Summarizing Software Artifacts:
A Case Study of Bug Reports

Sarah Rastkar, Gail C. Murphy and Gabriel Murray

Department of Computer Science
University of British Columbia

{rastkar,murphy,gabrielm}@cs.ubc.ca

ABSTRACT

Many software artifacts are created, maintained and evolved
as part of a software development project. As software devel-
opers work on a project, they interact with existing project
artifacts, performing such activities as reading previously
filed bug reports in search of duplicate reports. These activ-
ities often require a developer to peruse a substantial amount
of text. In this paper, we investigate whether it is possible to
summarize software artifacts automatically and effectively
so that developers could consult smaller summaries instead
of entire artifacts. To provide focus to our investigation,
we consider the generation of summaries for bug reports.
We found that existing conversation-based generators can
produce better results than random generators and that a
generator trained specifically on bug reports can perform
statistically better than existing conversation-based genera-
tors. We demonstrate that humans also find these generated
summaries reasonable indicating that summaries might be
used effectively for many tasks.

Categories and Subject Descriptors
D.2.8 [Software Engineering)|

General Terms

Experimentation

Keywords

Machine Learning, Human-centric Software Engineering

1. INTRODUCTION

Individuals outside the profession of software development
sometimes incorrectly believe that the profession is all about
programming. Those involved in software development know
that the profession has a strong component of information
management. Any successful large and complex software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE °10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

505

system requires the creation and management of many ar-
tifacts: requirements, designs, bug reports, and source code
with embedded documentation to name just a few.

To perform work on the system, a software developer must
often read and understand artifacts associated with the sys-
tem development. For example, a developer attempting to
fix a performance bug on a system may be told that a similar
bug was solved six months ago. Finding the bug report that
captured the knowledge about what was fixed will likely re-
quire the developer to perform searches and read several bug
reports in search of the report of interest. Each report read
may contain several sentences of description as well as tens
of sentences representing discussion amongst team members.
For example, bug #491925 from the Mozilla system' com-
prises 91 sentences: 7 in the description and 84 sentences
from 24 comments. If solving the bug requires an under-
standing of the Java library WeakHashMap class, another 21
sentences from documentation about that class will need to
be read. Wading through text comprising system artifacts
to determine which ones matter can be time consuming and
frustrating for the developer. Sometimes, the amount of
information may be overwhelming, causing searches to be
abandoned and duplicate or non-optimized work to be per-
formed, all because the previous history of the project has
been ignored.

One way to reduce the time a developer spends getting
to the right artifacts to perform their work is to provide a
summary of each artifact. An accurate summary can enable
a developer to reduce the time spent perusing artifacts that
have been returned from searches, found through browsing
or recommended by team members or tools. Perhaps opti-
mally, the authors of system artifacts would write a suitable
abstract to help other developers working on the system.
Given the evolving nature of artifacts and the limited time
available to developers, this optimal path is not likely to
occur.

Alternatively, it might be possible to generate summaries
of project artifacts, saving developers effort and enabling
up-to-date summaries on-demand. In this paper, we inves-
tigate the possibility of automatic summary generation, fo-
cusing on one kind of project artifact, bug reports, to make
the investigation tractable. We chose to focus on these re-
ports as there are a number of cases in which developers
may make use of existing bug reports, such as when triaging
bugs (e.g., [3]) or when performing change tasks (e.g., [18]),
and these reports can often be lengthy, involving discussions
amongst multiple team members.

'mozilla.org, verified 05/09/05

The problem of summarizing discussions amongst multi-
ple people is similar to the problem of summarizing email
and meeting discussions (Section 2). We build on existing
work in this area, investigating whether existing machine-
learning based approaches (classifiers) for generating extrac-
tive summaries can produce accurate summaries for bug re-
ports. These approaches assign a zero or one value to each
sentence in the bug report based on features of the sentence;
sentences assigned a one value appear in a generated sum-
mary.

To enable this investigation, we had human annotators
create summaries for 36 bug reports, creating a corpus of
bug report data (Section 3). These bug reports included
both reports about defects and reports about enhancements.
We then applied existing classifiers trained on email, and
email and meeting data to produce summaries for reports
in the bug report corpus. We also trained a classifier spe-
cific to bug reports and applied it to the bug report corpus
(Section 4).Our bug report corpus serves as the training set
for the bug report classifier and the testing set for all three
classifiers.

We measured the effectiveness of these classifiers based
on several computed measures (Section 5). We found that
all three classifiers perform well above the chance level (a
random classifier). We also found that the bug report clas-
sifier, having a precision of more than 62%, out-performs the
other two classifiers in generating summaries of bug reports.
To evaluate whether a measure of 62% produces summaries
useful for developers, we had human judges evaluate the
goodness of a subset of the summaries produced by the bug
report classifier. On a scale of 1 (low) to 5 (high), the arith-
metic mean quality ranking of the generated summaries by
the human judges is 3.69 (£ 1.17). This average rating sug-
gests that the generated summaries can provide a sufficiently
accurate summary for developers, saving them the need in
all cases to read lengthy bug reports.

This paper makes three contributions.

e [t demonstrates that it is possible to generate accurate
summaries for one kind of project artifact, bug reports.

e It reports on the creation of a corpus of 36 human
annotated bug report data from four different systems.

e It demonstrates that while existing classifiers trained
for other conversation-based genres can work reason-
ably well, a classifier trained specifically for bug re-
ports scores the highest on standard measures.

