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Abstract

Emotionally responsive Human-Robot Interaction (HRI) has captured our curios-

ity and imagination in fantastical ways throughout much of modern media. With

touch being a valuable yet sorely missed emotion communication channel when

in-person interaction is unrealistic for practical reasons, we could look to machine-

mediated ways to bridge that distance. In this thesis, we investigate how we might

enable machines to recognize natural and spontaneous emotional touch expressions

in two parts.

First, we take a close look at ways machines engage with human emotion by

examining examples of machines in three emotionally communicative roles: as a

passive witness receiving and logging the emotional state of their (N=30) human

counterparts, as an influential actor whose own breathing behaviour alters human

fear response (N=103), and as a conduit for the transmission of emotion expression

between human users (N=10 dyads and N=21 individuals).

Next, we argue that in order for devices to be truly emotionally reactive, they

should address the time-varying and dynamic nature of emotional lived experience.

Any computational or emotion recognition engine intended for use under realistic

conditions should acknowledge that emotions will evolve over time. Machine re-

sponses may change with changing ‘emotion direction’ – acting in an encouraging

way when the user is happy and getting happier vs. presenting calming behaviours

for happy but getting anxious. To that end, we develop a multi-stage emotion self-

reporting procedure for collecting N=16 users’ dynamic emotion expression dur-

ing videogame play. From their keypress force controlling their in-game character,

we benchmark individualized recognition performance for emotion direction, even

finding it to exceed that of brain activity (as measured by continuous Electroen-
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cephalography (EEG)). For a proof-of-concept of a training process that generates

models of true and spontaneous emotion expression evolving with the user, we then

revise our protocol to be more flexible to naturalistic emotion expression. We build

a custom tool to help with data collection and labelling of personal storytelling

sessions and evaluate user impressions (N=5 with up to 3 stories each for a total of

10 sessions).

Finally, we conclude with actionable recommendations for advancing the train-

ing and machine recognition of naturalistic and dynamic emotion expression.
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Lay Summary

This work explores the concept of emotionally responsive Human-Robot Interac-

tion (HRI) and the potential for machines to recognize and interact with natural

and spontaneous emotional touch expressions, in two parts. First, we examine

three roles through which machines can engage with human emotion: as passive

witnesses of human emotion, as influential actors on emotion experiences, and as

conduits for emotion expression between human users. Second, we argue that for

devices to be truly emotionally reactive, they should address the time-varying and

dynamic nature of emotional experience. To this end, we present a multi-stage

emotion self-reporting procedure and a proof-of-concept for a training process to

generate models of spontaneous emotion expression. To conclude, we reflect on

important considerations for designing devices intended to engage with naturalistic

and dynamic emotion expression.
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Preface

The bulk of this thesis is comprised of papers that are previously published (Ch 3,

Ch 5-7), submitted for review (Ch 4), or in preparation for submission (Ch 8) at the

time this thesis was completed. In all cases, I have had the great fortune to have

learned from and collaborated with colleagues, co-authors, and my PhD supervisor,

Prof. Karon E. MacLean. For these chapters, I detail current publication status and

my direct contributions to each.

The work in Chapter 3 was completed in partnership with Facebook Reality

Labs (now Meta Reality Labs), where the project was initially conceived of dur-

ing an internship under the supervision of Dr. Ali Israr and later refined together

with Prof. MacLean. The protocol was approved by the USA Western Institu-

tional Review Board (WIRB ref# AGHM-2019) and is included here as published

in 2023 as “When is a Haptic Message Like an Inside Joke? Digitally Mediated

Emotive Communication Builds on Shared History” at IEEE Transactions on Af-

fective Computing [45].

Cang, Xi Laura, Ali Israr, and Karon E. MacLean. “When is a Haptic

Message Like an Inside Joke? Digitally Mediated Emotive Commu-

nication Builds on Shared History.” IEEE Transactions on Affective

Computing 14.1 (2023): pp.732-746.

Chapter 4 is the result of a close collaboration with UBC Psychology, where

the entire team worked together from project inception to implementation. Dr.

Zak Witkower (a PhD student in Psychology at the time) was lead author, man-

aging data collection, the large majority of the final writing and analysis, and was

supported by his supervisor Prof. Jessica Tracy (UBC Psychology). As second au-
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thor, I contributed to the robot breathing behaviour generation, data recording and

formatting software, study design and analysis interpretation as well as writing

and reviewing key passages. Other co-authors include Paul Bucci who designed

the physical robot, contributing in equal measure on software development and

study design; we were both supported throughout by Prof. MacLean. The work is

currently under review.

Witkower, Zak, Xi Laura Cang, Paul Bucci, Karon E. MacLean, and

Jessica Tracy. “Catching Fear from a Non-Living, Artificially Breath-

ing Organism: Human Psychophysiology is Guided by a Robot Dis-

playing Distinctive Respiratory Patterns.” In review.

I led the production of the work in Chapter 5, from study design to touch

sensing and data collection software to data analysis and formal writing. Two

co-authors were invaluable contributors at all stages, and individually responsible

for feature extraction (Paul Bucci for biosignal data, and Dr. Jussi Rantala for gaze

data). The paper [42] is presented as published.

Cang, Xi Laura, Paul Bucci, Jussi Rantala, and Karon Maclean. “Dis-

cerning affect from touch and gaze during interaction with a robot pet.”

IEEE Transactions on Affective Computing (2021): pp.1598-1612.

Chapter 2 is also presented as published1(ACII 2019) – a conference paper

titled “Real Emotions Don’t Stand Still: Toward Ecologically Viable Representa-

tion of Affective Interaction.” This work [39] was an intellectual exercise which

benefited from (at times) intense input of a number of different perspectives by au-

thors in equal contribution across all development phases. From ideation to writ-

ing, myself and Paul Bucci (both PhD students) were supported by Dr. MacLean as

well as undergraduate students Hailey Mah and Laura Rodgers. Hailey and Laura

were also heavily involved in projects presented later in this thesis.

Bucci, Paul H., X. Laura Cang, Hailey Mah, Laura Rodgers, and Ka-

ron E. MacLean. “Real emotions don’t stand still: Toward ecologic-

1With the addition of a few relevant references .
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ally viable representation of affective interaction.” In 2019 8th Inter-

national Conference on Affective Computing and Intelligent Interac-

tion (ACII), IEEE, 2019: pp. 1-7.

Chapter 6 is the first publication from a project that had an exceptionally com-

plex and labor-intensive study and protocol, taking four years to design, collect,

and analyze. Over the full life of the project, many graduate and undergraduate re-

searchers took part to different degrees. The author list includes 11 team members

who were significantly involved in protocol testing and iterative refinement (Paul

Bucci), mixed methods data collection and coordination (Laura Rodgers, Hailey

Mah, Anushka Agrawal), exploratory analysis (Rubia Guerra, Bereket Guta, Paul

Bucci, Laura Rodgers, Shinmin Hsu, Qianqian Feng, Chuxuan Zhang), software

development particularly for custom hardware like the unbiased joystick for la-

belling and data synchronization (Laura Rodgers), data visualization (Rubia Guerra,

Bereket Guta), and writing and editing (Rubia Guerra, Bereket Guta, Qianqian

Feng). A number of other experts and volunteers providing valuable support are

mentioned in the papers’ acknowledgements list. As first author, I led the project

through all phases and presented the work at the ACII conference.

Cang, Xi Laura, Rubia R. Guerra, Paul Bucci, Bereket Guta, Karon

MacLean, Laura Rodgers, Hailey Mah et al. “Choose or Fuse: En-

riching Data Views with Multi-label Emotion Dynamics.” In 2022

10th International Conference on Affective Computing and Intelligent

Interaction (ACII), IEEE, 2022: pp. 1-8.

I was first author of the published paper featured as Chapter 7, leading all

phases of project development with the early-listed authors (myself, Rubia Guerra,

and Bereket Guta) contributing most prominently to the featured analysis, generat-

ing models, running experiments, and paper writing. Paul Bucci, Hailey Mah, and

Laura Rodgers played instrumental roles in early project development and all data

collection (as described in Chapter 6). Much of the early analysis inspired the final

content in the paper and is thanks to Paul and Hailey’s detail-rich qualitative data

coding and Laura Rodgers’ intensive multi-stream data alignment and visualization

scripting.
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Cang, X. Laura, Rubia R. Guerra, Bereket Guta, Paul Bucci, Laura

Rodgers, Hailey Mah, Qianqian Feng, Anushka Agrawal, and Karon

E. MacLean. “FEELing (key) Pressed: Implicit Touch Pressure Bests

Brain Activity in Modelling Emotion Dynamics in the Space Between

Stressed and Relaxed.”, IEEE Transactions on Haptics (2023): pp. 1-

8.

Content from Chapter 8 is intended for inclusion in a paper submission led

by Rubia Reis Guerra, supported by myself (as second author), Daniel Chen, and

Nao Rojas, all supervised by Prof. MacLean. I worked very closely with Rubia

in planning the study design and executing the data collection. The data collection

interface was implemented by Nao Rojas under close consultation and repeat pi-

loting with Rubia and myself. Analysis was a collaborative effort whereby Rubia

and Daniel constructed and tabulated classification results with input on experi-

ment structure from myself and Prof. MacLean. I conducted qualitative analysis

with input from co-authors. My primary contributions are the focus of Chapter 8

and, while key passages are to appear in a planned journal submission and Rubia’s

thesis, there will likely be important variations in later versions.

Unless otherwise specified, the studies in this dissertation were reviewed and

approved by the University of British Columbia (UBC) Behavioural Research Eth-

ics Board (BREB) with ethics number #H15-02611.

I am greatly indebted to everyone listed here as well as those named in each

projects’ acknowledgements and many others in my community who have given

invaluable feedback and served as critical sounding boards to vastly improve this

work in all ways. While they have had great influence in the intellectual contribu-

tions, I take responsibility for the concept of this thesis, chapter integration, and all

other formal writing, including any and all errata.
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Chapter 1

Introduction

The pursuit of quality relationships is a fundamental human need [22], so it is no

wonder that forming emotional connections make up a large part of our lives [184].

This community socialization involves many nonverbal cues (such as facial expres-

sions, body posture, touch interaction, and eye gaze behaviour), communicating

complex and significant information about our present emotion conditions as well

as future actions, and can serve as the cornerstone of our personal and professional

relationships [29, 105].

We are particularly interested in touch as a driver of closeness [16, 197] and

as a proven avenue for emotion communication under both direct contact [115]

and machine-mediation [11, 131, 294]. For the most vulnerable among us, touch

is a powerful channel for communicating feelings of care, honour, and respect,

particularly with our loved ones requiring complex care. We can imagine scenarios

where technologically-mediated touch may be able to convey information about

emotional needs and experiences, giving caregivers more context clues on how to

enhance socio-emotional engagement and possibly improve overall quality of life.

However, before we can entrust machines with touch-centric mediation of emotion,

we must trust that machines can recognize enough about our highly time-varying

and extremely individualistic expressions of emotion to be believably helpful in

computer-supported interactive situations.

This thesis explores the present day and beyond of machine assistance for

touch-centred interpersonal relationship-building and emotion self-regulation. At
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the highest level, we ask: How can we enable machines to recognize true and

spontaneous evolving emotion expressed through touch? We approach answering

this question from two perspectives: first, by articulating and considering a range

of roles machine agents must take on in order to engage with human expressions

of emotion; and second, planning for future interactivity by breaking down the

necessary steps for machine recognition of true and evolving human emotion.

In Part I of this thesis, we begin by examining how emotions are contextual-

ized for in-lab data collection and reporting. With the challenges of describing

emotions in mind, we then consider the narrative position of machines in emotion-

embedded interaction (1) between people as a communication conduit, (2) as an

agent with influence on an emotion experience, or (3) as a silent witness of emo-

tion expression. Emotionally receptive devices have the potential to be emotionally

interactive where users have emotional responses to a machine’s actions or expect

their own expressions to have an impact on a machine’s ‘emotions’ [148].

In Part II, we consider that machines designed to mediate and positively rein-

force relationships with ourselves and others via touch interaction require the abil-

ity to recognize emotionally informative features in users’ touch gestures, and the

evolution of these features over time, along with the emotion itself. Machine recog-

nition of emotion and/or machine-conduits of emotion that center touch need a sys-

tem for building personalized models reflective of users’ expression and responses.

Sometimes, users may have behaviour and preferences that they themselves may

not yet be aware of. One challenge is in developing an intuitive and minimally im-

posing procedure for the collecting and labelling of genuine and spontaneously oc-

curring emotion expression. Such embedded emotion classification models should

eventually be capable of spanning the wide range of the user’s evolving emotion ex-

perience. To better understand how to leverage machine-mediated emotional touch

interaction, we examine the workflow of machine recognition of emotion as com-

municated through touch gesture, addressing the challenges in eliciting authentic

and spontaneous emotionally-expressive touch in the lab, accurately labelling these

gestures, and finally building computational individualized models.

2



1.1 A Note on Terminology
There are many ways that emotion-laden touch is discussed throughout this thesis.

To ensure consistent understanding throughout, we make clear our definitions be-

hind key terminology used throughout.

1.1.1 Social, Affiliative and Affective Touch

In the context of human-computer interaction and affective computing, we use

the term “social touch” to refer to the interpersonal, affiliative, and emotionally-

expressive forms of tactile interaction. This is distinct from more functional or util-

itarian forms of touch, such as those used for object manipulation or task-oriented

interactions. Affiliative touch encompasses the gentle, caressing, and emotionally-

laden forms of physical contact that play a crucial role in pre-cognitive social bond-

ing, emotional communication, and the expression of care and intimacy between

individuals [167]. We may also distinguish affiliative touch from more general ‘af-

fective touch’ so called to refer to all emotion-embedded touch which also includes

negatively-valenced physical contact that may not qualify as gentle. These special-

ized forms of touch are the focus of our investigation into the design of authentic

touch experiences in interactive systems.

1.1.2 Authentic and Spontaneous Emotion

While both spontaneous – naturally occurring, pre-cognitively determined [93] –

and posed – acted, expected, requires cognitive decision [148] – expressions of

touch may convey emotion, they may well differ in actual performance. Spontan-

eous behaviour, though more nuanced and difficult to decipher, are seen as more

authentic to a person’s true touch performance as they arise naturally from the emo-

tional experience. Posed expressions, on the other hand, may not fully reflect inner

emotions due to a disconnect between outward display and internal state [148]. We

refer to ‘true’ or ’authentic’ and ‘spontaneous’ emotion as the natural, unprompted

feelings that arise ‘in-the-wild’ [72].
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1.2 Reading Emotional Touch
We ground our consideration of machine-mediated physical communication of

emotion on three premises:

1. Humans are emotional creatures who colour most interactions with some

amount of feeling, whether with other humans [17] or machines [148]. The

design of devices and interactions should account for instinctual human emo-

tion [206].

2. People may default to interacting with machine agents the way that they do

with other living agents [88].

3. Touch supports and reinforces important pro-social and emotional individual

and interpersonal development [16, 113].

Based on these premises, we examine how machines can be used to facilitate

emotional interactions in a variety of roles. We see this work as contributing to the

future development of a fully interactive machine agent.

Figure 1.1: Agents allow for bidirectional influence wherein both the
machine and Alice affect one another’s expressions.

Autonomous machine agents capable of touch interaction include some in-

triguing devices offering valuable insight. Robots like MIT’s Huggable [281] and

the commercially available Paro [306] have been used to leverage the comfort af-

forded by stuffed animals but also making them interactive to study how these
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devices could be used for therapeutic and clinical care. While these systems have

some limited responsiveness by dint of providing predefined responses to particu-

lar stimuli, they are not able to respond to an estimate of a user’s emotional touch

expression, as a real being might, as they lack the ability to interpret this expres-

sion. The Huggable has a teddy bear form factor primarily designed for young

children experiencing stress and pain of hospitalization. With an accompanying

smartphone application, the Huggable can also be an extension of a human tele-

operator with the phone’s speaker and screen being co-opted to play the operator’s

voice and display the bear’s eye movements and expressions [141], making it ap-

pear autonomous. By contrast, the Paro is a standalone therapy robot in a baby

harp seal form factor with limited motion capabilities focused at the large blinking

eyelids, neck, and flippers. Intended for elder care, the Paro is cute and has babyish

features, inviting attention in the same way animals might to facilitate more social

engagement [132, 262].

The challenge of ‘closing the loop’ for autonomous emotion communication

still exists for machines that receive, and communicate with, natural human emo-

tion expression. To better understand the processing pipeline required to complete

the interactive loop in realtime, devices have been developed to examine emotion

interaction in distinct stages: (1) to‘witness’ or sense user emotion and then (2)

to generate an response with human-interpretable emotional content. The Haptic

Creature [319], as an example, was developed with the plan that users’ touch be-

haviour would trigger a robot response which was itself designed to help calm

them [253]. The calming should in turn be detectable through changes in the users’

touch, and ongoing sensing of it [321]. The authors identified each of these stages

(sensing, recognition, emotion rendering) as an explicit research challenge – and

indeed, the community continues to work on all of them more than 15 years later.

The professionally engineered CuddleBot [4] was designed to be computationally

capable of handling the recognition task as well as displaying physical expression

suitable for an ongoing interactive context (as opposed to simply relaying static

emotional snapshots). Similarly, the weight-shifting OMOY has been studied for

how people interpret this modality of emotion expression with future work de-

scribing the interactive content where OMOY’s behaviour could influence users’

emotions [204].
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In the following, we examine both stages of the interactive loop separately and

then in concert (how humans communicate emotion through machine-mediation).

In doing so, we describe three emotionally purposeful roles that machines can take

on and provide examples of each.

1.2.1 As Conduit

Figure 1.2: A machine that acts as a conduit receives emotional touch from
one party, Alice, and conveys it to another, Bob. The recipient, Bob,
interprets Alice’s intended message based on the machine conveyed

experience.

The global pandemic gave society unprecedented and widespread experience

with physical distance and restricted direct contact with loved ones. Even without

quarantine measures, separation between family and friends for extensive time

periods has been on the rise [71, 242] as our lives can take significant turns for

professional, education, military, or health reasons, sometimes requiring extensive

time away from others. While audio- and video-calling can be used to stay connec-

ted, touch technology today offers fewer opportunities for bridging physical dis-

tance. Relatively recently, machines able to act as emotional conduits – sometimes

dubbed affective technotouch for emotional embodied encounters [68] – have been

developed for commercial and research purposes. Receiving cues from one person

and transmitting them to another, these devices are designed to communicate emo-

tion. They can take on a variety of form factors, from commercial wearables in the

form of bracelets like the Hey1 and Bond Touch2 that transmit squeezes and vi-

1Hey product descriptions at https://feelhey.com/
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bration respectively between partners, to research devices featuring sensations like

vibration motors [228] and haptic knobs [275] to communicate a range of emotions.

More specific use cases of emotion communication include stress transmission us-

ing force feedback devices [93], or thermal manipulation as in the Nakama teddy

bear [311] to send feelings of warmth from parents to their children; even mid-air

contactless sensations can contain interpretable emotion content [207].

Considering the real-world scenario of machine-mediated communication in

other forms, we posit that haptic message exchanges are also likely to occur un-

der specific contexts. The messages people design are likely to reflect the emotion

they are currently actively experiencing. For instance, Betty just heard great news

and wants to alert her partner that they should celebrate or Jon noticed the dishes

are still not done despite reminding their partner twice the night before. In the

study described in Chapter 3, we brought in couples to create ‘haptic messages’

with specified emotional intent to send to their partner. By comparing how mes-

sage interpretation performance varies by relationship closeness (strangers, part-

ners, selves one week later), we can better examine the design and interpretation

of machine-mediated emotional touch as represented by vibrotactile signals.

1.2.2 As Influence

Figure 1.3: Machines that influence present an expression on Bob which
influences and/or changes Bob’s experience.

From here, we zoom in to focus on human-machine interaction starting with

2Bond Touch product descriptions at https://uk.bond-touch.com/
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examining devices designed to influence a human user’s emotional experience. In

the case of the Haptic Creature [319], the lap pet-sized robot demonstrated that

displaying slow calm breathing behaviours via movable plates on its Force Sens-

itive Resistor (FSR)-embedded fibreglass body can affect stress-related physiolo-

gical measures. People holding the robot and experiencing 20 breaths per minute

against their chest felt a reduction in their heart and respiratory rates as well as self-

reported anxiety, suggesting altogether a positive shift in emotion valence [253].

Slow and rhythmic haptic displays promoting calm and relaxation is corroborated

by the Heartbeat Cube [327], also held in the arms by users, as well as the Affective

Sleeve [215], a network of shape memory alloys worn on the forearm.

We wondered how effective simple robot motion can be in influencing the ex-

perience of humans in close contact. To answer this, we devised a study with three

breathing patterns that participants would feel while holding a robot close to their

chest and compared the human physiological response during a fear-eliciting stim-

ulus (Chapter 4).

1.2.3 As Witness

Figure 1.4: Witness machines receives expressions from Alice and tracks,
interprets and/or displays Alice’s experience.

Devices that witness our behaviour (i.e., observe or track it) are increasingly

common with fitness and physiological trackers becoming ubiquitous in wearables

like smart watches and Fitbits, even step tracking applications on phones to help

promote healthy activity and performance. Similar devices can also be provided

8



with the ability to act as a witness for our emotional lives. Some are designed to

detect, and directly convey, incidental biofeedback like the Breeze necklace where

sensors in the pendant are in contact with users’ chests; others infer emotional

content from subconsciously generated behaviour, as in the Haptic Creature [5],

whose FSRs read user touch and use machine learning to convert these pressure

readings to emotion prediction.

Devices can also derive emotional information from utilitarian movements that

we don’t always think of as emotionally expressive like that of typing on a keyboard

or navigating with a computer mouse. Simple computer keyboards can be equipped

with pressure sensors on the keys and these pressure readings reveal the typist’s

stress at 93.4% accuracy [188]. In fact, device usage can be used to predict emotion

even without modification. Regular point-and-click or drag-and-drop interactions

with a computer mouse can produce metrics that are well-correlated to biophysical

markers of stress [286]. Typing behaviour on EmoKey, a keyboard app for an

Android smartphone with a capacitive touchscreen, can differentiate between four

emotions (happy, sad, stressed, relaxed) with 78% accuracy [98].

Since emotion expressions may differ in a lab collection vs. in a real-world

context, for a device to recognize real-world emotions, it must be trained with the

same spontaneously occurring emotion data. We use an emotion elicitation tech-

nique called ‘emotion recall’ or ‘relived emotion’ where participants use stories

from their own lives to bring up true emotion [57], building and evaluating recog-

nition performance from this emotion data.

