
Mapping Composition Patterns to AspectJ and Hyper/J

Siobhán Clarke
Department of Computer Science,

Trinity College,
Dublin 2, Republic of Ireland.

+353 1 6083690
siobhan.clarke@cs.tcd.ie

Robert J. Walker
Department of Computer Science,

University of British Columbia,
201-2366 Main Mall,

Vancouver, BC, Canada V6T 1Z4.
walker@cs.ubc.ca

ABSTRACT

In earlier work, we demonstrated the successful
separation of the designs of crosscutting concerns into
composition patterns[1]. In this paper, we demonstrate
the mapping of crosscutting designs to two
programming models that support similar approaches to
separation within code—AspectJ [7] and Hyper/J [5].
We first illustrate the design of the Observer pattern
using the composition pattern approach, and then map
that design to the appropriate code.

1 INTRODUCTION

Requirements that have a crosscutting impact on
software elements present well-documented difficulties
for software development [3, 4, 5, 7]. The difficulties
impact comprehensibility, traceability, evolvability and
reusability of software artefacts. These problems are
present throughout the development lifecycle, and must
therefore be addressed across the lifecycle.

Composition patterns(CPs) present a means for
separating the designs of crosscutting requirements into
reusable, extensible design models. With CPs, the
constraints and interactions of crosscutting behavioural
elements may be designed independently of the
elements with which they may interact or constrain.
Using CPs, traceability to crosscutting requirements’
specifications is achieved. In order to maintain the
traceability from requirements to code, it is necessary to
be able to map CP designs to code. Achieving such a
feat would support the encapsulation of all the software
artefacts associated with a crosscutting requirement into
a truly reusable package.

In this paper, we demonstrate how design constructs
from composition patterns may be mapped to different
programming paradigms, with varying degrees of
success and evolvability. Section 2 illustrates the design
of the Observer pattern [2] using composition patterns.
Section 3 maps this design to AspectJ, while Section 4

maps the design to Hyper/J. Section 5 presents
conclusions and further discussion.

2 COMPOSITION PATTERNS

As described in [1], encapsulation of the design of
crosscutting behaviour in a reusable way is achieved
using a combination of an extension to UML templates
and composition semantics defining how both structural
and behavioural design elements may be merged. An
inherent requirement of a design approach to specifying
crosscutting elements is to support reasoning about
those elements on which they may have an impact. This
is where templates are used. A template parameter in a
CP denotes a placeholder element to be replaced by a
“real” element in a composed design. Where a template
parameter is an operation, merge semantics uses
delegation to ensure the execution of both the
crosscutting behaviour and the real operation’s
behaviour. Notationally, a UML-style template box is
placed on the top-right corner of a CP package, which
lists all the templates defined within the CP. The means
to specify how to compose the CP with base design(s) is
provided by acomposition relationship. A composition
relationship between a CP and base design(s) defines
the elements that replace the templates in the CP,
thereby specifying how the CP and base design are to be
composed (ormerged).

In this section, we illustrate the design of a reusable CP
to support Observer, a base design supporting a small
Library, and a specification of how to compose the two.

Observer Composition Pattern

The Observer pattern describes the collaborative
behaviour between a Subject and multiple Observers.
Observer objects register an interest in Subject objects,
so that the observers are notified of any change in state
in those subjects in which they are interested. From a
composition pattern perspective, this requires both
structural and behavioural template design elements.
We define anObserver CP with two pattern classes
(classes that are templates to be replaced by real classes
during composition with a base design).Subject is

defined as a pattern class representing the class of
objects whose changes in state are of interest to other
objects, andObserver is defined as a pattern class
representing the class of objects interested in aSubject’s
change in state (see Fig. 1).