2. RELATED WORK

With the growing number of electronically available infor-
mation, there is substantial interest and a substantial body
of work in the automated generation of summaries for that
information. Two basic approaches have been taken to gen-
erating summaries: extractive and abstractive [10]. An ex-
tractive approach selects a subset of existing sentences to
form the summary. An abstractive approach builds an in-
ternal semantic representation of the text and then applies
natural-language processing techniques to create a summary.
As the current state-of-the-art in abstractive techniques has
not yet supported meaningful application, we focus in this
paper on extractive techniques.

Extractive-based summarization approaches have been ap-
plied to many kinds of conversations, including meetings [21],

506

telephone conversations [22] and emails [16]. Some of these
approaches have used domain-specific characteristics, such
as email header information [19]. Murray and Carenini [13]
developed a summarizer for conversations in various modal-
ities that uses features inherent to all multi-party conversa-
tions. They applied this system to meetings and emails and
found that the general conversation system was competi-
tive with state-of-the-art domain-specific systems in both
cases. In this work, we investigate whether we can use this
general conversation system to generate accurate (or good)
summaries of bug reports.

While the format of bug reports vary depending upon the
system being used to store the reports, much of the informa-
tion in a bug report resembles a conversation. Beyond the
fixed fields with pre-defined values, such as the status field
that records whether the bug is open or closed or some other
state, a bug report usually involves free-form text, includ-
ing a title or summary, a description and a series of time-
stamped comments that capture a conversation between de-
velopers (and sometimes users) related to the bug. In one
common system, the Bugzilla bug reporting system?, the de-
scription and comments may be written but not edited, fur-
ther adding to the conversation nature of a report. This lack
of editable text also means the descriptions do not serve as
summaries of the current report contents. Figure 1 displays
part of a bug report from the KDE Bugzilla bug repository®
with 21 comments from 6 people; the description and each
comment can be considered a turn in a conversation.

As bug repositories contain substantial knowledge about
a software development, there has been substantial recent
interest in improving the use and management of this infor-
mation, particularly as many repositories experience a high
rate of change in the information stored [1]. For instance,
Anvik and colleagues [2] have shown how to provide recom-
menders for whom to assign a report whereas Runeson and
colleagues [17] and Wang and colleagues [20] have demon-
strated how to detect duplicate reports. While some of this
work has applied classifiers to the problems they intend to
solve, none has attempted to extract a meaningful summary
for developers.

Other efforts have considered how to improve the content
of bug reports. Ko and colleagues analyzed the titles of bug
reports to inform the development of tools for both reporting
and analyzing bugs [12]. Bettenburg and colleagues surveyed
a large number of open-source developers to determine what
factors constitute a good bug report and developed a tool
to assess bug report quality [4]. Developers in their study
noted that bug reports “are often used to debate the relative
importance of various issues”; it is this conversational nature
of reports that makes summaries valuable and that we hope
to exploit to produce the summaries.

3. BUG REPORT CORPUS

To be able to train, and judge the effectiveness, of an
extractive summarizer on bug reports, we need a corpus of
bug reports with good summaries. Optimally, we would have
available such a corpus in which the summaries were created
by those involved with the bug report, as the knowledge of
these individuals in the system and the bug should be the
best available. Unfortunately, such a corpus is not available

2yww.bugzilla.org, verified 05/09/09
Swww.kde.org, verified 05/09/05

Bug 188311 - The applet panel should not overlap applets
Product: amarok Version: unspecified
Component: ContextView Priority: NOR
Status: RESOLVED Severity: wishlist
Resolution: FIXED
Target: ---

Votes: 0
Description From mangus 2009-03-28 11:35:10

Version:
0os:
Installed from:

svn (using Devel)
Linux
Compiled sources

In amarok2-svn I like the the new contextview , but I found the

new bottom bar for managing applets annoying , as it covers parts
of other applets sometimes , like lyrics one , so that you miss a
part of it. Could be handy to have it appear and desappear
onmouseover.

thanks

Comment #1 From Dan 2009-03-28 14:53:55

The real solution is to make it not cover applets, not make it

appear/disappear on mouse over.

Comment #2 From Leo 2009-03-29 14:34:53

i dont understand your point, dan... how do we make it not cover

applets?

2009-03-29 16:32:22

Comment #3 From Dan

Thats your problem to solve :)

The toolbar should be like the panel in kde, it gets it's own area
to draw in (a strut in window manager terms). The applets should
not consider the space the toolbar takes up to be theirs to play in,
but rather end at the top of it.

Figure 1: An example of the conversational struc-
ture of a bug report (The beginning part of bug
188311 from the KDE bug repository).

as developers do not spend time writing summaries once a
bug is complete, despite the fact that the bug report may
be read and referred to in the future.

To provide a suitable corpus, we recruited ten graduate
students from the Department of Computer Science at the
University of British Columbia to annotate a collection of
bug reports. On average, the annotators had seven years of
programming experience. Half of the annotators had experi-
ence programming in industry and four had some experience
working with bug reports.