Developing machines to respond to human emotion requires that they are built

to be sensitive to human emotion cues in real-life contexts. Throughout this thesis,

we advance the capability of an emotion recognition engine by exploring how to

collect and label naturally and spontaneously evolving emotion.
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Table 1.1: A sample set of devices toward interactive machines (* indicates interactivity intended for future work)

Role System Form User Experience Haptic Sensing Interpretation of Haptic Input
IN

T
E

R
A

C
T

IV
E

A
G

E
N

T Paro [132, 268] ∼6lb-furry seal
robot

Globally commercialized for older
people with dementia; ↓ agitation, anxi-
ety, depression; ↑ social engagement,
mood, quality of care experience;

Microphone, whisker
tactile sensors, touch
sensor on head, jaw,
back, flank, flippers,
position/orientation

Force and locale of touch maps to co-
ordinated response on eyelids, neck,
flippers, vocalizations

Huggable [141] Plush teddy bear Tele-operated using smartphone app;
promotes conversations, positive interac-
tions (vs. teddy bear, virtual agent) with
children

Pressure + capacitive
sensors

Wizard-of-Oz responses to haptic in-
put (non-autonomous)

OMOY* weight
shifting robot [204]

Handheld hu-
manoid robot
embedded with
movable weight

Hold OMOY to experience weight-shift
patterns (over 4 parameters), weight
moving quickly to the front

None used at present Intended for future interactivity,
present work focuses on user percep-
tion of robot expression

CuddleBot Furry lap pet Social touch gestures trigger coordinated
behaviours from motors in neck, ribs,
back

Fabric touch sensor 7 social touch gestures at 90∼95% re-
cognition when robot was not moving
(degrades to 79∼86% when in mo-
tion)10



Table 1.1: A sample set of devices toward interactive machines (* indicates interactivity intended for future work)

Role System Form User Experience Haptic Sensing Interpretation of Haptic Input
C

O
N

D
U

IT

Bond Touch [68] Bracelet Paired bracelets; Direct touch transmits
to receiver unit; app for customization

Capacitive touch + app User interpretation of vibration +
lights

Hey Bracelet [68] Bracelet Touch triggers a squeeze on paired brace-
let via Bluetooth (smartphone app)

Capacitive touch + app User interpretation of squeezes

Handheld re-
mote [228]

Remote control FSRs/capacitive touch pad triggers VT!
actuators on partner device

4 FSRs & capacitive
touch @ 100Hz

Partner interprets localized vibration
on arousal-valence

1-DOF knob [275] ”Twiddler”
haptic knob

Spinning knob triggers force feedback on
paired knob

4000 count/rev optical
encoder

54% recognition rate overall on 4
emotions spanning affect grid

Geomagic Touch
driving stress [93]

Force sensitive
multi-DOF end
effector

Directing the end effector controls steer-
ing in a driving simulation; movements
are recorded and played back

Steering + grip force user interprets stress by higher speed,
jerkiness, and force

Nakama compan-
ion [311, 312]

Teddy bear Heartbeat and temperature of loved ones
can be displayed on bear

HR sensor, thermo-
meter

User rates perceived closeness from
transmission of heartbeat + warmth

UltraHaptics sys-
tem [47, 207]

Ultrasound
screen

Ultrasound waves are directed to users’
hands hovering midair over the system

Frequency, intensity,
duration

User-defined mid-air haptics is inter-
preted for arousal + valence

IN
FL

U
E

N
C

E Haptic
Creature* [253, 319]

Furry lap pet Users hold a breathing robot with biomet-
rics tracked, self-report emotion response

FSRs Device calms by ↑ valence, ↓ anxiety,
heart rate, respiratory rate

Heartbeat feedback
cube

Handheld
cube [327]

Holding the cube ‘beating’ to user’s
heartbeat increases relaxation

Stethoscope (+ mic) to
vibrotransducer

Feeling own heartbeat affects biofeed-
back loop ↓ heartbeat; ↑ HRV

HaNS notification
bracelet [289]

Notification tim-
ing console

Speaker’s bracelet vibrates to cue 3m,
1m, 0m to talk end

FSR cues delivered via
timing console

Speakers report cues help ↑ aware-
ness; ↓ distraction

Affective
Sleeve [215]

Shape memory
alloy cuff sleeve

Sleeve produces rhythmic haptic action
(light pressure + warmth)

Respiratory rate, EDA Breathing rate increases with actu-
ation tempo; slower rhythm promotes
calm

W
IT

N
E

SS Haptic Creature* [5] Furry lap pet Strokes a breathing, purring body 56 FSRs; accelerometer Emotion classified from touch in 9
states3

Breeze breathing
biofeedback [90]

Pendant neck-
lace

Strokes and squeezes to activate light,
sound, vibration

Onboard accelero-
meter, gyroscope,
magnetometer

Emotion classified as valence,
arousal, dominance; labelled by SAM
self-report

Computer
mouse [286]

Computer
mouse

Regular mouse use: point-and-click,
drag-and-drop, steering

Kinematics of mouse
movement

Motion patterns to classify stress;
HRV, ECG, self-report for ground
truth

3Emotions across Russell affect grid: distressed, aroused, excited, miserable, neutral, pleased, depressed, sleepy, relaxed
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1.3 Prerequisites for Machine Recognition of Emotion in
Touch

In order for machines to be able to engage in affect communication and present

reasonable emotional responses, they must possess an architecture for recognizing

human emotional expression. Machine recognition of emotion requires a sensing

system to receive human-expressed input and a simplified internal model to allow

for emotion recognition, in some form of classification or prediction [221]. Here,

we consider the components used to create the emotion training data that build

classification models. We compile authentic emotion data from spontaneous elicit-

ation and record emotion-encoding modalities for use as model inputs, reporting

and labelling as true to the experience as possible.

1.3.1 Real Emotion Elicitation

Generating spontaneous emotion data that is representative of real use is crucial for

developing a system that has functional machine recognition once deployed “in the

wild” [72]. At the research stage, it would be ideal to collect training data in the

lab, where we can control conditions. Unfortunately, emotions elicited in a lab [57]

between human and an affective agent [148] can be challenging to generate with

high ecological validity and worse, can differ dramatically from naturally occur-

ring or spontaneously experienced emotion [5, 18, 93]. Studies building models

of emotion behaviours based on “acting as if” or “imagining that” one feels an

emotion [5, 321] may not be representative of true and spontaneous emotion ex-

periences [126].

Relived or recalled emotion using stories from real lives may allow for emo-

tion expression to approximate true-to-life experiences. Elicitation methods out-

lined by [57, 80, 180] demonstrate that, even in a lab environment, strong physical

reactions similar to those occurring from the original incident can be produced.

To consider the viability of computatonal models of touch data collected in lab,

we evaluate the performance of machine learning recognition of touch and other

biophysical signals co-occurring during recalled emotion elicitation.
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1.3.2 Emotion-Embedding Modalities

While language is an important method for conveying emotion, emotion expres-

sion occurs across many other nonverbal channels, so much so that classifica-

tion models of emotion can be, and have been, built out of a variety of emotion-

embedding modalities. Examples are many: facial expression recognition by im-

age [158], brain activity as measured via electroencephalography (Electroenceph-

alography (EEG)) [3], biophysiology data as in electrodermal activity or skin con-

ductance [48], Heart Rate (HR) (heartrate), respiratory rate [77], even eye gaze

behaviour can reveal valuable affective information [139, 173].

Why Touch?
We examine touch behaviour as an intentional communication channel in so-

cial touch where one agent touches another to convey emotion information [115]

– strokes to calm or reassure, taps to direct or request attention. While touch can

serve as an incidental signal, such as in typing behaviours [81] or grip force in

steering [307], it is also known to encode interpretable emotive content [114, 115]

with pressure from both normal and shear forces providing valuable affective in-

formation [53, 152].

Touch is one of the earliest modes of communication and reassurance in our

lives and is necessary for healthy emotional and prosocial development [113]. To

create spontaneous and honest emotion interactions, we consider the potential of

employing touch sensing in the form of smart fur [87] or pliant piezoresistive fab-

rics [41], prioritizing unencumbered and spontaneous interactions [42] where pos-

sible.

Technical Sensing Modality Selection
The sensing modality selected for computational model building must suit the

application purpose and requirements and have sufficient power to discriminate

the emotions relevant to the application. Electroencephalography (EEG) measures

brain activity occurring from cognition to neurological response and emotion regu-

lation [109, 210, 227]. It has been well-explored for emotion classification with the

brain being closest to the ‘root’ of the emotion experience [176]. Biometric data

like heart rate variability (as measured by blood-volume pulse or BVP), skin con-

ductance, respiratory rate – physiological responses coincident with strong emo-
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tional experiences – have also been used as strong correlates for emotion expression

and thus high-performing signals for emotion classification [60, 104, 155, 221].

However, modelling using these biological signals requires intrusive sensing appar-

ati, time for subject preparation and calibration, and as collected data is notoriously

noisy, also requires extensive data filtering, cleaning, and pre-processing [44].

Some modalities allow for a more out-of-the-box experience (with minimal

set-up investment). Neither touch nor gaze detection necessarily requires users to

don specialized equipment as sensing can be embedded in or near the device it-

self. Some commercially available gaze trackers like those built by Tobii (www.

tobii.com) are designed to be set at the base of a screen or intended field of view.

The tracker can detect pupillary response, gaze distance, focal location, saccade

and fixation patterns – all notable features in emotion recognition in gaze beha-

viour [183, 276, 291].

For use on robots or other motion-enabled agents, touch sensors must cover ex-

pected touch areas, which can be quite large depending on the intended interaction.

For instance, a robot pet may need to have sensors embedded along the dorsal area,

from head to tail, to pick up long petting strokes. If the machine has any motion

capability, the sensors or sensing surface may need to be physically flexible and

malleable. Networks of FSRs (force sensitive resistors) [319], stretchy piezoresist-

ive fabrics covering touch-intended surfaces [41, 152], or proprietary palm-scale

pressure sensors positioned strategically near likely touch points like the head and

back [267] are some strategies that can accommodate underlying motion.

Where we embed touch sensing capabilities into devices inviting or requiring

touch interaction, there is an opportunity to leverage a natural and intuitive mod-

ality for emotion communication and take an unobtrusive look into spontaneous

and honest emotion expressions. We evaluate how well pressure-sensing in touch

behaviour can encode emotion in both naturalistic touch (Chapter 5) and incidental

touch (Chapter 7), with and without the support of gaze and biometric markers, or

EEG data capture respectively.

We select these markers for being well-researched as emotion-embedding mod-

alities. While facial expression is another prominent area of emotion recognition

study [79], there is a growing body of evidence [97, 138] that facial expressions of

emotion are complex and are often modulated to present more positive expressions
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– like smiling [17, 122] – to hide more negative experiences. Furthermore, collect-

ing facial expression data would require our devices have embedded camera and

vision systems which would impact our computational requirements and introduce

additional practical and privacy concerns in terms of when and what to record.

1.3.3 Conceptualization and Labelling

In order to estimate an amorphous quantity like emotion we first choose a rep-

resentation metaphor which defines how we regard the emotion experience, the

language we use to describe it, and the parameters with which we attempt to cap-

ture it [38, 169, 211]. Altogether, this descriptive framing and parameterization

is sometimes referred to as emotion modelling [198]. To avoid overloading the

term “model” or confusing the use of emotion models with classification mod-

els of emotion, we adopt [38]’s terminology of emotion metaphor to refer to how

we think about emotion representation. Throughout this thesis, unless specified

otherwise, we use model to refer to the computational (e.g., machine learning)

model implementation rather than theoretical models that provide structure around

how we can define and reason about emotions (e.g., Russell’s circumplex model of

emotion [237] or appraisal model [84]). In preparation for building computational

models of emotion, we start by addressing commonly used emotion metaphors:

emotion states, dynamics, and appraisal.

Emotions-as-a-State: Classifying emotion as a single state has many practical be-

nefits for machine recognition. There are many validated instruments for identific-

ation and measurement of arousal, valence, and dominance dimensions [238] that

can be used to distinguish between emotions. Reported emotions can be described

on a 2D plane as as in the arousal-valence grid [237] or on independent linear

scales as in the Self Assessment Manikin or SAM scale [30]. These are beauti-

fully simple measurement scales which employ forced choice and offer simple and

straightforward classes for data labelling. In contrast, emotions rarely fit into con-

venient boxes. However, our emotional lives are complexly dynamic in situation-

dependent ways: who we are with, how recently our physical and emotional needs

have been met, and why we are in the present moment with all the baggage of our

cultural and personal history [20].
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Emotion Dynamics: Emotions evolve throughout the course of a single event or

experience, as well as longer extents of time [169]: consider the emotional jour-

ney followed by your favorite engaging movie scene. Psychologists Kuppens et

al [169] propose dynamic emotion metrics to describe changes across an emotional

experience, with the most prominent being emotion inertia (resistance to variation,

quantified as signal autocorrelation); emotion instability (mean square of success-

ive differences as the amount of change); and emotion variability (within-subject

variance respectively to represent the range of change) [130, 278]. Operationaliz-

ing concepts rooted in emotion dynamics for computational applications requires

labels capturing transitional emotional experiences as they happen.

We propose the use of emotion direction as a dynamic emotion metaphor to

describe where a present emotional experience is evolving towards.

Labelling Approaches: Labelling emotion for classification purposes is a challen-

ging activity, operationalized by reducing complex emotional ideas down to low

dimensional static elements like Russell’s arousal-valence grid [237] or the Self-

Assessment Manikin [30, 246]. While simplifying the label helps with discrete

classification, we may be throwing out valuable richness that is necessary for ap-

proximating real-world emotion expression [39, 148]. Novel labelling procedures

try to build in more richness, capturing more participant introspection and aligning

that with researcher observations – examples include reporting of both personal

reflections of shame experiences [246] as well as episodes of pain [25].

To harness the richess in reporting, we consider how to incorporate easy nu-

meric or discrete-valued dynamic emotion labelling aligned with the more open-

ended personal reflection.

1.4 Thesis Contributions and Organization
To answer the question: “How can we enable machines to recognize true and spon-

taneous evolving emotion expressed through touch?”, we first examine the roles

that machines play in emotional interaction with human users, then explore emo-

tion recognition engines that evolve with spontaneous user expression.

Our approach to the problem of creating interactive machine agents to promote

realtime emotion communication via affective touch is reflected in the structure of
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this thesis. In Part I, we scrutinize how models and metaphors can reflect lived

experience (Chapter 2) and through this lens, describe design explorations of how

an interactive agent may be able to facilitate touch-based emotion communication

with human users: as the conduit of emotion between two people (Chapter 3); as

a factor of influence on a single person’s emotion experience (Chapter 4); and as

a witness to human expression of emotion (Chapter 5). These works contribute

design insights about how machines can or should function in these roles, and how

to facilitate them, such as:

1. For machines to react appropriately to human expressions of emotion, they

may require the underlying recognition engine to reflect the complex and

time-varying nature of the emotional experience (Chapter 2).

2. For Machine Conduits: Close intimate partners are better than both strangers

and machines in classifying emotional intent behind machine-mediated haptic

messages. Given that strangers and machines perform similarly in message

interpretation, we posit that context clues and shared personal history may be

key factors in understanding the emotional intent behind touch-based digital

messages (Chapter 3).

3. For Machine Influence: Breathing behaviours in pet-sized robots can in-

fluence the person feeling those behaviours, both towards [253], and away

from, relaxation (Chapter 4).

4. For Machine Witnesses: Touch behaviour exhibited during an emotional

experience may be sufficiently distinct as to be machine discernible (Chapter 5).

In Part II, we examine one element required of realtime interactivity – dynamic

emotion modelling – and propose a data collection methodology (Chapter 6). By

using a rich emotion reporting and labelling procedure, we allow for classifica-

tion of emotion transitions and differentiate whether an experience is stressful-but-

resolving-towards-relaxed or stressful-and-getting-worse. We evaluate this data

collection and labelling protocol with incidental affective touch produced from

playing a horror video game finding that even incidental touch pressure in key-

press force is recognizable as distinct emotion transitions and published the dataset
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for community exploration (Chapter 7). Finally, we explore how evolving mod-

els of naturalistic emotion communication can be trained for use in touch-sensitive

devices leveraging personalized emotion transition recognition. To advance re-

altime dynamic emotion classification, we introduce a proof-of-concept training

pipeline to build models personalized to evolve with the user, from data collec-

tion, to rich emotion reporting, to classification modelling parameters (Chapter 8).

Contributions here are (a) methodological and (b) the provision of a feasibility

assessment:

1. To capture the complex nuance in fast-evolving emotion, multiple labelling

stages can be used to provide rich context when tracking and labelling an

emotional experience (Chapter 6).

2. As part of Chapter 7, we contribute a novel dataset of brain activity data and

incidental touch pressure collected while participants played a horror video

game (the FEEL dataset) and inspect classification of dynamic emotion –

evolving emotion within a time window (e.g., differentiating between happy-

getting-happier vs. happy-getting-anxious). Performance from keypress force

data (F-1 scores benchmarked at 0.82) encourages our next step: classifying

dynamic emotion labels with natural and spontaneous touch in more uncon-

strained or ecologically valid emotional expression.

3. With a custom tool to help with labelling spontaneous and evolving emo-

tions, we demonstrate a proof-of-concept for how training data can be gen-

erated for classification models of real-world ‘in-the-wild’ emotion evolution

(Chapter 8).

In our Conclusions and Reflections (Chapter 9), we consider the open design

questions that help to advance the responsible development of emotionally respons-

ive devices and machine agents (Chapter 9).
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Part I

Emotion Communication with
Machines
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There is an extensive body of research demonstrating that the emotion commu-

nication that we partake in through direct (e.g., person to person) affiliative touch

is transferable in machine-mediated touch. Here, we use ‘affiliative touch’ to refer

to the gentle, caressing, and emotionally-laden forms of physical contact that play

a crucial role in social bonding, emotional communication, and the expression of

care and intimacy between individuals [167]. This is distinct from haptic mes-

sages, which are a semiotic form of touch communication – transmitting particular

meaning [62] – rather than an affiliative one.

To gain a deeper understanding of how affective touch conveys meaning between

individuals through devices, we start with Chapter 2’s conceptual ideas on meta-

phorical representation of emotion, the logistical challenges with eliciting and

describing authentic human emotion. We then analyze three different devices

and their respective use cases. We also explore the roles that the haptic tech-

nology plays in these interactions: first, as a conduit of emotion-intended touch

between human users; second, as an influence on one’s emotional experience

through haptically salient breathing patterns; and third, as a witness to human emo-

tional expression through touch behavior and biophysical signals.

In Chapter 3, we examine an example of a device serving as an emotional con-
duit with machine-mediated emotion-encoded haptic signals transmitted from one

user to another. We developed a haptic animation display worn on the forearm to

design and display emotion-laden messages created by close partners. We evalu-

ated how well people recognize and interpret these messages under increasing con-

textual relationship history (i.e., from strangers, their own partners, or themselves

a week later) [45].

Chapter 4 describes an investigation into the emotional impact of experiencing

breathing expressions and considers the efficacy of the breathing robot platform as

a device of emotional influence. We examined physiological responses of people

as they hold a robot moving in three distinct sinusoidal ‘breathing’ patterns. As

first described in the Preface, this work was a collaboration with UBC Psychology

and is currently under review.

To round out device interaction, we include a paper as published in 2021 as

“Discerning Affect from Touch and Gaze During Interaction with a Robot Pet”

(IEEE Transactions on Affective Computing) in Chapter 5. We used a robot form
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wrapped in a custom fabric touch sensor that collected touch behaviour as a wit-
ness of user emotion expression as they shared an emotional moment from their

lives. Augmenting the touch data with gaze trackers and biophysiology sensors,

we considered how to use these three modalities in emotion recognition (where

each story was labelled with a single emotion label).

Here, we examine various devices by the roles they may play alongside human

emotion experiences, noting lessons learned as recommendations for device design

and classification parameters (e.g., time windows, modality preferences, feature

selection). Through the common thread of machine recognition of emotion, we

motivate our interest in developing more intuitive and comprehensive models of

emotions evolving in realtime as featured in Part II.
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Chapter 2

Metaphors for Emotion: An
Argument for Rich Emotion
Labelling

Summary
To create emotionally expressive robots, designers of human-robot interaction routinely

translate emotion theories into instruments through which we estimate, quantify

and analyze human emotional responses to robot behaviour.

Pragmatically, we often use straightforward models such as Russell’s circumplex,

treating emotion as a single point in a two-dimensional space. However, this simple

metaphor and its consequent representations omit many aspects of real emotional

experience, can lead to erroneous data and may undermine computational models

that rely on them. Problems with emotion representations currently prevalent in

human-robot interaction fall into three categories: (1) Representations are static

and singular, whereas real emotions can be dynamic, multi-valued, uncertain or

conflicting. (2) The framing of an interaction is unspecified (i.e., in an affective

rating task: which part of an interaction involving multiple parties and perspectives

the participant is meant to consider). (3) Participant responses captured with instru-

ments and methods that are not well-understood by experimenters nor participants

produce data that is hard to interpret. We propose alternative emotion representa-

tions to account for dynamic emotions inherent in interactive contexts; scrutinize
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framing ambiguities in study tasks and argue for mixed-methods approaches to

achieve shared understanding of emotion representations between participants and

researchers.

2.1 Introduction
An objective of affective interaction is to create machines that can emotionally

interact with humans in real time. In human-robot interaction (HRI), roboticists

often draw on emotion theory to evaluate human affect and build computational

models that relate human behaviour and biophysical signals to robot behaviours,

or vice-versa. This process often takes the form of assigning emotion ratings to

robot behaviour, identifying behaviour features, then seeking correlations between

these features and the emotion ratings.

Real-time robot behaviour can be generated through a feedback control loop [320]

that includes a computational model of human emotion requiring direct behaviour

labelling. This loop implies a schema in which the system reasons about the hu-

man’s emotion, then produces a behaviour which is expected to be an appropriate

response to that human’s emotion state. However, consider human-human emo-

tional interaction in the real world: we need not name another’s emotion in order

to react emotionally. On the contrary, it often takes significant cognitive effort,

perhaps even formal training, to both hold back our reactive instinct and articulate

our emotions.

In this position paper, we advance three critiques of HRI studies that rely on

emotion labelling, drawing from our own research efforts. By reconsidering how

we use common emotion metaphors and representations, frame behaviour labelling

tasks, and negotiate meaning in our methodologies, we can get closer to the goal of

designing interactive entities whose behaviour reflects how we have specified that

they should feel.

We contribute these problems for the field to consider:

• I. Common metaphors do not account for dynamic emotions. Representing

emotions that change over time, are uncertain, or are in conflict requires

amending our current metaphors and representations of emotion.
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Metaphor description

A point is singular, dimensionless, and infinitely precise.  
Representing emotion states as points may have unintended 
topological implications—even using a point to represent an 
average emotion measurement is problematic (Table 1).

Conceptualizing an emotion as an area opens up the 
possibility of considering multiple, coinciding emotions in 
our computational models. An area metaphor can capture 
conflicting, simultaneous emotions.

We must also consider the space over which an emotion 
may take place. A non-linear space with contour expresses 
the probability of emotion states and could express the 
predicted trajectory of emotions evolving over time.

The state space might also evolve over time. Shown is 
a space where, for a particular person in this moment, 
high-arousal, low-valence is most likely, but they might 
describe an ambivalent arousal.

One representation

Metaphor possibilities Representation

Point (a)

(b)

(c)

(d)
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Figure 2.1: Experienced emotions can be reasoned about through the use of
metaphors: abstract concepts (mathematical, literary, etc.) that stand in
for real-world phenomena. Metaphors can be turned into a multitude of

concrete representations to serve different purposes. A common
metaphor for emotion is a point, which can be represented as a dot on a

graph, a decimal, or coordinates. We propose area and non-linear
metaphors as alternatives, which enable different ways of

conceptualizing emotional experience (yellow).
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• II. Contemporary practices do not always explain whose emotion is being

measured. Interaction framing is often unspecified, leaving uncertainty in

what an emotion is being ascribed to: a robot’s behaviour, a participant’s

response to the behaviour, or something else.

• III. The meanings of measurement scales are ambiguous. We often fail to

create a shared understanding of measurement scales between participants

and researchers.

2.2 Definitions and Approach
To preface our critique, we outline our definitions for metaphors, representations,

framing, and shared meaning-making. We then look at how HRI researchers cur-

rently use emotion theory to inform their work, produce study instruments, and

build computational models.

Metaphors and Representations

The words “metaphor” and “representation” are sometimes used interchangeably

to mean “ideas that stand in for other ideas,” but for the present purpose we require

their nuanced distinction.

