above, the vector X̂i can only be estimated via iteration.
The Sampson error function estimates a first-order approximation to X̂i

using a Taylor expansion. The full derivation for this is provided in [11].

2.3 Other features aside from points

So far we have only discussed homography estimation using point corre-
spondences. In this section I extend the collection of features available by
discussing lines and conics. I also look at how to combine correspondences
of different feature types. While correspondences of non-point feature types
can be used with any of the algorithms that we’ve discussed, this section
will focus only the basic DLT algorithm from section 2.1.

2.3.1 Lines

A line in a plane can be represented by an equation of the form ax+by+c = 0
where a,b and c are the line parameters. Therefore a line can be represented
as the vector (a, b, c)T . Since any scalar multiple of this vector represents
the same line, this is considered a homogeneous representation of a line and
has 2 degrees of freedom.

Consider a line, l, in one image that maps to the line l′ in a second image.
Let x be a point on l and x′ be a point on l′. According to result 2.1 of [11],
a point x lies on a line l if and only if xT l = 0 (or equivalently, lTx = 0).
Therefore we know that:

lTx = 0 (2.9)

l′Tx′ = 0 (2.10)

We have already seen that x′ = Hx where H is the homography that maps
points from the first image to the second. By substituting this into (2.10)

14

2.3. Other features aside from points

and manipulating the result the relationship between lines in two images
becomes:

l = HT l′ (2.11)

This result gives rise to a derivation for the DLT matrix Ai for a line
correspondence very similar to that for a point correspondence. The only
difference is that the equation analogous to (2.1) becomes:

c

 x
y
1

 = HT

 u
v
1

 , (2.12)

where
(
u v 1

)T represents l′ and
(
x y 1

)T represents l. Working
through the derivation gives the matrix, Ai, for a line correspondence:

Ai =
(
−u 0 ux −v 0 vx −1 0 x
0 −u uy 0 −v vy 0 −1 y

)
(2.13)

The DLT algorithm for lines is the same as for points, just with this Ai

matrix replacing that from equation (2.4).
A recent paper by Zeng, Deng and Hu [24] proposes a normalized method

for line-based homography estimation similar to what was discussed in sec-
tion 2.1.1. Their experimental results show that the normalization they
present leads to a substantial increase in the stability of the line-based ho-
mography estimation in the presence of noise.

Their algorithm is the same as the one presented in section 2.1.1 except
the similarity transformation T is replaced with two transformations; first a
translation and then a scaling. The result of the translation, T1, is to move
the centroid of the lines so that it lies on the c-axis. Afterwards, the scaling
transformation, T2, causes the ratio of the root mean square distance from
the transformed line coordinates to the plane 0ab and to the c-axis to be

√
2.

Given a set of lines li = (ai, bi, ci)T , T1 and T2 are constructed as follows:

T1 =

 1 0 −t1/t3
0 1 −t2/t3
0 0 1

 (2.14)

where t1 =
∑

i

ai, t2 =
∑

i

bi and t3 =
∑

i

ci.

15

2.3. Other features aside from points

Transforming all of the lines by T1, we get a new set of lines l′i =
(a′i, b

′
i, c
′
i)

T . Then,

T2 =

 1 0 0
0 1 0
0 0 s

 (2.15)

where s =


∑

i

(a′2i + b′2i)

2

∑
i

c′2i


1/2

.

2.3.2 Lines and Points

A basic DLT algorithm that combines line and point correspondences is
a simple combination of what has already been presented. Given a set of
correspondences, for each correspondence, calculate the 2×9 matrix Ai using
(2.4) or (2.13) depending on whether it is a line or point correspondence.
Stack all of the Ai matrices on top of each other to give a matrix, A, for
which the null space is the solution for the homography vector, h, just like
in the basic DLT algorithm from section 2.1.