3.1 Annotation Process

We had each individual annotate a subset of bugs from
four different open-source software projects: Eclipse Plat-
form,*, Gnome,®, Mozilla and KDE. We chose a diverse
set of systems because our goal is to develop a summariza-
tion framework that can produce accurate results for a wide
range of bug repositories, not just bug reports specific to a
single project. Although the annotators did not have experi-
ence with these specific systems, we believe their experience
in programming allowed them to extract the gist of the dis-
cussions; no annotator reported being unable to understand
the content of the bug reports. The annotators were com-
pensated for their work.

The 36 bugs reports (nine from each project) chosen for
annotation have mostly conversational content. We avoided
selecting bug reports consisting mostly of long stack traces

Ywww.eclipse.org, verified 04/09/09
Swww.gnome . org, verified 04/09/09

507

Number of Bug Reports
©
T
!

5-9 10-14 15-19

Number of Comments

20-25

Figure 2: The distribution of bug reports in the cor-
pus with regard to the number of comments.

and large chunks of code as this content may be used but is
not typically read by developers. The reports chosen varied
in length: 25 reports (69%) had between five and fourteen
comments; the remaining eleven bugs (31%) had 15 to 25
comments each. Figure 2 shows the distribution of bug re-
ports based on the number of comments. Nine of the 36
bug reports (25%) were enhancements to the target system;
the other 27 (75%) were defects. There are a total of 2361
sentences in these 36 bug reports. This corpus size is similar
to that used in training an email classifier; the email corpus
contains 39 email threads and 1400 sentences [13].

Each annotator was assigned a set of bug reports from
those chosen from the four systems. For each bug report,
we asked the annotator to write an abstractive summary of
the report using their own sentences that was a maximum
of 250 words. We limited the length of the abstractive sum-
mary to motivate the annotator to abstract the given report.
The annotator was then asked to specify how each sentence
in the abstractive summary maps (links) to one or more sen-
tences from the original bug report by listing the numbers
of mapped sentences from the original report.

To aid the annotators with this process, the annotators
used a version of BC3 web-based annotation software® that
made it easier for them to manipulate the sentences of the
bug report. Figure 3 shows an example of part of an anno-
tated bug report; the summary at the top is an abstractive
summary written by an annotator with the mapping to the
sentences from the original bug report marked.

The bug report corpus is publicly available.”

3.2 Annotated Bugs

On average, the bug reports being summarized comprised
65 sentences. On average, the abstractive summaries created
by the annotators comprised just over five sentences with
each sentence in the abstractive summaries linked (on aver-

Swww.cs.ubc.ca/nest/lci/be3/framework.html, verified
04/09/09

"See www.cs.ubc.ca/labs/spl/projects/summarization.
html. The corpus contains additional annotations, including
an extractive summary for each bug report and labeling of

the sentences.

Summary: KDE - The applet panel should not overlap applets

Summary

In the anarok2-svn contextview the bottom bar sometimes obscure applet content.

[1.4,11.1,11.2,11.3] Applets should not be larger than the viewable area,

and should be

given an appropriate sizehint.[11.2] This bug was fixed in 2.1.1[20.1]

Description V (Collapse all)
From mangus

1.1 version: svn (using Devel)
1.2 OS: Linux
1.3 Installed from: Compiled sources

1.4 In amarok2-svn I like the the new contextview , but I found the new bottom bar for managing applets annoying ,
as it covers parts of other applets sometimes, like lyrics one , so that you miss a part of it.
1.5 Could be handy to have it appear and desappear onmouseover.

1.6 thanks

Comment 1V
From Dan

2.1 The real solution is to make it not cover applets, not make it apper/disapeer on mouse over.

Comment 2 V

Figure 3: A screenshot of the annotation software.

The bug report has been broken down into labeled

sentences. The annotator enters the abstractive summary in the text box. The numbers in the brackets are
sentence labels and serve as links between the abstractive summary and the bug report. For example, the
first sentence of the abstractive summary has links to sentences 1.4, 11.1, 11.2, 11.3 form the bug report.

Table 1: Abstractive summaries generated by anno-
tators.

mean | stdv

#sentences in the summary 5.36 2.43
#words in the summary 99.2 | 39.93
#linked sentences from the bug report | 16.14 | 9.73

age) to three sentences in the original bug report. Table 1
provides some overall statistics on the summaries produced
by the annotators.

A common problem of annotation is that annotators often
do not agree on the same summary. This reflects the fact
that the summarization is a subjective process and there is
no single best summary for a document—a bug report in this
paper. To mitigate this problem, we assigned three annota-
tors to each bug report. We use the kappa test to measure
the level of agreement between the annotators [9]. The result
of the kappa test (k value) is 0.41 for our bug report anno-
tations, showing a moderate level of agreement. We asked
each annotator, at the end of annotating each bug report,
to complete a questionnaire about properties of the report.
The annotators, in the answers to the questionnaires, rated
(with 1 low and 5 high):

e the level of difficulty of summarizing the bug report to
be 2.68 (£ 0.86),

e the amount of irrelevant and off-topic discussion in the
bug report to be 2.11 (£ 0.66), and

508

e the level of project-specific terminology used in the bug
report to be 2.68 (£0.83).