Metaphors can describe phenomena that are otherwise hard to articulate or

understand, allowing us to reason and communicate about abstract concepts [172].

For example, saying you have a “white-hot rage” vs. a “simmering rage” relates

temperature to emotion, enabling the comparison of emotions via the concept of

temperature. Similarly, when we represent an emotion as a single point in a dimen-

sional space, we are using the spatial metaphor of a scalar quantity to communicate

differences in an experienced emotion.

To engineer emotional human-robot interactions, we translate our metaphors

into concrete representations using ink, code, or bits. These representations be-

come the instruments in our studies, shape the input to our algorithms, and contrib-

ute directly to our computational models. It is important to clarify the connection

between our metaphors and which aspects of emotional experiences they are meant

to represent (Figure 2.1).
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Researchers often create metaphors as stand-ins for phenomena, then opera-

tionalize the metaphors in order to make predictions: “[depicting a concept] as an

entity allows us to refer to it, quantify it, identify a particular aspect of it, see it

as a cause, act with respect to it, and perhaps even believe that we understand it.”

(Lakoff & Johnson [172]).

One representation of the aforementioned metaphor of affect as a scalar qual-

ity is Russell’s circumplex: an orthogonal space with dimensions of valence and

arousal (Figure 2.1, top right) [236]. While not meant as a direct representation

of brain and body, it is useful to think about the human experience of affect as

mapping to this space [19]. For example, to communicate with participants about

their emotion, we can employ instruments such as the Affect Grid (a discretized

2D circumplex) [239] or the Self-Assessment Manikin (SAM), which splits the

arousal-valence-dominance space into three scales with cartoons for each scale

item [30].

Our purpose in this detailed inspection of metaphors and their corresponding

representations is to better understand both the underlying emotional phenomena

and how to operationalize metaphors as representations in computational models.

Emotion Models

In interactive emotion modeling, this term has multiple uses.

As an emotion theory Models typically instantiate a theory. However, theoretical

definitions of models explain emotion, e.g., that an emotion exists, that a subjective

state is expressible through certain externally-detectable human behaviours, or that

emotions can be defined in terms of valence and arousal.

As a computational model A computational model’s purpose is to predict human

expression and possibly drive system responses, rather than explain them – e.g., a

machine learning or artificially intelligent representation used to detect and classify

emotions.

As an instrument The tools used for measuring emotion in a research context act as

a medium of communication between participants and researchers (e.g., the SAM

or Affect Grid).
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Methodology: framing and meaning-making

Our approaches to designing, running, analyzing and reporting on our studies

greatly influence our computational models and robot control architectures. There

is a close link between the social construction of meaning and the practical con-

struction of our real, physical, embodied interactive systems. The way in which we

elicit emotion ratings from participants is an integral part of the resulting compu-

tational model.

As an example, imagine a study where a participant watches an industrial robot

arm perform a series of short pick-and-place tasks. Each participant is given the

same written instructions to assess the valence of the robot from stressed–excited

on a semantic differential scale. Although the experimenter can answer clarifying

questions, current practices encourage them to respond minimally lest they influ-

ence the trial.

Some participants imagine that the robot is a persistent conscious entity that

is aware of them the whole time. Others imagine that the robot resets its memory

between trials. Imagining the former, a participant might see subsequent trials as

the robot trying and failing to communicate with them, rating the robot “stressed.”

However, this difference in framing would not be captured with a rating scale alone.

In controlled scientific process, we design studies to maximize consistency so

we can attribute causality to manipulated variables, reduce bias and improve ob-

jectivity/generality. However, in the example above, the experimenter cannot know

what is actually being measured with the participant ratings, and may not even real-

ize the experiment’s potential for ambiguity. The rigor gained by controlling this

experiment’s conditions is substantially undermined.

Ironically, such error can be a direct consequence of intended rigor: e.g., the

concern that experimenter interaction with a participant may actually introduce

response bias. At other times, it may be due to belief that a scale’s “validation”

means it can be deployed without explanation or instruction. In fact, participants

may not truly understand what they are intended to respond/evaluate when given a

survey instrument. There are two important methodological considerations here:

By framing a study task, we mean articulating what an emotion rating is being

ascribed to within that task’s context. A participant needs to understand what they
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are supposed to rate, e.g., how they feel, how they imagine a robot might feel,

or how a robot is trying to make them feel (Table II). This is not always an easy

distinction to make, nor to instruct.

Shared meaning-making refers to a process of resolving ambiguities through

discussion between researchers and participants. A failure to do so puts in ques-

tion understanding both of the interaction tasks, and of response instruments (e.g.,

rating scales). With the addition of qualitative methods, however, nuances in sub-

jective experience can be addressed.

A first step for the field would simply be a widely accepted realization that

the potential for ambiguity exists; and a second, to ensure that qualitative methods

(even as basic as an interview) are accepted and required as a standard for both

generating and interpreting quantitative data.

2.3 Related Work
Recent theoretical work in emotional interaction has challenged the dominant “sig-

nalling paradigm” [148] of emotion classification which assumes (1) all relevant

information about an interaction is encoded in a signal and (2) there is a universal

congruence between social meaning, behaviour, and subjective experience [148,

175]. In our own work, participants have regularly disproven our expectations that

study tasks are universally understood, and that study instruments can fully capture

how participants feel during an interaction.

It seems common research methodologies and conceptions of emotion meas-

urements that were initially helpful may obfuscate the path forward. Here, we

unpack the problems.

Problem 1 Prevalent emotion representations imply that each robot or human be-

haviour should map to a single emotion regardless of context.

Researchers in HRI and psychology have begun to recognize that behaviours

have context-dependent meaning, which confounds methods that label behaviours

with singular emotions [12, 37, 125, 148]. Jung introduces the concept of affective

grounding to explain how the same signals (e.g., facial expressions, gestures) can

vary in emotional and social meaning based on context. An affectively-grounded

interaction is one where a signal’s meaning is converged upon as a result of con-
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tinuous interaction (or “emotion coordination”) [148]. However, this perspective

is new to the field: reviewing 27 robot expression papers, Fischer et al found the

dominant assumption to be that a behaviour can convey an emotion independent of

context [86].
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Table 2.1: Dimensional theories of emotion use the metaphor of multi-dimensional scalar quantities to reason about
subjective experiences. Because our metaphors will be represented in computer code, we must use metaphors

more literally than they may have been intended. Here we outline the implicit assumptions and consequences of
strictly interpreting emotions as a point on a linear, dimensional space. This table elaborates on Problem 1 from

Related Work.
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The behaviour labelling approach is eminently reasonable: computational mod-

els need explicit labels for training data. Dimensional and categorical emotion the-

ories are used to produce self-report instruments that capture participants’ emotion

ratings of both their own and robot behaviours. Studies use Ekman’s theory of

basic emotions [33, 78, 86, 148], Russell’s dimensional model of affect [24, 35,

201, 241, 277] or a combination of both [243, 320]. Instruments include the Affect

Grid [239], the Self-Assessment Manikin [189, 241], or the PANAS scales [12].

Herein lies the dilemma: computational models of behaviour require labels, but

behaviours cannot be consistently and directly labeled with a single emotion [175].

We could add contextual details to computational models to improve labelling ac-

curacy [31, 37, 64]. Alternatively, we could actively choose to represent conflict-

ing or mixed emotions, aligning more closely with known neurobiological phe-

nomena [181] as well as how behaviours are experienced and interpreted in real

life [35]. We present a discussion of alternative representations in Section 2.4.

Problem 2 Experimental paradigms overlook pervasive framing ambiguities in

rating emotions during interactions.

Framing a human-robot interaction task is like directing a participant to em-

pathize: participants can be asked to either recognize or experience/respond to

emotional robot behaviours [123]. Failing to specify which is called for can res-

ult in a participant misunderstanding their job and generating data irrelevant to the

experimental intent (a situation we experienced in our own work).

Meanwhile, many HRI articles do not specify either instructions or intent, leav-

ing readers uncertain what the results mean.

As an example: we examined the 52 full, peer-reviewed papers published in

the HRI’18 conference [135]. 26 reported studies where participants judged affect.

Of these, in 9, task framing was clear to readers and participants. In 3, framing was

clear only in some respects. In 14, it was substantially ambiguous.

We offer [265, 283, 314] as excellent framing examples. Robots are introduced

as situated in the task, participants can conceptualize the interaction prior to rating,

and experimenters listen to and iterate with participants to establish meaning.

Fortunately, there are ways to avoid this situation without evident compromise

of scientific rigor. Some HRI studies implicitly explicate frame by asking contrast-
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ing questions using different frames [33, 35, 201]. Others establish frame through

clarifying interviews where participants explain their interpretation of the study

task [37, 175]. Still others use concepts from theatre. Bucci et al establish roles,

characters, and settings for an interactive scene [37]. Westlund et al do this through

an interactive theatrical process [310]: participants (children) are introduced to a

puppet who has a strong personality, a reason for being there, and a name. The pup-

pet then introduces the robot to the participants, clearly addressing the relationship

between all actors. Marino et al offered improvisation as a way for participants

to design robot emotion-transition behaviours, who found the design tasks easier

once an interaction was framed in a scene [190].

In summary, we can see multiple ways of establishing the frame of a study task

so as to direct a participant’s effort to the kind of empathy the researcher wants to

inspect.

Problem 3 Experimental paradigms rely on participants and researchers having

a mutual understanding of study instruments that measure universal quantities of

emotion.

Self-report instruments such as Likert scales and the Affect Grid usefully allow

a participant to report quantitatively on their own subjective experiences. However,

people naturally differ in interpreting a scale’s “distances” relative to the emotional

quantity it represents [285]. There are examples of scales measuring subjective,

affect-related quantities, such as pain, where research has found that baseline and

extrema depend on personal experience (e.g., the worst pain you have ever felt is

different than mine). Accepted practice with pain scales recognizes that meaning

can be relative to a treatment program, and may need significant discussion to

situate the scale in the rater’s personal history of pain [32, 223, 282].

Our own experience of scales like the Affect Grid has exposed variance in user

understanding of scale meaning. Their first impressions may not correspond to

what experimenters expect to measure, e.g., with respect to scale linearity or separ-

ability. The required introspection to quantify an experience on multidimensional

scales – even just 2D as with valence and arousal – may compound dissociation

from the lived emotion [164, 165], further obscuring ground truth estimation.

HRI researchers have been arguing for stronger integration of qualitative and
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quantitative research designs (“mixed-methods”) that include participants directly

in the co-construction of meaning: collaboratively understanding the rating scales [27,

94, 148]. Co-constructing means that experimenters can define the structure of

the scale (e.g., one-dimensional, 5-item, linearity, etc.), and allow participants to

explicate the scale boundaries relative to the specified interactive context and par-

ticipant’s own experience. The resulting relative scale enables clearer between-

participant comparison without presuming that a subjective experience has some

absolute, objective quantity.

Leahu and Sengers emphasize working with participants to define what emo-

tion words mean. They “expose the [computational] models” by reviewing qual-

itative/quantitative results together with participants; we further emphasize that

scale calibration needs to happen prior to use of the scale even if post-hoc review

is needed.

We present a process for a mixed-methods approach to defining the meaning

of study instruments between participants and experimenters in Section 2.6.

Takeaways
Interactive affect research has reached a state where: (1) We require represent-

ations of emotion that can convey uncertainty, motion and mixing. (2) Study tasks

are rarely framed explicitly, but there are examples of doing this without impact-

ing experimental rigor. (3) Study instruments and methods, even when validated,

can be interpreted individually, undermining accuracy; one safeguard is a method

whereby experimenters work with participants to personally relate their experience

to the provided scale within the interaction context.

In the following, we expand on our arguments and make concrete recommend-

ations for the field to consider.

2.4 Model Metaphors
Building computational models of affect requires collecting quantitative emotion

data or labels. The instruments we choose for measuring this data are a product of

the metaphors we use to describe and explain the emotional experience. Selecting

a metaphor appropriately has the power to communicate the researchers’ inter-

pretation of the emotion space, and consequently align participants to the same
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understanding.

Dimensional theories of affect and communication use the metaphor of multi-

dimensional scalar qualities to reason about subjective experience. Here, we artic-

ulate and critique two assumptions (Table 2.1) about the emotion space implicit in

these metaphors: (1) that emotions can be represented as a single point-like state,

and (2) emotion space can be conceptualized as continuous and linear. These as-

sumptions structure both how emotions can be conceptualized and how emotions

can be represented using instruments within an experimental context.

First, the common usage of a point-like metaphor for emotions implies that

one’s current emotional state can be unambiguously captured for a given instant.

However, in real-life emotional interactions, our experience is rarely focused to

a single point: as events play out, we evolve our own understanding of emotions

as well as our evaluations of others’ [19]. We might also experience multiple or

conflicting emotions.

Second, the common circumplex representation implies a topology in which

the space can be traversed consistently, with equal probability of reaching the entire

space. Yet, movement between emotion states is not so tidy; there is more to

represent than a linear movement through a uniform orthogonal space. Does a

continuous space represent all possible emotions a person could feel? If each point

in the space represents an emotion state, then does inhabiting different points in the

space feel different? Do we experience emotions independently? To address the

first assumption, we propose alternative metaphors for the unit of representation for

emotional states. For the second, we suggest different emotion space topologies.

2.4.1 Area metaphors: representing emotion state

Asking participants to identify an emotion as a point in a space implies that they

are capable of identifying the emotion, they are experiencing only one, and their

experience is static. Consider an alternative metaphor: think of the emotion repres-

entation as an area to better encompass the real-life complexity of mixed, conflict-

ing and dynamic emotions in ourselves, or uncertainty in attributing emotion to an

agent’s behaviours.

Emotions evolve in an interactive context. This temporal aspect necessitates
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that we use more than a single point to represent emotion states over time. An area

metaphor can capture movement through the emotion space over time, as illustrated

in Figure 2.1.

We claim that uncertainty should be directly accounted for in any representa-

tion, not simply as error, but as fundamental to what it means to experience emo-

tions ourselves and ascribe it to behaviours. Researchers often analyze robot be-

haviour in terms of averages of Likert scale measurements. Using the average im-

plies there is a precise point-like emotion that a particular robot behaviour should

convey, and that deviations from that theoretical average are measurement errors.

Remove the concept of a point-like emotion, and it becomes reasonable to talk

about the behaviour’s inhabiting a probability distribution over an emotion space,

where this space itself represents the possibility of the emotion the behaviour may

connote. A behaviour may not convey the same emotion each time (it is not de-

terministic); our representations should account for this.

2.4.2 Nonlinear spaces: topography of possible emotion states

The metaphorical emotion space should also represent the possible emotions that

a person can feel. Descriptively, there are portions of the emotion space that are

more difficult to attain, e.g., it is more rare and perhaps effortful to be ecstatic

than to be depressed. Imbuing the emotion space itself with contour allows for

representations of a directional quality or likelihood of moving from one emotion

to another (see (c) and (d) in Figure 2.1 for examples of contoured emotion spaces).

In modeling interactive emotions, we might think of the space itself changing

over time: as you feel more sad, it might be easier to get angry than relaxed, despite

these being separated by similar Euclidean distances on the Affect Grid. In such a

case, an emotion experience is not simply a point but a trajectory over a perpetually

reforming terrain.

2.4.3 Alternative Representations

We present the above alternative representations to challenge the norm and widen

the space of metaphors we currently use. We invite fellow researchers to consider

the implicit metaphorical claims of their chosen representations when designing
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studies, and ground them in their participants’ subjective experiences. As research-

ers who build interactive emotion models, we posit that representations should

feature:

RF1. Multiple points, due to the human experience of conflicting emotions.

RF2 Model uncertainty estimates, reflecting ambiguity in how we experience

emotion.

RF3. Time-variance, for movement through emotion space.

RF4. Non-linearity, with collection instruments that support responses that move

on different topologies.

2.5 Framing problems
Picture a slapstick comedian performing a banana-peel bit in front of a live audi-

ence. The comedian trips, falls loudly and screws up their face in pain. The audi-

ence laughs. We could ask the audience, “How did this performance make you

feel?” or “What feeling is the comedian expressing during this act?”. The ratings

would differ wildly depending on what the audience thought the framing of the

rating task was, as each has a different meaning [148]. In an interaction rating task,

there is an evaluator and something that is being evaluated. There is ambiguity in

whether a participant is meant to evaluate how they feel, or to guess what another

thing is supposed to feel. As illustrated in Table 2.2, there are a number of possible

framings between one participant and one robot, each of which would attribute an

emotion rating to a different aspect of an interaction. The methods we use should

disambiguate these framings to ensure the reliability of gathered data.

Many of the instruments we employ were originally designed for self-report of

one’s own affective state. For example, the SAM is intended as an easily under-

stood, culturally universal method for a participant to express their internal affect

via cartoon depictions of the body [30]. When rating a robot’s behaviour with the

SAM, the implicit assumption of the experimental task could be that: (1) the be-

haviour makes a participant feel an emotion; (2) the robot’s behaviour consistently

conveys an emotion; (3) or the robot feels an emotion. The participant may not

share the assumption of the experiment with the researcher, nor the understanding

that the SAM instrument is intended to be self-reflexive.
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Table 2.2: During an experiment, it is sometimes unclear which portion of
an emotional interaction we are asking participants to consider. Here are

possible frames of reference that an experiment could be inspecting.

Cartoon Description

Participant (Jan, left) is evaluating how she feels about
Robot (Can, right). Jan is being asked to interpret her
subjective feelings about how Can is making her feel.

Jan is evaluating what Can is trying to convey. Jan is being
asked to interpret Can’s communicative behaviour. Can’s
expressions give evidence for a hidden subjective state.

Jan is evaluating how Can feels. Jan is being asked to
interpret a set of behaviours over some duration that indicate
Can’s emotional state.

Jan is evaluating how Can feels about her. Jan is asked to
evaluate how Can is evaluating her subjective state. Jan might
view Can’s actions to do this, or might consider her own
actions.

Jan is evaluating how she currently feels. Jan is being asked
to inspect her body/brain and describe some kind of mixture of
mood, emotion, affect, or physiological perceptions.

In robot emotion studies, directives to rate “the robot’s behaviour,” or even

“how the robot feels” are ambiguous. Feeding the resultant corrupt data into a

computational model will produce erroneous results. Rather than assume that the

intent behind a rating question is obvious to the participant, we suggest that the

researcher should:

F1. Resolve the frame through calibration via participant discussion or attention

to scene-setting.

F2. Report the framing process when sharing results, so others can assess their

validity and build on them.
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2.6 An Argument for Mixed-Methods Evaluation
While the goal of an interactive emotion study is often a quantitative measurement,

methods and instruments must use language or images as descriptors to convey

meaning. The interpretations of these descriptors vary between people due to their

different experiences in the world, which exposes an inherent qualitative aspect in

a seemingly quantitative measurement. We suggest embracing this fundamental

“mixedness” by ensuring that the meanings of descriptors are well established.

Embracing mixed-methods approaches in our experimental design necessit-

ates: (1) grounding participants in the premise of the interaction; (2) creating

shared understanding of instruments and measured phenomena; and (3) creating

closer alignment between experiments and possible real-world applications. Con-

versation between participants and researchers is required to ground the framing

and meaning of study materials and activities. The goal is to calibrate participants

on the researchers’ intended parameters, but also to capture the participants’ ex-

periential richness that has led to their rating.

Specifically, we suggest actively collaborating with participants to ground emo-

tion measurement in personal experience to align quantitative representation and

qualitative meaning. Researchers should provide the instrument structure (e.g., the

intended subjective spacing between scale elements) and work with participants

to explicate the semantic difference of scale items. Researchers should also it-

eratively assist participants in attributing their experiences to scale items, taking

care to ensure that both parties can reason about and refer to the scale similarly.

A calibration process allows researchers to assess agreement between participants

and report on the accessible emotion range of the interaction. This will generally

require the researcher to use a methodology in which they:

M1. Establish the extrema of a scale by asking a participant to recount events

in the interaction.

M2. Establish the meaning of subjective distance between items by asking a

participant to explain their understanding of each item.

M3. Converge on researcher-provided structure by iterating on the above be-

fore the scale is used or if meaning shifts during scale use.

Rather than leaving participants’ interpretation of task framing and instruments
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ambiguous, such a process acknowledges and addresses variation. By explicating

the meaning of what is being measured, ambiguities around framing and instrument

meaning can be accounted for and, ideally, resolved.

2.7 Conclusion
In this paper, we discuss challenges in representing and capturing emotions during

interactive emotion studies. We articulate emotion metaphors and representations

in common use which shape how emotional experiences are understood, and have

a cascading effect on how we collect, analyze and discuss emotional interaction

data. Current metaphors are representationally limited in not accounting for time

variance and the inherent uncertainty in self-reporting emotion. We propose al-

ternative metaphors based on areas or non-linear topologies that align more closely

with the semantics of emotion rating tasks. We identify methodological problems:

the framing of emotion tasks can be ambiguous, resulting in categorically confused

studies. As a solution, we suggest that a mixed-methods approach of incorporat-

ing meaning-making into quantitative research designs will ground the meaning of

study instruments and resolve framing problems.
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Chapter 3

Machine as Emotion Conduit: An
Example of Haptic Messaging in
Emotion-Laden Scenarios

Summary
Touch is valued for supporting emotional bonds. How can people access its warmth

and nuance remotely, when tech-mediated proxies are so different from direct

touch? We assessed the viability of haptic animations as affect-embedded tact-

ile messages, highlighting findings which demonstrate how crucial relationship

and shared history is in influencing these expressions in design and interpretation.

To investigate haptic messaging, we first identified a set of 10 common emotion-

imbued scenarios by surveying 201 people in distance relationships. Then, using

a novel prototype of a wearable spatial vibrotactile display, 10 intimate dyads de-

signed 167 haptic encodings matching the provided scenarios plus 17 user-defined

“wildcards”. A week later, 21 individuals interpreted sentiment from encodings

designed by themselves, a partner or a stranger. We examined design strategies,

engagement, and compared human vs. machine interpretation accuracy. A striking

finding was participants’ facile use of shared context when it was available, build-

ing on ”inside stories” to communicate subtle meanings with high effectiveness

despite the unfamiliar medium, and doing so with evident fun. We analyze re-

cognition accuracy and share insights on what it might take to make interpersonal
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haptic messaging work.

Figure 3.1: Our tactile animation prototype and participant-designed
messages. A touchscreen interface

(a) allows senders to draw a track
(b) modulated over an 8-tactor array (shown flipped on contact side).
Recipients could
(c) experience the haptic design, interpolated smoothly between tactors
as drawn. In our study, participants designed messages for a close
partner: for example,
(d) P07b sent a haptic pictogram – though P07a didn’t speak of the
sensation in visual terms as puzzle pieces, they did interpret it as
connection based on the retracing of a similar path (at the join).
(e) P06b created an abstract, rhythm-based sensation from which
partner P06a inferred as irritation.

3.1 Introduction
Social touch interactions add nuance to our communication – a light squeeze on an

anxious patient’s arm calms them; a firm handshake asserts trust in a newly struck

business deal; even a light tap on the shoulder can increase trust and cooperation

between strangers [170]. We communicate comfort, love, and safety through touch,

promoting pro-social behaviours and forging deep emotional bonds that help form

and maintain relationships [16, 197].

It is increasingly common for partners, family members, and close friends to be

separated e.g., due to professional, academic, military, health responsibilities [71,
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242], fueling a growing appetite for machine-mediated social touch [131, 294] that

can re-introduce valuable touch-based interactions where natural person-to-person

contact is not practical [142].