<Subject, _aStateChange(..)>
<Observer, update(), _start(.., Subject, ..), _stop(.., Subject, ..)>

«subject»
Observer

Vector

Subject

+ addObserver(Observer)
+ removeObserver(Observer)
+ aStateChange()
_aStateChange()
- notify()

1 observers

Observer

+ update()
+ start(Subject)
_start(Subject)
+ stop(Subject)
_stop(Subject)

Fig 1: Observer CP Structure

This CP also contains three interaction specifications for
behaviour that crosscuts template operations. Fig. 2
illustrates the behaviour required for notifying observers
of changes in state._aStateChange() is a template
operation whose behaviour is supplemented with
notification of all observers. This operation has been
prepended with an underscore to denote that delegation
semantics apply, and must be replaced by some
operation in any class that replacesSubject. notify()
calls another template operation,update(), which must
be replaced by some operation in any class that replaces
Observer. Note that _aStateChange() and update()
appear in the template box in Fig. 1.

aSubject : Subject

aStateChange()
_aStateChange()

notify()

anObserver : Observer

update()

action aSubject :: notify()

post all observers in aSubject.observers

 are sent update() event

Fig 2: Notifying Observer s of State Changes

The Observer CP also supports specification of
crosscutting behaviour relating to both initiating and
terminating an observer’s interest in a subject’s changes

in state. Two template operations have been defined,
_start(.., Subject, ..) and_stop(.., Subject, ..), where each
is replaced by operations denoting the start and end,
respectively, of an observer’s interest in a subject (see
Figs. 3 & 4). Each of the replacing operations must have
a subject defined as an input parameter.

anObserver:Observer

start(.., aSubject, ..)

aSubject:Subject

_start(.., aSubject, ..)

addObserver(anObserver)

Fig 3: Initiating an Observer ’s Interest

anObserver:Observer

stop(.., aSubject, ..)

aSubject:Subject

_stop(.., aSubject, ..)

removeObserver(anObserver)

Fig 4: Terminating an Observer ’s Interest

Base Library Design

BookCopy

+ borrow()
+ return()

B ookM anager

+ add(Book)
+ remove(Book)
+ search(Book)
+ addView(BookCopy)
+ removeView(BookC opy)
+ updateStatus(BookCopy)

«subject»
Library

Book

+ name
+ author
+ ISBN

+ getName()
+ getAuthor()
+ getISBN()

copie s *

Location

+ addBook()
+ removeBook()

+ roomNumber
+ shelfNumber

Fig. 5: Base Library Design

The base design on which the aspect examples are
applied is a small library design (Fig. 5). This library
has books of which all copies are located in the same
room and shelf. A book manager handles the
maintenance of the association betweenbooks and their
locations. Thebook manager alsomaintains an up-to-
date view of the lending status ofbook copies.

Pattern Binding to Base Design

The composition of the Library and Observer
composition patterns is specified by a composition
relationship between the two. Using abind[] attachment
to the relationship, the class(es) acting as subject, and
the class(es) acting as observer may be defined. In this
example, there is only one of each (see Fig. 6),
BookCopy andBookManager, respectively.

«subject»
Observer

bind[<BookCopy, {meta:isQuery=false}>,
<BookManager, updateStatus(), addView(), removeView()>]

«subject»
Library

<Subject, _aStateChange(..)>
<Observer, update(), _start(.., Subject, ..), _stop(.., Subject, ..)>

Fig 6: ComposingObserver with Library

In this example, note also how the meta-properties of a
design’s elements may be queried to assess an element’s
eligibility to join a set of replacing elements. In this
example, the_aStateChange() template operation is
replaced with all operations withinBookCopy that have
been defined as being non-query—i.e., those operations
that affect a change in state that may be of interest to an
observer. The keywordmeta within the set parameter
specification denotes that a UML meta-property is
queried, and only those operations withisQuery=false
will replace _aStateChange() for the purposes of
Observer.

3 MAPPING OBSERVER TO ASPECTJ

The question of how to map composition patterns to
AspectJ depends on how faithfully one wishes to
represent the design-level entities. There are two chief
scenarios:

1. Represent both a CP and its binding specification as
a single aspect.

2. Maintain separation of a re-usable CP from its
binding specification by mapping the CP to an
abstract aspect, and the information from thebind[]
specification with a base design to a concrete aspect
that extends the abstract aspect.

