
LiveRAC: Interactive Visual Exploration
of System Management Time-Series Data

Peter McLachlan, Tamara Munzner
University of British Columbia

Vancouver, BC V6K 3Z9
Canada

{spark343,tmm}@cs.ubc.ca

Eleftherios Koutsofios, Stephen North
AT&T Labs - Research

Florham Park, NJ 07932
USA

{ek,north}@research.att.com

ABSTRACT
We present LiveRAC, a visualization system that supports
the analysis of large collections of system management time-
series data consisting of hundreds of parameters across thou-
sands of network devices. LiveRAC provides high informa-
tion density using a reorderable matrix of charts, with se-
mantic zooming adapting each chart’s visual representation
to the available space. LiveRAC allows side-by-side visual
comparison of arbitrary groupings of devices and parameters
at multiple levels of detail. A staged design and develop-
ment process culminated in the deployment of LiveRAC in
a production environment. We conducted an informal lon-
gitudinal evaluation of LiveRAC to better understand which
proposed visualization techniques were most useful in the
target environment.

ACM Classification Keywords
H.5.m Information Interfaces and Presentation: Miscella-
neous

General Terms
Design, Human Factors

Author Keywords
Visualization, Time-series data, Longitudinal studies

INTRODUCTION
Time-series data is pervasive in science, engineering and
business. Visualization helps people interpret data by ex-
ploiting human perception to reduce cognitive load. Statisti-
cal graphics, most notably line charts of time-value pairs, are
heavily used for inspecting individual or small sets of time-
series. However, understanding large collections of time-
series data remains difficult. We selected large-scale system
management as a domain where people need to understand
large sets of time-series data at multiple levels of detail, and
with respect to frequently changing groupings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04...$5.00.

Data warehouses for managed hosting services can store de-
tails about tens of thousands of physical and virtual servers.
For each system, parameters such as CPU load and mem-
ory usage are regularly logged. This data may be archived
for multiple years. System management staff must be able
to query detailed data to attend to the needs of individual
customers, while maintaining awareness of the managed en-
vironment’s global state.

Unfortunately, there is a gap between the capabilities of tools
for gathering and storing such data, and the capabilities of
tools to help systems managers to comprehend and act on it.
A heavily used analysis method is to inspect charts show-
ing the state of one parameter on one server. Inspecting such
charts one at a time yields only a fragmented, low-level view
of the environment. The limitations of human working mem-
ory make it difficult to synthesize a useful overview of the
entire collection.

Many commercial systems management tools provide high-
level dashboards with summary statistics, but these hide the
true complexity of the system state. For instance, most use
thresholds that rate the monitored state as healthy if some
percentage of systems are available and responding. How-
ever, a data center may be unhealthy if just one critical sys-
tem is down, or it may still be healthy if many systems are
down for routine maintenance. Moreover, these tools do not
allow sufficient drill-down exploration to develop and con-
firm hypotheses about root causes and their remedies. To
move beyond this, visualization tools should help system
managers to quickly analyze logged data at scales between
single low level charts and high level summary dashboards.

Our primary contribution is the design methodology and im-
plementation of LiveRAC, a visualization system for brows-
ing and correlating time-series data with high information
density. It scales to dozens of parameter channels across
thousands of devices. LiveRAC allows side-by-side visual
comparison at multiple levels of detail with respect to group-
ings of devices and parameters, using a reorderable matrix of
charts. The charts support semantic zooming, providing vi-
sual representations adapted to the available space. Design-
ing and deploying a research visualization system to opera-
tions staff in a large corporation, who must deliver reliable
production service, is an interesting and ambitious method-
ological challenge. We adapted the standard user-centred
design process in a staged model, with requirements gather-

ing and prototype development in each phase. We demon-
strated the utility of our ideas with increasingly high-fidelity
prototypes, gaining buy-in from individuals within the or-
ganization that controlled access to production data and end
users. We discuss the concomitant challenges and insights
gained by moving from a proof-of-concept implementation
of visualization techniques, to a deployed system for highly
proprietary data in a large organization.

We describe two secondary contributions. The first is a novel
time-series visualization system that can render a visual rep-
resentation for millions of data points. The second is an in-
formal field study of LiveRAC in a production setting with
operational systems management staff, to determine whether
our design choices provided the intended functionality in a
production setting.

RELATED WORK
We review the previous work on visualization techniques,
system management visualization systems, and studies of vi-
sualization systems deployed in the field.

LiveRAC is one of many visualization systems that use ma-
trix layouts [20, 22]. Interactive re-orderable matrix visual-
izations were introduced by Bertin [2].

Semantic zooming [13] is a technique where objects adapt
their visual representation to the available screen space. For
example, a calendar object, when limited to a small area,
might display only a condensed text list of high priority
events, but if the region is enlarged, it might show the fa-
miliar calendar month view. LiveRAC is the first system
to integrate semantic zooming with the accordion drawing
technique described below.

Stretch and squish navigation [17] is an interaction metaphor
where the user manipulates the display as though it was a
rubber sheet tacked down at the borders. Expanding one
region compresses the rest of the view. Accordion draw-
ing [11] is a scalable approach to stretch and squish naviga-
tion that supports the guaranteed visibility of marked items,
even within dense regions. LiveRAC uses the PRISAD in-
frastructure for efficient generic rendering and navigation in
data sets with millions of items [21].

Time-series data is an area of extensive study in informa-
tion visualization research. Aigner [1] examined the diver-
sity of methods for visualizing time-oriented data. Several
systems for visualizing time-series data use clustering for
exploratory analysis, where the goal is to find interesting
groupings of the data considered as a large unordered col-
lection [6, 8, 25]. These approaches do not solve the sys-
tem management tasks of inspecting individual time-series
curves and finding correlations across specific sets of de-
vices, parameters, and time. Similarly, TimeSearcher [5]
supports time-based pattern finding, but does not scale suffi-
ciently.