A previously unresolved issue was how to normalize a set of correspon-
dences that contains both points and lines. The following two subsections
present both point-centric (using the similarity transformation from sec-
tion 2.1.1) and line-centric (using the transformations from section 2.3.1)
approaches.

2.3.3 Point-centric Approach

The following is a point-centric method that uses the similarity transforms
T and T ′ from section 2.1.1 calculated from the point correspondences to
transform the line correspondences in a similar way. Note that the only
steps that need to be changed in the normalized DLT algorithm are steps
1 and 2, and both of those are changed in the exact same way. Therefore,
without loss of generality, I present only the modified step 1. This is original
work by the author that was published in [6]. The key derivation is repeated
here.

Given the set of points and lines all represented as members of xi, the
first step is to separate out all of the points and compute the similarity
transform, T , that takes the points to a new set such that the centroid of

16

2.3. Other features aside from points

the points is the coordinate origin and the average distance to the origin is√
2. The other step is to transform all of the lines in xi in a similar way.

Consider a line, l, which is one of the members of xi and two points that
lie on l, x1 = (x11, x12, 1), and x2 = (x21, x22, 1). Result 2.2 of [11] shows
that l is the cross product of x1 and x2, therefore:

l = x1 × x2 =

 x12 − x22

x21 − x11

x11x22 − x12x21

 =

 l1
l2
l3

 (2.16)

The transformed line l′ is calculated as the line through the points x1 and
x2 after they have been transformed by the similarity matrix T . Therefore,

l′ = Tx1 × Tx2 (2.17)

Of course, it should not be necessary to find two arbitrary points on l in
order to calculate l′. The following derivation shows how to calculate l′ as
a function of l and T only.

Recall that a similarity matrix, T , can be written as:

T =

 s 0 tx
0 s ty
0 0 1

 (2.18)

where s is a scaling factor and tx and ty represent translation components.
Using (2.18), (2.17) can be written in matrix form as:

l′ =

 0 −1 sx12 + ty
1 0 −sx11 − tx

−sx12 − ty sx11 + tx 0

 sx21 + tx
sx22 + ty

1

 (2.19)

After expanding (2.19) and simplifying we get the following equation:

l′ = s

 x12 − x22

x21 − x11

s(x11x22 − x12x21) + tx(x22 − x12) + ty(x11 − x21)

 (2.20)

Substituting (2.16) into (2.20) gives the final equation for l′:

l′ = s

 l1
l2

sl3 − txl1 − tyl2

 (2.21)

17

2.3. Other features aside from points

In summary, the normalized extended DLT algorithm for homography
estimation using both point and line correspondences in a point-centric fash-
ion is as follows.

Given a set of both line and point correspondences xi to x′i:

1. Compute a similarity transform T that takes all of the points in xi to
a new set of points x̃i such that the centroid of the points x̃i is the
coordinate origin and the average distance from the origin is

√
2.

2. Transform all of the lines in xi to lines in x̃i using (2.21).

3. Repeat steps 1 and 2 using the points and lines in x′i to obtain a
similarity transformation T ′ transforming the points and lines in x′i to
x̃′i.

4. Apply the extended DLT algorithm from section 2.3.2 using x̃i and x̃′i
to obtain homography matrix H̃.

5. Set H = (T ′)−1H̃T

2.3.4 Line-centric Approach

The derivation for a line-centric approach to homography estimation from
a combination of line and point correspondences is very similar to the point
centric approach presented above. This line centric approach is based on
the line normalization method from [24] that was discussed in section 2.3.1
and is unpublished work by the author.

Consider a point, x, which is one of the members of xi and two lines that
intersect at x, l1 = (l11, l12, 1), and l2 = (l21, l22, 1). x is the cross product
of l1 and l2, therefore:

x = l1 × l2 =

 l12 − l22

l21 − l11

l11l22 − l12l21

 =

 x1

x2

x3

 (2.22)

The transformed point x′ is calculated as the intersection of the lines l1
and l2 after they have been transformed by the transformation matrices T1

and T2. Therefore,

x′ = (T2T1l1)× (T2T1l2) (2.23)

Again, it is not necessary to find two arbitrary lines intersecting at x in
order to calculate x′. The following derivation shows how to calculate x′ as
a function of x T1 and T2 only.

