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Abstract

Prediction by Partial Matching (PPM) is a lossless compression algorithm which
consistently performs well on text compression benchmarks. This paper intro-
duces a new PPM implementation called PPM-Ens which uses unbounded con-
text lengths and ensemble voting to combine multiple contexts. The algorithm
is evaluated on the Calgary corpus. The results indicate that combining multiple
contexts leads to an improvement in the compression performance of PPM-Ens,
although it does not outperform state of the art compression techniques.

1 Introduction

Prediction by Partial Matching (PPM) [1] is a lossless compression algorithm which consistently
performs well on text compression benchmarks. There are a variety of PPM implementations with
different performance properties. This paper introduces a new PPM implementation called PPM-
Ens which uses ensemble voting to combine multiple contexts. Section 2 provides basic information
about PPM and discusses some related compression techniques. Section 3 provides details about the
PPM-Ens algorithm and how it was created. Section 4 provides additional background information
on how compression performance can be empirically evaluated. Section 5 discusses how automated
parameter tuning improves the performance of PPM-Ens. Section 6 evaluates the performance of
PPM-Ens on a standard compression corpus. Finally, sections 7 and 8 discuss the results.

2 Background

An arbitrary data file can be considered as a sequence of characters in an alphabet. The characters
could be bits, bytes, or some other set of characters (such as ASCII or Unicode characters). Data
compression usually involves two stages. The first is creating a probability distribution for the
prediction of each character. The second is to encode these probability distributions into a file using
a coding scheme such as arithmetic coding [2] or Huffman coding [3]. PPM is concerned with
the first task of generating a probability distribution for the prediction of the next character in a
sequence.

Consider the alphabet of lower case English characters and the input sequence “abracadabra”. For
each character in this string, PPM needs to create a probability distribution representing how likely
the character is to occur. However, the only information it has to work with is the record of previous
characters in the sequence. For the first character in the sequence, there is no prior information about
what character is likely to occur, so assigning a uniform distribution is the optimal strategy. For the
second character in the sequence, ‘a’ can be assigned a slightly higher probability because it has
been observed once in the input history.

Consider the task of predicting the next character after the sequence “abracadabra”. One way to go
about this prediction is to find the longest match in the input history which matches the most recent
input. The most recent input is the character furthest to the right and the oldest input is the character
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File Size (KiB) Description
bib 111.261 structured text (bibliography)
book1 768.771 text, novel
book2 610.856 formatted text, scientific
geo 102.400 geophysical data
news 377.109 formatted text, script with news
obj1 21.504 executable machine code
obj2 246.814 executable machine code
paper1 53.161 formatted text, scientific
paper2 82.199 formatted text, scientific
pic 513.216 image data (black and white)
progc 39.611 source code
progl 71.646 source code
progp 49.379 source code
trans 93.695 transcript terminal data

Table 1: File size and description of Calgary corpus files.

furthest to the left. In this case, the longest match is “abra” which occurs in the first and eighth
positions. The string “dabra” is a longer context from the most recent input, but it doesn’t match
any other position in the input history. Based on the longest match, a good prediction for the next
character in the sequence is simply the character immediately after the match in the input history. In
this case, after the string “abra” was the character ‘c’ in the fifth position. Therefore ‘c’ is a good
prediction for the next character.

Longer context matches can result in better predictions than shorter ones. This is because longer
matches are less likely to occur by chance or due to noise in the data. Consider using a context length
of one in the “abracadabra” example. This would involve making a prediction of the next character
in the sequence based on the characters that occur immediately after ‘a’ in the input history. In this
case, ‘b’ occurs twice, ‘c’ occurs once, and ‘d’ occurs once. Hence, ‘b’ can be assigned a higher
probability than ‘c’ and ‘d’.

PPM essentially creates probability distributions according to the method described above. Instead
of generating the probability distribution entirely based on the longest context match, it blends the
predictions of multiple context lengths and assigns a higher weight to longer matches. There are
various techniques on how to go about blending different context lengths.