How we perceive a communicated sentiment [39, 143] can be heavily influ-

enced by the pre-existing relationship. Natural interactions take place within com-

plex ecosystems of history, condition, and purpose, all of which color the encoding

of emotional perception [18]. Studying how these interactions are received and

interpreted must include the context and relationship they exist in [21]. This is

certainly true of touch: e.g., touch between strangers is unlikely to be interpreted

as surprise, envy, or pride [114, 296].

People are capable of affectively interpreting simple notification-style tactile

sensations [233, 256, 294]; in fact, it is natural to comprehend signals like high

frequency choppy buzzing as urgent irritation, or soft rolling rumbles as calming

reassurance[255]. Further, haptic animation displays have been embedded into a

chair for on-back interaction to incorporate multimodal immersion for visual me-

dia [136] and incite a number of intriguing experiences where discrete tapping

sensations simulate rain, or low rumblings evoke the purring of a big cat [247]. For

this work, we test the feasibility of vibrotactile animation for haptic messaging.

To leverage these sensations on a wearable, we ask: can partners with a shared

context and history convey high-resolution emotional information, using just low-

resolution spatial vibration through a relatively simple vibrotactile animation dis-

play?

To test the feasibility of vibrotactile animation for haptic messaging, we pro-

totyped a wearable haptic display, scaling a large chair-sized interface [247] down

to an array of 8 small tactors to fit along the forearm (see Figure 3.1). The accom-

panying message design interface uses the exact principles developed by [248]:

users define the sensation by directly drawing on a touchscreen and a continuous

tactile signal (i.e., without unintentional segmentation or path break) is interpol-

ated spatiotemporally along the drawn curve. To assess the potential for affect-

ive interpersonal but remote haptic communication, we devised a three-part study

(summarized in Fig 3.2), as well as a device validation pilot, in which we:

1. Built an 8-tactor wearable prototype and conducted a small pilot on
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Npilot = 12 people to evaluate the feasibility of haptic messaging for affect

communication.

2. Surveyed Nsurvey = 201 people about messages they send to people they

want to maintain touch relationships with despite obstacles such as distance

or health issues. From this data, we constructed 10 scenarios that capture

realistic context which might naturally prompt touch as a communicative

element.

3. Collected haptic message designs by 10 dyads (Ndesign = 20 individuals) in

close co-habitation relationships for their partners. These messages are con-

textualized by scenario prompts and include a personal wild card message of

their choice.

4. Collated interpretations from Ninterpret = 21 individuals who experienced

haptic messages designed by strangers, their partners, and themselves a week

earlier.

We assessed the physical aspects of the haptic message designs from (3) by in-

tended emotion, identified features offering the greatest insight, then incorporated

these into a machine learning model predicting emotion from message. We report

how machine recognition of the emotional scenario prompts compared to that of

human interpretations from (4), broken down by the interpreter’s relationship to de-

signer: stranger, partner, or self (ordered in overall increasing interpretation rate).

We describe the strategies that participants took in designing and interpreting en-

codings, noting where partner-focused strategies perform better than non-partnered

counterparts; and suggest improvement priorities for the next iteration of a haptic

messaging prototype. Finally, we observe how the interaction experience excited

a spirit of play and whimsicality in design and recognition – an intuitive key in

unlocking the privately shared tactile language between partners.

Overall, this paper contributes:

• a compilation of results from human and machine recognition of emotion-

based intent in haptic messages;
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• evidence that shared history influences the interpretation of playful affective

haptic messages;

• a summary of design strategies and engineering parameters of haptic mes-

sages created by and for partners in close relationships, and a synthesis of

our results into insights to inform future systems to support effective inter-

personal haptic messaging.

3.2 Background
When studying machine-mediated haptic expressions of emotion, we want the

touch to be representative of a genuine affective experience [39, 42]. In this work,

we are further interested specifically in purposeful emotive interactions [148]. Thus,

we present relevant related work and explain how it has informed our approach

in two parts: (1) machine-mediated touch interaction where participants are (2)

grounded in real emotions rooted in familiar events generating authentic touch ex-

pressions.

Machine-Mediated Touch and Display Expressivity: Defined as “the ability of

one actor to touch another actor over a distance by means of tactile or kinesthetic

feedback technology”, machine-mediation differs from direct touch where actors

physically experience and reciprocate social touch in-person [107] (p153). There

are many wearable or handheld devices (both research prototypes and commercial

products) that purport to bridge physical distance to enable social touch [131]. The

form of touch varies: the Hey bracelet1uses squeeze sensations (a motor rolls to

tighten the band); Shaker [284] transmits a shake via a current between connected

solenoids; the research tool, The Tactile Emoticon System is a glove form factor that

transmits and receives pressure, heat, and vibration, concluding that interpretative

value may hinge on message personalization [224]. Since studies have shown that

users can infer nuanced affective information even from tuning simple vibrations

alone [107, 249, 257], we inspect whether affective meaning can be made through

custom designed vibrotactile messages, and examine the addition of making it a

2D travelling signal played out over time.

Haptic Spatial Animation to Leverage Expressive Sketching: Haptic anima-
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tion [136] has demonstrated that perceptually interpolated (i.e., animated) spatial

vibrotactile display creates an intriguingly varied and rich design space [137, 248].

Tactor arrays have been used to create interesting effects. From early attempts

to discern simple directional lines [290], to simulations of real-world haptic ex-

periences like a snake crawling up an arm [259] or a cat walking across one’s

back [136], the field has made great strides in approximating convincing haptic

effects from simple vibrations.

The density and positioning of the tactor array depends on the sensitivity of the

body part stimulated. For instance, [82] developed a 3x3 tactor array that was suf-

ficient for the entire back to feel fully activated; while [248] used a trapezoidal 5-

tactor array embedded in a chair. A forearm is much more sensitive with two-point

discrimination (the minimum distance where two distinct points can be differenti-

ated) recorded at about 30.7-45.4mm from 43 subjects [205]), so devices need not

be more dense than this linear distance. Distinct excitations were distinguishable

only about 30-40% of time (chance 14.3%) at 25mm apart [54], suggesting that

most vibrations from neighbouring tactors within this distance may be experienced

as a continuous (i.e., without segmentation). At 22-44mm linear tactor distances,

an illusion could be created of a snake moving in various ways across the arm [259].

We built our display to be within the two-point discrimination range [205], similar

in range as [259].

The tactor array needs design tools for building haptic animations into socio-

affective touch. Given that even relatively low-fidelity sensations can be emotively

expressive [256], context may be as important to interpretation as the sensation it-

self [36]. Therefore, we explored the impact of context, and privilege a sender’s

design experience over high fidelity display. Specifically, we anticipate that ac-

cess to a spatiotemporal design palette will allow participants to define vibrotactile

messages with greater personal significance with the potential for novel haptic ex-

periences and expressions. We draw inspiration from the haptic design palette

presented by [247] and affective vibrotactile parameters proposed by [249, 257], to

develop an accompanying haptic sensation editor.

Emotion-Related Remote Touch Between Strangers: With direct human-to-

1Descriptions available at https://feelhey.com/pages/about.
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human touch established as a medium for emotion content [115], it follows to

ask how much of this emotion encoding and decoding is retained when direct

touch is intercepted by another medium or device. [11] had participants generate

emotion-laden handshakes using a commercially available force-feedback joystick

and found that those sensations were human-interpretable at roughly twice that of

chance (33%, where chance was 1 in 7 or 14%).

Even without direct device contact, haptic sensations can communicate emo-

tional content. The UltraHaptics system sends ultrasonic air pressure waves to

deliver tactile sensations mid-air. [207] asked participants to design sensations that

represent the emotions elicited by a provided picture, by modulating frequency,

duration, and intensity. Another set of participants then rated how well suited some

10 haptic sensations were to a given picture. Again, there is evidence that mediated

social touch can communicate emotion between people: participants consistently

rated the haptic description designed with the picture with “high appropriateness”.

Here we ask: since close relationships create more opportunity for communicat-

ing through touch, what is the difference in emotion recognition between strangers

vs. that of close partners?

Relationship as Context: While most people would intuitively accept that hu-

mans can communicate emotion through touch, it is still somewhat surprising when

sentiments like anger, love, gratitude can be recognized at rates above chance by

strangers in a lab directly touching one anothers’ forearm [114]. Certain emo-

tions have better recognition rates in the US vs in Spain; cultural relationship may

explain some of these differences [114]. Studies on facial emotion recognition

found that mutual cultural membership adds contextual background for how an ex-

pression may be made [118] which in turn influences emotion interpretation. Our

interpretation of touch is similarly influenced [55] wherein culture defines who,

when, where, and how we touch one another. So what happens where touch history

extends beyond being simply cultural? Turns out that even in machine-mediated

touch, relationship context (e.g., are we partners, friends, work colleagues?) is

crucial for generating and interpreting Tactile Emoticons [224].

Many more factors contribute to the contextual framework that ultimately in-

forms how a touch between two people is perceived [18]: the relationship between
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them, the events triggering the touch contact, the environment and backdrop, and

each participants’ comfort with emotional expression. With respect to relation,

Thompson et alexamined touch interaction between couples and found that part-

ners were better able to distinguish typically self-focused emotions like embar-

rassment, envy, pride than strangers [296]. Since technologically-mediated touch

seems to follow common patterns for relationship contextualized haptic interac-

tion [224], we wonder if recognition improves with relationship closeness where

emotion-based touch messages authored by the participant themselves, their part-

ner, and strangers may be successively less interpretable. Quantifying reasons for

the difference in recognition rates influences how we structure our touch commu-

nication systems and interaction design.

3.3 Materials and Methods
A consumer-ready haptic messaging device would require careful iteration over

hardware, functionality, and user experience. Here, we demonstrate a proof of

concept for encoding emotional content into haptic animation – a necessary first

step (process summary in Fig 3.2).

All experiments were conducted in 2019 and in accordance with the organiza-

tion’s ethical policy regarding human participant testing (with protocol as conduc-

ted later approved by WIRB, ref# AGHM-2019). Environmental Health and Safety

approved the device prior to the study.

3.3.1 The Haptic Display

We describe the specifications of our haptic animation prototype and the interface

for designing the sensations.

Building the Prototype

Our prototype’s custom haptic display features eight voice-coil vibrotactile tactors

(model: TEAX13C02, Tectonic Elements, UK2) which are arranged in equilateral

triangles (35 mm sides) along two columns, and padded with laser-cut Polyureth-
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Figure 3.2: An iterative process (dashed lines) of developing a device
suitable for a haptic messaging application. For this paper (solid
arrows), we built and piloted a wearable device and conducted a

3-phase haptic messaging study based on designing and interpreting
haptic sensations rooted in emotion-laden scenarios commonly
experienced by members of close long-distance relationships.
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ane foam (Figure 3.1(b)). Each tactor is housed in a 3D-printed casing to isolate

electrical components from directly touching the skin, and covered with an insu-

lated cover. The vibrating element of each actuator is covered with a thin 15mm

diameter disk that contacts the skin. The actuators are computer-controlled using

an audio interface (Motu, USA, model 24Ao3) and powered with a set of audio

amplifiers (MAX983064).

Tactor Position

The inner forearm from wrist to elbow is tactually sensitive, socially discrete, con-

venient and practical, without hindering the hand [50, 199]. These traits make it an

excellent candidate for placing a tactile display. To leverage the wide design space

of haptic animation [136, 247], we followed [248]’s blueprint to create a medium-

fidelity prototype of a haptic animation display with tactors positioned as vertices

of equilateral triangles but with intertactor distance scaled down to 35mm to be

wearable on the arm (rather than embedded in a chair-back as in [248]). This dis-

tance was so chosen to fall within the two-point discrimination range of 30.7mm -

45.4mm for the forearm [205] in order to render a continuous vibration sensation

between adjacent tactors (Figure 3.1(b) shows relative positioning). When engaged

in the frequency range of 20-300Hz, the tactor array on the device has a conser-

vative active surface area that covers the contact area of the device at about 60mm

wide by 155mm long (since each tactor has a two-point discrimination radius of

30mm). Strapped tightly to an adult forearm, the device casing that houses the

tactors has a height of 20mm over the contact area.

Message Editor & Process

So that lay designers could access this prototype function with minimal learning,

we developed a rudimentary graphical user interface (GUI) in which a designer

can define their haptic sensations by manipulating a set of vibration parameters

(summarized in Table 3.1) and drawing directly on the representative display area

2Material specifications for each element can be found at: TEAX13C02, Tectonic Elements:
https://www.tectonicaudiolabs.com/product/teax13c02-8rh/.

3MOTU 24Ao: https://motu.com/products/avb/24ai-24ao.
4MAX98306: https://www.maximintegrated.com/en/products/analog/audio/MAX98306.html.
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of a touch screen (Figure 3.1(a)).

In playback, the resulting sensation is graphically presented by a circle that

follows a designer-laid track (visible only to the designing partner), while playing

out only tactually on the message recipient’s arm in the same timeline.

Terminology: We refer to the touch screen region as the drawing surface where

designers can define the size of the circle or brush to draw a track defining the

path that the haptic sensation travels. A track can consist of one or more strokes

which are continuous drawn segments. The circular brush’s diameter represents

how wide the track feels – e.g., a large brush radius signifies a wider or thicker

track line such that tactors passing under the brush are activated. Upon playback,

participants feel the haptic animation which is the sensation of the recorded design.

A haptic encoding refers to a tactile animation designed to communicate a specified

intent; this haptic signal together with the intent are a haptic message.

Parameters editable through the GUI (Table 3.1): As well as spatial path and

dynamics, the designer can modify vibration intensity by editing the signal wave-

form’s amplitude and frequency (both defined before drawing a message that does

not vary over the course of a single message). Brush size refers to the circle dia-

meter (i.e., width of the drawn track), such that tactors within the brush’s circular

boundary are activated at varying intensities based on diffusion type. Three dif-

fusion types (linear, quadratic, exponential) allow users to define how sharp and

focused the animation brush feels across the path’s breadth during tactile replay.

With linear diffusion, there is a gradual fade from the ball’s centre to its border;

exponential causes the most dramatic fade with most of the sensation near the path

centerline; quadratic is in between.

Drawing process: The drawn track defined the x-y coordinate of the 2D drawing

surface as well as the time variation of the stroke. After drawing a track, users

can then record their haptic message, play it back, and edit the sensation using all

available parameters including speeding up or slowing down the animation along

the existing track. Any edits to track placement requires a new design.

Our priority was for designers to achieve their haptic-message vision. Although

we tried to make the GUI usable, its success was not a focus at this stage, so a

researcher helped designers navigate the interface.
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Table 3.1: Editable parameters for haptic message design

Parameter Controls Range/Options
track message motion unspecified limit
travel rate cursor velocity unspecified limit
brush size effector area 0 mm - 165 mm
diffusion
factor

effector sharp-
ness

0 mm - 165 mm

diffusion
type

effector gradient
linear, quadratic,
exponential

amplitude effector strength
defined by amplifier
volume & tactor specs

frequency vibration 0 Hz - 500 Hz
duration message length unspecified limit

Understanding the Display: A Pilot Study

To ensure that participants could tactually perceive the overall physical sensa-

tions rendered by our haptic display (a prerequisite of interpreting their intended

meaning), we conducted a pilot in which we asked participants to re-draw eight

researcher-defined haptic animations, so chosen to vary shape, area covered, seg-

ment count, direction, curvature and angles.

Figure 3.3: Representative perceptibility pilot results. A comparison of the
test design (L) and a participant-drawn interpretation (R) from each of

the three images above (chosen from the 8 message trajectories as
depicted in Table 3.2). Each continuous segment is labelled with the

order of its playback.

To reduce novelty effects of the device, participants who received the stimuli

from the haptic display were first introduced to the prototype in a sandbox session
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where they could experiment with the controls and sensations. We asked them to

find and tell us the parameter ranges on brush size, diffusion, amplitude and fre-

quency where haptic sensation felt both clear and comfortable; then set participant-

specific ranges based on their preferences. In general, pilot participants found the

sensation most pleasant at low vibrational frequencies, reporting a range of µ(σ)

of 31.7 Hz (11.7) to 91.2 Hz(25.6).

To assess device rendering accuracy as compared to actual continuous touch

contact, N = 6 people wore the device to receive the eight researcher-defined

haptic animations, and as a control, another distinct group of N = 6 people had

a researcher draw the same eight shapes with an index finger, counterbalancing or-

der. All participants received the stimuli on their non-dominant arm and used their

dominant hand to draw out the track they were feeling on their forearm. They were

instructed to use arrows or mark (S)tart and (E)nd points to indicate direction as

well as order all discontinuous segments (Examples in Figure 3.3). We assessed

exact agreement (no partial credit) between participant drawing and original design

on three metrics: (1) discontinuous segment count; (2) direction of the motion; and

(3) the shape of the 2D track.

Outcomes

As summarized in Table 3.2, participants correctly distinguished the segment count

(device µ = 6.7, σ = 0.5; human µ = 7.5, σ = 0.8) and direction (device µ = 7.3,

σ = 0.8; human µ = 6.5, σ = 0.5) for at least 6 of 8 animations. They were less

successful at recognizing the exact shape defined by the track (device µ = 4.7, σ =

0.5; human µ = 5; σ = 0.9). The triangle shape was hardest to decipher with the

angles often drawn as discontinuities. Due to the small sample sizes, we ran sep-

arate Kruskal-Wallis tests (KW-test for non-parametric comparison between group

measures) to compare success rates of recognizing each of segments, direction,

and shape as drawn by human touch (control) vs device stimuli (as in Table 3.2).

Results showed no significant differences (p > 0.15) across all three factors. We

then calculated the effect size using epsilon squared (compatible with the KW test),

obtaining very weak effect sizes at all measures at ε2 << 0.003. Therefore, we pro-

ceeded with this device iteration assuming that the animation display and GUI are
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Table 3.2: Pilot results: Test Stimulus Perception. Values are the number of
pilot participants able to draw the exact (no partial credit) number of
Segments, Direction of motion, and overall track Shape of the test
sensation as delivered by the haptic device (Dev) or control human

researcher (Hu). Each participant group contained N = 6 individuals for
48 trials (8 test stimuli x 6 people).

Test ✓Segments
Dev — Hu

✓Direction
Dev — Hu

✓Shape
Dev — Hu

4 – 6 5 – 6 3 – 3

6 – 6 6 – 6 3 – 3

6 – 5 6 – 5 6 – 5

6 – 6 6 – 5 4 – 5

3 – 4 4 – 4 2 – 3

5 – 6 5 – 3 3 – 4

4 – 6 6 – 5 3 – 3

6 – 6 6 – 5 4 – 4

Success
Count:

40 – 45 44 – 39 28 – 30

Device
Success:

83.3% 91.7 58.3%

Human
Success:

93.8% 81.3% 62.5%

basically adequate for the purposes of this study. To prepare for a learning curve,

later study phases incorporated time to get used to the device and a sensitivity test

to ensure that design and interpretation participants could discern the stimuli with

similar success as in the pilot.

3.3.2 Message Meaning Phase: MTurk Online Survey

To build a realistic set of message meanings (i.e., situated within scenarios) for

which participants would design descriptive haptic encodings, we surveyed indi-
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viduals who had been in at least one long-distance relationship (N = 201, Amazon

Mechanical Turk). They answered questions about the kinds of messages they did

or would have wanted to send within a prominent relationship that had established

a high-level of interpersonal touch prior to being long-distance.

Survey respondents (mean age 33.4 years) reported on relationships with a

spouse or romantic partner (68.2%), parent (12.9%), friend (10.9%), child (3.5%),

grandparent (2.5%) and sibling (2.0%), most of which (54.5%) were long-distance

for at least a year. We compiled their free-form responses to “What message would

you most like to send to your loved one? (all of which were conversation initi-

ations). Two independent raters looked for the main themes of the intended ensu-

ing conversation; resolving the two independent lists, we agreed on the 8 categor-

ies listed in Table 3.3. The most common category involved bids for conversation

without a specific topic, including general updates that often open with Hey. Next

are a series of emotions elicited: excitement, miss you (sometimes also referred to

as longing), sadness, love, anger, gratitude, anxiety. We found that some messages

expressed high urgency or arousal, through use of all-caps (e.g., “IS SOMETHING

WRONG?!”) so we noted the extremes as calm, attention. For each category (plus

calm and attention), we created scenario prompts to ensure common contexts with

implicit roots in emotion. Finally, since each partner pair has a distinct communic-

ation style and background, we added a wildcard message scenario for a total of

11 prompts for message generation listed in Table 3.4.

3.3.3 Design Phase: In-Person Dyads

We recruited ten dyads (self-reported as 9 male, 11 female; aged µ = 29.5 years,

σ = 4.7) who happened to be of diverse cultural backgrounds from the US, UK,

Belgium, Ecuador, Russia, China, Thailand, and India, that together were repres-

entative of the population of the greater Seattle area and who reported being in

comfortable touch relationships. Participants generated haptic messages based on

the scenario prompts in Table 3.4. Nine of the dyads were in committed long-term

romantic relationships, and one in a best-friendship (relationship length µ = 6.9

years, σ = 4.9 years. Each pair was living together at the time of the study. All in-

dividuals reported a high level of comfort with electronic and messaging devices.
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Table 3.3: Eight categories of crowdsourced messages to send to loved ones
from a survey of people (N = 201) in long-distance relationships

Type Count Sample Message
Update
(Hey)

96 ”Hey how’s your day going?”

Excited to
Visit

65
”I can’t wait to see you
so we can celebrate!”

Miss You
(Longing)

41
”I’m thinking about you and
I miss you so much.”

Sadness 34
”Can we Facetime soon?
I’m just disappointed right now.”

Love 26
”I’ve been wanting to say ‘I love you’
but just didn’t know how.

Anger /
Frustration

18 ”It’s so frustrating to be apart so long.”

Grateful for
Relationship

17
”I’m so glad we met.
Thank you for being so patient.”

Anxious for
Well-being

15
”How are things with your family?
I’m worried about the kids.”

Sessions took ∼60 minutes, and each participant was compensated with a small

honorarium of $75 USD.

Familiarization

After getting comfortable with the device and controls, participants proceeded to

perceiving and distinguishing a useful range of sensations. To reduce novelty ef-

fects and establish a message sending / receiving experience, dyads were first given

a chance to play with the device together. Specifically, we alloted time for: (a)

Sandbox mode to establish a messaging context and reduce novelty effects, consist-

ing of 10-15 min of playing with the device and sending instant messages, wherein

Person A draws on the touch screen while Person B wears the display and vice

versa; (b) a sensitivity test so researchers can ensure participants are able to per-

ceive basic encoding elements; (c) a learning phase for designers to familiarize

themselves with the GUI and the device capability.

One participant wore the haptic display device on their forearm while the other

drew on the touch screen interface to transmit real-time messages. They switched
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Table 3.4: Scenario Prompts for Haptic Message Design and the Number (#)
of Designs for Each. Participants designed at most 1 encoding per
scenario (some ran out of time before completing all 10 prompts).

Code # Scenario Prompt

anger 17
Your partner has done something careless that has
set off a sequence of inconveniences and you are
frustrated that this has happened. Again.

anxious 17
You’re really nervous about a big presentation you
have to make today and you are asking
your partner to reassure you or wish you luck.

attention 19
You need to talk to your partner RIGHT NOW.
It is an EMERGENCY.

calm 15
You’ve just had a very relaxing massage
and you think your partner should try one too.

excited 16
You’ve just received the big news you were hoping
for! You want your partner to know that you want
to celebrate together!

gratitude 17

You found out that your partner has done
something really kind for you unexpectedly.
You want to thank them and let them know that
you appreciate them.

hey 16
You want to see if your partner wants to connect
when they have a moment.

love 16
You want to send a message that assures your
partner, confirms that you value them and
reciprocate their feelings about you.

miss 17
You are folding laundry and you are remembering
the day you met your partner and want to tell them
you’re thinking of them.

sad 17
You are really sorry for what happened and
you want your partner to know.

wildcard 17
Are there any other kinds of messages that you
would like to send to your partner?
Please design one of your choice.

roles halfway through the sandbox session; we gently suggested a switch around

the 5-min mark but allowed dyads autonomy to decide for themselves. While we

didn’t originally set out to analyze engagement, we noted dyads’ light teasing and

giggling at each other’s interpretations during the sandbox mode.