4. SUMMARIZING BUG REPORTS

The bug report corpus provides us a basis on which to
experiment with producing bug report summaries automat-
ically. We set out to investigate two questions:

1. Can we produce good summaries with existing conver-
sation-based classifiers?

2. How much better can we do with a classifier specifically
trained on bug reports?

The existing conversation-based classifiers we chose to in-
vestigate are trained on conversational data other than bug
reports. The first classifier, which we refer to as EC, was
trained on email threads [13]. We chose this classifier as
bug report conversations share similarity with email threads,
such as being multi-party and having thread items added at
differing intervals of time. This classifier was trained on
a subset of the publicly available Enron email corpus [11],
which consists of 39 annotated email threads (1400 sentences
in total).

The second classifier, which we refer to as EMC, was
trained on a combination of email threads and meetings [13].
We chose this classifier because some of the characteristics
of bug reports might be more similar to meetings, such as
having concluding comments at the end of the conversation.
The meetings part of the training set for EMC is a sub-

set of the publicly available AMI meeting corpus [6], which
includes 196 meetings.

The EC and EMC classifiers are appealing to use be-
cause of their generality. If these classifiers work well for
bug reports, it offers hope that general classifiers might be
applicable to software project artifacts without training on
each specific kind of software artifacts (which can vary be-
tween projects) or on project-specific artifacts, lowering the
cost of producing summaries.

However, unless these classifiers produce perfect summaries,
the question of how good of a summary can be produced
for bug reports remains open unless we consider a classifier
trained on bug reports. Thus, we also chose to train a third
classifier, BRC, using the bug report corpus we created.
To form the training set for BRC, we combined the three
human annotations for each bug report by scoring each sen-
tence of a report based on the number of times it has been
linked by annotators. For each sentence, the score is be-
tween zero, when it has not been linked by any annotator,
and three, when all three annotators have a link to the sen-
tence in their abstractive summary. A sentence is considered
to be part of the extractive summary if it has a score of two
or more. For each bug report, the set of sentences with a
score of two or more (a positive sentence) is called the gold
standard summary. For the bug report corpus, gold stan-
dard summaries include 465 sentences, which is 19.7% of all
the sentences in the corpus, and 28.3% of all words in the
corpus.

As we have only the bug report corpus available for both
training and testing the bug report classifier, we use a cross-
validation technique when evaluating this classifier. Specif-
ically, we use a leave-one-out procedure so that the classi-
fier used to create a summary for a particular bug report is
trained on the remainder of the bug report corpus.

All three classifiers investigated are logistic regression clas-
sifiers. Instead of generating an output of zero or one, these
classifiers generate the probability of each sentence being
part of an extractive summary. To form the summary, we
sort the sentences into a list based on their probability val-
ues in descending order. Starting from the beginning of this
list, we select sentences until we reach 25% of the bug re-
port word count. The selected sentences form the generated
extractive summary. We chose to target summaries of 25%
of the bug report word count because this value is close
to the word count percentage of gold standard summaries
(28.3%). All three classifiers were implemented using the
Libliner toolkit.®

4.1 Conversation Features

The classifier framework used to implement EM, EMC
and BRC can learn based on 24 different features. We hy-
pothesize that the features useful for the EM and EMC
classifiers are also relevant to the summarization of bug re-
ports since these reports exhibit a conversational structure.
The features are based on representing a bug report as a con-
versation comprised of turns between multiple participants.

The 24 features can be categorized into four major groups.

e Structural features are related to the conversational
structure of the bug reports. Examples include the
position of the sentence in the comment and the posi-

Swww.csie.ntu.edu.tw/"cjlin/liblinear/, verified

04/09/09

509

tion of the sentence in the bug report.

e Participant features are directly related to the con-
versation participants. For example if the sentence is
made by the same person who filed the bug report.

e Length features include the length of the sentence nor-
malized by the length of the longest sentence in the
comment and also normalized by the length of the
longest sentence in the bug report.

e Lexical features are related to the occurrence of unique
words in the sentence.

The detailed description of features can be found in [13].

5. EVALUATION
To compare the EC', EMC and BRC classifiers, we have

used several measures that compare summaries generated
by the classifiers to the gold standard summaries formed
from the human annotation of the bug report corpus (Sec-
tion 4). These measures assess the quality of each classifier
and enable the comparison of effectiveness of the different
classifiers against each other.

However, these measures do not tell us whether the in-
tended end users of the summaries—software developers—
consider the generated summaries as representative of the
original bug report. To check the performance of the classi-
fiers from a human perspective, we also report on an evalu-
ation in which we asked human judges to evaluate the good-
ness of a set of generated summaries against the original bug
reports.

5.1 Comparing Base Effectiveness

The first comparison we consider is whether the EC'; EMC
and BRC classifiers are producing summaries that are bet-
ter than a random classifier in which a coin toss is used to
decide which sentences to include in a summary. We perform
this comparison by plotting the receiver operator character-
istic (ROC) curve and then computing the area under the
curve (AUROC) [8].

For this comparison, instead of using the 25% word count
to generate extractive summaries, we investigate different
probability thresholds. As described in Section 4, the output
of the classifier for each sentence is a value between zero and
one showing the probability of the sentence being part of the
extractive summary. To plot a point of ROC curve, we first
choose a probability threshold. Then we form the extractive
summaries by selecting all the sentences with probability
values greater than the probability threshold.