Most PPM variants only consider perfect context matches. However, if the data is known to be noisy,
in some applications there may be a benefit to allowing a certain number of errors in a context match.
This has led to the development of an algorithm called Prediction by Partial Approximate Matching
(PPAM) [4]. PPAM was developed to perform lossless image compression. The pixels of an image
tend to contain more noise than some other domains, such as the characters in a text document.
PPAM was shown to have superior compression performance compared to PPM for images.

It should be noted that although PPM performs well on text compression benchmarks, there are other
state of the art algorithms which outperform it. One example of a compression benchmark is the
Hutter Prize [5]. This is a contest to compress the first 100MiB of Wikipedia. An algorithm called
PAQ [6] currently dominates the contest. PAQ is closely related to PPM, improving on it by com-
bining contexts which are arbitrary functions of the input history. Another example of an algorithm
which achieves state of the art cross entropy rates on other datasets is the stochastic memoizer [7].

3 Algorithm Development

The maximum context size of PPM is usually bounded in order to improve prediction accuracy
and avoid exponential memory usage. A PPM implementation called PPM*C [8] demonstrates
how unbounded length contexts can be used to improve prediction accuracy. PPM-Ens was created
based on this work. It uses unbounded length contexts and ensemble voting to mix context models.
Much of the development of PPM-Ens was influenced by empirical performance evaluations on data
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from the Calgary corpus [9], a standard dataset used for comparing lossless compression algorithms.
Table 1 gives a summary of the Calgary corpus files.

PPM-Ens has the advantage of linear memory usage (in terms of context length) instead of the
exponential memory requirements of most PPM variants. However, the time complexity of PPM-
Ens is quadratic in the length of the text which is slower than typical PPM implementations. PPM-
Ens maintains a complete input history of characters it encounters and uses it for the prediction of
future characters.

There seems to be no theoretical basis for a particular method of creating the probability distributions
for character prediction using PPM [1]. The formula used to calculate the weights in PPM-Ens
is based on a combination of results from previous papers and modifications based on empirical
testing. For a particular context length, the following formula was used to determine the probability
of a character x:

p(x) =
c

a
×
(

a

a + b

)param1

a is the number of context matches, b is the cardinality of the set of characters encountered after the
matches, and c is the number of times x occurs after each match. param1 is a tunable parameter.

The probability distributions for the different context lengths were combined together using a
weighted average (ensemble voting). The weight w for a particular context length n was calcu-
lated using the following recursive function:

w(n) =


1 if n = maxLength,
param2 if w(n + 1) < param2,
param3× w(n + 1) + (1− param3)× w(n+1)×b

a+b otherwise

param2 and param3 are tunable parameters (in the range of zero through one) and maxLength
is the length of the maximum context match. Finally, the resulting probability distribution over
characters was normalized to sum to one.

PPM-Ens also uses ensemble voting to average over different types of contexts. The above formu-
las are used to calculate the probability of a character for each context. Contexts can be different
functions of the input history. For example, instead of being the sequence of most recent charac-
ters, a context could be a sequence starting at the most recent character and skipping every second
character encountered. For the string “abracadabra” this context would contain “arcdba”. Similarly,
other contexts can be created by skipping two out of every three characters, three out of every four
characters, and so on. Even more contexts can be created by considering an offset from the most
recent input character for the start of the context. For example, a context with an offset of one and
skipping every second character in the string “abracadabra” would contain “baaar”. Contexts which
skip characters in the input sequence have the advantage of potentially finding longer matches in the
input history. This is because a character which could have blocked a match for one context could
be skipped by another context. This is why combining the information from multiple contexts can
lead to a performance benefit for PPM-Ens.

PPM-Ens combines the information from eight different contexts. These are:

1. offset of zero and use every character

2. offset of one and use every character

3. offset of zero and use every second character

4. offset of one and use every second character

5. offset of zero and use every third character

6. offset of one and use every third character

7. offset of zero and use every fourth character

8. offset of one and use every fourth character
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Each additional context causes PPM-Ens to take a constant factor longer to run (but does not affect
its big O time complexity). Based on empirical testing, any additional contexts tend to cause an
increase in compression performance of PPM-Ens. The reason the above eight contexts were chosen
for PPM-Ens is because they provided a reasonable trade-off between running time and compression
performance based on empirical evaluation on the Calgary corpus files.