Scenario 1 was the approach demonstrated briefly
in [1]. Here, we examine a mapping to AspectJ via each
option in turn.

Concrete Aspects Only

As in [1], we map the design subjectObserver to a
single aspect. We declare anintroduction for each

class being bound to the CP, namelyBookManager and
BookCopy, and declare the non-template methods and
attributes of their associated template classes,
respectively Observer and Subject, within each
introduction .

aspect Observer {
introduction BookManager {
}

introduction BookCopy {
Vector observers;

void addObserver(BookManager bm) {
}

void removeObserver(BookManager bm) {
}

void notify() {
// Post: all observers in
// BookCopy.observers are sent
// updateStatus() event

}
}

pointcut start(BookCopy bc,
BookManager bm):

instanceof(bm) &&
receptions(void addView(bc));

pointcut stop(BookCopy bc,
BookManager bm):

instanceof(bm) &&
receptions(void removeView(bc));

pointcut aStateChange(BookCopy bc):
instanceof(bc) &&
(receptions(void return()) ||

receptions(void borrow()));

static after(BookCopy subject,
BookManager observer):

start(subject, observer) {
subject.addObserver(observer);

}

static before(BookCopy subject,
BookManager observer):

stop(subject, observer) {
subject.removeObserver(observer);

}

static after(BookCopy subject):
aStateChange(subject) {
subject.notify();

}
}

A pointcut is defined for each of the template methods
_aStateChange(), _start(), and_stop(). Note that each
of these template methods is subject tomerge semantics

(where supplementary functionality is being merged
with them) as indicated by the underscore prepending
each. Template methods not supplemented with
additional behaviour simply have all occurrences
replaced with the actual method bound to them (i.e.,
update() is replaced by updateStatus() in this
example), rather than having a pointcut defined for
them.

Each pointcut is defined to represent the joinpoints that
are depicted by the initial message received in the
interaction diagram associated with each template
method supplemented with crosscutting behaviour.
Each can simply be mapped to aninstanceof()
designator, indicating the receiving object, and a
receptions() designator, indicating the method being
called. The formal parameters of the pointcut can be
determined by looking at the template box specification;
for each template operation, the instance of its pattern
class and any formal parameters it explicitly declares
must be exposed as formals in the pointcut. For
example, the pointcut for_stop() must declare a formal
parameter to represent the instance ofObserver on
which _stop() is being called plus another for the
argument of typeSubject that gets passed to it. The
isQuery=false constraint in thebind[] specification
needs to be translated into the actual methods for which
this constraint holds (which can be determined from the
design of the class being bound), since Java has no
support for the UML notion of anisQuery property.

Finally, a piece of advice is declared for each interaction
diagram associated with a supplemented template
method. For example, after the concrete method bound
to _start() is received by an instance ofObserver
(BookManager), this instance registers itself as an
Observer of the Subject (BookCopy) passed as a
parameter.

As this example illustrates, by using a combination of
the information in a CP with its base design
composition and binding specification, mapping to a
concrete aspect may be achieved in an algorithmic
fashion suitable for automation.

But this mapping is not without its problems. For every
bind[] specification on a CP in a design, a separate
aspect must be created. Each of these aspects contains a
portion of the Observer pattern—in other words, the
Observer pattern remains crosscutting functionality. As
a result, should the details of the Observer pattern need
to change, every aspect representing a particularbind[]
specification would need to be modified. Furthermore,
the mapping, while algorithmic, is not simple. Both of
these problems suggest that tool support would be
required to perform the mappings. Unless the entire
implementation were automatically generated from the
design-level, such a tool could only produce a skeleton

for each aspect that would need to be filled-in after the
fact. Thus, regenerating the mappings, should a change
to the CP ever be required, would force many aspects
skeletons to be filled-in manually again.