The SWIFT system [7] is a set of data storage, aggregation
and visualization tools that provide an integrated interface to

system management data from many distinct sources, with
a single self-describing data format. SWIFT collects data
continuously, and performs processing such as computing
weighted rolling averages and aggregates. SWIFT visualiza-
tions include geographic, node-link, and table layouts. How-
ever, large sets of correlated time-series displays are not well
supported by any of these visualizations. LiveRAC provides
a new visualization front-end for SWIFT data, showing sev-
eral levels of structure between high-level dashboards and
low-level tables.

Although many visualization systems have been studied in
laboratory settings, far fewer have been studied with a lon-
gitudinal approach in the field. Multi-dimensional In-depth
Long-term Case Studies (MILCs) [19] are an emerging vi-
sualization evaluation research method proposed by Shnei-
derman et al. Our approach with LiveRAC is a variant
of a MILC with a focus on gaining organizational credi-
bility through prototype iteration. The work of González
and Kobsa is illuminating: the promising results of an
initial study [4] were followed by a longer longitudinal
study, showing that achieving adoption was a difficult chal-
lenge [3]. Our goal with LiveRAC was to gain more insight
about the use of deployed visualization systems in the field,
moving us to continue design and development well beyond
the initial technique demonstration phase.

SYSTEM MANAGEMENT
We describe system management professional roles and ac-
tivities, and the limitations of existing tools in supporting
this user population.

Roles and activities
The role of a system management professional in managed
hosting services is to meet service level agreements that have
been established between the hosting provider and its cus-
tomers. These agreements specify all significant aspects of
the services to be provided, including: what services will be
provided, how they will be delivered, how service delivery
will be measured, and the consequences if the service agree-
ment is not met. Fulfilling these agreements is the main
task of system management professionals. Delivering reli-
able production service requires a combination of business,
analytical and system management skills.

To manage complexity, system management professionals
are divided into multiple response tiers. The lower tiers work
on very tight deadlines (in some cases, only minutes) and
in highly structured environments. The tools they use are
tightly constrained in functionality and process. In contrast,
our target users, Life Cycle Engineers (LCEs), are senior op-
erations staff at the topmost tier who cover several customer
accounts. LCEs have a more analytical, less reactive role
than lower tiers, and they seemed more likely to need the
exploratory capabilities of a visualization tool such as Live-
RAC.

Interpreting network environment status is the fundamen-
tal system management activity. It involves understanding
the state of individual devices, and how these states affect

overall end-to-end services. LCEs examine time-series data
such as alarm records, statistics and log files. The LCEs
in our study use SWIFT for this activity. More generally,
systems management professionals employ various Network
Management System (NMS) tools such as OpenNMS 1, HP
OpenView 2, and BMC Patrol 3. Most NMS tools integrate
alarms, statistics and logs from multiple managed systems
into a central database, and provide views of this data.

Report generation requires creating a sharable document
showing relevant time-series values. The LCEs we studied
obtain these reports from SWIFT by making a screen shot
of charts of interest, or by copying HTML tables of individ-
ual time-series. Most NMS tools can run pre-built queries,
such as reports of the top ten most heavily loaded systems
over the past week. They may also support a custom query
language or a form-based query builder.

Capacity planning involves forecasting future system and in-
frastructure needs. An LCE participant summarized its three
phases this way: “Phase 1 documents what [customers]
have today, phase 2 provides short-term recommendations
(one to three months) for things like adding memory, chang-
ing the way [customers] do their backups, etc. and phase 3
is long-term where we provide recommendations for things
such as swapping out hardware, changing application ver-
sions to [ones] that are certified, maybe going to blade
servers to reduce their footprint to fit more servers in their
existing space.” Capacity planning depends on having an
accurate and complete understanding of the network envi-
ronment state captured by the NMS, and external knowl-
edge about a customer’s activities and projects. For example,
knowing that a major upcoming event will increase server
load, a life cycle engineer will decide if upgrades are re-
quired, or if the current system should be adequate.

Event investigation concerns specific events such as a service
outage or network security breach. Events that have been
escalated to the level of LCE scrutiny often have significant
business impact. There are three distinct phases of event in-
vestigation. The first is notification of the event, usually by
an automatically generated alarm, or a ticket submitted by
a customer. In the second phase, the LCE uses the NMS to
study time-series data parameters of the devices in question,
and possibly to see if similar conditions occurred with other
devices. In the third phase, the LCE directs a response, of-
ten the deployment of further forensic tools such as network
sniffers or rootkit detectors.

Coordination between customers, engineering and opera-
tions involves communicating findings, change requests and
recommendations. An LCE participant described this as
“working as a conduit” to facilitate service delivery and in-
cident response.

1www.opennms.org
2www.managementsoftware.hp.com
3www.bmc.com

Limitations of current tools
Existing NMS tools for system management professionals
have significant limitations in the analysis of logged time-
series data. The most critical limitation is the lack of mid-
level views of environment status. Numeric summaries,
such as counts of devices in various groups that are up or
down, overall network utilization, and high priority alarms,
do provide useful information to administrators and man-
agers. However, these views are incomplete, and hide many
important details, such as how close these systems are to
specific thresholds, which particular systems are offline, or
which systems are experiencing problems. Finding details
such as the identities of the offline systems requires drilling
down to another page, or scrolling down within one very
large page. These tools give poor support to tasks requiring
direct comparisons between many systems, for example, de-
termining whether behavioral events such as load spikes or
alarms affected several systems simultaneously.