18

2.3. Other features aside from points

Note that the matrix product T2T1 is:

T =

 1 0 −t1/t3
0 1 −t2/t3
0 0 s

 (2.24)

Where t1, t2, t3 and s are as they were defined in section 2.3.1.
Using (2.24), (2.23) can be written in matrix form as:

x′ =

 0 −s l12 − t2/t3
s 0 −l11 + t1/t3

−l12 + t2/t3 l11 − t1/t3 0

 l21 − t1/t3
l22 − t2/t3

s

 (2.25)

After expanding (2.25) and simplifying we get the following equation:

x′ =

 sl12 − sl22

sl21 − sl11

l11l22 − l12l21 + (t1/t3)(l12 − l22) + (t2/t3)(l21 − l11)

 (2.26)

Substituting (2.22) into (2.26) gives the final equation for x′:

x′ = s

 sx1

sx2

x3 + (t1/t3)x1 + (t2/t2)x2

 (2.27)

The normalized extended DLT algorithm for homography estimation us-
ing both point and line correspondences in a line-centric fashion is exactly
analogous to that described in the previous section, except with the nor-
malization being done for the lines and the points being transformed using
equation (2.27).

2.3.5 Conics

This subsection provides a brief introduction to the projective geometry of
conics and their relation to the homography matrix H and is a summary of
what is presented in [11].

A conic in a plane can be represented as ax2+bxy+cy2+dx+ey+f = 0.
This can be converted to homogeneous coordinates by replacing x with x1/x3

and y with x2/x3. The homogeneous conic equation is then:

ax2
1 + bx1x2 + cx2

2 + dx1x3 + ex2x3 + fx2
3 = 0 (2.28)

19

2.4. Robust Estimation: Dealing with Outliers

This can be written in matrix form as:

xTCx = 0 (2.29)

where C is the conic coefficient matrix:

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 (2.30)

The matrix C is a homogeneous representation of a conic that has five
degrees of freedom; 6 elements of the symmetric matrix minus one for scale.

Recall that for a point correspondence x↔ x′, the points are related by
the homography matrix H such that x′ = Hx. Since H is invertible, this
can also be written as x = H−1x′. Substituting this into the conic equation
(2.29) we get:

x′TH−TCH−1x′ = 0 (2.31)

This gives the transformation rule for a conic that:

C ′ = H−TCH−1 (2.32)

Equation (2.32) can be used to solve for the homography matrix H
given conic correspondences. Since H has 8 degrees of freedom and a conic
provides 5 degrees of freedom, at least 2 conics would be required to solve
for H.

2.4 Robust Estimation: Dealing with Outliers

All of the homography estimation algorithms that have been discussed re-
quire a set of correspondences as input. So far these algorithms are only
robust with respect to noise if the source of this noise is in the measurement
of the correspondence feature positions. There will be other situations where
the input will be corrupted with completely false correspondences, meaning
that the two features in the images don’t correspond to the same real world
feature at all. This section discusses ways to distinguish inlier and outlier
correspondences so that the homography can be estimated robustly using
only inlier matches.

20

2.4. Robust Estimation: Dealing with Outliers

2.4.1 RANSAC

RANSAC (Random Sample Consensus) is the most commonly used robust
estimation method for homographies according to [14]. The idea of the
algorithm is pretty simple; For a number of iterations, a random sample
of 4 correspondences is selected and a homography H is computed from
those four correspondences. Each other correspondence is then classified as
an inlier or outlier depending on its concurrence with H. After all of the
iterations are done, the iteration that contained the largest number of inliers
is selected. H can then be recomputed from all of the correspondences that
were consider as inliers in that iteration.