Mapping Reusable CPs to Abst ract Aspects

The difficulties with evolving the mapped CPs would be
minimised if we could produce an implementation-level
construct that represented a CP alone, without itsbind[]
specification. Then any changes to this CP would affect
only this one construct. This construct should then be
more reusable, since it would not be specific to a single
bind[] specification. Abstract aspects provide such a
means of separating the code for crosscutting behaviour
in a reusable way. We therefore assess how a more
direct mapping, from CPs to abstract aspects, might be
achieved.

As a first attempt at realising such an implementation
mapping to composition patterns without theirbind[]
specifications, we attempt to represent each CP again by
a single aspect.

Each pattern class within the CP defines an interface
within the aspect. These interfaces declare methods for
each template method for which no supplementary
behaviour has been defined in their associated pattern
class, e.g.,update() in Observer. This interface serves
to provide a handle on known operations within the
scope of the abstract class. If no non-supplemented
template methods exist for a pattern class (as is the case
for Subject), we do not need to define an interface for it.
All non-template methods and attributes are added as
instance members of the aspect itself.

abstract aspect Observer {
interface ObserverI {

void update();
}

Vector observers = new Vector();

void notify() {
// Post: all observers in observers
// are sent update() event

}

void addObserver(ObserverI observer) {
}

void removeObserver (ObserverI observer){
}

abstract pointcut aStateChange();
abstract pointcut

start(ObserverI observer);
abstract pointcut

stop(ObserverI observer);

after(ObserverI observer):
start(observer) {
addObserver(observer);

}

after(ObserverI observer):
stop(observer) {
removeObserver(observer);

}

after(): aStateChange() {
notify();

}
}

As before, a pointcut is declared for each behaviourally
supplemented template method, although each is made
abstract in this scenario. Each pointcut is given a
concrete definition when the CP is bound to actual
classes. Finally, advice that is analogous to that
described in the first scenario is declared here.

To bind a CP to concrete classes, we declare a concrete
aspect that extends the abstractObserver aspect.
Binding this aspect toBookCopy and BookManager
yields the concrete aspect below.

Any concrete class that is bound to a pattern class, for
which an interface was declared in the abstract aspect
representing the CP, must receive anintroduction
that it implements that interface and an implementation
must be provided for each operation declared in that
interface. The implementation of each such method
delegates to the existing method that has been bound to
the associated non-supplemented template method. For
example, theObserver CP defines a non-supplemented
update() template method for theObserver template
class; since theupdateStatus() method ofBookManager
gets bound toupdate(), BookManager must define
update() to delegate toupdateStatus() .

The concrete aspect must also give each abstract
pointcut that it inherits a concrete definition. This is
done identically as in the first scenario.

aspect ObserverBookCopyBookManager
extends Observer of <context> {
introduction BookManager {

implements ObserverI;
void update() {

updateStatus();
}

}

pointcut start(BookCopy bc,
BookManager bm):

instanceof(bm) &&
receptions(void addView(bc));

pointcut stop(BookCopy bc,
BookManager bm):

instanceof(bm) &&

receptions(void removeView(bc));

pointcut aStateChange(BookCopy bc):
instanceof(bc) &&
(receptions(void borrow()) ||

receptions(void return()));
}

But there is one piece missing from the puzzle: what
should <context> be? AspectJ uses this declaration
for two purposes: to decide where aspect instances
should be created and in what part of the system’s
execution (called theexecution context) aspect instance
state should be accessible—the two are not separable
here. This is a problem. There are only three varieties
of <context> available in AspectJ:

1. eachJVM() , which produces a singleton instance
for the entire execution;

2. eachobject(…) , where an instance is created for
each instance of “…”; and

3. eachcflowroot(…) , where an instance is
temporarily created for a portion of the execution
while “…” is on the call stack.