Many NMS tools use rule-based and machine learning ap-
proaches to infer if there is a problem and send alarm noti-
fications. In practice, these approaches yield an overwhelm-
ing number of non-actionable alarms. For example, in the
environment we studied, the monitoring system generates
around 10,000 alarms daily, with only one or two per day
representing actionable events. Blanket suppression rules
are used to automatically delete large volumes of alarms.
These suppression rules suggest that system managers place
low confidence in individual alarms or metrics, relying in-
stead on their own analyses of logged data.

Current report generation tools that use pre-built or custom
queries from the NMS also have limitations. Results from
pre-built and custom reports are usually in a table or a scrol-
lable page of charts, with no summaries or aggregation, so it
is difficult to make comparisons or acquire a complete view
of the environment state. Pre-built queries, such as “show
the 10 systems with the highest CPU in the last 6 days” may
not match task requirements. Even customized queries re-
quire that users know in advance what they are looking for,
and thus are ineffective for discovering unexpected patterns.

LiveRAC was designed to address these three limitations in
an interactive visualization system. It gives system managers
views of data at multiple levels, allowing them to draw in-
ferences from the complex reality of the data, and to com-
municate their interpretations to others.

ITERATIVE DESIGN
We describe our design methodology, the participants we re-
cruited, and the four phases of our design process.

Methodology
Our project followed many aspects of a standard user-
centred design process. We gathered requirements, then built
and obtained feedback on a series of prototypes. We started
with paper prototypes, continued to a proof-of-concept in-
teractive software prototype using synthetic data, then to a
high-fidelity prototype running on real data, and finally to
a deployable system. We found that recruiting senior sys-

tem management participants who have operational duties
is a challenge in a corporate setting where involvement in
a research project requires higher approval, and the routine
workload is very demanding. We modified the conventional
protocol by increasing our participant pool in stages as the
project evolved, generating interest by means of interim re-
sults. Each working prototype increased credibility for the
project, leading to buy-in from the next group within the or-
ganization that had closer access to production data and real
users. In each succeeding phase, we were able to work with
a larger pool of participants closer to the target user group,
culminating in direct contact with system management prac-
titioners, the LCEs. We gathered additional requirements
at each stage. Our staged design process had four discrete
phases of requirements gathering and prototype refinement.

We collected data about our target users by performing inter-
views with senior system management professionals, attend-
ing management-level meetings, recording sessions of users
interacting with LiveRAC via a desktop sharing tool, and by
collecting logs and surveys. Our meetings and interviews fo-
cused on the roles and activities of system management pro-
fessionals, how ticketing and problem resolution processes
work, how capacity planning is done, what types of insights
were enabled by their current system, and how they commu-
nicate them.

Participants
Our design process involved 14 participants in three groups.
The external group consisted of a single participant outside
the target organization, who had senior system management
experience as the CTO of a small company (C1).

The internal group consisted of senior technical personnel
in our target organization: a member of a tools engineering
team (T1), one executive director (E1), and four senior tech-
nical directors (D1, D2, D3, D4). All were intimately famil-
iar with our target users; the directors managed them, and the
engineer developed tools for them. This group participated
in design meetings and gave feedback on prototypes. All
members of this group except for E1 did use the LiveRAC
system, but because they were not our target user population
we did not perform individual interviews with them.

The LCE group consisted of seven Life Cycle Engineers
(L1 to L7), our target user group. They participated in de-
sign meetings, responded to surveys, and tested the deployed
LiveRAC system in logged sessions. Four participants, L1
to L4, took part in additional training, interviews, and email
communication.

Many participants work at geographically distributed loca-
tions, so meetings were facilitated by screen sharing and
teleconferencing.

Design phases
We began the first phase with initial requirements gathering.
We interviewed C1 to gather information on the challenges
of system management, and the tools commonly used. Also,
we monitored our own local network with the freely avail-

May 05 Nov 05 May 06 Nov 06 May 07 Nov 07

Phase 1: Proof of concept
Phase 2: High-fidelity prototype

Phase 3: Deployable system
Phase 4: Field test

Figure 1. LiveRAC design timeline

able enterprise system management platform OpenNMS to
to gain direct experience with such tools and data. We were
able to draw on our own experience in this domain: one au-
thor has several years of professional experience in system
management and architecture, and two others have built and
deployed data integration and visualization systems in close
collaboration with system management practitioners [7].

We designed a prototype based on these initial requirements,
choosing a combination of techniques supported by several
visualization principles. After refining our ideas with paper
prototypes, we built a proof-of-concept software prototype
running on a synthetic data set. This prototype was presented
to T1, a designer of software tools that our target LCE pop-
ulation uses daily. T1 confirmed the prototype was suitable,
and was sufficiently encouraged by the potential of its inter-
active visual queries that he agreed to participate in the next
design phase.

In the second phase, we refined the requirements through
meetings with T1. We developed a high-fidelity prototype
running on the production database, and collected feedback
from T1 regularly through the iterative development process.
This second prototype was presented to E1 and D1, who
were enthusiastic about the ability to see the system manage-
ment environment at a level of detail not previously possible,
and became participants in the next phase.

In the third phase, we gathered requirements in meetings
with E1 and D1, in addition to T1. We developed a third
high-fidelity prototype, with the goal of realizing a flexible
and robust deployable system for use by LCEs. We pre-
sented the resulting system to D2, D3, and D4, in addition
to T1, E1, and D1. Their approval gave us direct access to
the target users, LCEs L1 through L7, for the study’s final
phase.