Contexts were combined using a weighted average. The basic idea was to assign higher weights to
contexts which have better predictive accuracy. The following sequence of formulas was used to
determine the weight w for a particular context d:

1. w(d) = 1− crossEntropy(d)
8

2. Normalize the weights over contexts so that they sum to one.

3. Set e to be the context with the lowest weight.

4. w(d) = (w(d)− param4× w(e))param5×numContexts

5. Normalize the weights over contexts so that they sum to one.

The crossEntropy function is a measure of the compression performance of a particular context,
and is discussed in the following section. numContexts is the total number of contexts being
combined (which is eight for PPM-Ens) and param4 and param5 are tunable parameters. param4
is constrained to be between the values of zero through one. These formulas were constructed based
on empirical testing on the Calgary corpus. When examining the weights assigned to the contexts
after step 2, the values are very similar because there is not a large difference in the cross entropy
rates between contexts. The purpose of steps 3-5 is to assign a higher weight to the best context and
a lower weight to the worse contexts (essentially making the distribution less uniform).

4 Performance Metrics

One way of measuring compression performance is to use the file size of compressed data. However,
file size is dependent on a particular type of coding scheme (such as arithmetic coding or Huffman
coding). Since PPM is concerned with generating probability distributions for the prediction of
characters, there are ways to measure its compression performance directly from these distributions.

There are three common metrics used to measure the performance based on the predicted probability
distributions: cross entropy, perplexity, and prediction error. Cross entropy can be used to estimate
the average number of bits needed to code each byte of the original data. For a sequence of N
characters xi, and a probability p(xi) assigned to each character by the prediction algorithm, the
cross entropy can be defined as:

−
N∑

i=1

1
N

log2p(xi)

This gives the expected number of bits needed to code each character of the string. Another common
metric used to compare text prediction algorithms is perplexity which can be defined as two to the
power of cross entropy:

2−
PN

i=1
1
N log2p(xi)

In 1991, a trigram model was used to estimate an upper bound on the cross entropy of English. The
trigram model was used on a large corpus of one million English words to achieve a perplexity score
of 247 per word, corresponding to a cross entropy of 7.95 bits per word or 1.75 bits per letter [10].
On this corpus, ASCII coding has a cross entropy of 8 bits per character, Huffman coding has 4.46,
and the UNIX command compress has 4.43. On more specialized corpora it is possible to achieve
lower perplexity scores than for more general corpora. For example, a word perplexity score of 96.9
was reported on the Associated Press corpus by the stochastic memoizer. This is significantly lower
than the perplexity scores reported by competing approaches.
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Figure 1: Average prediction error rate for each byte of the novel Twenty Thousand Leagues Under
the Sea.
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Figure 2: Cross entropy for each byte of the novel Twenty Thousand Leagues Under the Sea.

Finally, a third common metric used is prediction error. For each character xi a prediction can be
made based on the character assigned the highest probability. The prediction error is simply the total
of the number of incorrect predictions divided by N .

Figure 1 shows the average prediction error rate of PPM-Ens for each byte of the novel Twenty
Thousand Leagues Under the Sea (Jules Verne, 1870). Figure 2 shows the cross entropy rates for
the same data. It can be noted that the shape of the two curves are very similar. Both curves have a
bump near byte number 50,000 which could indicate a section of the novel which was particularly
difficult to compress.