To evaluate sensitivity, researchers played three of the haptic tracks from the

device validation pilot (a triangle, a circle drawn counterclockwise, three dashed
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lines) for the device wearer; their partner also came up with a few of their own

designs. After each haptic track, we asked them to describe the direction, segment

count, and overall shape (same parameters selected from the evaluation pilot). We

had decided in advance to omit participant designs created by any individual unable

to correctly describe two of the three parameters of each of these basic shapes. All

participants exceeded this sensitivity threshold.

Participant Message Creation

To design the haptic encodings, each dyad member was paired with a researcher

and led to separate locations to work independently. Researchers helped their par-

ticipant use the interface to ease the learning curve. Within a session, each parti-

cipant designed encodings for up to 10 scenarios chosen from Table 3.4 in random

order, ending with a wildcard message of their choice. Participants were able to

edit, save, and playback their encoding until satisfied before progressing to the

next scenario. To ensure that the haptic designs were aligned with the scenario’s

intended sentiment, researchers read the scenario aloud and asked participants to

describe the kinds of feelings that the scenario incited for them before proceeding

with the design process.

Production of Encodings for Interpretation Phase

From this message generation phase, we retained only instances of the haptic en-

codings where participants verbalized an emotion language that agreed with the

sense of the scenario prompt (up to 10 plus a wildcard per participant). A total of

184 unique haptic message encodings were used for the next phase: 167 from the

predefined prompts plus 17 wildcards (see Table 3.4 and Figure 3.4 for counts and

duration respectively).

3.3.4 Interpretation Phase: In-Person Singles

To assess how well these haptic encodings could be understood, one week after

the Design Study phase we invited all message generating participants back to ‘re-

ceive’ a set of messages. Of the original 20, 11 returned from the design phase,

including four partner pairs; the other nine were unable to return for the followup
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due to scheduling constraints so we recruited 10 naive participants. N = 21 indi-

vidual participants were played a set of designs “as if they had been sent from close

friends or family”. Though no specific sender was specified, returning participants

were informed that the message set would include some of the messages their part-

ner had designed for them. Sessions in this study phase took about 30 minutes

total where participants were again given up to 10 minutes in sandbox mode first

for familiarization.

Encoding Set

Returning participants were given a set of 20 haptic encodings, carefully selected to

contain two of each scenario prompt where encodings contained (in random order)

messages made by themselves, their partner, or a stranger (on average, 5.2, 5.7, 7.9

messages respectively). For the 10 naive participants, all interpreted encodings that

were made by a stranger (µ = 18.7 messages each). Participants worked through as

many haptic encodings as they could within a 30-minute block (up to a maximum

of 20). They were given a list of the 10 original design phase scenario prompts (see

codes in Table 3.4) and were asked to match the scenario to their interpretation of

the haptic encoding.

Procedure

Message recipients were not able to see the graphical message track at any time

during the interpretation phase; they could only feel the sensations. Participants

were first asked to freely identify their first impressions of the sensation or what

they would instinctively assume the intent to be if they had received the message.

They were encouraged to elaborate in a think-aloud format for each haptic mes-

sage. If unsure, they could replay a messages without limit and/or skip to send it to

the back of their queue. After experiencing the message, participants were asked

to associate each of 1-very likely; 2-somewhat likely; and 3-very unlikely tags with

at most one of the 10 scenarios using a Qualtrics survey application (offered to

eliminate the pressure of a single forced choice). They could elect to leave a tag

unattached. For interpretation classification, we used the scenario tagged by the

highest likelihood (i.e., if 1-very likely was unattached, we use 2-somewhat likely

58



as their top choice). Messages that only get a 3-very unlikely tag was treated as

uninterpreted.

Finally, all repeat partner-dyad members were asked to interpret the wildcard

message that their partner designed specifically for them. Eight (of 11) returned to

the study explicitly for this purpose. “I moved an appointment for this! I’m excited

to feel what he created for me.” - P04b

3.4 Analysis & Results
Our analysis was guided by two primary questions.

(1) Are there feature subsets so characteristic of certain classes of emotion

scenario that they may be machine distinguishable? That is, how much of the

sentiment can be described by the physical engineering parameters alone?

We report recognition rates generated using Random Forest (RF), a popular

technique for machine learning of affective touch interaction [42, 87], particularly

where low data density or strict computation limits preclude sophisticated deep

learning models (the former being relevant here).

(2) How well, comparatively, can people recognize the sentiment behind the

messages if the haptic sensation was designed by (1) a stranger, (2) their partner,

or (3) themselves a week ago? For this, we viewed results of our machine classi-

fication alongside each of these human-recognition situations.

Analysis consisted of (Section 3.4.1) haptic encoding feature extraction and

consideration by emotion scenario; (3.4.2) qualitative examination of the designs

themselves, aimed at understanding the diversity of approaches taken; and (3.4.3)

a quantitative look at machine and human interpretation accuracy.

3.4.1 Features and Parameter Analysis

In the following, we describe the data preparation and machine classification pro-

cess for determining message intent. In overview, we carried out feature extraction

for each message, then evaluated feature significance to identify parameters that

have the most impact on distinguishing scenarios.

We extracted 82 features (summarized in Table 3.5) from each of the 167 haptic

messages. Outside of the user-defined track drawing parameters (diffusion factor
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Table 3.5: Summary of Features Extracted. Parameters expressed in
bold-type are vectors – scalars otherwise.

Stat Function Parameter Count

-

DiffusionFactor,
DiffusionType,
BrushSize,
Frequency,
TotalSegments,
Duration,
AreaDisplacement,
AreaDistance,
TrackDistance

9

max, total displacement, velocity 4
auc x / time, y / time, y / x 3
min, max, mean,
median, var, auc

x, y, speed, angle 24

(min, max, mean,
median, var, auc)
of set of segments

duration, distance,
max and total displacement,
speed, angle, area

42

Total feature count: 82

and type, brush size, and frequency), we included track characteristics such as the

number of discontinuous segments and duration (s) of the entire message (see

Fig. 3.4 for duration distribution by scenario prompt). We also calculated two

kinds of displacement: max displacement refers to the Euclidean distance between

the maximum and minimum coordinates for x and y values of the track; and total

displacement refers to the Euclidean distance between starting and end points of

the drawn track. Max and total velocity use the respective displacement values

over the elapsed time. The three Area Under the Curve (AUC) calculations are

based on y values by x, x over time, and y over time. We also calculated the full

Track Distance as the distance travelled within the display area (excluding any

discontinuous jumps); Area Distance is the smallest rectangular area bounded by

the track and Area Displacement is the smallest rectangular area bounded by the

start and end points of the track. We calculated a set of six statistical functions

(min, max, mean, median, variance, and auc) for all remaining vectors: the full

set of x and y coordinates across the haptic display as well as the speed= ∆(x,y)
∆t )

and angle θ = tan−1 ∆y
∆x . Finally, we created duration, max displacement, total
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Figure 3.4: Participants designed messages of unspecified duration where
calm has the largest variation in duration and anger the shortest.

displacement, distance, speed, angle, displacement area vectors comprising the

disconnected segments of a message and calculate the same six statistical functions

for each parameter.
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Figure 3.5: Designer-created Message Parameters of Track Length, Brush Diameter, and Vibration Frequency for
each Emotion Prompt (cross-reference by emotion word for prompt in Table 3.4), including the wild-card

message which participants created for their partners. Here, we see that calm tends to small and slow designs
with small brush size and track lengths and low vibration frequency; in contrast, attention has a large range of

vibration frequencies and brush sizes though mostly small to medium track lengths.

62



To see how physical parameters correlate with the sentiment intent in mes-

sage generation, we ran a series of ANOVAs on all 82 features. For the features

directly controlled by the message designer, specifically Diffusion Factor, Diffu-

sion Type, Brush Size*, Frequency*, Segment Count, Duration, Track Distance*,

Area Displacement and Area Distance, the three marked with * were significant

at p < 0.05. We plotted these dimensions (Figure 3.5) to get a sense for how dis-

tinct the characteristics are from the messages generated in each emotion-laden

scenario.

3.4.2 Qualitative Analysis of Participant Designs

Even in the Sandbox (where partners swapped messages face-to-face), distinct ap-

proaches emerged for creating track-dependent haptic messages, and continued to

develop during the sessions. To capture the diversity of these approaches, we per-

formed a thematic analysis on the 17 designs wherein three raters independently

determined 3-6 groupings of the messages. After a lengthy discussion, all raters

converged on three high-level categories such that all wildcard designs fall under at

least one of (1) direct transcription of some visual representation (either a drawing

or writing or other symbology); (2) a rhythmic repetitive sensation that leverages

temporal patterns; and (3) distinctive physical sensations that exploit the contrasts

between continuous/discontinuous or sharp angular/soft fluttery (see Table 3.6).

Spanning these categories, we observed approaches that varied both in form of

expression (e.g., spatial vs. temporal patterns) and in drawing on private shared

context, generic references, or abstractions (e.g., literally spelling with letters).

These approaches reappear in the unconstrained wildcard messages, which may

emulate real world use.

We expected spatio-physical sensations designed to evoke interesting haptic

experiences. However, we were intrigued to see participants like P10a make pic-

tograms that visually represented the message intent to be traced out on the re-

cipients’ arm in a haptic message (Table 3.6. Similarly, P05b wrote out a word

in Simplified Chinese. We also note the surprising interplay between repetitive

discontinuous segments to play with temporal patterns, drawing more on rhythms

than spatial representation.
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Table 3.6: Three raters determined that all 17 wildcard message design
strategies fell in three categories, with illustrative examples.

Examples from Categories of Design Strategies
Transcription of Visual Representation

Temporal Patterns

Spatio-Physical Sensations

3.4.3 Interpretation Accuracy

When people touch one another, a plethora of social cues and emotional content

can be conveyed, particularly between intimate partners [193]; considerable af-

fective content is also communicated through touch between strangers [114]. We

wonder if social content communicated in close relationships can be sent and inter-

preted more accurately compared to that between strangers, particularly when we

add a machine interlocutor. For insight, we first compared recognition accuracy

by machine and human strangers; neither of these have personalized training nor
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shared history with message designers.

Figure 3.6 uses accuracy confusion matrices to compare classification out-

comes for four cases of interest: by machine, human stranger, partner, and self.

Correctly classified instances are on the diagonal.

By Machine Stranger: We consider the use case where a machine interprets the

message and communicates a best guess to the intended recipient. For this to work,

we conceive of a procedure where a model is trained on the haptic encodings la-

belled with the emotion ascribed to the presented scenario. We selected Random

Forest (RF) as our classifier, as the literature has shown RF to work well with af-

fective and social touch [41, 42, 87, 96, 152]. We found (Figure 3.6(b)) that 10-fold

cross validation using a subject-dependent (touches from same participant may be

in both training and test data) RF classifier on 167 messages achieved an overall

accuracy of 18.6% (chance 10%).

By Human Stranger: Machine classification and stranger interpretation are both

performed on messages by unknown designers and there is little or no shared his-

tory, so it is interesting to compare these results. When we asked participants to

evaluate designs by strangers, out of 274 trials (in which some of the 167 encodings

are repeated), people’s best guess – the prompt they thought was the most likely

match – was accurate 17.9% (chance 10%) of the time, compared to 18.6% by the

RF classifier.
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Figure 3.6: Confusion Matrices Comparing Interpretation Accuracy of Affective Content for each Haptic Message
(count of interpretation instances). In order of increasing accuracy, by (a) human strangers, (b) machine stranger

(Random forest classification), (c) designer’s partner, and (d) the designer themselves, a week later; chance =
10%. Red values indicate where the highest mis-classification rate matches or exceeds the diagonal.
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Figure 3.7: Interpretation Accuracy (%) by Message and Relationship,
ordered by decreasing overall recognition accuracy.

By Relationship: We can look at recognition rate of the intended emotion in each

message prompt to see how sentiment communication varies depending on the re-

lationship (through the confusion matrices of Figure 3.6). Here we see that overall,

message designers recognize their own messages most often (Fig 3.6-d, 31.6%) and

that of strangers (Fig 3.6-a, 17.9%) the least, with partners in between (Fig 3.6-b,

22.2%).

However, the story becomes more complicated: some prompts defy the ex-

pectation that interpretation accuracy increases with relationship closeness. We

summarize message interpretation accuracy by relationship in Figure 3.7. Inter-

estingly, anger, miss, and sad are consistently poorly recognized by the designers

themselves.
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Table 3.7: Wildcard Messages designed for and interpreted by partners. Participants designed one wildcard message
each.

Designer’s Intent Recipient’s Interpretation Got it

where u, wanna chat
My partner wants to talk to me when I’m available. She is probably
in a good mood and maybe has some good news to share

Y

A kiss! xxx (kisses) Y
I’m heading home. I love you. Can’t wait to see you. I think it means love; kindness; reassuring and feels really massage-like Y
I’m happy happy lovely Y
shrimp. because he took more than i did
even though I made dinner

is she angry about all the shrimp I ate? Y

we fit together. (drew a puzzle piece) I think this means connection. like a jigsaw puzzle Y
eyeroll. there’s a person who annoys us
and is currently annoying me

oh yeah. she’s irritated.
This is the pacing that she’d use to say ”oh. my. GOD.” with

Y

kisses; like affection in a playful way !!? What is wrong? N

check out this cool feeling
repeated figure 8; if he was exceedingly silly with the message,
I think this could be ”death to Videodrome. Long live the new flesh!”

N

Hello It feels like writing? But I can’t tell what it is ): N
Let’s eat. I’m hungry Don’t really know what it is, but it’s something positive? N
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Of Wildcard Messages: Of the 20 design phase participants, 11 returned for in-

terpretation. We played each one the wildcard message that their partner designed

specifically for them. These messages were completely open-ended (presumably

very low chance of randomly guessing correctly).

For wildcards, we marked an interpretation Correct when two independent

scorers agreed that the interpretation matched the intent. Scorers looked for word

matches, synonyms, and common sentiments. Interestingly, 7 of 11 message re-

cipients were able to correctly interpret the message (summarized in Table 3.7), a

recognition rate of 63.6%, higher than most other emotion prompts.

Some interesting interpretations include P07a’s design jigsaw puzzle pieces

(Figure 3.1(d)) to communicate that they ”fit together”. Partner P07b recognized

the message as representing “connection ... like a jigsaw puzzle” (Table 3.7).

A more abstract design is P06b’s signal where two lines followed by a lengthy

swirl communicates an “eyeroll” about “... a person who annoys [my partner and

me]”(Fig 3.1(e)). Upon feeling the encoding, partner P06a immediately recognized

it as communicating irritation since the rhythmic pattern was reminiscent of “... the

pacing [P06b would] use to say ’oh. my. GAWWD.’ with” - P06a.

3.5 Discussion
Our primary study goal was to learn how to more effectively leverage social touch

in haptic messaging. While our results generally corroborate the literature asserting

that contextual background and shared history play an important role in the percep-

tion of emotional content [21, 36, 296], we now return to our research questions

and discuss how our data provides evidence toward answering them.

3.5.1 Message Design Observations

Our study’s encoding designers were tasked with communicating rather complex

social meanings. They were given only a short time to learn an unfamiliar device

limited to sensations that are low-resolution and unnatural relative to direct human

touch, albeit shown to encode interpretable affective content [146, 256, 257]. Fur-

thermore, participants designed with researcher assistance which may introduce

other biases – e.g., participants may accept researcher suggestions more readily
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Figure 3.8: Two very distinct ways of designing for the same excited
message prompt.

than if they were alone. Departures from the ideal use aside, we wish to know

more about the haptic message design experience: how do people approach haptic

message design given our current prototype and scenario prompts?

Do Design Strategies Reveal Shared History? By examining the wildcard mes-

sage designs, we suspect shared history is embedded in the visual drawing strategy

and the rhythmic/temporal patterns, particularly evident in P06a recognizing her

partner’s idiosyncratic speaking cadence (Figure 3.1(e)).

The shape-drawing strategies also evoke common backgrounds, illustrated by

P5b’s communication in their native written language, who shared that “this is like

a game that my parents used to play with me as a child. They would write a char-

acter on my arm or back and ask me to guess what they wrote”. P07b’s design

based on connecting puzzle pieces (Figure 3.1(d) – interpreted accurately despite

its complexity) made us wonder if this pair might enjoy doing jigsaw puzzles to-

gether.

While acknowledging that the touchscreen interface may have suggested a

visual approach (drawing and writing) we are encouraged by the range of con-

tent that screen-sketching supports. Partners appear to draw recognizable patterns

from multiple senses – most notably visually and vocally (as in Figure 3.1(e)) –

raising questions about how these and other approaches might evolve with more

time.

Are there Universal Messages? Designers played with physical parameters like

frequency and brush diameter to determine whether the sensation communicated

the right intent. Figure 3.5 highlights variation in the interaction between signi-

ficant design parameters, creating a parameter “footprint” by message. Designers
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seemed to match lower arousal [239] message intentions (like calm, miss, sad)

using small brush diameter and low frequency.

Interestingly, attention was often designed with the largest brush at the highest

frequencies, but also had the largest footprint – the greatest design variation across

all designed messages. This suggests that there are other factors attributable to

highly human-interpretable messages which transcend design consistency: i.e.,

some concepts might be broadly amenable to many representations, or they might

be extremely personal and our participants were able to find the particular encoding

that worked for their partner.

3.5.2 Interpretation Rate

We preface discussion of accuracy by noting that we carefully built on lessons

from past research, and while it is not useful to compare results directly due to di-

vergence of our evaluation objectives in this novel application space, we consider

important takeaways from our work and relate it to literature where similarities

exist. For example, we acknowledge that many works have very distinct types

of touch constraints, instructions, and evaluation methods, yet it is interesting to

note that in some cases, comparing with other device-mediated affective touch

(e.g. [11]), we may still see proportionally similar performance (accuracy that

roughly doubles chance recognition).In all cases, mapping vibrotactile sensations

to emotive thoughts can be non-intuitive, and in many ways it is remarkable that

interpretation accuracy would ever exceed chance.

Our work and others’ demonstrate that digitally mediated affective communic-

ation is feasible. However, it is important to keep in mind that these relatively low

instance counts (particularly for the self and partner interpretation sets as seen in

Figure 3.6) provide only limited insight into message efficacy. Thus, our primary

benchmark of comparison for this exploration is what people themselves can do in

the same study conditions.

Why do Designers Not Recognize their Own Designs? Generally, relationship

closeness does influence interpretation accuracy of social touch ([193] and here,

Figure 3.7). Thus we would expect designers to be best at recognizing the messages

they had designed. However, this is not always the case. Figure 3.7 highlights how
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message prompts for anger, miss and sadness or sorry seem to be recognized more

accurately by partners and strangers than by their designers. While this certainly

needs more investigation, we observe that touch behaviours communicating these

sentiments are especially likely to be directed to another – e.g., one is unlikely to

miss, or show longing for, oneself. Possibly, this leads to our being less likely to

recognize our own touch when expressing sentiments with this quality.

How Can Wildcard Recognition Be So High? While most messages have inter-

pretation accuracy under 35%5 (chance 10%), wildcard messages – with no spe-

cified prompt and thus, no fixed interpretation option – is recognized surprisingly

well at 7 correct interpretations out of 11 messages (Table 3.7). The wildcard

messages may be the best examples of closeness in relationship improving inter-

pretation of message intent. People with a shared history can draw from a wealth

of experiences to generate creative messages, even idiosyncrasies from other mod-

alities. Speech rhythm and cadence (P06a) is one example, but we can imagine

haptic sensations that emulate an impatient tapping foot or short strokes that chan-

nel dumbfounded cartoon blinks.

Shared recent context surely impacts message interpretation rate. If P09a and

P09b had been fighting on the way to the study session about one eating more

than their share of dinner, then shrimp may have been on both of their minds

(Table 3.7). A recent charged memory could make a highly specific message easy

to read, maybe even irrespective of the haptic design. Removing the shared history

by getting strangers to interpret the general content wildcard messages (excepting

disagreement over shrimp) could be illuminating.

What is the Potential for Machine Recognition? Machine recognition rates were

comparable to stranger recognition (18.6% and 17.9% respectively, chance 10%).

Comparing Figure 3.6(a) and (c)’s confusion matrix diagonals shows that messages

of anxious, gratitude, miss and sad are better recognized by machines than human

strangers. Figure 3.5 shows distinct patterns of common design parameters, partic-

ularly for anxious (small active area with small brush diameter and low track length

across a large vibration frequency range) and gratitude (similarly small active area

but with vibration frequency mostly in the low end). Perhaps these ranges are stat-

5Notable exceptions are attention (∼75%) and anger (∼50%).
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istically distinct but tactually imperceptible, making it more difficult for human

interpreters.

Because message designers created only one design for each message prompt,

we have a sparse training set with no repetition on the interaction of two import-

ant dimensions (designer and message). Affective touch interaction is individual,

so machine recognition increases dramatically with more person-specific train-

ing [42]. We see an opportunity for additional training samples to complement

shared contextual history where machine recognition may serve to support inter-

personal message interpretation accuracy.

3.5.3 The Messaging Experience

Despite not setting out to evaluate the ‘fun factor’ of the messaging experience on

our haptic animation prototype, we discovered that the design sessions where pairs

worked together (sandbox mode) were often punctuated with giggles and gentle

ribbing (“What? You mean you can’t feel that’s a heart?!” – P02b to P02a) as

close friends and partners were first developing a sense for how to use the device.

We noted that at least 11 of 20 participants spoke about playfulness, happiness, an-

d/or laughter while designing their wildcard messages, revealing extra pleasure in

imagining their partners puzzling out meanings involving private context and some

amount of effort. The fun generally emerged through affectionate collaboration –

it was not a solo activity. Here, we discuss valuable observations of the design-

interpretation process and speculate about improvements necessary before it can

become a viable communication channel.

How did Individuals Vary Across the Pipeline of Interpretation? We expect

that successful haptic messaging likely depends on both the subjective tactile per-

ception and interpretation of the message intent; each of these are themselves com-

plex processes. The first depends on display performance (nature of stimuli, res-

olution, dynamic range, etc), skill of the designer’s use of it, and the individual

perceptual sensitivity of the recipient. The second is where we were able to focus

more in the present study, looking at factors like relationship and message type.

Our study protocols included checking on comfort and threshold proficiency

in using the system, but did not comprehensively measure individual acuity or its
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components or demographic influences. Thus we cannot speak to the degree to

which perceptual challenges (as well as stimulus type suitability – i.e., of vibrotact-

ile modality for affective messages) impacted individuals and pairs’ ability to use

the system and enjoy the interactions.

We informally observed a wide range of skill in both individuals’ and dyads’

ability to construct or fully carry out a communication chain – typical for the stud-

ies involving either tactile acuity or emotional intelligence. Acuity arises both from

sensitivity to ranges of sensation, and at a higher level, the ability to mentally integ-

rate then identify shapes that are received as spatio-temporal line drawings on the

skin. For example, we were particularly impressed by the recipient of the wildcard

jigsaw puzzle pieces: these pictographs are complex with many vertices and two

separate but closely set, compatibly interlocking components. This integrative feat

seems remarkable, and likely beyond the capability of most other participants or

indeed the researchers. However, it is a fascinating example of what might be pos-

sible, and may have been aided by contextual factors that improved this recipient’s

guessing odds.