In the fourth phase, we gathered requirements from L1-L7
through meetings and surveys, and further refined our sys-
tem to incorporate their requirements and feedback. We then
deployed the system in a production environment, continu-
ing to gather feedback from all fourteen participants. We
carried out an informal longitudinal evaluation over three
months. Although managers E1 and D1 encouraged their
employees to try the system, participation was not manda-
tory. We collected logs of 38 sessions from a total of 13
LiveRAC system users. Of these, four were directors, and
the others worked in technical roles. LCEs L1-L4 were our
most active users, with a total of 24 logged sessions between
the four of them.

LowestHighest

Figure 2. LiveRAC default threshold legend. LiveRAC
cells are colored according to where the cell’s computed
value falls on the threshold scale.

DESIGN REQUIREMENTS
We identified and validated design requirements in discrete
stages through an iterative design process.

In the first stage, for the proof-of-concept prototype, we dis-
tilled an overarching high-level requirement based on our
discussions with C1 and our experience with using the Open-
NMS software: Users needed to browse and correlate many
instances of parameter, device, and time values. The data
set contained dozens of parameters for thousands of devices,
collected at 5 minute intervals over a period of years. The
data was to be viewed in temporal windows at multiple lev-
els: hours, days, weeks, months, and years. The specific
sets of devices and parameters requiring investigation were
highly variable. In some cases, investigation started with
some grouping of devices; in others by finding critical val-
ues for one or many parameters. A particular challenge was
to help users correlate alarms with other parameters.

In the second stage, for the high-fidelity prototype, we iden-
tified and addressed these requirements:
• search for specific devices by name or metadata
• provide a client which can run on corporate standard desk-

top hardware, handle large data volume by using a back-
end server which manages the collection and storage of
many years’ worth of data
• dynamically change the time window
• map from parameter and device to visual representation at

startup time
• provide shortcuts for resizing standard and dynamically

changeable groupings to ease navigation

In the last stage, for the deployable system, the additional
requirements were:
• dynamically map device parameters to visual representa-

tions, for example, for CPU usage: colored box, sparkline,
low-detail line chart, high-detail line chart
• sort devices by parameter
• explicitly filter to device subsets, support selection based

on an existing hierarchical organizational structure
• dynamically customize thresholds where interesting val-

ues are visually distinguished
• integrate results into the workflow, by exporting detailed

information about selected parameters and devices in
spreadsheet format
• support the familiar interaction of dragging a single line

to resize in the style of spreadsheets

VISUALIZATION SOLUTIONS
We present the motivating visualization principles behind
our design, describe the interface and capabilities of Live-
RAC, and discuss its implementation.

Design Principles
The LiveRAC interface synthesizes several techniques to ad-
dress the requirements stated above. In many cases, a choice
of technique was guided by specific visualization principles,
whose provenance we cite below. We make one assertion:
that showing several levels of detail simultaneously provides
useful high information density in context. The list below re-
flects our final design, after several stages of requirements
gathering, iterative development, and validation by study
participants.

We show the LiveRAC interface in Figure 3 with data from
a production server, anonymized by randomly mapping cus-
tomer device IDs to nouns from a dictionary. The accompa-
nying video shows the look and feel of the interactive inter-
face.

LiveRAC Interface
Principle: familiar visual representations should be pre-
served when appropriate. This approach exploits user in-
tuition and experience for faster learning. The base visual
data representations in LiveRAC are familiar line charts and
bar graphs. These charts appear as cells in a spreadsheet-
like matrix. By default, LiveRAC uses the same color cod-
ing conventions as the other internal software tools used by
the LCEs, shown in Figure 2, with optional reassignment of
the color palette on demand. Although the default colors
are not maximally discriminable, they are adequate, so we
preserved them for familiarity. We also provide VCR-like
controls to play through the data at variable speed. Live data
is viewed in real time, while archived data is often viewed
under accelerated playback.

Principle: side-by-side comparison of small multiple
views is easier than remembering previously seen views.
The principle of small multiples [23], in which many small
instances of different data sets are shown with the same rep-
resentation, allows fast side-by-side visual comparison of
many dozens of items. The alternative of inspecting charts
one at a time and comparing them to previously seen charts
is much less effective and does not scale well. The alter-
native of overplotting many curves on a single set of axes
only scales up to a few dozen curves before visual clutter
becomes overwhelming. The main LiveRAC frame, shown
in Figure 3, presents a matrix where each cell contains an
area-aware chart showing time on the horizontal axis and
device parameters on the vertical axis. The same time pe-
riod is shown for all charts. The time period can be changed
with a double-edged slider or by entering explicit start and
end times in the text fields at the bottom of the screen.

Principle: spatial position is the strongest perceptual cue.
A core principle of information visualization is that encod-
ing relationships by spatial ordering is more accurately per-
ceived than other encodings such as color, size, or orienta-
tion [9]. This principle underlies the technique of reorder-
able matrices [2, 20], which allows relationships between
cells to be detected visually during exploratory data anal-
ysis. In LiveRAC, each matrix row represents a monitored
network device, and each matrix column represents a group

(a) (b)

Figure 3. LiveRAC shows a full day of system management time-series data using a reorderable matrix of area-aware
charts. Over 4000 devices are shown in rows, with 11 columns representing groups of monitored parameters. (a): The
user has sorted by the maximum value in the CPU column. The first several dozen rows have been stretched to show
sparklines for the devices, with the top 13 enlarged enough to display text labels. The time period of business hours
has been selected, showing the increase in the In pkts parameter for many devices. (b): The top three rows have been
further enlarged to show fully detailed charts in the CPU column and partially detailed ones in Swap and two other
columns. The time marker (vertical black line on each chart) indicates the start of anomalous activity in several of
spire’s parameters. Below the labeled rows, we see many blocks at the lowest semantic zoom level, and further below
we see a compressed region of highly saturated blocks that aggregate information from many charts.

of one or more monitored parameters and can be sorted ac-
cording to its values. For example, sorting by Load orders
the device rows by load average, with the highest at the top.
Columns can be sorted according to parameter values, such
as the minimum, maximum, or average of the time-series.
Rows can be sorted by device names or metadata such as lo-
cation, customer, or other groupings. Columns can also be
reordered by the user.