For summaries generated in this manner, we compute the
false positive rate (FPR) and true positive rate (T'PR),
which are then plotted as a point in a graph. For each sum-
mary, T'P R measures how many of the sentences present in
gold standard summary (GSS) are actually chosen by the
classifier.

#sentences selected from the GSS
#sentences in GSS

TPR=

F PR computes the opposite.

#sentences selected that are not in the GSS
#sentences in the bug report that are not in the GSS

FPR =

1 T

BRC
Random Classifier

TPRate

0 ’/’ L L L L
04 06 08 1

FPRate

Figure 4: ROC plot for BRC classifier.

The area under a ROC curve (AUROC) is used as a mea-
sure of the quality of a classifier. A random classifier has
an AUROC value of 0.5, while a perfect classifier has an
AUROC value of 1. Therefore, to be considered effective, a
classifier’s AUROC value should be somewhere in between,
preferably close to 1.

Figure 4 shows the ROC curve for the BRC classifier.
The diagonal line is representative of a random classifier.
The area under the curve (AUROC) for BRC' is equal to
0.722, indicating that this classifier performs better than a
random classifier. We also computed the AUROC values for
EC and EMC. The values are 0.719 and 0.689 respectively
suggesting that each of the classifiers has the same level of
efficiency compared to a random classifier.

5.2 Comparing Classifiers

AUROC is a measure of the general effectiveness of the
classifiers. When the summaries are generated with a pre-
defined length—25% in this paper—we need other measures
to compare the classifiers.

To investigate whether any of EC, EMC or BRC' work
better than the other two based on our desired 25% word
count summaries, we compared them using the standard
evaluation measures of precision, recall, and f-score. We
also used pyramid precision, which is a normalized evalua-
tion measure taking into account the multiple annotations
available for each bug report.

5.2.1 F-score

F-score combines the values of two other evaluation mea-
sures: precision and recall. Precision measures how often
a classifier chooses a sentence from the gold standard sum-
maries (GSS) and is computed as follows.

#sentences selected from the GSS

#selected sentences

precision =

Recall measures how many of the sentences present in a
gold standard summary are actually chosen by the classifier.
For a bug report summary, the recall is the same as the TPR
used in plotting ROC' curves (Section 5.1).

As there is always a trade-off between precision and recall,
the F-score is used as an overall measure.

510

Pyramid Precision

Bugt#

Figure 5: Pyramid precision for all classifiers.

precision - recall

Fscore =2 —
precision + recall
Figure 6 shows the values of F-score for the three classifiers
across all the bug reports. In this plot, the bug reports
have been sorted based on the values of the F-score for the
summaries generated by BRC. This figure shows that the
best F-score typically occurs with the BRC classifier.

5.2.2 Pyramid Precision

The pyramid evaluation scheme by Nenkova and Passon-
neau [15] was developed to provide a reliable assessment of
content selection quality in summarization where there are
multiple annotations available. We used the pyramid pre-
cision scheme of Carenini et. al [5] inspired by Nenkova’s
pyramid scheme.

For each generated summary of a given length, we count
the total number of times the sentences in the summary
were linked by annotators. Pyramid precision is computed
by dividing this number by the maximum possible total for
that summary length. For example, if an annotated bug
report has 4 sentences with 3 links and 5 sentences with
2 links, the best possible summary of length 5 has a total
number of links equal to (4 x 3)+ (1 x 2) = 14. The pyramid
precision of a generated summary of length 5 with a total of
8 links is therefore computed as

Pyramid Precision = % =~ 0.57

Figure 5 shows the values of pyramid precision for the
three classifiers across all the bug reports in the corpus. The
bug reports have been sorted based on the values of the
pyramid precision for the summaries generated by BRC.
The figure shows that BRC' has better precision values for
most of the bug reports.

5.2.3 Summary

Figure 5 and Figure 6 show that BRC' out-performs the
other two classifiers for most of the bug reports. Table 2
shows the values of precision, recall, F-score, and pyramid
precision for each classifier averaged over all the bug reports.
To investigate whether the bug report classifier (BRC) is

F-score

Bugt#

Figure 6: F-score plot for all classifiers.

Table 2: Evaluation measures.
Classifier | Pyramid | Precision | Recall | F-Score
Precision
BRC .63 57 .35 4
EC .54 43 3 .32
EMC .53 A7 .23 .29

significantly better than the other two classifiers (EC' and
EMC), we performed four paired t-tests: one to see if the
pyramid precision of BRC' is significantly better that that
of EC, one to see if the pyramid precision of BRC' is sig-
nificantly better that that of EMC, and so on. The results
confirm that the bug report classifier (BRC) out-performs
the other two classifiers with statistical significance (where
significance occurs with p < .05).

The classifier trained on emails (EC) and the classifier
trained on emails and meetings (EMC) have similar perfor-
mance. The paired t-test confirms that there is no significant
difference.

5.3 Feature Selection Analysis

All of the three classifiers used in our study, EC, EMC),
and BRC, use a set of 24 features to generate summaries of
bug reports. The values of these features for each sentence
are used to compute the probability of the sentence being
part of the summary. To see which features are informative
for generating summaries, we perform a feature selection
analysis.