The intent with the design is to create one aspect
instance for each observedBookCopy ; this can be
roughly achieved by creating one aspect instance for
everyinstance ofBookCopy . But this would mean that
the aspect instance state would only be available within
the execution context of methods defined inBookCopy ,
i.e., only while a method inBookCopy was on top of the
execution stack. But, by definition, the execution of
addView() or removeView() will violate this
constraint (being methods inBookManager and not
BookCopy), and so, thestart() andstop() pointcuts
will never occur.

To take this approach of having an abstract aspect
represent a CP without abind[] specification, we would
need to be able to separate the mechanisms of
specifying the execution context from the specification
of what aspect instance to retrieve in that context. This
would require modifications to AspectJ.

Instead, our second attempt requires two separate,
interacting aspects, one per template class defined in the
CP. The chief difference here is that theObserver
aspect instances must explicitly locate theSubject
aspect instance associated with the object to be
observed. EachObserver aspect instance must also
record the concrete instance with which it is associated.

abstract aspect Observer {
protected Object observer;

abstract void update();
abstract Subject

getSubjectAspect(Object subject);

abstract pointcut start(Object subject,
Object observer);

abstract pointcut stop(Object subject);

after(Object subject, Object observer):
start(subject, observer) {
Subjec t s = getSu bjectAspect(subject);
s.addObserver(this);
this.observer = observer;

}

before(Object subject): stop(subject) {
Subjec t s = getSu bjectAspect(subject);
s.removeObserver(this);

}
}

abstract aspect Subject {
Vector observers = new Vector();
abstract pointcut aStateChange();

after(): aStateChange() {
notify();

}

void notify() {
// Post: all observers in observers
// are sent update() event

}

void addObserver(Observer observer) {
}

void removeObserver (Observer observer) {
}

}

And now, the concrete aspects become:

aspect ObserverBookManager
extends Observer
of eachobject(insta nceof(BookManager)) {
void update() {

((BookManager)observer).
updateStatus();

}

Subject
getSubjectAspect(Object subject) {

return SubjectBookCopy.
aspectOf(subject);

}

pointcut start(BookCopy bc):
receptions(void addView(bc));

pointcut stop(BookCopy bc):
receptions(void removeView(bc));

}

aspect SubjectBookCopy
extends Subject

of eachobject(instanceof(BookCopy)) {
pointcut aStateChange():

(receptions(void borrow()) ||
receptions(void return()));

}

There are still problems here, though. First, the
Observer pattern is conceptually a single aspect, so
splitting it into multiple constructs is unnatural. Each
Observer instance assumes that it is associated with a
single object, but cannot enforce this constraint
(although planned changes to AspectJ may help this
situation). The concrete observer needs to know about
particular concrete subjects, sinceaspectOf() is only
defined for concrete aspects—AspectJ assumes that
there is at most one instance of a concrete aspect
associated with an object. We also end up with an extra
object for each subject and each observer even if they
are not actually doing any observing or being observed.

This mapping to an abstract aspect and extending,
concrete aspects is more complicated, and hence error-
prone, than in the first scenario. Our concerns over the
reusability of the implementation-level CPs have not
been completely alleviated. It is up to the application
programmer to correctly define the concrete pointcuts in
such a way as to fulfill the behavioural constraints
implied by the Observer pattern; it is not clear that this
will always be as straightforward a process as filling in
template parameters in CPs is. Regardless, AspectJ does
not support CPs as cleanly as we would like.

4 MAPPING OBSERVER TO HYPER/J

There are three main inputs the developer provides
when using Hyper/J. Ahyperspacefile and aconcern
mapping file describe the Java class files being
composed, and the pieces of Java within those files that
map to different concerns of interest. Ahypermodule
file describes how integration between concerns of
interest should be done. CPs, with their inherent merge
semantics, evolved from ideas within subject-oriented
programming [3, 5], as did the implementation of
Hyper/J. As such, at a high-level, there is a more direct
map from CPs to the inputs of Hyper/J than was
demonstrated with AspectJ.1 The internals of the
Observer CP, and theLibrary base design may be
described using hyperspace and concern mapping files,
while the bind[] specification of the composition
relationship may be mapped to the hypermodule file.
However, at a more detailed level, mapping becomes
more difficult, as we shall see.