One important issue when applying the RANSAC algorithm described
above is to decide how to classify correspondences as inliers or outliers.
Statistically speaking, the goal is to assign a distance threshold, t, (between
x′ and Hx for example), such that with a probability α the point is an inlier.
Hartley and Zisserman [11] provide a derivation of how to calculate t.

Another issue is to decide how many iterations to run the algorithm for.
It will likely be infeasible to try every combination of 4 correspondences,
and thus the goal becomes to determine the number of iterations, N , that
ensures with a probability p that at least one of the random samples will
be free from outliers. Hartley and Zisserman [11] show that N = log(1 −
p)/log(1− (1− ε)s), where ε is the probability that a sample correspondence
is an outlier and s is the number of correspondences used in each iteration, 4
in this case. If ε is unknown, the data can be probed to adaptively determine
ε and N .

Lee and Kim [14] propose a ”fuzzy” RANSAC method to deal with the
issues of requiring a hard partitioning of inliers and outliers and not know-
ing when an optimal solution has been found. Their method classifies all of
their data into three categories, Good, Bad and Vague. The “Good” sample
set contains mostly inliers and has a small rate of membership change. The
“Bad” sample set contains mostly outliers and has a small rate of mem-
bership change. The “Vague” sample set has a large rate of membership
change. They then improve classification accuracy by iteratively sampling
in only good sample set.

2.4.2 Least Median of Squares Regression

We have seen that the RANSAC method makes decisions based on the
number of data points within a distance threshold. This is one way to deal
with the fact that sum of squared difference algorithms such as the Algebraic

21

2.4. Robust Estimation: Dealing with Outliers

distance version of DLT is not very robust with respect to outliers. There is
a lot of research on the topic of ways to improve the robustness of regression
methods. One example would be to replace the squared distance with the
absolute value of the distance. This improves the robustness since outliers
aren’t penalized as severely as when they are squared.

A popular approach with respect to homography estimation is Least
Median of Squares or (LMS) estimation. As described in [21], this method
replaces the sum with the median of the squared residuals. LMS works very
well if there are less than 50% outliers and has the advantage over RANSAC
that it requires no setting of thresholds or a priori knowledge of how much
error to expect (unlike the setting of the t and ε parameters in RANSAC).
The major disadvantage of LMS is that it would be unable to cope with
more than half the data being outliers. In this case, the median distance
would be to an outlier correspondence.

2.4.3 Future Work

It is interesting to note that RANSAC itself is not a great solution when
there is a high percentage of outliers, as its computational cost can blow
up with the need for too many iterations. While RANSAC and LMS are
the most commonly used methods for robust homography estimation, there
may be an opening for research into whether there are other methods aside
from those two that would do well in the presence of a very high number
of outlier data. A good starting point could be to look at using the Hough
Transform the same way Lowe does in [18].

Forsyth and Ponce [7] point out that the Hough Transform is more likely
to fit models from outliers rather than inliers when the dimensionality of
the problem is high, which is the case for the 8 degree of freedom homogra-
phy. One potentially successful approach could be to try to fit a lower order
transformation from a set of correspondences, such as a similarity transform.
While this would be unlikely to perfectly segment outliers from inliers, it
could be useful for removing the obvious outliers. By disproportionally re-
moving more outliers than inliers, a situation where RANSAC would have
previously failed can be brought into a realm where it could work. This
bootstrapping approach could prove to be useful as a preprocessing step for
robust estimation in the presence of a large proportion of outlier correspon-
dences, provided there is a large enough number of potential correspondences
to begin with.

22

Chapter 3

Survey of publicly available
software

This chapter will cover some of the software publicly available for homogra-
phy estimation. It is certainly not exhaustive but should provide the reader
with an idea of some of the more popular resources available.