For this analysis, we compute the F-score ® value for each
of the 24 features using the approach of [7]. This score is
commonly used to compute the discriminability of features
in supervised machine learning. The score depends only on
the set of features and the training data and is independent
of the classifier. Features with higher F-score are the most
informative in discriminating between important sentences,
which should be included in the summary, and other sen-
tences, which need not be included in the summary.

9This score is computed for the feautures and is differ-
ent from the F-score computed for the summaries in Sec-
tion 5.2.1.

511

Table 3: Features key.

Feature ID Description

MXS max Sprob score

MNS mean Sprob score

SMS sum of Sprob scores

MXT max Tprob score

MNT mean T'prob score

SMT sum of T'prob scores

TLOC position in turn

CLOC position in conv.

SLEN word count, globally normalized
SLEN2 word count, locally normalized
TPOS1 time from beg. of conv. to turn
TPOS2 time from turn to end of conv.
DOM participant dominance in words
COS1 cos. of conv. splits, w/ Sprob
CcOS2 cos. of conv. splits, w/ Tprob
PENT entro. of conv. up to sentence
SENT entro. of conv. after the sentence
THISENT entropy of current sentence
PPAU time btwn. current and prior turn
SPAU time btwn. current and next turn
BEGAUTH s first participant (0/1)

CWS rough ClueWordScore

CENT1 cos. of sentence & conv., w/ Sprob
CENT?2 cos. of sentence & conv., w/ Tprob

Table 3 provides a short description of the features con-
sidered. Some descriptions in the table refer to Sprob. Infor-
mally, Sprob provides the probability of a word being uttered
by a particular participant based on the intuition that cer-
tain words will tend to be associated with one conversation
participant due to interests and expertise. Other descrip-
tions refer to Tprob, which is the probability of a turn given
a word, reflecting the intuition that certain words will tend
to cluster in a small number of turns because of shifting
topics in a conversation. Full details on the features are
provided in [13].

Figure 7 shows the values of F-score computed for the
features used by the classifiers to summarize bug reports.
The results show that the length features (SLEN & SLENT1)
are among the most helpful. Several lexical features are also
helpful: CWS, CENT1, CENT2, SMS, & SMT. '° These
results suggest that we may be able to train more efficient
classifiers by combining lexical and length features of the
conversation.

5.4 Human Evaluation

The generated summaries are intended for use by software
developers. Does a classifier with pyramid precision of 0.63
produce summaries that are useful for developers? To in-
vestigate whether the summaries are of sufficient quality for
human use, we set up an evaluation of the generated sum-
maries of the BRC classifier with a group of eight human
judges. We chose to focus on the BRC' classifier since it had
performed the best based on the earlier measures.

Eight of our ten annotators agreed to evaluate a num-
ber of machine generated summaries. We asked the eight
judges to evaluate a set of eight summaries generated by
the BRC classifier. Each summary was evaluated by three
different judges. The human judges were instructed to read
the original bug report and the summary before starting the
evaluation process. Figure 8 provides an example of a gener-
ated extractive summary the judges were asked to evaluate;

9CWS measures the cohesion of the conversation by com-
paring the sentence to other turns of the conversation.

0.09 T

éug ‘Rep;ort baté !
0.08 |- B
0.07 | B

0.06 ,

0.05 1

F-score

0.04 1

0.03 1

0.01 1

& O G oS X% o, 2%, 9o M, 12 gy R S S, S X
% AN 95,0000 %5 s A< e ’%0’%0@1/,\%,&3720% O,
U 7V

Features

Figure 7: Feature F-scores for the bug report corpus.

a portion of the original bug appears earlier in Figure 1.
We asked each judge to rank, using a five-point scale with
five the high value, each bug report summary based on four
statements (mean and standard deviations are provided in
parentheses following the statement):

1. The important points of the bug report are represented
in the summary. (3.54 £ 1.10)

2. The summary avoids redundancy. (4.00 £+ 1.25)

3. The summary does not contain unnecessary informa-
tion. (3.91 £ 1.10)

4. The summary is coherent. (3.29 + 1.16)

An evaluation of meeting data summarized by multiple ap-
proaches uses similar statements to evaluate the goodness of
the generated summaries [14].

We ensured in this judging process that the bug reports
were assigned to judges who had not annotated the same
reports during the annotation process. We also took care to
choose summaries with different values of pyramid precision
and F-score so as to not choose only the best examples of
generated summaries for judging.

5.5 Threats

The primary threats to the evaluations we have conducted
are the size of the bug report corpus and the annotation by
non-experts in the projects. While the size of the corpus is
sufficient for initial experimentation with these approaches,
we are limited in the size of the training set that can be used
to train BRC and we are unable to use a separate set of bug
reports for training and testing.

Optimally, we would have had summaries created for the
reports by experts in the projects. Summaries created by
experts might capture the meaning of the bug reports bet-
ter than was possible by non-experts. On the other hand,
summaries created by experts might rely on knowledge that
was not in the bug reports, potentially creating a standard
that would be difficult for a classifier to match. This risk
is mitigated by the experimental setup that requires a map-
ping from abstractive to extractive sentences. By assigning
three annotators to each bug report and by using agreement

512

between two to form the gold standard summaries, we have
attempted to mitigate the risk of non-expert annotators.