Principle: multiple views are most effective when coor-
dinated through explicit linking. The principle of linked
views [15] is that explicit coordination between views en-
hances their value. In LiveRAC, as the user moves the cur-
sor within a chart, the same point in time is marked in all
charts with a vertical line. Similarly, selecting a time seg-
ment in one chart shows a mark in all of them. This tech-
nique allows direct comparison between parameter values
at the same time on different charts. In addition, people can
easily correlate times between large charts with detailed axis
labels, and smaller, more concise charts.

Assertion: showing several levels of detail simultane-
ously provides useful high information density in con-
text. Several technique choices are based on this assertion.
First, LiveRAC uses stretch and squish navigation, where
expanding one or many regions compresses the rest of the
view [11, 17]. The accompanying video shows the look and
feel of this navigation technique. The stretching and squish-
ing operates on rectangular regions, so expanding a single
chart also magnifies the entire row for the device it repre-
sents, and the entire column for the parameters that it shows.

The edges of the display are fixed so that all cells remain
within the visible area, as opposed to conventional zoom-
ing where some regions are pushed off-screen. There are
rapid navigation shortcuts to zoom a single cell, a column,
an aggregated group of devices, the results of a search, or to
zoom out to an overview. Users can also directly drag grid
lines or resize freely drawn on-screen rectangles. Naviga-
tion shortcuts can also be created for any arbitrary grouping,
whose cells do not need to be contiguous. This interaction
mechanism affords multiple focus regions, supporting mul-
tiple levels of detail.

Second, charts in LiveRAC dynamically adapt to show vi-
sual representations adapted in each cell to the available
screen space. This technique, called semantic zooming [13],
allows a hierarchy of representations for a group of device-
parameter time-series. In Figure 3, the largest charts have
multiple overlaid curves and detailed axis and legend labels.
Smaller charts show fewer curves and less labeling, and at
smaller sizes only one curve is shown as a sparkline [24].
On each curve, the maximum value over the displayed time
period is indicated with a red dot, the minimum with a blue
dot, and the current value with a green one. All representa-
tion levels color code the background rectangle according to
dynamically changeable thresholds of the minimum, maxi-
mum, or average values of the parameters within the current
time window. The smallest view is a simple block, where
this color coding is the only information shown.

Third, aggregation techniques achieve visual scalability by
ensuring dense regions show meaningful visual representa-

tions. Given our target scale of dozens of parameters and
thousands of devices, the size of the matrix could easily sur-
pass 100,000 cells. Stretch and squish navigation allows
users to quickly create a mosaic with cells of many differ-
ent sizes, with many regions where the number of cells is
greater than the number of available pixels needed, to draw
even a single-pixel block for each cell. In these regions, an
aggregate block is drawn representing all cells within the
screen-space region. A naive approach might be to over-
draw cells so the user sees either a blend of colors or the last
cell drawn. This approach is inefficient and unlikely to show
the most relevant information. Instead, LiveRAC computes
the display for a given block using one of four possible ag-
gregation functions for the time-series values in the cells it
represents: minimum, maximum, mean and cardinality.

We increase the color saturation of aggregate blocks to show
density, in proportion to the the number of cells represented,
starting from the base saturation level of 25% for a non-
aggregated block. Conversely, the saturation of the chart
background color decreases as more details are shown, fol-
lowing the guidelines of Ware [26] and Tufte [23] that large
areas should use desaturated color and that high contrast be-
tween foreground and background improves readability.

Given the target scale of thousands of devices, there is usu-
ally not enough space to draw legible labels for a horizontal
row. When the devices are sorted by a shared descriptive pa-
rameter such as logical grouping a single label is drawn for
this higher level structure, ending with a number indicating
the number of aggregated devices it represents.

Fourth, the technique of guaranteed visibility [11] ensures
that important information is always visible, even in highly
compressed and aggregated regions. While the concept is
simple, the challenge is to implement a rendering architec-
ture that delivers interactive frame rates when the number of
cells is huge. LiveRAC is built on the PRISAD infrastruc-
ture [21], which supports guaranteed-visible marks within
a stretch and squish navigation framework. LiveRAC uses
guaranteed-visible marks to show results during progressive
search of device names and metadata. LiveRAC also marks
key items with guaranteed visibility, including alarms of cat-
egory critical and values above a critical threshold on sev-
eral parameters. These parameters were adapted according
to user requirements: the events that senior system manage-
ment staff check are considerably above the day-to-day op-
erational level.

Principle: overview first, zoom and filter, details on
demand. This widely followed principle, articulated by
Shneiderman [18], has been recognized as effective for cop-
ing with scale and complexity. The combination of tech-
niques described above allow interactive exploration from
overviews at many levels of detail within the same visual
metaphor. We provide filtering with dynamic control over
which parameters are shown in the matrix. Although we
integrate alarms into the time-series framework by treating
them as time-based events, it would be awkward to draw the
full text of alarms within matrix cells. Instead, we present

a traditional dialog box that pops up on demand. The user
can export details of the time-series data and alarms for any
selected set of devices in spreadsheet format, to integrate the
visual queries supported by LiveRAC into the workflow of
the LCEs. The requirement of exporting these details was
not recognized until the final design phase, when we had di-
rect access to the LCE target audience.