OpenCV [12] is a popular open source computer vision package written
in C/C++ that was originally sponsored by Intel. It contains a function
cvFindHomography() that takes in a set of point correspondences and re-
turns a homography matrix H. This function makes use of the normalized
DLT algorithm discussed in section 2.1.1 to estimate H.

Matlab [19] is numerical computing environment and programming lan-
guage. While Matlab doesn’t come directly with homography estimation
tools, Andrew Zisserman et. al. [4] have developed a library of Matlab
functions for multiple view geometry. This package contains two homog-
raphy estimation functions, vgg H from x lin() and vgg H from x nonlin().
The former implements the normalized DLT algorithm from section 2.1.1
and the latter uses a non-linear method which minimizes Sampson’s approx
to geometric reprojection error, as discussed in section 2.2.4.

Kenichi Kanatani has made the code for his optimal homography estima-
tion method [13] available online at http://www.ail.cs.gunma-u.ac.jp/Program/programs-
e.html under the heading Homography Computation. The code is written in
C and makes use of Kanatani’s publicly available Matrix library.

Manolis Lourakis has made available a comprehensive homography es-
timation package with his Homest library [17]. Homest is written in C++
and implements many of algorithms that were discussed in chapter 2. Given
a set of point correspondences, the homest() function first normalizes the
correspondences as described in section 2.1.1. Least median of squares re-
gression (see section 2.4.2) is then used to detect and remove outliers. The
user then has the option of estimating the homography with the linear DLT
algorithm (section 2.1), or by minimizing either of (in order of increasing
computational cost): the transfer error, the symmetric transfer error (both
in section 2.2.2), the Sampson error (section 2.2.4) or the reprojection error

23

Chapter 3. Survey of publicly available software

(section 2.2.3). Aside from estimating an 8 degree of freedom homography,
Homest can also be used to estimate a 6 degree of freedom affine transfor-
mation (section 1.2.3).

24

Chapter 4

Conclusion

This essay has provided a treatment of homography estimation as it is em-
ployed in computer vision applications today. One important question that
remains is whether or not the topic can be considered complete, or if there is
more work to be done in this area. This question is not simple and depends
on what is to be considered a valuable research contribution. Theoretically,
one can rightfully claim that homography estimation from point correspon-
dences has been solved as there are many linear and non-linear approaches
available. The tradeoffs of accuracy versus computational complexity are
well known and developers of vision applications can decide which approach
is right for them depending on the nature of their problem.

Quite a lot of work has been done regarding homography estimation
from non-point features (see section 2.3). While quite a few issues have
been addressed, there are still problems that have not yet been considered,
especially with regards to the combination of different feature types. For
example, there does not appear to be any research regarding the combination
of point and conic, or line and conic correspondences for DLT homography
estimation. The work in [6] provided a solution for normalizing lines in a
point-centric fashion for DLT and this was something novel. Whether or
not this contribution should be considered theoretical or practical depends
on philosophical definitions of these words, and that discussion is out of the
scope of this report.

To conclude, this essay has provided an overview of a number of topics
related to homography estimation. Chapter 1 introduced homography trans-
formations, put them in the context of other geometric transformation and
motivated research in the topic by discussing some situations where solving
for a homography is required. Chapter 2 discussed a number of algorithms
for homography estimation considering complexity versus accuracy, robust
estimation with regards to outliers and the use of various feature corre-
spondences. In chapter 3 a short survey was provided of publicly available
software that can be used in vision applications for homography estima-
tion. Hopefully this essay will prove to be a useful starting point for people
interested in this topic.

25

Bibliography

[1] Google earth. http://earth.google.com.

[2] M. Brown and D. G. Lowe. Recognising panoramas. In ICCV ’03:
Proceedings of the Ninth IEEE International Conference on Computer
Vision, Washington, DC, USA, 2003. IEEE Computer Society.