For the human evaluation, the primary threat is the use of
non-experts who may not be the best judges of summaries of
the reports. Another threat is not asking the human judges
about the properties of interest through multiple questions,
which may have allowed a better determination of the judges
opinions on those properties. Finally, the judges may have
wanted to please the experimenters. In future studies, we
will consider interspersing classifier-generated and human-
generated summaries to reduce this risk.

6. DISCUSSION

With this work, we have shown that it is possible to gen-
erate summaries for a diverse set of bug reports with reason-
able accuracy as judged both against gold summaries and by
human judges. The ability to produce summaries opens up
the possibility of using a summary generator to support the
work of software developers. We discuss these possibilities
as well as consider ways to further improve the summaries
produced.

6.1 Using a Bug Report Summary

Automatically generated bug report summaries could aid
a software developer in several ways. During bug report
triage activities, a developer (triager) must often consult
other reports. For instance, the triager must typically de-
termine if a new incoming report is a duplicate of existing
reports. As this determination can be difficult for large,
fast-changing repositories, recommenders have been built
to suggest to the triager a set of existing bug reports to
consider as duplicates (e.g., [17, 20]). Assessing these rec-
ommendations to determine which are true duplicates can
be time-consuming as the determination typically involves
reading much, if not all, of the report. An automatically
produced summary of each existing report could ease this
task by greatly reducing the amount of text the triager must
read, understand and consider.

As another example, previous work in our research group
developed a recommender to suggest to a developer perform-
ing an evolution task on a system, change tasks (described
by bug reports) that have been previously completed which
might guide the developer [18]. As with the duplicate bug
case, the developer must again wade through a substantial
amount of text to determine which bug report might be rel-
evant. Summaries could also ease this process.

Overall, summaries can make it possible for a developer
to use the body of knowledge about the project that is cap-
tured in the repository. The ability to produce summaries
automatically opens up new possibilities in making such rec-
ommenders effective and practical to use. In future work, we
plan to investigate whether the provision of such summaries
can provide these benefits.

6.2 Summarizing Other Project Artifacts

Bug reports are not the only artifacts with a substantial
amount of text in a software development project. Require-
ments and design documents can contain text describing the
domain, discussions of alternative approaches and rationale
for why decisions have been made. Even source code, which
is typically not considered to contain much text, can include
many sentences about decisions or how a piece of code works.
Given our success in producing summaries of bug reports,

SUMMARY: The applet panel should not overlap applets

In amarok2-svn I like the the new contextview , but I found the new bottom bar for
managing applets annoying , as it covers parts of other applets sometimes , like
lyrics one , so that you miss a part of it.

The real solution is to make it not cover applets, not make it appear/disappear on
mouse over.

i dont understand your point, dan... how do we make it not cover applets?

Applets should not be larger than the viewable area, if there’s an applet above it,

then the lower applet should get a smaller sizehint, and resize if necessary when
it’s the active applet (and therefore the only one on the screen)

The bug that is being shown here is the fact that you cannot yet resize your ap-
plets, and as such we also don’t set default sizes sanely.

0f course :) Just thought i should point out that the feature is not yet completed
- the polish that’s gone into it lately could seem like an indication of feature
completion, and as such it would seem the prudent course to inform you that that is
not the case :)

Applets should not be larger than the viewable area, if there’s an applet above it,
then the lower applet should get a smaller sizehint, and resize if necessary when

it’s the active applet (and therefore the only one on the screen)

Figure 8: An extractive summary generated by BRC for Bug 188311 from the KDE bug repository.

we plan to investigate the generation of summaries for other
text that appears in software development projects. In par-
ticular, we are interested in investigating whether textual
summarization techniques can be used to help explain fea-
tures implemented in source code.

6.3 Improving a Bug Report Summarizer

The bug report classifier we trained produces reasonable
summaries. Although we have trained and evaluated the
classifier across reports from four systems, we do not know
whether the classifier will produce good summaries for re-
ports from systems on which it was not trained. We plan
to investigate the generality of the summarizer to other bug
reporting systems.

Another possibility for improving the accuracy of a bug
report summarizer is to augment the set of features used.
For instance, comments made by people who are more active
in the project might be more important, and thus should be
more likely included in the summary.

As part of the annotation process, we also gathered in-
formation about the intent of sentences, such as whether
a sentence indicated a 'problem’; ’suggestion’, ’fix’; ’agree-
ment’, or 'disagreement’. These labels might also be used
to differentiate the importance of a sentence for a summary.
We leave the investigation of these intentions to future re-
search as we do not yet have the ability to automatically
label the sentences for the test data.

It is also still an open question whether extractive sum-
marization is the most appropriate choice for bug reports
or whether better results could be obtained through an ab-
stractive summarizer. We leave this determination to future
work.

513

7. SUMMARY

Researchers rely on good summaries to be available for
papers in the literature. These summaries are used for sev-
eral purposes, including providing a quick review of a topic
within the literature and selecting the most relevant papers
for a topic to peruse in greater depth. Software develop-
ers must preform similar activities, such as understanding
what bugs have been filed against a particular component
of a system and determining why particular design decisions
have been made as recorded in design documents and else-
where. However, developers must perform these activities
without the benefit of summaries, leading them to either
expend substantial effort to perform the activity thoroughly
or resulting in missed information.