Principle: abrupt visual change should be avoided. This
principle arises from the perceptual theories of object con-
stancy [16] and change blindness [14]. In LiveRAC, all tran-
sitions are animated, for instance, growing or shrinking re-
gions using navigation shortcuts. When the user changes the
time window or first expands a cell from a block to a chart,
the server query to obtain more data may take many sec-
onds. During this time, we continue to show the old visual
representation, but with a yellow dot in the upper right cor-
ner of the cell to indicate that an update is pending. When
the new data is available, we draw its representation directly
over the old one, avoiding flicker that would increase the risk
of change blindness.

Principle: user actions should receive immediate visual
feedback. The final design principle was adopted to enable
high-interaction data exploration [16]. We achieve guaran-
teed frame rate rendering even with large data sets by build-
ing on the PRISAD infrastructure [21]. Also, LiveRAC per-
forms rendering in a separate thread from server updates
to ensure consistent interactive response even during long-
running database queries.

Implementation
LiveRAC is a client that connects to a back-end database,
in this case, the SWIFT server. LiveRAC is written on the
PRISAD libraries [21], which provide a generic, efficient
rendering infrastructure for guaranteed frame-rate accordion
drawing, providing stretch and squish navigation with guar-
anteed visibility of marked items. Rendering and server up-
dates occur in separate threads, as mentioned above.

LiveRAC has been shown to maintain interactive frame rates
on data sets of 4000 network devices and 20 input channels,
displaying six months of data collected at 5 minute intervals.
In total, the raw data set contains billions of raw data points.
The core structure for rendering and picking nodes supports
O(n log n) insert, remove and search operations. Technical
details of LiveRAC’s implementation, as of phase two, are
available in thesis [10]. To demonstrate interaction with the
LiveRAC visualization system a short video is available4.

LONGITUDINAL EVALUATION
We discuss the methodology of our informal longitudinal
study, summarize the implications for design and present
LCE usage scenarios.

Informal longitudinal study methodology
The objective of our longitudinal study was to better under-
stand the strengths and weaknesses of the visualization tech-
niques used in our design in a production environment.
4
www.cs.ubc.ca/labs/imager/video/2007/liverac/liverac.mov

Figure 4. Usage scenarios from the longitudinal study. Scenario 1: In (a), the LCE examines an overview of 50 devices,
after sorting by CPU usage. Column headers are truncated: the first column breaks down CPU usage by categories
such as system and IO, while the second shows per-CPU data. Many of the systems reporting critical (red) values in the
Load Average column did not have critical CPU usage levels, suggesting that the system load is I/O bound. (b) shows
detail of the CPU usage column when expanded by the LCE to see the time-series data as sparkline charts. In the top
row (circled), a critical threshold was reached. The highly saturated red, blue and green dots for each sparkline indicate
the high-water mark, low-water mark, and final value, respectively. Scenario 2: In (c) the LCE has expanded the CPU
used (Totals) and CPU used (Per-proc) columns and the first few device rows for about 3 months of data. The topmost
device shows a sharp escalation in CPU load over a few days. After peaking at 100% (circled), data collection for the
device abruptly terminates, where the dotted lines, representing weighted rolling averages, fall to 0. Scenario 3: Detail
of the CPU load column from 11 web servers in the same pool over six months is shown in (d). Servers 5 and 6 show
unusual behavior, where load drops to 0 for several weeks. Subsequently, servers 7 and 8 show a similar anomaly for a
shorter duration.

Data collected for our longitudinal study includes: notes,
audio, desktop sharing screen capture movies of interactive
sessions, and log data from LiveRAC. Because our target
population works in multiple remote locations, many inter-
views and meetings were conducted over the phone. We
recorded interviews with our participants when possible, re-
lying on hand-written notes for some large meetings where
confidentiality considerations precluded making recordings.

Our participants had severe time constraints and were in dis-
parate physical locations, presenting challenges for effective
training. The two training tactics that proved essential to
adoption were real-time presentations using desktop sharing
software to describe and demonstrate the features of Live-
RAC, and distributing a five-minute Flash training video de-
monstrating its basic functionality. Two LCEs stated that
they had watched the video several times to fully absorb the
information. We also provided written documentation and
an interaction shortcut sheet. Questions and concerns from
users were answered using email.

We analyzed the data by reviewing all notes, audio, and
video logs and building an internal wiki which identified ca-
pabilities requested by participants, bugs, and notes on ob-
served user behaviors.

Implications for Design
We summarize the key findings of our informal study.

Visual, interactive sorting offers significant benefits. LCEs
are most interested in systems they consider to be top offend-

ers in certain categories. Their current reporting tools were
able to provide this capability only for fixed time periods,
and without being able to show a value for all of the mon-
itored parameters for every device on a single screen. We
observed the LCEs using LiveRAC as a visual query tool.
By sorting on each column, they were able to see not only
the top offenders from the parameter associated with the
column, but could also see values from the corresponding
columns. While using the tool in this manner and discov-
ering an anomaly in the behavior of two web servers, one
participant commented, “It’s great and all to have the data,
but if you can’t visually see it, it’s almost worthless! ... I can
look at that Excel spreadsheet all day and never see what I
can see just visually here ... It’s such a night and day dif-
ference you know, the visualization part of it.”. Our findings
indicate that data reordering is a key feature for deployed
visualization systems.