[3] J. T. Bushberg, J. A. Seibert, Jr. E. M. Leidholdt, J. M. Boone, and
Jr. E. J. Goldschmidt. The Essential Physics of Medical Imaging. Lip-
pincott Williams and Wilkins, second edition, 2001.

[4] D. Capel, A. Fitzgibbon, P. Kovesi, T. Werner, Y. Wexler, and
A. Zisserman. MATLAB Functions for Multiple View Geometry.
http://www.robots.ox.ac.uk/ vgg/hzbook/code.

[5] Z. Chuan, T. D. Long, Z. Feng, and D. Z. Li. A planar homography es-
timation method for camera calibration. Computational Intelligence in
Robotics and Automation, 2003. Proceedings. 2003 IEEE International
Symposium on, 1:424– 429, 2003.

[6] E. Dubrofsky and R. J. Woodham. Combining line and point corre-
spondences for homography estimation. In ISVC ’08: International
Symposium on Visual Computing), 2008.

[7] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach.
Prentice Hall, August 2002.

[8] S. Gefen, Y. Fan, L. Bertrand, and J. Nissanov. Symmetry-based 3d
brain reconstruction. Biomedical Imaging: Nano to Macro, 2004. IEEE
International Symposium on, pages 744–747 Vol. 1, April 2004.

[9] M. Greenspan, J. Lam, M. Godard, I. Zaidi, S. Jordan, W. Leckie,
K. Anderson, and D. Dupuis. Toward a competitive pool-playing robot.
Computer, 41(1):46–53, 2008.

26

Chapter 4. Bibliography

[10] R. Hartley. In defense of the eight-point algorithm. In IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, volume 19, pages
580–593, June 1997.

[11] R. Hartley and A. Zisserman. Multiple View Geomerty in Computer
Vision. Cambridge University Press, second edition, 2003.

[12] Intel Inc. The OpenCV Open Source Computer Vision Library.
http://www.intel.com/technology/computing/opencv/index.htm.

[13] K. Kanatani. Optimal homography computation with a reliability mea-
sure. IEICE Transactions on Information and Systems, 83:200–0, 1998.

[14] J. J. Lee and G. Y. Kim. Robust estimation of camera homography
using fuzzy RANSAC. In ICCSA ’07: International Conference on
Computational Science and Its Applications, 2007.

[15] B. Liang, Z. Chen, and N. Pears. Uncalibrated two-view metrology. In
ICPR ’04: Proceedings of the Pattern Recognition, 17th International
Conference on, volume 1, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] C. Loop and Z. Zhang. Computing rectifying homographies for stereo
vision. In Computer Vision and Pattern Recognition, 1999. IEEE Com-
puter Society Conference on., volume 1, 1999.

[17] M. Lourakis. homest: A C/C++ Library for Robust, Non-linear Ho-
mography Estimation. http://www.ics.forth.gr/ lourakis/homest/.

[18] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[19] Mathworks. MATLAB - The Language Of Technical Computing.
http://www.mathworks.com/products/matlab.

[20] K. Okuma, J. J. Little, and D. G. Lowe. Automatic rectification of
long image sequences. In Proc. of the Asian Conf. on Computer Vision
(ACCV’04), 2004.

[21] P. J. Rousseeuw. Least median of squares regression. Journal of the
American Statistical Association, 79(388):871–880, 1984.

[22] J. Shi and C. Tomasi. Good features to track. In Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE
Computer Society Conference on, 1994.

27

Chapter 4. Bibliography

[23] J. Wright, A. Wagner, S. Rao, and Y. Ma. Homography from coplanar
ellipses with application to forensic blood splatter reconstruction. In
CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Washington, DC, USA,
2006. IEEE Computer Society.

[24] H. Zeng, X. Deng, and Z. Hu. A new normalized method on line-based
homography estimation. Pattern Recogn. Lett., 29(9):1236–1244, 2008.

[25] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22:1330–1334,
2000.

28