Figure 3.9: P02b particularly enjoyed designing haptic messages after a first
try on anger, and imagines developing a vocabulary.

What is the Longitudinal Prognosis? These were one-shot design efforts. People

can learn to adjust to a partner and to a communication medium. We wonder how

individual and dyad performance would improve over time, and how pairs might

evolve and enrich their communication style – what strategies they would come

to rely on or discard; how memory would work, stability of vocabulary (already
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anticipated by P02b – Figure 3.9), what kinds of context (short or long term) they

would leverage when given the opportunity. We wonder if the interaction would

become more engaging and/or valuable as a core communication modality when

more familiar, or soon set aside. Our present results are a promising start, but

real answers await longer studies and a device and editor that could function in

everyday life.

How Could We Improve our Prototype? Inherent to the messaging experience

is the device and interface. We built a minimally viable prototype to establish the

feasibility of affect-content communication via a wearable haptic animation dis-

play. Our findings in design variation, interpretation rate, and overall enthusiastic

reception suggest that even our simple, low-resolution prototype can open up a rich

and evocative haptic playground. To further enrich the experience, subsequent it-

erations of the hardware could integrate smaller, more powerful tactors to increase

end effector density (i.e., allow for more tactors to fit in the same surface area),

which may afford more intricate designs. The most apparent example of spatial

resolution or sensitivity discrepancy was evident during the Sandbox phase with

people like P02b incredulous with her partner’s (P02a) inability to recognize the

more intricate shapes. ”It’s clearly got angles though babe!” – P02b when P02a

mis-identified an octagon as a circle.

The design interface could also be amended with more fine-grained control

mechanisms. Although only one design participant out of 20 asked, we can envi-

sion a scenario where experienced users may want to design messages with time-

varying frequency and amplitude, dramatically increasing the range and complex-

ity of the design space.

Corroborating findings from the hand-based Tactile Emoticon (featuring haptic

sensations of temperature, vibration, and pressure) [224], we posit that so long as

users are provided a sufficient customization range for designs and design strategies,

partners may play around to come up with something that works for them, regard-

less of device sophistication. We expect iterations of device and messaging applic-

ation to inform one another; here, we present a promising proof of concept as a

strong starting point.
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3.6 Conclusions
We presented a multi-phase study on machine-mediated social touch to shed light

on how people might create and interpret emotion-encoded haptic messages. We

used a custom wearable spatial tactile display, and an interface for participants

to compose spatiotemporal patterns. The study’s scope included scenario prompt

sourcing, message encoding design, and message interpretation. Its design and

analysis highlight the influence of relationship and shared context on how commu-

nication plays out. We summarize the key findings sparking future lines of inquiry.

1. A shared history between message designer and interpreter generally im-
proves message comprehension: private inside jokes are a great strategy; indi-
viduals are not always great at reading their own tactile-writing. Overall, mes-

sage interpretation accuracy increases from strangers (17.9%) to partners (22.2%)

to message designers themselves after a week (31.6%). However, partners could

understand 7/ 11 of open-ended wildcard messages, a surprisingly high accuracy

given their unconstrained content. We posit that shared contextual knowledge is

of great value; and further note that the sharing was almost always both humorous

and private in nature – couples sharing a private inside joke, with their common

experience the key that unlocked understanding.

We also found that some messages were poorly recognized by designers them-

selves compared to their partners. We speculate that physical manifestations of

anger and missing or longing are not often directed at ourselves, so we are less

likely to recognize our own – but need more than one message per designer to be

sure.

2. Machines are about as good as strangers at haptic message interpretation
(for now). Our machine classifier recognized message intent with 18.6% accuracy,

comparable to that of strangers (chance 10% in all cases) where closer relationships

between sender and receiver serve to improve interpretation rates overall. We ima-

gine that insofar as machine-‘strangers’ and human-strangers lack shared context,

both relationships are similarly distant with the message sender. Future work could

inspect whether personalized training may offer a machine analogue for ‘history’.

3. Individual design strategies may co-opt other modalities. Some designers

produced visually recognizable pictograms to communicate message sentiment –
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puzzle pieces and happy faces drawn on the touchscreen – while others played with

rhythm – discrete taps simulating excited poking behaviour, or strokes and spirals

timed to mimic an idiosyncratic speaking cadence. Given this early diversity, how

might design behaviour mature if pairs had more time to trade messages?

Next Steps: This study has benchmarked interpretability rates and highlighted

encoding strategies for a relatively expressive haptic display (relying on spatiotem-

poral animation, supporting drawing-type designs). Looking ahead, our findings

underscore the importance of considering design strategies when choosing displays

and editing systems, that maximize expressive capability; and that dyad commu-

nication is highly unique, rich with many characteristics helpful in maintaining

emotional connection in relationships.

Obvious next steps are to develop physical displays that are practical and com-

fortable in real settings yet at least as expressive as the one used here – and are fun

to use. Then it will be possible to launch studies that monitor how vocabulary used

by dyads develops and enriches or withers over time, and the contribution this kind

of communication makes to pairs who cannot be together. So when is a haptic
message like an inside joke? We think it matters only when there’s someone you

care to share it with.
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Chapter 4

Machine as Emotion Influence:
An Investigation into Machine
Breathing as a Fear Contagion

Summary
People often physically cling to others when afraid [114, 115]. This response oc-

curs for good reason, as physical touch can downregulate negative emotional ex-

periences [58]. However, touch might be ineffective—or even detrimental—for

downregulating fear experiences if the others being touched are experiencing and

expressing fear themselves. We posit that touching others expressing fear can guide

perceptions of fear via the detection of distinct respiratory patterns, which might

cause emotion contagion and consequently bolster rather than inhibit one’s own

fear response. To test this hypothesis, we built plush robots with motorized plastic

ribcages that were manipulated to contract and expand to simulate human breath-

ing patterns. We asked participants to hold these robots as we measured their heart

rate (HR) before, during, and after watching a fear-elicitation stimulus. Consistent

with our hypothesis, participants who interacted with robots that exhibited fearful

breathing patterns perceived the robots to be fearful and experienced a pronounced

increase in their own HR, compared to participants who held stable- breathing and

non-breathing robots. These results suggest that touching or clinging to others to

downregulate one’s own fear may be detrimental if the other is also displaying bod-
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ily movements and physiology of fear. This study is the first to test whether distinct

artificially generated respiratory patterns influence human emotion contagion via

touch, and to do so by measuring human emotions through autonomic nervous sys-

tem activity.

Significance Statement
Physically touching others during anxiety-inducing events can downregulate one’s

own fear experiences. Yet, touching others might be ineffective—or even detri-

mental—for downregulating fear if the others being touched are also expressing

fear. Using plush robots with motorized ribcages that were manipulated to con-

tract and expand to simulate human breathing patterns, we found that participants

who held fearfully “breathing” robots showed in increased heart rate compared

to those who held calmly “breathing” or static robots. Results thus suggest that

human autonomic nervous system activity is influenced by emotion contagion oc-

curring through touch, and individuals should therefore use caution when seeking

to downregulate their emotions by touching pets, support animals, and possibly

other humans who are confronting the same event.

4.1 Introduction and Background
People often touch or even cling to others when they are afraid. A frightened child

might grasp a parent when startled, and adults will grab partners or friends during

scary movies [114, 115]. There is good reason for these behaviors; the mere pres-

ence of others can help downregulate negative emotion, and interpersonal emotion

regulation benefits are heightened by physical touch with humans [58, 67, 231,

323] and service animals [191]. In certain situations, however, relying on phys-

ical touch to downregulate fear might backfire. When others touched are also

experiencing and expressing fear, touching or holding them allows for the felt

perception of their fear [114, 115], which could, in turn, bolster one’s own fear

response through a process of emotion contagion. Emotion contagion occurs when

a person “catches” or comes to feel the same emotion as expressed by someone

else [111, 300]. A large body of research has demonstrated that emotion conta-

gion can occur by visually observing facial and postural expressions of emotion;
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observers come to feel or express the same emotion themselves [65, 216, 300]. In

real-life situations of fear, however, contagion may be less likely to occur through

the observation of others’ visible expressions, because fearful individuals tend to

focus their attention towards the fear-eliciting stimulus rather than other interact-

ants [185, 209]. Nonetheless, even without visual attention directed towards a fear-

experiencer, fear may be communicated and become contagious via touch. When

individuals feel fear, they display rapid and deep breathing (e.g., hyperventilation),

an observable pattern that is different from that which occurs during low arousal

emotions such as sadness or calmness—emotions instead characterized by slower

and stable breathing [28, 220]. This physiological indicator is not specific to hu-

mans; many animals – including cats and dogs, which are commonly used for emo-

tional support – exhibit changes in their breathing when frightened [128, 129, 213].

Given that breathing requires expansion and contraction of the chest, alongside

other discernable body movements, individuals might accurately perceive others’

fear through touch if their touch allows them to detect the bodily changes that

occur with respiration. Supporting this expectation, medical professionals are en-

couraged to both look and feel for evidence of chest movements (expansion and

contraction) to establish breathing during clinical assessments [154, 226]. Breath

patterns may therefore constitute an effective and widely generalizable mechanism

for communicating emotion through touch (across species), and, because emotion

perception can elicit emotion experience via emotion contagion, observing oth-

ers’ breathing patterns through touch may influence the emotions experienced by

interactants. Few studies have tested whether distinctive breathing patterns elicit

perceptions of distinct emotions or cause emotion contagion. Although studies

have demonstrated that robots mimicking mammalian breathing patterns shape ob-

servers’ perceptions of robots’ emotion and likeability [35, 157, 293], these studies

have not assessed participants’ own emotion experiences, so it remains unclear

whether emotion contagion can occur from touching a robot exhibiting artificial

breathing. Other studies have found that individuals interacting with a robot ex-

hibiting movements designed to mimic calm mammalian breathing patterns report

feelings of calmness and stress reduction [10, 192, 253]. However, these studies

did not test whether different breathing patterns presented by robots– for example,

fearful versus calm patterns – have different effects on emotion contagion. Further-
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more, past research on this topic has been limited by small sample sizes affording

low statistical power and reduced generalizability (Ns < 38), and has relied heav-

ily on within-subject manipulations that increase participants’ awareness of ma-

nipulated changes to robots’ apparent breathing patterns, thus increasing demand

characteristics (i.e., participants may become aware of the experimenter’s hope

that they will respond differently in different conditions). Overall, prior research

suggests that breathing patterns effectively communicate diagnostic information

about fear experiences when these patterns are visually observed or felt, and hu-

mans seek to touch or hold others as a means of downregulating their own fear. It

remains unclear, however, whether touching or holding others who display a vari-

ety of breathing patterns differentially influences individuals’ own emotional or

physiological experience. More specifically, previous studies have not addressed

the question of whether a frightened human is likely to experience fear inhibition

or enhancement when touching another individual who displays rapid, seemingly

fearful breathing.

4.1.1 The Current Research

We tested whether: (a) humans can detect and recognize “fear” by touching a robot

displaying chest movements simulating hyperventilation, and (b) touching a robot

displaying these movements enhances humans’ own fear experiences. To address

these questions, we built a robot with a motorized plastic ribcage, such that we

could manipulate its precise “breathing” patterns to simulate fear and calmness.

We recruited participants to hold this robot while sitting still and watching a series

of videos; participants’ heart rate was measured throughout the entire procedure,

including before, during, and after presentation of a fear-elicitation video stim-

ulus. We hypothesized that participants holding a robot that displayed a fearful

breathing pattern seemingly in response to a fear-eliciting stimulus would detect

and interpret the robot’s movements as conveying fear, and would demonstrate an

increase in their own heart rate, compared to participants holding a robot display-

ing stable breathing or no breathing movement. Other non-verbal expressions of

fear may also communicate and evoke fear responses in participants, particularly

fear expressing sounds like gasping, heavy breathing, and other vocal expressions.
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To mitigate robot audio expectations and minimize any mechanical sounds, parti-

cipants wore noise cancelling headphones to listen to the video stimulus’ audio.

This research is the first to manipulate artificial respiratory patterns of an organism

interacting physically with human participants, and to test for human emotion and

ANS contagion via touch.

4.2 Methods

4.2.1 Participants

One hundred and seven undergraduate students from the University of British

Columbia were recruited to participate, but we excluded four individuals whose

heart rate data could not be matched to their self-report data due to a technical

error. Our final sample thus consisted of 103 undergraduates (73% women, 26%

men, 1% other; 49% East Asian, 20% White, 8% Middle Eastern, 6% Hispan-

ic/Latino, 2% African American, 15% other; Mage = 20.59 years, SDage = 2.93

years). A post-hoc power analysis indicated that this sample size provided greater

than 99% power to detect the observed change in HR within the fearful breathing

condition.

4.2.2 Procedure

All participants watched an identical series of video clips totalling 288 seconds

while their heart rate was monitored and they held a fur-covered robot. Participants

were instructed to hold the robot in their arms, hugging it against their chest (i.e., as

they might a close relationship partner, parent, child, or pet), generating maximal

physical contact. Participants kept their right hand under and left hand on top of

the robot, with a PulseSensor heart-beat detector on the middle finger of their right

hand. They wore a pair of Koss UR23IK headphones to deliver sound accompany-

ing the video clips and minimize disruption from incidental mechanical noise from

the robot. Participants were instructed to avoid engaging in any excess movement

to prevent interference with the heart-beat reading from the finger sensor. Parti-

cipants were also instructed to watch the computer screen throughout the duration

of the experiment (see Figure 4.1 for experimental set up).
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Figure 4.1: The robot structure (top right) and a diagram of the participant
experience of watching a fear validated video while holding a

fur-covered robot that demonstrated one of three breathing patterns
(bottom right) manipulated between participants.

The robot was roughly the size of a small house cat. It had a soft, plush, and

furry covering (see Figure 4.1). We designed it to be shaped and sized like a small

pet instead of a human, for several reasons. First, intimate and convincing phys-

ical contact between humans, like clinging or hugging behavior, occurs following

a high threshold of complex interpersonal, cultural, and social norms [91, 287];

in contrast, humans approach and touch domesticated animals with a much lower

threshold [133]. Second, it is considerably more feasible to simulate the appear-

ance of a furry animal-like robot than a human, and this simulation is crucial be-

cause robots that approach human-like appearance but do not achieve it can elicit

unsettling discomfort – an effect called the “uncanny valley” [88, 260]. Finally,

furry zoomorphic robots displaying breathing motions have previously been valid-

ated as reliably communicating emotional content [34, 35, 254, 322].

To acclimate participants to the robot, they were asked to sit in a chair while
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holding and examining the robot. When each participant was ready to begin the ex-

perimental procedure, they were set up with headphones and the heart-beat sensor

worn on their finger. Participants next watched 114 seconds of videos that were

intended to acclimate them to the experimental context without eliciting strong

emotions. The first 30 seconds consisted of a black screen accompanied by no

sound, followed by an 84-second video of a snail crossing a wooden plank, which

was accompanied by ambient sounds of nature in the background. The snail video

was found on YouTube, where it was labeled “The most boring video in the world.

The snail”. After the acclimation period, participants watched another 30-second

black screen, followed by an 84-second fear-elicitation video clip taken from the

movie The Shining; this clip has been used in prior work, and rigorously val-

idated to elicit the distinct emotional experience of fear [103]. Following the

fear-elicitation video, participants viewed a final 60-second black screen. The 20

seconds of black screen directly preceding and following the fear clip constituted

our pre-elicitation and post-elicitation measurements of heart rate (respectively).

However, we also planned to construct Locally Estimated Scatterplot Smoothing

(LOESS) lines with 95% confidence intervals to measure and visualize changes in

HR continuously throughout the procedure, given the high likelihood of uncover-

ing non-linear changes in participants’ HR. Finally, all participants completed an

online questionnaire before being debriefed. While watching all video clips, par-

ticipants were randomly assigned to hold the robot while it demonstrated one of

three breathing patterns, manipulated between participants: no breathing, stable

(calm) breathing, and fearful breathing. In the no-breathing condition, the robot

showed no movement throughout the entire session (i.e., from the beginning of the

first black screen of the acclimation period through the last second of the final black

screen after the fear-elicitation clip). In the stable breathing condition, the robot

displayed a stable expansive and contractive movement throughout the session, de-

signed to mimic a chest cavity when breathing at a rate roughly equivalent to human

resting respiration (i.e., 14 breaths per minute; BPM). In the fearful-breathing con-

dition, the robot engaged in a breathing pattern with modulated acceleration. This

began with chest movements identical to those in the stable breathing condition ( 14

breaths per minute), which occurred for 144 seconds: throughout the 114s accli-

mation period and 30 seconds of black screen preceding the fear-elicitation video.
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Over the course of the fear elicitation video, these movements changed to acceler-

ate the expansion/contraction rate up to 30 cycles per minute (30 BPM). This ac-

celeration was designed to simulate fast breathing and hyperventilation consistent

with human fear experiences [28, 220]. When the fear-elicitation clip ended, the

robot’s movements were decelerated, and after 60 seconds its apparent breathing

rate returned to the pre-elicitation stable pace, which was maintained until the con-

clusion of the session. Figure 4.2 shows a visualization of the breathing patterns

conveyed by the robot in each condition, along with the order of the videoclips

shown to participants.

Figure 4.2: Visualization of the order of videos presented during the
procedure and corresponding robot breathing via the manipulation of
simple symmetric sine waves throughout the 4 minute and 48 second
procedure. The apparent breathing rate in the fear condition plateaued
between 220 seconds and 245 seconds, due to mechanical limitations

of the robot motor prohibiting it from moving at a faster pace.

The no-breathing condition was intended to function as an inactive control

(e.g., baseline) condition, reminiscent of experiencing fear while engaged with

something akin to a stuffed animal. The stable-breathing condition functioned as

an active control – ensuring that any effects in the fearful breathing condition were

not attributable to the general presence of movement suggesting life. By including

multiple robot “breathing” conditions and a non-breathing condition, this design
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allowed us to test whether the specific movement pattern displayed by the robot

in the fearful-breathing condition – and not the robot itself, or the appearance of

breathing alone – upregulated participants’ fearful emotional response. Following

the human-robot interaction, all participants completed an online survey consisting

of self-report measures asking them retrospectively evaluate the robot’s behavior

and their own emotions throughout the experiment. This survey was completed

up to five minutes after the conclusion of the human-robot interaction. Prior to

conducting the study, we did not know how long any emotional effects of the

videos and robot interaction would linger, and although we endeavored to cap-

ture condition-based differences in state-level emotions after the conclusion of the

task, and included these measures as exploratory dependent variables, we also sus-

pected that any subjectively experienced emotion might have dissipated after five

minutes.

4.2.3 Materials

Robot Construction

To develop the robot prototype, we followed social robot design for single degree-

of-freedom motion [34] and, using a similar template structure, created the wish-

bone template to form the robot’s skeletal structure. We laser cut the wishbone

shape in varying sizes so that, even under a thick fur cover, the back of the robot

had a ridged spine-like feel. The main form was comprised of two parallel panels;

each was comprised of a long and narrow piece with a large round bulb at one end,

much like a tomahawk steak. When the two panels were lined up in parallel, the

bulb portion formed 12 the head (where a central motor was housed) and the long

curved narrow pieces formed a track with notches in which to secure 16 wishbone-

shaped pieces. The curvature of the wishbone sides formed ‘ribs’ and, by attaching

strips of flexible plastic (23-gauge polyethylene) to the bottom of each set of ribs,

we created a curved and lightly pressure-resistant soft robot ‘belly’, particularly

evocative once the entire body was covered in a soft furry fabric. Fishing line was

used to thread through each of the plastic strips of the belly and connect it to the

central motor secured in the head. To build and manipulate breathing behaviors,
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we used an Arduino Uno microcontroller to manage the motor. At the motor arm’s

maximum position, the fishing line pulls on the belly strips to simulate an exhale

contraction; at the motor’s minimum position, the fishing line is relaxed and the

compliant belly relaxes similarly to express an inhale belly extrusion.

Participant Heart Rate

We assessed participants’ heart rate (HR) throughout the procedure using a plug-

and-play optical pulse sensor for Arduino. We chose to focus on changes in HR as

our main dependent variable based on meta-analytic evidence that HR increases to

a significantly greater degree during fear experiences compared to neutral (control),

sadness, surprise, anger, and disgust experiences (i.e., all emotions compared to

fear experiences in a meta-analysis by Cacioppo, Berntson, Klein, & Poehlmann,

1998). We used Kubios HRV Premium to convert the raw optical voltage data into

R-R intervals (the distance between peaks in a sinusoidal waveform). Heart rate in

beats per minute (BPM) was obtained via an arithmetic conversion.

Self-report Measures

Fear-elicitation manipulation check: Participants were asked to retrospectively

recall how “Angry”, “Sad”, “Happy”, “Afraid”, “Surprised”, and “Bored” they felt

while viewing the video of the snail and then while viewing the fear-elicitation

video. For each of the two video clips, participants provided a rating ranging from

1 (Not at all) to 5 (Completely), for all six emotion prompts, for a total of 12 ratings

per participant.

Robot Expression: Participants were asked to retrospectively rate the extent to

which they perceived the robot to feel “Angry”, “Sad”, “Happy”, “Afraid”, “Sur-

prised”, “Bored”, and neutral (“The robot did not feel anything”) while viewing the

video of the snail, and then while viewing the fear-elicitation video. Participants

provided separate responses characterizing the robot’s feelings for the two events

using a 5-point rating scale ranging from 1 (Not at all) to 5 (Completely).

Self-Reported State Emotion: After concluding the experimental session, par-

ticipants rated their own current feelings on the state-level Positive and Negative

Affect Schedule (PANAS; Watson, Clark, & Tellegan, 1988; 20-items), the Cur-
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rent Mood Questionnaire (a measure of positive and negative valence and arousal;

Feldman-Barrett & Russell, 1998; 12 items), and fear (Harmon-Jones, Bastian, &

Harmon-Jones, 2016; 3-items). For all measures, participants responded using a

5-point rating scale, with higher numbers indicating more intense emotional exper-

ience.

4.3 Results

4.3.1 Manipulation Checks

Fear-elicitation video: To determine whether the fear-elicitation video success-

fully elicited fear, we compared participants’ self-reported feelings of fear in re-

sponse to the fear-elicitation video versus the snail video, using constructed mul-

tilevel models predicting self-reported fear from video type (snail versus fear-

elicitation), along with random intercepts for participants to account for repeated-

measures (ICC = .08). Results showed greater self-reported fear during the fear-

elicitation video, Beta = 1.41, t(102.93) = 14.96, p < .001.

Robot Breathing: To determine the efficacy of our between-subjects manipula-

tion, we tested whether participants in the fearful-breathing condition perceived

the robot to be more afraid compared to participants in the stable-breathing and

no-breathing conditions. Supporting the validity of our manipulation, participants

indicated that the robot was more afraid in the fearful-breathing compared to the

no-breathing, Beta = -1.20, t(101) = -6.11, p < .001, and stable-breathing condi-

tions, Beta = -1.19, t(101)= -6.00, p < .001. There was no difference between the

no-breathing and stable-breathing conditions, Beta =.01, t(101) = 0.06, p = .95.