In this paper, we have investigated the automatic genera-
tion of one kind of software artifact, bug reports, to provide
developers with the benefits others experience daily in other
domains. We found that existing conversation-based extrac-
tive summary generators can produce summaries for reports
that are better than a random classifier. We also found that
an extractive summary generator trained on bug reports pro-
duces the best results. The human judges we asked to evalu-
ate reports produced by the bug report summary generator
agree that the generated extractive summaries contain im-
portant points from the original report and are coherent.
This work opens up new possibilities to improve the effec-
tiveness of existing systems for recommending duplicate bug
reports and for recommending similar changes completed in
the past for a current software evolution task. It also opens
up the possibility of summarizing other software project ar-
tifacts to enable developers to make better use of the rich
knowledge base tracked for most software developments.

Acknowledgments

Thanks to Giuseppe Carenini and Raymond Ng for useful
discussions on summarization and to Jan Ulrich for helping
with the annotation software. This research is supported by
NSERC. Thanks also to the annotators for helping to create
the bug report corpus.

8.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

REFERENCES
J. Anvik, L. Hiew, and G. C. Murphy. Coping with an

open bug repository. In Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology eXchange,
pages 35—-39, New York, NY, USA, 2005. ACM.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In ICSE ’06: Proceedings of the 28th
International Conference on Software Engineering,
pages 361-370, New York, NY, USA, 2006. ACM.

J. K. Anvik. Assisting bug report triage through
recommendation. PhD thesis, University of British
Columbia, 2007.

N. Bettenburg, S. Just, A. Schroter, C. Weiss,

R. Premraj, and T. Zimmermann. What makes a good
bug report? In SIGSOFT ’08/FSE-16: Proceedings of
the 16th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, pages
308-318, New York, NY, USA, 2008. ACM.

G. Carenini, R. T. Ng, and X. Zhou. Summarizing
emails with conversational cohesion and subjectivity.
In ACL-08: HLT: Proceedings of the 46th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
353-361, New York, NY, USA, 2008. ACM.

J. Carletta, S. Ashby, S. Bourban, M. Flynn, T. Hain,
J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal,
G. Lathoud, M. Lincoln, A. Lisowska, and M. W.

P. D. Reidsma. The ami meeting corpus: A
pre-announcement. In MLMI ’05: Proceedings of
Machine Learning for Multimodal Interaction: Second
International Workshop, pages 28-39, 2005.

Y.-W. Chen and C.-J. Lin. Combining svms with
various feature selection strategies. In Feature
eztraction, foundations and applications, pages
315-324. Springer, 2006.

T. Fawcett. Roc graphs: Notes and practical
considerations for researchers. Technical report, HP
Laboratories, 2004.

J. Fleiss et al. Measuring nominal scale agreement
among many raters. Psychological Bulletin,
76(5):378-382, 1971.

U. Hahn and I. Mani. The challenges of automatic
summarization. Computer, 33(11):29-36, 2000.

B. Klimt and Y. Yang. Introducing the enron corpus.
In CEAS ’0/: Proceedings of the First Conference on
Email and Anti-Spam, 2004.

A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic
analysis of how people describe software problems.
VL-HCC °06: Proceedings of the 2006 IEEE
Symposium on Visual Languages and Human-Centric
Computing, 0:127-134, 2006.

G. Murray and G. Carenini. Summarizing spoken and
written conversations. In EMNLP °08: Proceedings of
the 2008 Conference on Empirical Methods on Natural
Language Processing, 2008.

514

(14]

(15]

(16]

18]

(19]

20]

21]

(22]

G. Murray, S. Renals, J. Carletta, and J. Moore.
Evaluating automatic summaries of meeting
recordings. In MTSE ’05: Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics, Workshop on Machine Translation and
Summarization Evaluation, pages 39-52. Rodopi, 2005.
A. Nenkova and R. Passonneau. Evaluating content
selection in summarization: the pyramid method. In
HLT-NAACL ’04: Proceedings of the Human
Language Technology Conference of the North
American Chapter of the Association for
Computational Linguistics, 2004.

O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen.
Summarizing email threads. In HLT-NAACL °04:
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics, 2004.

P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In ICSE ’07: Proceedings of the
29th International Conference on Software
Engineering, pages 499-510, Washington, DC, USA,
2007. IEEE Computer Society.

D. Cubrani¢ and G. C. Murphy. Hipikat:
recommending pertinent software development
artifacts. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 408-418, Washington, DC, USA, 2003. IEEE
Computer Society.

S. Wan and K. McKeown. Generating overview
summaries of ongoing email thread discussions. In
COLING °04: Proceedings of the 20th International
Conference on Computational Linguistics, pages
549-556, Morristown, NJ, USA, 2004. Association for
Computational Linguistics.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In ICSE
’08: Proceedings of the 30th International Conference
on Software Engineering, pages 461-470, New York,
NY, USA, 2008. ACM.

K. Zechner. Automatic summarization of open-domain
multiparty dialogues in diverse genres. Computational
Linguistics, 28(4):447-485, 2002.

X. Zhu and G. Penn. Summarization of spontaneous
conversations. In Interspeech '06-ICSLP: Proceedings
of the 9th International Conference on Spoken
Language Processing, pages 1531-1534, 2006.