1 In AspectJ, there were different possible approaches based
on the possibilities associated with using a combination of
abstract and concrete aspects, or just concrete aspects.

In our attempt to map CPs to Hyper/J, we have chosen
to consider Hyper/J in terms of the full specification of
its potential as defined in [6], and not its more limited
implementation in the current version of the Hyper/J
tool.

First, we look at the Java source code implementing the
classes defined in theObserver composition pattern.
Subject and Observer classes are defined in an
Observer package.

class Subject {
Vector observers;

void addObserver(Observer observer) {
}

void removeObserve r(Observer observer){
}

void aStateChange() {
notify();

}

void notify() {
// All observers in observers are
// sent update() event

}
}

class Observer {
void update() {
}

void start(Subject subject) {
subject.addObserver(this);

}

void stop(Subject subject) {
subject.removeObserver(this);

}
}

Code supporting theLibrary design model is not
illustrated here, though we assume it to be defined
within a Library package. Each of these packages are
considered to be in the space within which we are
working, and are defined in a hyperspace file:

hyperspace ObservedLibrary
composable class Observer.*;
composable class Library.*;

Concern mappings may be defined as:

package Observer : Feature Observer
package Library : Feature Library

However, this mapping of the reusableObserver CP to
code is not as straightforward as it may appear. Hyper/J
imposes a restriction that operations to be merged must

have the same signature. CPs support a mechanism for
specifying considerable flexibility in the signatures of
operations that are allowed to replace template
operations. For ourObserver example, the template
operations_start(.., Subject, ..) and_stop(.., Subject, ..)
specify that one of the parameters must be an object of
type Subject, but that there may be any other
parameters. This flexibility does not map to Hyper/J.
The Observer class illustrated here has defined a
single Subject parameter for both thestart() and
stop() methods. This mapping could only occur after
examining the signatures of the replacing operations, as
defined in thebind[] attachment to the composition
relationship. The signatures of the template operations
in theObserver class were then defined appropriately.
Clearly therefore, theObserver package is not reusable
as currently defined. Prior to being merged with any
other package, the signatures of all methods with which
start() and stop() are to be merged must be
examined, with overloaded methods defined for any
methods with differing signatures.2

We now look at the hypermodule file, which specifies
how the packages should be integrated.3 The concern
mapping identified two features,Library and
Observer , to be composed. AnonCorrespond-
ingMerge relationship is defined between the two
features, indicating that any elements with the same
name in the different features do not correspond, and are
not to be merged. This is chosen because the
correspondences between theObserver pattern and
elements within any potential hyperslice with which it is
to be merged are explicitly defined, and any name
matching otherwise is coincidental.

The replacement of theObserver and Subject pattern
classes withBookManager andBookCopy, respectively,
can be mapped directly toequate relationships. An
override relationship may be used to map the
replacement ofupdate() with the updateStatus()
method. Each of the methods that are replacements for
operations supplemented by crosscutting behaviour
have a bracket relationship defined to specify the
invocation of the appropriate methods before or after
their own execution. This interactive behaviour is
gleaned from the interactions within the CP itself, not
the composition relationship. One point of note: the
bind[] attachment to the composition relationship

2 It is not clear that Hyper/J’s bracket declaration would
correctly handle overloaded methods; if not, method renaming
would be required to differentiate between them.
3 The nonCorrespondingMerge and override relation-
ships are not currently enabled in the Hyper/J tool, and so, this
code has not been compiled.

supports reasoning about the meta-properties of
operations—in this example, any operations whose
isQuery property isfalse replace the_aStateChange()
template operation (see Fig. 6). Since there is no
equivalent specification in Hyper/J, the mapping
process must examine each of the operations in
BookCopy, and add abracket relationship for any
operation that passes theisQuery test—borrow() and
return() in this case.