4.3.2 Main Analyses: Do humans show emotion contagion from
artificially breathing robots, via touch?

To test whether the robot’s breathing pattern affected participants’ physiological

responses to the fear-eliciting stimulus, we conducted between-subject analyses

to examine participants’ HR during the 20 seconds directly preceding the fear-

elicitation video (“pre-elicitation”; seconds 124 to 144 in Figures 2 and 3), and 20-

seconds immediately after the video (“post-elicitation”; seconds 228 to 248 in Fig-
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ures 2 and 3). We constructed a multilevel model predicting HR from robot breath-

ing condition (fearful, stable, or no-breathing, dummy coded with fearful-breathing

as the reference group), time segment (pre-elicitation versus post- elicitation), and

condition by time-segment interactions, along with random intercepts for parti-

cipants (ICC = 0.39). Participants in the fearful-breathing condition demonstrated

a significant change in HR post-elicitation when compared to pre-elicitation, Beta

= .31, 95%CI: [.24 to .37], t(5494.41) = 9.02, p < .001. Participants in the no-

breathing condition demonstrated only a very small increase in HR post-elicitation

compared to pre-elicitation, Beta = .09, 95%CI: [.02 to .16], t(5492.94) = 2.52, p =

.01; significantly smaller than the change in HR observed in the fearful-breathing

condition, Beta = -.22, 95%CI: [-.31 to -.12], t(5493.63) = -4.32, p < .001. Finally,

participants in the calm breathing condition showed no significant change in HR

post-elicitation when compared to pre-elicitation (although the effect was trending

in the same direction), Beta = .07, 95%CI: [.00 to .14], t(5492.53) = 1.89, p = .06;

significantly smaller than the change observed in the fearful-breathing condition,

Beta = -.24, 95%CI: [-.34 to -.14], t(5493.40) = -4.75, p < .001, and no different

than the change observed in the no-breathing condition, Beta = -.02, 95%CI: [-.12

to .08], t(5493.74) = 0.44, p = .66.

Together, these results suggest that participants in the fearful-breathing con-

dition experienced an increase in HR between pre- and-post-elicitation, whereas

participants in the no-breathing condition experienced a significantly weaker but

still statistically detectable increase in HR, and participants in the stable-breathing

condition experienced a still weaker increase in HR that was not statistically signi-

ficant. Figure 4.3 shows a visualization of HR over time using Locally Estimated

Scatterplot Smoothing (LOESS) with a span of .65, along with 95% CIs around

LOESS lines.

To test the robustness of these results, additional models were constructed, res-

ulting in similar patterns. Specifically, we constructed models including participant

gender as a covariate, and removing participants who recognized the movie scene

used in the fear-elicitation stimulus (Nfinal = 79). We also constructed models with

HR centered around participants’ personal baseline (with baseline defined by the

average HR during the first 10 seconds of black screen preceding fear-elicitation

stimulus); in one model baseline was included and in one it was as a covariate.
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Figure 4.3: Physical setup showing room layout and relative positioning for
participant and researcher over all stages of data collection.

In all four models with paired t-tests, participants in the fearful-breathing condi-

tion experienced an increase in their HR between pre- and post-elicitation (Betas

> .31, ps < .001), whereas those in the no-breathing condition experienced only a

small change in HR, (Betas < .10, ps < .011), which in all cases was significantly

smaller than the change observed in the fearful-breathing condition (Betas <−.22,

p < .001). Finally, in all four models participants in the stable-breathing condition

demonstrated no significant change in HR between pre- and post-elicitation (Betas

< .08, ps > .056). For full reporting of all models, see SOM. 1

We next tested the effect of robot-breathing condition on state-level self-reported

emotion (ANOVA), which was collected at the end of the study. No differences

emerged between the three breathing conditions for self-reported fear, F(2,101) =

1.25, p = .29, negative affect, F(2,101) = 1.45, p = .24, pleasantness, F(2,101) =

2.49, p = .09, unpleasantness, F(2,101) = 0.90, p = .41, high activation, F(2,101)

= 0.46, p = .63, or low activation, F(2,101) = 0.66, p = .52. However, there was

1Given that the robot’s breathing rate did not change in the stable-breathing and no-breathing
conditions, we cannot test for synchronization (i.e., with no variance in breathing rate, we cannot test
for covariance with participants’ HR, or differences in these relationships across conditions). For a
visualization of participants’ HR alongside the robot’s breathing pattern, see Figure 4.4.
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Figure 4.4: Locally Estimated Scatterplot Smoothing (LOESS) lines
outlining changes in HR over time (solid line), and manipulated

breathing pace of the robot (dashed line) over time, in the Fearful
Breathing (top), No Breathing (middle), and Stable Breathing (bottom)

conditions. Ribbons indicate 95% Confidence Intervals around local
estimates. Note: These data are a combination of data presented in

Figures 4.2 and 4.3. The Y-axis on the left corresponds to the
participant’s HR, whereas the Y-axis on the right corresponds to the

robot’s breathing rate.
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an effect of condition on self-reported positive affect, F(2,101) = 3.78, p = .026,

indicating that participants interacting with the fearful-breathing robot reported

significantly lower levels of positive affect than participants interacting with the

no-breathing robot, Beta = .45, t(101) = 2.21, p = .03. No difference emerged

between fearful-breathing and stable-breathing conditions, Beta = .16, t(101) =

0.78, p = .44, or between the no-breathing and stable-breathing conditions, Beta

= .29, t(101) = 1.38, p = .17. These results suggest that, for the most part, any

subjectively experienced differences in negative emotion, activation, valence, and

negative affect between robot breathing conditions were no longer detectable by

the time of our self-reported emotion assessment, approximately five minutes after

the conclusion of the robot interaction. However, participants who interacted with

the fearful-breathing robot seemed to have experienced minor lingering decreased

positive affect. Notably, these results are consistent with those from the HR ana-

lyses; by the final moments of the robot interaction (i.e., while viewing the last

black screen), all participants had returned to their baseline HR (see Figure 4.3).

4.4 General Discussion
The present research is the first to test whether individuals can recognize apparent

fear via touch by detecting expansion and contraction of a robot chest cavity con-

sistent with fear-breathing, and whether this detection influences observers’ own

fear responses to a fear-eliciting event. Findings demonstrated that, while watching

a video clip that reliably elicited fear, individuals who held robots demonstrating

a breathing pattern typical of fear perceived the robot as behaving more fearfully,

and experienced a pronounced increase in HR, whereas participants who held a

non-breathing robot experienced a smaller but still statistically detectable increase

in HR, and participants who held a robot exhibiting calm breathing experienced

the slightest increase in HR, such that no significant change occurred. These res-

ults thus indicate that holding or clinging to others during moments of fear may

be ineffective or detrimental for downregulating one’s own fear, if those others

are also experiencing and expressing fear. Although past research has demon-

strated changes in biophysical stress expressions and even pain responses among

people in physical contact with robotic or machine-created breathing-like beha-
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viours [10, 192, 253, 313], those effects were limited to engagement with robots

showing deep and regular movement patterns simulating relaxed or calm human

breathing. In the current study, the calm robot breathing condition was designed to

emulate that used in prior work, but by also including a fearful-breathing condition

we addressed a novel question: how does a robot’s accelerated or fearful breathing

compare to apparent stable or calm breathing, and to the absence of breathing, in

terms of influencing the biophysical stress responses of humans who interact with

it? In real-world contexts of humans interacting with other humans or pets (in-

cluding support animals), it is likely that these interactants would display fearful

breathing patterns in response to fear-eliciting stimuli, making the present study

representative of how fear contagion is likely to unfold in the real world.

4.4.1 Limitations and Future Directions

It is noteworthy that no differences were observed in self-reported state-level emo-

tion following the procedure. While the absence of greater self-reported fear among

participants in the fearful- breathing condition may seem inconsistent with the ob-

served differences in physiology, this is not the case; the absence of self-reported

negative emotional effects corresponds to the timing of the observed return to

heartrate baseline, because subjectively experienced emotion was measured up to

five minutes after the very brief fear-elicitation video. Future research is needed to

measure subjectively experienced emotions continuously or intermittently through-

out a session like this, to examine whether participants experience greater negative

affect or fear in response to fear stimuli when detecting physiological signals of

fear through touch. However, adding such an introspective assessment to the cur-

rent design could introduce new limitations, by interfering with participants’ on-

going emotional experience. This addition would also require alternative methods

for measuring HR or self-reported emotions, given that participants in the current

study had both hands occupied with the robot, and any additional hand movements

(e.g., typing or writing) would likely interfere with accurately collecting their HR

readings from finger-worn sensors.

Another promising direction for future research is to further compare changes

in participants’ HR over time for individuals engaging with robots exhibiting stable-
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versus still (no-breathing) breathing patterns. In the present study, no significant

differences emerged between these conditions when data were analyzed using a

multilevel linear model, and including only the first 20 seconds preceding and fol-

lowing the fear-elicitation stimulus. However, this null finding is partly a result

of our analysis technique; as depicted in Figure 4.3, which used local estimation

(i.e., LOESS lines), HR changes in the stable- versus no-breathing conditions are

consistently and significantly different. The failure to capture this difference using

MLM is almost certainly due to the fact that our multilevel model takes into ac-

count HR data shortly before and after the fear elicitation video, but not during the

video, whereas the loess line analysis (see Figure 4.3) takes into account all HR

data throughout the procedure. We could not construct a linear model on HR data

obtained throughout the entire procedure because these data were severely non-

linear, as expected. The results shown in Figure 4.3, in contrast (based on an ana-

lysis that included additional data and did not require linearity), are consistent with

the suggestion that interacting with a stable-breathing robot while watching a fear

stimulus can lower individuals’ heart rate, replicating past research [10, 192, 253].

An additional limitation of the present work is that robotic fear-like breathing was

simulated using patterns that, though based on past research [28, 220], were dic-

tated by the researchers. Although our manipulation was successful – participants

in the fearful-breathing condition perceived the robot to be more afraid – future

research is needed to measure the precise breathing patterns demonstrated by hu-

mans and pets during fear experiences and manipulate robots to show those pat-

terns. It is possible that additional kinds of fearful-breathing patterns, including

breath-holding and gasping, would have similar effects to those uncovered here, but

this should be directly tested. Future research should also manipulate and explore

the consequences of interacting with robots displaying breathing patterns that are

characteristic of a wider variety of emotions, to test which other emotional states

are similarly detectable via touch, and similarly contagious when experienced in

the appropriate emotionally evocative situations. Future studies would also bene-

fit from examining the effects of interacting with robots that are more human-like

than animal-like. Although the use of a robot resembling a pet like a cat or small

dog allows us to infer that these results likely apply to individuals using emo-

tional support animals for calming, it remains unclear whether these results apply
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to human-to-human contact. Finally, future research should examine the effects of

divergent breathing patterns on emotion experience in the absence of an external

fear elicitation stimulus. We examined upregulation of emotion during externally

evoked fear experiences—an ecologically valid context in which individuals may

find themselves touching others displaying accelerating breathing patterns, given

that people often cling to others when frightened. However, future work should test

whether similar effects emerge when touch occurs devoid of any external emotion

context.

4.4.2 Advances in Human-Robot Interaction (HRI)

In addition to advancing knowledge of human emotion experience, contagion, and

regulation, these results have important implications for Human Robot Interac-

tions (HRI). Robot-assistance for the downregulation of stress and other negat-

ive emotions has many applications and iterations, from the seal PARO for older

adults [200, 268] to the Haptic Creature for stress reduction [253]. There also

may be noteworthy applications for entertainment or thrill purposes. For example,

wearable technologies, virtual reality, interactive movies, and video games might

be more evocative and efficacious for eliciting fear when interactants are engaged

with dynamic moving machines, such as a controller. Much in the way that vibra-

tion can guide emotion experience when playing video games, dynamic expansion

and contraction of such machines – such as that used here – might have a similar ef-

fect on users’ emotion experience. Future work is also needed to examine whether

haptically interactive robots designed with comforting affective touch in mind, like

the Huggable (a teddy bear for enhancing pediatric care [280]; the Probo (a plush

robot meant for hugging [301]; or wearables like a vest exhibiting squeezing pulsa-

tions, might amplify emotion experiences in these contexts. Finally, future research

should consider the use of human-robot interactions for clinical purposes, such as

flooding or exposure used regularly in cognitive behavioral therapy. The current

work thus opens the door to novel methods of enhancing emotional experiences

evoked by a range of current entertainment media.
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Chapter 5

Machine as Emotion Witness: A
Study of Machine Classification
of Emotion from Personal
Storytelling

Summary
Practical affect recognition needs to be efficient and unobtrusive in interactive con-

texts. One approach to a robust realtime system is to sense and automatically integ-

rate multiple nonverbal sources. We investigated how users’ touch, and secondarily

gaze, perform as affect-encoding modalities during physical interaction with a ro-

bot pet, in comparison to more-studied biometric channels.

To elicit authentically experienced emotions, participants recounted two in-

tense memories of opposing polarity in Stressed-Relaxed or Depressed-Excited

conditions. We collected data (N=30) from a touch sensor embedded under ro-

bot fur (force magnitude and location), a robot-adjacent gaze tracker (location),

and biometric sensors (skin conductance, blood volume pulse, respiration rate).

Cross-validation of Random Forest classifiers achieved best-case accuracy

for combined touch-with-gaze approaching that of biometric results: where train-

ing and test sets include adjacent temporal windows, subject-dependent prediction
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was 94% accurate. In contrast, subject-independent Leave-One-participant-Out

predictions resulted in 30% accuracy (chance 25%). Performance was best where

participant information was available in both training and test sets. Addressing

computational robustness for dynamic, adaptive real-time interactions, we ana-

lyzed subsets of our multimodal feature set, varying sample rates and window sizes.

We summarize design directions based on these parameters for this touch-based,

affective, and hard, realtime robot interaction application.

5.1 Introduction
Social interfaces such as robots, smart cars or game systems must facilitate com-

plex and believable interactions where programmed machines appear to respond to

human social cues [88]. Because people often prefer to interact with machines

as they do with other people [88], systems may need to understand nonverbal

emotional behaviours mediated through naturally affective modalities like touch

or gaze. Affective, interactive therapies for anxiety management may use haptic-

ally available emotion indicators: touchable robots (baby harp seal Paro [305],

teddy-bear-like Huggable [280]) map simple touch gestures to simple emotions.

Studies with the Haptic Creature, a zoomorphic robot with an embedded touch

sensor array [321], link a large and varied set of touch gestures to nuanced emotion

expression.

Machine recognition of human emotion presents methodological challenges

surrounding measurement instruments, study task framing, and computationally

modeling emotions [38]. Training data behavior should reflect that of an interaction

“in the wild”, i.e., spontaneous emotion [93]. The emotion model should accurately

describe that person’s state. Furthermore, while people can be differentiated by

idiosyncrasies in their touch behaviors (a touch signature [41, 87]), this also makes

it difficult to generalize the connection between emotions and associated touch

behaviors: the extent to which individuals exhibit similar touch behaviours during

similarly labeled emotional states is unclear.

Here, we wish to enable machine recognition of human emotions for touch-

centric social robots, with therapeutic applications in mind. Touch interactions

can affect emotional state: the Haptic Creature’s motion lowered anxiety in users
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who were stroking it on their laps [252], based on biometric indicators. This

suggests physiological benefits analogous to those conferred by animal-assisted

therapy [14, 15, 208, 230] – especially valuable where patients are unable to en-

gage with real animals. However, this requires unobtrusive sensing, e.g., through

already-occurring touch.

Gaze is another unobtrusive modality that could improve recognition perform-

ance. Since the points where a user’s gaze focuses on a computer display can

indicate feelings of curiosity or boredom [139], we posit that gaze as an indicator

of visual attention could help determine when a user is focusing on the robot pet

and thereby predict affect. Specifically, we compare the combination of touch and

gaze to key biometric channels which have been well-researched in association

with various emotions [155, 161].

To investigate these ideas, we set touch as the primary interaction modality

in order to leverage the natural human inclination to express emotional closeness

with physical contact. Gaze has also been shown to capture emotion data [139], and

both (touch and gaze data) can be collected without the disruption of physiological

sensors. Previous work has shown that affect-related information can be extracted

from emotionally-directed touch gestures such as Excited-stroking and Depressed-

rubbing [5]. However, identifying a gesture as ‘stroke’ vs. ‘rub’ is insufficient for

revealing the user’s emotional state while performing that gesture [5]. Furthermore,

these studies collected “intent” data, where the emotions were acted out to a sensed

robot, but not necessarily experienced by a participant. We needed a model built

from data of participants who are truly experiencing the emotions being studied.

5.1.1 Approach and Research Questions

The central purpose of this paper is to narrow the design space of an emotionally

interactive robot pet’s computational system for predicting an interacting user’s

emotion: touch-supportive sensing modalities that balance accuracy with ease-of-

use; a training procedure that generates truly felt emotional sample data; and an

appropriate classification model for touch behaviour in a computationally restricted

environment.

To elicit naturally felt, spontaneous human emotion (hard to do in a lab set-
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ting [93]), we asked participants to interact with a robot while they relived a sig-

nificant emotional event, touching it without constraint during the task. This ap-

proach departs from previous work [5, 321] that attempts to direct touch behaviours

and gestures, i.e., by asking a participant to pat the robot as if they were scared.

Relived emotion or emotion recall is regarded as a way to elicit true experiences of

emotion [80, 179].

We are interested in touch and gaze as modalities that support low-cost, low-

intrusion sensing apparati and explore their viability in comparison to biometric

data. To that end, we compared affect measures derived from touch interaction

with a robot pet with the more studied but intrusive reference point of biometric in-

dicators, and investigated how recognition performance can be improved with gaze

data. Furthermore, analysis methods that originate from social touch gesture clas-

sification are well documented [5, 87, 150]. We calculate features from force mag-

nitude and touch location [41, 87, 150] as well as frequency [5] (referred to herein

as pressure-location domain and frequency domain respectively) for emotion clas-

sification in touch. To minimize overlap in label interpretation, we collected and

evaluated machine recognition of four emotions (stressed, excited, depressed, and

relaxed) – quadrant extrema of Russell’s dimensional affect model [237].

Choice of the Random Forest algorithm (RF) is motivated by our need for a

classification system that performs well with social touch behaviour [5, 41, 87,

96, 152, 288] for our interactive robot pet application. We want to explore the

feasibility of realtime emotion prediction from touch interaction with a emotion-

ally interactive robot pet, where we anticipate being compute-restricted. Thus, we

chose a computationally simple model favouring flexibility to accommodate quick

training and customizable rebuilding.

We specified four main research questions for this study.

RQ1 Modality Effectiveness: How does touch or touch + gaze compare with
biometrics in classifying affect? What minimal feature set optimizes perform-
ance accuracy?

Touch can be a natural avenue for communicating affect, but to use it computation-

ally, we must access the encoded emotions and consider the relative performance

of touch alone and with multimodal support. Gaze, also known to encode affect-
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ive content [139], could supplement emotional signals from touch. Multimodal

datasets are likely to provide a more complete picture than touch alone, due to

asynchronous activation, or interaction information.

We expect classification accuracy to improve with increased modality support.

We thus ask whether the combination of touch and gaze is a viable substitute for

the more intrusive sensing apparatus required of tracking biometric signals.

However, multimodality increases compute time and phase delays, potentially

undermining real-time feasibility. To optimize tradeoffs, we analyze each fea-

ture in terms of repeated occurrence in automatically-selected best-feature sub-

sets. Finally, we suggest an optimal touch-with-gaze feature set, assessing both the

pressure-location domain and frequency domain, hypothesizing that classification

accuracy is best where features are present from both domains.

RQ2 Individuality: How important is system calibration and knowledge of
user in affect classification?

Social touch gesture studies suggest that because individuals have distinctive ways

of physical, expressive interaction with objects, recognizing identity is realistic [41,

87]. Thus a system that has learned a specific user’s behaviour may be better at ges-

ture recognition. Leveraging this result for affect, we assess how well the system

can distinguish Participant – high performance suggests high individuality – then

perform Emotion classification across three different levels of system knowledge

of participant (hereby referred to as participant knowledge) and discuss results. We

expect that recognition rates will increase with greater participant knowledge, i.e.,

participant-labelled data where instances from the same individual are in both train-

ing and test sets will yield the highest classification accuracy (subject labels used

as a feature in subject-dependent classification); and lowest accuracy will coincide

with testing and training on different individuals (subject-independent classifica-

tion).

RQ3 Sample Density and Realtime Responsiveness: Is classification during
continuous sampling robust to interruptions in signal, and to sample size vari-
ation?

Outside of polling rate, we define sample density across two window dimensions:

(1) size and (2) adjacency. We investigate the accuracy trade-offs of various win-
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dow sizes – which represent the time intervals of continuously sampled data. In the

context of an interactive robot, longer windows gives the system time to respond,

employs less computation resources and allows for the capture of ”slow” beha-

viours. But where the window is too long, we introduce inappropriate response

delays. For example, if our robot body is struck, it needs to present a behaviour

demonstrating an immediate reaction. While shorter windows may help with the

agility needed for interactive scenarios, the higher throughput requires more com-

putational resources and may not recognize the slower developing interactions.

Window adjacency refers to continuity of time series classification data. Since

adjacent windows share more characteristics than distant samples (temporal de-

pendence), we ask about the effect of non-continuous or ‘gapped’ data collec-

tion under weak or interrupted signal conditions. Removing adjacent instances

allows us to quantify any effect from a dropped or intermittent signal as well as

the likelihood of overfitting due to recency-based similarities, particularly when

using easy-to-build classification models (like Random Forest) without parameter

tuning. Here, we leave time-series analysis for future work and focus on the influ-

ence of sample density on accuracy. In order to construct early specifications for

a touch-cognizant robot, we explore the trade-off between computational load and

classification robustness.

We examine the influence of window size and continuity by aggregating data

instances in four window sizes and comparing classification accuracy of the same

data set. We downsampled with “gap” by dropping 2s of data between windows

so adjacent windows are not evaluated) and without gap data (adjacent windows

are included in the training and test sets). We posit that across both parameters, re-

ducing sample density reduces classification accuracy, anticipating the worst per-

formance for small windows with gapped data.

RQ4 Experimental Paradigm: How well does our protocol corroborate exist-
ing relived emotion techniques to elicit genuine emotion in a controlled labor-
atory setting?

For affective communicative systems to work under real conditions, they must be

trained on data from authentic and spontaneous emotion. Consistently producing

truly experienced emotions in an artificial setting (and valid training data) is a
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fundamental challenge in emotion research [57].

We develop a means of implementing a touch variant of relived emotion tech-

niques described in [57, 179, 180] and use self-report measures to explore how our

experimental controls influence the authenticity and intensity of the experienced

emotion generated within a controlled set-up.

5.1.2 Contributions

Through our research questions, we examine the design space of an affect classi-

fication system for an emotionally-interactive touch-centric robot. Specifically, we

contribute:

1. A comparison of affect classification performance of touch data, with and

without gaze support, to biometrics in experienced-emotion interactions; and

a recommendation of data features from frequency and traditional pressure-

location domains in emotion classification.

2. An assessment of subject-independent vs. dependent classification; and a

proposal for building a custom personalized system at various levels of par-

ticipant knowledge.

3. An analysis of data factors to balance classification robustness with compu-

tational effort and phase delay, for real-time applications.

4. Through demonstration and evaluation of an ecologically valid elicitation

technique (emotional recall) for studies on machine touch recognition, we

assess the methods, models, and task framing required to increase confidence

in generating true experienced emotion in a lab setting.

In the following, we survey previous work, motivating our emotion elicitation

method and contextualizing affect classification from each of touch, gaze, and bio-

metrics; then describe our experiment and analysis. We report results that span all

our data experiments to target the influence of: multimodal data vs. touch alone,

participant knowledge, sample density, feature set; and assess emotional experi-

ence from participant reports. We discuss our findings and ground them in implic-

ations for relevant applications.

5.2 Related Work
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5.2.1 Targeted Emotion Set

Russell’s circumplex model plots affect on arousal (activation) and valence (pleas-

antness) axes [239]. While valuable in its conciseness, the dimensional model

requires we assume (1) emotion labels will be interpreted consistently by every

participant at any time; and (2) the axes are truly orthogonal.