All of the experiments in this report were run on a computer with the following specifications:

• CPU: Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz

• Memory: 3.2 GiB

• OS: Ubuntu 9.10 (2.6.31-20-generic)

• Java(TM) SE Runtime Environment version 1.6.0 16

5 Parameter Tuning

PPM-Ens has five parameters which are used to determine the weights for ensemble voting. All
five parameters are double precision floating-point numbers. param2, param3, and param4 are
constrained to be between the values of zero and one, while the other two can be any value. The
parameters are not independent which means changing the value of one parameter might change
what the optimal values are for the other four. In addition, the parameters have different optimal
values for different types of data. In a scenario in which we know a priori that the compressor
will be used for natural language data, the parameters can be tuned based on a training set of text

5



2 46 90 13
4

1
7

8

2
2

2

2
6

6

3
1

0

3
5

4

3
9

8

44
2

48
6

53
0

57
4

61
8

2.7

2.8

2.9

3

3.1

3.2

iteration

cr
o

ss
 e

n
tr

o
p

y
Figure 3: Cross entropy for the file ‘bib’ using CMA-ES for parameter tuning.

documents. The five PPM-Ens parameters only have an effect on compression performance and
have no impact on memory usage or runtime of the algorithm.

Initially the five PPM-Ens parameters were set using manual tuning. The manual tuning was done
by optimizing the cross entropy rate of the ‘bib’ file in the Calgary corpus. It was performed using
approximate independent ternary searches on the five parameters. The final parameter values used
were 2, 0.0001, 0.2, 0.999, and 1 for the first through fifth parameters respectively.

Automated parameter tuning was performed using Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [11]. CMA-ES is known to be effective at optimizing a small num-
ber of continuous parameters. In addition, CMA-ES does not require the use of user sup-
plied meta-parameters. A Java implementation of CMA-ES was used from Hansen’s webpage
(http://www.lri.fr/∼hansen/cmaes inmatlab.html). In order to use CMA-ES for tuning the PPM-
Ens parameters, two Java functions needed to be created. The first was to define the feasible region
for the parameters. The second was to determine the value of the objective function for a particular
assignment of parameter values. This objective function was implemented as the resulting cross
entropy when PPM-Ens was run to compress a particular file.

The parameter values of PPM-Ens were optimized based on the cross entropy of the first 10,000
bytes of the ‘bib’ file in the Calgary corpus. The tuning took approximately 12 hours to run (wall
clock time). The program was manually terminated when the cross entropy reached a relatively
stable point of convergence. Manual tuning for the ‘bib’ file was performed in approximately two
hours of time, so it was significantly faster than using CMA-ES. Figure 5 summarizes the results.
Each iteration refers to an evaluation of the objective function (cross entropy of ‘bib’) for a particular
parameter configuration. The figure demonstrates how initially there is a high variance in the cross
entropy rates but as the number of iterations increases the cross entropy rates converge to a single
value. The experiment was terminated after 657 iterations. The final parameter values were 1.65897,
0.0027, 0.02187, 0.8471, and 1.47531 for the first through fifth parameters respectively. The final
cross entropy rate was 2.77265. This is slightly better than the cross entropy rate of 2.81789 that
was obtained using the manually tuned values.

6 Results

The performance of PPM-Ens was evaluated on the Calgary corpus. Table 2 summarizes the eval-
uation results. PPM-Orig refers to PPM-Ens except with just a single context (offset of zero and
using every character). PPM-Orig had an average cross entropy of 2.28. This is better than the 2.34
achieved by PPM*C. PPM-Ens outperformed PPM-Orig with an average cross entropy rate of 2.23.
However, another PPM variant called cPPMII-64 [12] outperforms all of these algorithms with a
cross entropy of 2.04.

Using the Wilcoxon signed-rank test [13], we can calculated whether there is a significant per-
formance difference between PPM-Orig and PPM*C. Performing this test results in a p-value of
0.001618, indicating that there is a significant difference between the cross entropy rates of these
algorithms. Similarly, there is also a significant performance difference between PPM-Ens and
PPM-Orig (p=0.003603), and cPPMII-SE and PPM-Ens (p=0.01423).
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File PPM*C PPM-Orig PPM-Ens cPPMII-64
bib 1.91 1.87 1.82 1.68
book1 2.40 2.28 2.3 2.14
book2 2.02 1.94 1.93 1.78
geo 4.83 4.72 4.45 4.16
news 2.42 2.36 2.33 2.14
obj1 4.00 3.92 3.87 3.50
obj2 2.43 2.42 2.28 2.11
paper1 2.37 2.33 2.31 2.14
paper2 2.36 2.28 2.28 2.12
pic 0.85 0.80 0.78 0.70
progc 2.40 2.36 2.33 2.16
progl 1.67 1.63 1.59 1.39
progp 1.62 1.62 1.60 1.39
trans 1.45 1.42 1.37 1.17
average 2.34 2.28 2.23 2.04