Viewing large numbers of charts side by side was crit-
ical in serendipitous pattern discovery. For example, a
participant discovered an unusual anomaly in CPU load in
one device, scanned down the row, and saw that another
device experienced identical behavior immediately after the
first device returned to normal. The participant commented,
“Lasted a good week and a half, 2 weeks, ... another dip
in [redacted] also ... the load balancer [is] sending traffic
to one and not to the other. Wow, that’s interesting.” Such
a pattern could be detected by automated approaches, but
only if users knew to expect it. The high information den-
sity of our display supported the ability of our participants to
identify new, interesting patterns. Our findings suggest that

visual, side-by-side comparison is important for serendipi-
tous discoveries, and should be supported in future deployed
visualization systems.

Manipulating the time window, and seeing overviews of
data over long time periods was novel and exciting. The
LCEs use long-term trend information when forecasting fu-
ture load requirements. When Participant A introduced the
tool to his colleague Participant B by demonstrating that he
could shift from viewing a few hours of data to six months
of data, the latter reacted with surprise and excitement. Our
findings indicate that providing a dynamically changeable
time window with support for large time ranges is a critical
component of time-series visualization design.

Linked views aided correlation. For example, participants
L1 and L2 identified several correlating patterns during in-
terviews where we observed their interaction through desk-
top sharing software. In many cases, the correlation did not
occur in systems that were side-by-side. In one instance, L1
observed that a web server in a load-balanced group stopped
accepting traffic but remained online. L2 pointed out that
almost immediately after it recovered, another system in the
pool had identical behavior. This kind of problem is pre-
cisely the type that might not be detected by an automated
approach, since neither device was offline or unresponsive
to ping tests. L3 mentioned, “What I liked about [LiveRAC
was] where, if there was a particular alarm, you could put
that vertical line and look at all the other parameters, where
if CPU spiked you could look at all the other parameters and
see where they are, or what we found was there was critical
alarms on [the] ping test, but when you looked at the CPU
utilization was extremely low, you could get a sense of the
health of the asset.” Our finding suggests that tight link-
ing and high information density support this type of pattern
finding.

Stretch and squish navigation was not a barrier to adop-
tion. Although a prior laboratory study found a performance
penalty for stretch and squish navigation [12], we found that
this interaction mechanism did not present as much of a chal-
lenge to our participants as we expected, despite its novelty
and limited training. This difference may be due to the ex-
tensive use of structure-based navigation in LiveRAC, where
users often employed shortcuts to enlarge the cell or column
under the cursor. We conjecture that such navigation may re-
quire less cognitive load than dragging out an arbitrary rect-
angle on the screen and freely resizing it.

Adding report generation capability was critical for LCE
acceptance. Our finding echoes that of González and
Kobsa [4], who propose that tightly integrating visualization
systems into the user’s standard analysis tool chain facili-
tates adoption. Our LCE participants requested the ability
to extract sorted, user-selected data from the visualization
tool to transfer information acquired during exploration into
their downstream workflow. We identified this requirement
in the fourth stage of the design process, after we gained ac-
cess to the LCEs. Our participants indicated that if we had
not added this functionality, they would have lost interest in

using the system. A major complaint of the LCEs about pre-
vious system management tools was the inability to generate
customized reports that they could manipulate and share.

Iterative design can be successful even when full partic-
ipation of the target user population is not available at
project conception. Not having direct access to the entire
participant pool from the beginning of the project was a sig-
nificant challenge. A more conventional user-centred design
process would have allowed us to iterate our design more
rapidly. For example, we devoted significant development
time to alarm processing based on our initial assessment of
the requirements, only to discover that LCEs find alarms less
interesting over long periods of time. Although the chal-
lenge of gaining access to participants within the political
constraints of a large organization has not been explicitly
discussed in the visualization research literature, many have
noted the difficulty of transferring visualization techniques
proposed by researchers into real-world settings. We suggest
that our staged approach, where software prototypes demon-
strate the value of visualization methods to potentially skep-
tical individuals in the management chain, may be emulated
in other research contexts.

Usage Scenarios
We present three scenarios showing the use of LiveRAC by
the LCE participants in our informal longitudinal study, as
logged during recorded desktop sharing sessions. (The desk-
top sharing application reduces images to 256 colors and
introduces other compression artifacts.) Images have been
cropped to highlight key data.

Figure 4a shows Scenario 1. The LCE started with an
overview of 50 devices at the lowest semantic zoom level,
where colored blocks show the maximum values of each
parameter for each device. Obtaining the same informa-
tion using the tabular and chart views of previous software
tools would require manually scanning 50 charts to deter-
mine where the highest values occurred. Correlating the im-
pact of one parameter on others would be a tedious activity.
Participants were most interested in sorting the systems by
CPU load; memory usage, load average and network traffic
utilization were also of interest. We observed LCEs use the
overview-and-sort technique with as many as 4000 devices,
as shown in the accompanying video and in Figure 3.

The LCE continued to explore the same data set, using sort-
ing, stretch and squish navigation, and temporal navigation.
After performing a sort operation, the LCE stretched the
cells for systems with the highest CPU load to see trends,
as shown in Figure 4b. The LCE was immediately inter-
ested by the unusual spike in utilization from the top CPU-
use offender, stating it was a feature of interest. To check
whether it was a frequently recurring trend that might af-
fect capacity planning, or a less important, isolated event,
he click-dragged the time slider to enlarge the time window.
Discovering the device having the load spike with existing
visualization tools would have required looking at one de-
vice at a time, or at an unsorted view that showed only the

CPU parameter. In LiveRAC, all the other parameters are
available for simultaneous comparison.

Figure 4c shows Scenario 2, where an LCE was showing a
colleague sorted trend information over a period of months.
When he stretched the cells for devices showing the top CPU
usage, he discovered that a system had stopped reporting
data shortly after hitting 100%. Both LCEs agreed the be-
havior indicated a problem.