hypermodule ObserverLibrary
hyperslices:

Feature.Library,
Feature.Observer;

relationships:
nonCorrespondingMerge;

equate class
Feature.Library.B ookManager
Feature.Observer.Observer;

equate class
Feature.Library.BookCopy,
Feature.Observer.Subject;

override action
Feature.Observer.Observer.update

with Feature.Library.BookManager.
updateStatus;

bracket "addView" with
(after Feature.Obs erver.Observer.start,

"BookManager");

bracket "removeView" with
(before Feature.Ob server.Observer.stop,

"BookManager");

bracket "borrow" with
(after

Feature.Observer.Subject.
aStateChange, "BookCopy");

bracket "return" with
(after

Feature.Observer.Subject.
aStateChange, "BookCopy");

end hypermodule

As we can see, the hypermodule file specifying how to
integrate theLibrary andObserver features has the
potential to provide a clean mapping from CPs with
simple interactions specified. However, though not
illustrated with the Observer example, limitations with
the bracket relationship, as currently defined, may
present difficulties for more complicated interactions in
the design. It is possible to define constraints on the

execution of operations within an interaction in UML.
These have the potential to map to thearound advice
code in AspectJ, but there is no equivalent in Hyper/J.

5 CONCLUSIONS

Designs of crosscutting concerns using composition
patterns are readily reusable. Since a composition
pattern encapsulates details within it, these details can
be altered while the concrete classes bound to the CP
remain untouched. Thus, CPs serve as reusable and
evolvable design constructs.

AspectJ, as currently defined in version 0.7b12, does
not preserve the reusability and evolvability inherent in
CPs well, largely due to difficulties with its of-clause
construct. As a result, the crosscutting functionality
defined in a CP remains scattered and tangled in the
aspects that are generated from the mapping.

Based on the plans for Hyper/J as defined in [6], there is
potential for a relatively clean mapping from simple
CPs to Hyper/J code. However, the restriction that only
methods with the same signature may be merged could
present difficulties. Overcoming the difficulties with
overloaded methods reduces the re-usability and
extensibility of the code. We also refer to this mapping
as only having potential, as it will be necessary to
implement the mappings to a version of Hyper/J that
contains the required relationships.

While tool support may alleviate the difficulties to some
extent, we believe we should work towards reducing
any inherent mismatch between the reusable, extensible
design capabilities of CPs, and the constructs within
AspectJ and Hyper/J. In doing this, we would be closer
to achieving an across-the-lifecycle encapsulation of the
software artefacts associated with a crosscutting
requirement into a reusable package.

REFERENCES

1. S. Clarke and R. Walker. “Composition Patterns:
An Approach to Designing Reusable Aspects.” To
appear, inProc. ICSE, 2001.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable, Object-
Oriented Software, Addison-Wesley, 1994.

3. W. Harrison and H. Ossher. “Subject-Oriented
Programming (a critique of pure objects).” InProc.
OOPSLA, pp. 411–428, 1993.

4. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. “Aspect-
Oriented Programming.” In Proc. ECOOP,
vol. 1241 ofLNCS, pp. 220–242, 1997.

5. H. Ossher, M. Kaplan, A. Katz, W. Harrison, and
V. Kruskal. “Specifying Subject-Oriented
Composition.” In Theory and Practice of Object
Systems,2(3):179–202, 1996.

6. P. Tarr and H. Ossher.Hyper/J User and
Installation Manual. IBM Research, 2000.

7. P. Tarr, H. Ossher, W. Harrison, and S. Sutton. “N
degrees of separation: Multi-dimensional separation
of concerns.” InProc. ICSE, pp. 107–119, 1999.

8. Xerox Corporation.AspectJ 0.7b12 Design Notes.
http://www.aspectj.org