Table 2: Cross entropy rates on Calgary corpus files.

The performance of PPM-Ens was also evaluated on the first 10 million bytes of the Hutter prize
data (contained text from Wikipedia). The reason only a subset of the data was used is due to the
long running time of PPM-Ens. The final cross entropy rate was 1.93392. For comparison, the
PAQ program paq8l compressed the same 10 million bytes to a file size of 1981983 bytes. This
corresponds to 1.58559 bits per byte which is significantly better than the cross entropy rate of
PPM-Ens.

7 Discussion and Future Work

The results from evaluating PPM-Ens on the Calgary corpus indicate that the use of multiple contexts
leads to an improvement in compression performance. PAQ uses a similar strategy of combining
multiple contexts. The cost of this improvement in compression performance is an increase in
running time by a constant factor. Since memory usage in PPM-Ens is dominated by storing the
input history, the use of additional contexts does not have a significant impact on memory usage.
For determining the optimal number of contexts to use, a trade-off needs to be made between running
time and compression performance. This trade-off is application specific and depends on the type
and size of data that is being compressed.

PPM-Ens uses relatively simple contexts based on skipping characters in the input history. Further
performance improvement might be achieved by combining the predictions from more advanced
models. For example, the predictions created by an algorithm like PPAM could lead to better perfor-
mance on image data. PAQ uses this technique to combine the information from multiple specialized
models for particular types of data.

The automated parameter tuning on PPM-Ens also lead to an improvement in performance. How-
ever, this was at the cost of a long optimization process. Parameter tuning is also sensitive to the type
of data that it is trained on. The objective function of the optimization algorithm that is used for the
parameter tuning needs to use a representative sample of the type of data that the compressor will
be used for. In certain applications it may be hard to find training data which represents the intended
use of the compression algorithm. For example, if a compression algorithm is being designed to
work on a large range of data types, the amount of training data needed may be infeasibly large.
One potential solution to this problem is the use of adaptive parameter tuning during the run of the
compression algorithm. This way the parameters could be used to adapt to the type of data that is
currently being compressed. This would be an interesting area for future work.

Figure 1 shows how the prediction error rate for a novel changes sequentially from the beginning
of the text to the end using PPM-Ens. The prediction error at the end of the text was 41.066%. As
expected, the graph is indicative that the prediction error roughly converges towards a horizontal
asymptote as more data is encountered. This information could be useful for determining a limit on
the size of the history that needs to be stored. By limiting the history size, the time complexity of
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PPM-Ens is reduced from O(N2) to O(N) and the memory usage is reduced from O(N) to O(1)
where N is the length of the data. The prediction error rate will not be substantially affected when a
bound on the history is imposed if the bound is sufficiently large. One simple way of enforcing the
memory bound is to use a sliding window and discard everything before a certain point in history.
An improvement upon this naı̈ve approach is to remove portions of the history which are rarely
matched. This would be another interesting modification for future work.

8 Conclusions

Although the experiments in this paper focussed on PPM-Ens, the results can apply to other PPM
implementations as well. For example, any PPM implementation which uses parameters could
benefit from automated parameter tuning in certain applications. The main result of this paper
indicates that combining multiple contexts can improve compression performance. Existing PPM
implementations could be easily modified to make use of additional contexts. This modification
can be made by using the exact same prediction algorithms but on different portions of the input
data. Finally, combining the probability distributions created from different types of predictive
compression algorithms using ensemble voting could also lead to an improvement in compression
performance.
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