Figure 4d shows Scenario 3. An LCE was inspecting a
group of web servers in the same load-balanced pool. These
servers are intended to have similar behavior. After expand-
ing those cells, he saw that on some devices, the load had
unexpectedly dropped almost to 0 for weeks, yet they had
not crashed and continued to report all their monitored pa-
rameters. The LCE said he would follow up with a colleague
who was responsible for the systems.

We provide three more usage scenarios in the accompanying
video, made by direct video capture of LiveRAC interactive
sessions, instead of from desktop sharing logs.

CONCLUSION
We presented LiveRAC, a novel visualization system that
supports browsing and correlating logged time-series data
for system management. We employed a staged design pro-
cess, in which we demonstrated working prototypes to gain
access to additional participants in subsequent phases. We
met the challenging goal of deploying LiveRAC in a full
production environment. We conducted an informal longitu-
dinal field study, and our findings support that many aspects
of the final design were helpful for the intended tasks.

LiveRAC provides a high information density interface that
conveys more information than dashboard approaches, and
supports details on demand. The large number of devices
and parameters that may be interactively monitored and ex-
plored was surprising and exciting to the users in our study.
Active study participants, as well as managers who partici-
pated mainly in design reviews, were enthusiastic about the
insights that could be gained from the system. LiveRAC has
ongoing support from its users, with the prospect of wider
deployment in other network management and planning ap-
plications.

ACKNOWLEDGMENTS
We thank AT&T Research and NSERC for funding the work
carried out at UBC.

REFERENCES
1. W. Aigner et al. Visualizing time-oriented data: A systematic

view. Computers and Graphics, 31(3):401–409, 2007.
2. J. Bertin. Graphics and graphic information processing.

Walter de Gruyter, Berlin, Germany, 1981.
3. V. González and A. Kobsa. Benefits of information

visualization systems for administrative data analysts. In IV
’03: Proc. Intl. Conf. on Information Visualization, pages
331–336, 2003.

4. V. González and A. Kobsa. A workplace study of the adoption
of information visualization systems. Proc. I-KNOW ’03: Intl.
Conf. on Knowledge Management, pages 92–102, 2003.

5. H. Hochheiser and B. Shneiderman. Interactive exploration of
time series data. In DS ’01: Proc. Intl. Conf. on Discovery
Science, pages 441–446. Springer-Verlag, 2001.

6. R. Kincaid and H. Lam. Line Graph Explorer: scalable
display of line graphs using Focus+Context. In AVI ’06: Proc.
Adv. Visual Interfaces, pages 404–411. ACM Press, 2006.

7. E. E. Koutsofios et al. Visualizing large-scale
telecommunication networks and services (case study). In Vis
’99: Proc. IEEE Conf. Visualization, pages 457–461, 1999.

8. J. Lin et al. Visually mining and monitoring massive time
series. In Proc. KDD ’04, pages 460–469. ACM Press, 2004.

9. J. D. Mackinlay. Automating the Design of Graphical
Presentations of Relational Information. ACM Trans.
Graphics, 5(2):111–141, 1986.

10. P. McLachlan. LiveRAC – Live reorderable accordion
drawing. Master’s thesis, Univ. British Columbia CS Dept,
2006.

11. T. Munzner et al. TreeJuxtaposer: scalable tree comparison
using Focus+Context with guaranteed visibility. ACM Trans.
Graphics (Proc. SIGGRAPH ’03), 22(3):453–462, 2003.

12. D. Nekrasovski et al. An evaluation of pan & zoom and
rubber sheet navigation with and without an overview. In
Proc. CHI ’06, pages 11–20. ACM Press, 2006.

13. K. Perlin and D. Fox. Pad: an alternative approach to the
computer interface. In Proc. SIGGRAPH ’93, pages 57–64.
ACM Press, 1993.

14. R. A. Rensink, J. K. O’Regan, and J. J. Clark. On the failure
to detect changes in scenes across brief interruptions. In D. J.
Simons, editor, Change Blindness and Visual Memory, pages
127–145. Psychology Press, London, 2000.

15. J. C. Roberts. State of the art: Coordinated & multiple views
in exploratory visualization. In Proc. CMV ’07, pages 61–71,
2007.

16. G. Robertson, S. Card, and J. Mackinlay. The cognitive
coprocessor architecture for interactive user interfaces. In
Proc. UIST ’89, pages 10–18, 1989.

17. M. Sarkar et al. Stretching the rubber sheet: a metaphor for
viewing large layouts on small screens. In Proc. UIST ’93,
pages 81–91, 1993.

18. B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In VL ’96: Proc.
IEEE Symp. Visual Languages, pages 336–343, 1996.

19. B. Shneiderman and C. Plaisant. Strategies for evaluating
information visualization tools: multi-dimensional in-depth
long-term case studies. In Proc. BELIV ’06, pages 1–7. ACM
Press, 2006.

20. H. Siirtola. Interaction with the reorderable matrix. In IV ’99:
Proc. Intl. Conf. on Information Visualisation, pages 272–277,
1999.

21. J. Slack, K. Hildebrand, and T. Munzner. PRISAD: A
partitioned rendering infrastructure for scalable accordion
drawing (extended version). Information Visualization,
5(2):137–151, 2006.

22. C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and
visualization of hierarchically structured data using Polaris. In
Proc. KDD ’02, pages 112–122, 2002.

23. E. Tufte. Envisioning Information. Graphics Press, 1990.
24. E. Tufte. Beautiful Evidence. Graphics Press, 2006.
25. J. J. van Wijk and E. R. van Selow. Cluster and calendar based

visualization of time series data. In Proc. InfoVis ’99, pages
4–9, 1999.

26. C. Ware. Information Visualization: Perception for Design.
Morgan Kaufmann, 2nd edition, 2004.