Consider the emotional context of approaching the axes or origin when work-

ing with such a model: the state of (0,0), presumably a state of full neutrality, may

not be meaningful. For example, independent movement, i.e., directly along axes,

implies increasing an emotion arousal without changing valence, which belies per-

sonal experience. As such, many [63, 110, 309] opt to discretize the 2D space into

a grid and rotate it by 45°, such that experimental materials and tasks are aligned

with the diagonal axes, namely (high arousal, high valence) ↔ (low arousal, low

valence) and (high arousal, low valence) ↔ (low arousal, high valence).

Relevant published studies are not consistent in emotion labels chosen to cover

the affective space, making comparison between studies of even common modalit-

ies problematic. Understandably, papers utilizing information of gaze use attention-

related emotion sets – e.g., Anxiety, Boredom, Confusion, Curiosity, Excitement,

Focus, Frustration [240]; papers utilizing touch try to span the human experience,

namely Anger, Fear, Happiness, Sadness, Disgust, Surprise, Embarrassment, Envy,

Pride [114]. Yet another method is to partition Russell’s affect grid as discrete la-

bels: touch emotion recognition has previously used nine labels1, while biometric

recognition has used four labels corresponding to the quadrants of Russell’s grid:

Stressed, Excited, Depressed, Relaxed [155]. We have elected to use the same

four named emotions for consistency with other biometric classification studies,

enabling comparison with touch and gaze.

5.2.2 Elicitation of True Emotion

Our motivating applications center on a social robot that must react to authentic

human emotions as they occur in lived experience. In the lab, one unsatisfying

approach is to ask participants to imagine and simulate a reaction: (“Imagine feel-

ing anger, then express it to our robot”). For example, to collect the data used
1Emotions for classification by touch differentiates emotions in the quadrant borders, namely:

Distressed, Aroused, Excited, Miserable, Neutral, Pleased, Depressed, Sleepy, Relaxed [5].
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in [321] and [5], participants were presented with a list of emotions that they acted

out by touching a robot, but this does not equate to experiencing it. The differ-

ence between expressions of acted and experienced emotions can be significant

and counter-intuitive: e.g., truly experienced frustration is often accompanied by a

smile, but this is rarely the case for acted frustration [127].

Experienced-emotion studies are difficult to construct. Entertainment media,

e.g., emotionally evocative music and/or video, has been employed in emotion

elicitation [155]; however, it can be difficult to validate stimulus media. Following

the approach of [80, 179] who found that relived or recalled emotion generated

genuine spontaneous reactions, we prompted participants with an emotion word

and asked them to recount the story of an intense experience with modifications

described in Methods.

5.2.3 Recognition Modalities

Touch: We can measure touch as force magnitude (pressure) and location – di-

mensions used for gesture recognition as well as for control directives using track-

pads and touch screens. Social touch gesture studies report prediction accuracies

ranging from 53% (chance 7%) [150] to 86% (chance 11%) [87] depending on

collection and classification methods (Bayesian classifiers in the former and ran-

dom forest in the latter case), and like affect studies in general, have no consistent

standard. Still, these prediction rates on defined gestural subsets suggest that social

touch may be used as directives in systems with embedded recognition systems.

Accurate emotion recognition is more difficult. Human recognition of human

emotion through touch reaches 59% accuracy (chance 8%) [114]. Machine clas-

sification has demonstrated 36∼48% accuracy (chance 11%) [5] depending on in-

clusion of participant information. Both studies utilized emotion intent, not exper-

ience.

Gaze: Our eyes give affect cues discernible with eye tracking technology, mak-

ing gaze behaviour an easily accessible emotion-embedding modality to pair with

touch without hindering interaction. Like touch, gaze detection technology col-

lects eye behaviour at the focal location and does not require participants to wear

sensors on their body. [217] studied the effect of emotional auditory stimulation on
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pupil size variations, finding that negative and positive stimulation resulted in lar-

ger pupil dilation than neutral stimulation but did not differentiate stimulus valence.

Other factors, such as changes in luminance [117], can also affect pupil dilation.

An alternative is to analyze where a person is looking. [139] tracked students’

gaze when they interacted with a graphical intelligent tutoring system; fixation and

saccade features revealed that curious and bored students looked at different inter-

face areas – e.g., engaged students looked more at the table of contents. Overall,

boredom and curiosity could be predicted with 69% and 73% accuracy respect-

ively.

We could not find literature on the use of human gaze point in classifying emo-

tions using the valence/arousal model. Gaze point is related to boredom and curi-

osity, and low arousal is correlated with decreased saccadic velocity [74], but can

gaze express arousal change too? Does gaze point move more during excitement?

Compared to pupil size variation measurements, gaze point can be measured in a

less controlled environment (lighting and luminance impact data quality less) with

relatively inexpensive tracking technology. Thus, we utilize the Cartesian coordin-

ates of user gaze point in our own classification analyses.

Biometrics: Blood volume pulse (BVP), skin conductivity (SC) and respiratory

rate (RR) have been widely used to confirm emotion detection in other modalit-

ies – facial expressions [161], affective audio [155, 202], gaze behaviours [120],

and touch behaviours [252]. Heart rate variability has been utilized in emotion

classification [9, 145, 252].

Like others, we employed three basic signals (BVP, SC, RR) to calculate a set

of derived features based on heart rate variability (HRV), breathing rate variability

(BRV), or both, such as heart beats per breath. This data is most appropriately com-

pared with studies where emotion elicitation is based on true experience and uses

the same emotion sets. For example, [155] uses validated music excerpts to gen-

erate authentic responses crossing four musical emotions (positive/high arousal,

negative/high arousal, negative/low arousal, positive/low arousal), and reports af-

fect recognition rates between 70% and 95% (chance 25%), with higher rates when

participant knowledge is included.
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5.3 Methods
We asked participants to recall emotionally intense experiences, while interacting

with our static (non-mobile, unmoving) robot pet as a tangible focus for emotional

interaction. We collected touch, gaze and biometric data; and emotion self-reports

before and after each emotion. Of 30 campus-recruited participants (mean age 25.4

years, σ=5.4), 14 identified as female and 18 had corrected vision. Participants

were compensated $20 for a ∼60 minute session.

In the following we detail data collection setup and procedure, and describe

data pre-processing, feature extraction, and analysis of the study’s independent

parameters (window size, inter-window gaps and participant knowledge).

5.3.1 Data Collection

To facilitate emotion elicitation during memory recall, we prioritized participants’

comfort. We placed the gaze tracking system coincident with touch site, since the

robot body is the focal site for both modalities.

Configuration and Room: We conducted the experiment in a sparsely furnished

medium-sized office with a window with a pleasant view. Participants sat, back

to the door, comfortably in a half-prone position on a couch, for comfort and to

reduce large-scale body movements (Figure 5.1). An experimenter was in view of

the participant except during emotionally intense parts of the session, as described

below.

We placed the gaze tracker (designed for mounting beneath a computer mon-

itor) below an angled, monitor-sized board on which we placed the robot, all in

comfortable reach of the participant. We fixed the robot position to prevent it from

being picked up or substantively moved around to avoid interference with gaze

tracking (Figure 5.1). By coincidence, all participants were right-handed (though

the set up was designed to accommodate both right- and left-hand dominance) and

we omit a discussion on handedness.

Touch Sensor on a Passive Robot: Figure 5.1(a) shows the robot’s and sensor’s

construction. We used a custom flexible touch sensing apparatus previously de-

scribed in [41], which has been validated as for the ability to capture social touch

gestures. Similarly to [87, 151], it can detect 5g∼1kg of weight with resolu-
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Figure 5.1: Study setup overview: robot description and participant
experience. (a) The robot was constructed from pliant plastic sheets

actuated by a pulley, covered with a custom touch sensor, then jacketed
in furry fabric to invite touch [37]. It was stationary during the study to
eliminate reaction to robot motion. (b) A participant sits supported by

pillows and facing the gaze tracker, one hand on the sensor-clad,
stationary robot, biometric sensors on chest (RR), thumb (BVP), and
index / ring fingers (SC) of resting hand. (c) A schematic of the study
room, depicting camera locations relative to where the participant sits

by the robot platform.

tion of 10×10 inches at one taxel per square inch2. As with [5, 87], we spe-

cified fingerpad-size taxels (touch pixels): emotion tasks in touch generally incite

broad rather than precise movements [114]. While higher resolution sensors are

needed for precision tasks (e.g., for touch screens, trackpads, or teleoperative mim-

icry [273]), here we are concerned with cost, sensor flexibility and computational

efficiency.

Forming a 10-by-10 grid, this fabric-based device can sense multiple simul-

taneous touches (multitouch), registering varying pressures on each taxel scaled to

1024 levels and polling at 54Hz. This resulted in 54 frames of 100 cells per second,

each reading a touch pressure value in [0-1023].

The “bot” was assembled in layers. The interior was a compliant structure of

flexible binder plastic, roughly the size and weight of a football. The robot’s body

and passive feel were designed to invite touch as an ambiguous mammalian form

2Built from commercially available piezoresistive and conductive fabric. Fabric is commercially
available at www.eeonyx.com.
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that does not resemble any definitive animal in order to remove behaviour expect-

ation [35, 37]. Movement was disabled here to reduce confounds from novelty ef-

fects, sounds, or expectations. The touch sensor was wrapped over the structure, af-

fixed with velcro. Finally, the sensor was covered with a uniformly-textured short,

soft brown minky fabric (such as that used in baby blankets; described as “pleas-

ant to touch...[and] reminded me of my chocolate lab’s head” – P04). To minimize

visual clutter, all sensors were wired through the robot platform and gathered in a

compact tether for connection to a single laptop.

Gaze and Biometric Sensors: We sampled gaze behaviour via a Tobii EyeX gaze

tracker at 60Hz – as with our touch data sampling (Figure 5.1). We gave no spe-

cific instructions regarding gaze direction, but informed participants that gaze data

collection worked best when they were facing forward and did not make large body

movements.

We collected three biometric signals using the pre-packaged Bio-Graph Infiniti

Physiology Suite3, namely blood volume pulse (BVP), skin conductivity (SC), and

respiratory rate (RR), all at 2048Hz. Following established procedures [155], these

were expanded to include features on heart rate variability (HRV), breathing rate

variability (BRV), and cross-signal indicators such as heart beats per breath.

Participants wore a respiration band around their chest, with the closest fit that

did not impede breathing. Once the participant was comfortably seated, we po-

sitioned the BVP sensor at the thumbpad, then positioned the SC sensors on the

index and ring finger pads. Both BVP and SC sensors were held in place by a

small velcro band on the right hand (not used for touching the robot).

Video Data: We video-recorded participants’ hands and face to supplement miss-

ing gaze or touch data. For participant privacy, no sound was recorded. The hand

camera was placed behind, and the face camera on the right of the participant.

Figure 5.1 shows placement of the gaze tracker.

Emotion Labels: Genuine emotion is taxing. To minimize fatigue, we admin-

istered just two emotions per participant, based on discussions with field experts,

piloting and literature. The second emotion task was determined by the first; par-

3System manufactured by Thought Technology Ltd. FlexComp ∞ SA7550 Hardware Manual can
be found through manufacturer website at http://bit.ly/29A5NIC.
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Table 5.1: Experimental procedure and data acquisition.

Step Description (duration) Data or Output

(1) Intro
Describe study tasks informed consent
calibrate sensors verify data quality

(2) Neutral 1
Read neutral text (5 min) biometrics
Self-report emotional state
Calibrate gaze/touch sensor calibration logs

(3) Emotion 1
Recall memory
(µ = 4.23 min, σ = 3.09) biometrics, gaze, touch

Self-report emotional state +
authenticity rating

(4) Neutral 2
Read neutral text (5 min) biometrics
Self-report emotional state
Calibrate gaze/touch sensor calibration logs

(5) Emotion 2
Recall memory
(µ = 4.23 min, σ = 3.09) biometrics, gaze, touch

Self-report emotional state +
authenticity rating

(6) Debrief
& Interview

Interview qualitative data
Self-report emotional state

ticipants experienced either Stressed - Relaxed OR Depressed - Excited, counter-

balanced. The four named emotions [Stressed, Relaxed, Depressed, Excited] com-

prised the emotion label set and validated via self-report on intensity and authenti-

city and coordinates on Russell’s affect grid [237].

Procedure: Table 5.1 summarizes our study procedure, in which neutral steps de-

lineated experiment steps. Emotion tasks were counterbalanced across participants.

Introduction and Calibration: To reduce novelty effects, we introduced the ro-

bot, invited touch exploration, described the robot including its sensing abilities,

and explained that its movement was disabled. We then calibrated all sensors.

Neutralization and Self-report: For each stage, we first presented an emotionally

neutralizing reading task, wherein the participant read aloud from a short report

from a technology magazine for ∼5 minutes. We instructed the participant to read

each word, told them that no questions would be asked of the readings, and encour-

aged them to let go of residual emotions from their day.

We then asked the participant to report their current emotional state. Before

each emotion self-report, an experimenter explained or reminded the participant

of concepts of arousal and valence, answered questions about reporting emotional
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state, and showed them how to indicate their current emotional state on a form

displaying Russell’s [239] 2D affect grid varying in arousal and valence [57]. This

self-report was repeated before and after each neutralizing and emotion task. For

emotion tasks, participants were also asked to rate how strongly or authentically

they experienced the emotion, compared to the original incident.

Reliving Emotion Task: We next asked the participant to recall an emotionally

intense memory pertaining to an assigned emotion word {Stressed, Excited, Re-

laxed, or Depressed} as they interacted with the robot. To elicit strongly emotion-

influenced touching, we invited them to relive the emotion as intensely as possible

while keeping their non-instrumented hand on the robot. We explained that audio

recording was disabled in the video camera and we could not hear them speak from

outside the room. They received no other touch instruction or reminder. After we

left the room, they described their memory with its associated feelings to the robot

in any language, at a volume of their choosing. The participant indicated task com-

pletion by pulling a signal rope. Data was collected for a single recalled memory

(duration µ=4.23 min, σ=3.09 min).

When the rope was pulled, the experimenter returned and administered the self-

report grid, then repeated the steps for the second set of neutralization and emotion

tasks.

Debrief and Interview: We conducted a short debriefing interview to learn of any

unexpected eventuality during their experience, and ensure that participants were

comfortable, emotionally stable, and departing in an emotional state no worse than

when they arrived. We provided university counselling contacts after we found in

piloting that participants could become distraught during this protocol.

5.3.2 Features, Pre-Processing, Extraction & Analysis

We recorded touch, gaze, and biometric data for affect classification features (see

Table 5.2 for a full list). Here, we describe the feature extraction process.

Distribution statistics: We included conventional touch statistics [5, 41, 87]: min,

max, mean, median, variance, total variance, area under the curve (AUC) for loca-

tion X- and Y-centroid and touch pressure. Touch pressure is computed by frame:
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Table 5.2: Summary of features extracted from touch, gaze, and select
biometric signals.

FEATURE SIGNAL #

TOUCH (54Hz)
distribution: max, min, mean, var,
total var, AUC (Area Under Curve) Xcentroid, Ycentroid, frame pressure 21

frequency: peak count, fundamental
frequency, amplitude max, mean,
var & total var

Xcentroid, Ycentroid, frame pressure, pressure of centroid cell +
8 nearest neighbours (9 vals) 72

GAZE (60Hz)
distribution: max, min, mean, var,
total var, AUC X, Y, saccade length, velocity, fixation duration 25

sample counts
total samples, on/off-robot, off-on robot ratio, rate within plat-
form range, saccade count, saccade rate, fixation count, fixation-
saccade ratio

9

frequency: peak count, fundamental
frequency, amplitude max, mean,
var & total var

X, Y 12

BIOMETRICS (2048Hz)

summary statistics:
mean, median, variance

Blood Volume Pulse (BVP): amplitude, high frequency power
(FP), low FP, very low FP, heart rate, inter-beat interval, peak
amplitude

228

Skin Conductance (SC): mean, epoch mean 228
Respiration pattern: abdominal amplitude, respiratory rate,
period 228

Thought Technology’s commercially available calculations were used for biometric feature extraction: http:
//www.thoughttechnology.com

pressure values per capture of the 10x10 sensor. For the centroid, we found the

cell containing the coordinates of the touch-pressure centre of mass (X-centroid,

Y-centroid); i.e., the weighted average of all taxels in a frame based on their row

and column locations, or (X, Y) coordinates respectively. Gaze focal location (x,y)

and biometric channels of blood volume pulse (heart rate), skin conductance, and

respiration rate were similarly calculated.

Frequency statistics: Based on prior indications of promise [5], we extracted

frequency-domain features to assess how well they encode emotion content. We

calculated six frequency statistics for 12 touch signals and the same six for two

gaze signals. We directly calculated frequency-domain touch and gaze features,

and used Thought Technology’s pre-packaged signals4for biometrics.
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Feature Extraction

We calculated distribution and frequency statistics for touch and gaze. For biomet-

ric features, we relied on prepackaged calculations but also computed simple stat-

istics (mean, median, variance) for insight into distribution characteristics. Table 5.2

summarizes the full feature set.

Touch features: We reprised known procedures for social touch recognition by

constructing three parameters [41, 87]: touch pressure (sum of pressure read-

ings from taxels in frame); and column and row centroids (weighted measure of

row, column centres of mass based on frame taxel pressure, or X-centroid and Y-

centroid respectively). We computed 7 statistics per pressure parameter, for 21

features.

For frequency-based features of emotive touch, we performed a Fast Fourier

Transform (FFT) of the three frame-level pressure and the centroid coordinates

(x,y) described above; and then calculated 6 frequency statistics for each as well

as the pressure readings from the centroid cell and its eight nearest neighbors [5],

comprising 72 more touch features in the frequency-domain.

Gaze features: From the gaze data, we collected raw (X, Y)-coordinates of focal

points from the Tobii eye tracker and calculated 34 features: distribution statist-

ics for each of {focal coordinate pair (X-, Y-location), saccade length, velocity,

fixation duration} as well as 9 summary features of gaze presence and location

including saccade and fixation ratios. We used Salvucci’s I-VT algorithm [245]

to differentiate between fixations and saccades. Gaze samples with point-to-point

velocities <30°/s were classified as fixations and those with velocities >=30°/s

as saccades. We calculated 6 frequency statistics for gaze data on the 2D focal

location, generating 12 frequency-domain gaze features.

Biometric features: We computed mean, median, and variance across all signals

provided from the Thought Technology physiology suite, including both base sig-

nals (BVP, SC, RR), and channels dependent on the original signals (HR, HRV,

IBI, etc.), for a total of 228 features across 76 channels.
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Data Instances / Partitioning on Independent Factors

Each data instance is comprised of a list of touch, gaze, and biometric features

computed across a single time window. We omitted windows that provided in-

sufficient samples for FFT (<10) for any modality5 – generally due to gaze data

loss when gaze was outside of the tracked area. We partitioned our data and

analyzed how key computational factors influence classification accuracy: win-

dow size (data density), inter-window gaps (continuity), and participant knowledge

(content) (Table 5.4).

Table 5.3: Data instance count by Emotion and Participant.

Pno Depressed Excited Pno Relaxed Stressed
P01 5426 3114 P02 1323 1309
P05 2251 2559 P04 2308 2656
P07 1755 1842 P06 3292 1895
P09 1726 7694 P08 2415 3888
P11 3166 3217 P10 884 1667
P11 2574 1557 P14 2421 2239
P15 3492 4275 P16 1880 2030
P17 1428 1337 P18 1479 1806
P19 1322 1286 P21 922 1290
P20 1608 1286 P23 1668 3235
P22 2070 1824 P25 2567 1735
P24 5873 10232 P27 954 2084
P26 5050 3722 P29 2392 2119
P28 1268 960 P30 1268 1783
P31 755 563 P03 data corrupted
P32 1704 2148 P12 data corrupted

µ 2591.8 2976 µ 1840.9 2124
(σ ) (1584.7) (2594.9) (σ ) (740.4) (714.8)

Participants (N = 30) were allotted as much time as needed for their emotion

task – telling or reliving an intensely emotional story. Because timing was not

restricted, the data instance count for each emotion word varies.
5On average, usable data instances dropped by 36% with shorter data windows being more af-

fected.
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Window Size: Impact of window size on classification is crucial for compute-

constrained real-time gesture classification. 2s windows (54Hz, or 108 frames)

have been used to capture touch gestures [87]; however, human hands and fingers

can move at ∼100-200ms [212, 269].

We therefore partitioned data in 2s non-overlapping windows and extracted

features for training and test instances. Each data instance has features extracted

from a 2s window to build a classification model. This partitioning and feature

calculation were performed on the same data at other window lengths, resulting in

four distinct sets of data instances at [0.2s, 0.5s, 1s, and 2s] windows.

Inter-Window Gaps: Even though our Random Forest classification model treats

instances without temporal dependence, we consider that temporally-neighbouring

instances can be exceedingly similar, particularly in the smallest windows. We in-

vestigate whether, and by how much, recency effects influence accuracy rates by

adding 2s gaps between instances thereby eliminating adjacent instances. We com-

pare classification performance of the data with and without this artificial gapping

(gapped vs un-gapped data.)

Participant Knowledge: We report accuracy for emotion classification across

three levels of the classifier’s knowledge of the participant in increasing informa-

tion order:

1. No participant knowledge – subject-independent classification simulates

the task where an interactive system’s emotion model cannot be trained on

all possible users. E.g., a robot in a museum or institutional context must be

modelled on a training set that could not include all possible users, who are

not known ahead of time.

2. Implicit participant knowledge – this subject dependent system simulates

a classification task where the interactive system’s emotion model has been

trained on all expected users before classification but not explicitly informed

which data is associated with the current user. We imagine a system that lives

in a limited private domain, where all users have completed a calibration

period, informing the model’s training set.

3. Explicit participant knowledge – the training set includes participant labels
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Table 5.4: A motivating overview of analysis factors.

WINDOW SIZE: [0.2s, 0.5s, 1s, 2s]

Description Data was all sampled to 54Hz. Window size is the length of time over which a
feature is calculated. e.g., a two-second window has 108 samples.

Implication With a static sample speed, shorter windows simulate a system with faster update
cycles, resulting in less information per window, but faster system response.

Question How do accuracy rates change with different sample sizes?

INTER-WINDOW GAPS: [Without gaps, With 2s gaps]

Description With no gap, all windows are calculated contiguously, i.e., every window is
directly adjacent to the one previous. With gap, after every window is calculated,
two seconds of data is discarded.

Implication Social touch gestures take a little under a second to make [87] so a 2s gap
increases the likelihood that each window captures different gestures.

Question How robust is the system to data loss?

PARTICIPANT KNOWLEDGE: [Explicit, Implicit, None]

Description The system may select participant labels if included in the training data. We have
three levels of participant knowledge: participant labels included, participant
labels excluded (both subject dependent), all participant data excluded (subject
independent).

Implication When labelled, the system can tell whose emotions it is attempting to predict.
When unlabelled, the system still has knowledge of the participant’s behaviour,
but cannot determine from whom. The most challenging case: testing on a
participant’s data without her training samples.

Question How much does a priori identification of an individual influence classification
accuracy?

as a feature (subject-dependent where instances are attributable by subject).

This system knows whose emotions it is attempting to classify and loads a

personalized emotion model for each user.

We also ran participant classification to determine not only how well these

feature sets can determine what interaction was performed, but also who performed

it.

Classification

Here we summarize the classification tasks: predicting emotion and person ex-

periencing the emotion while experimenting with data instances comprised of our

statistical features and varying window size, inter-window gaps, and participant

knowledge. For literature comparison, we report classification accuracy as the ratio

of correctly classified instances over all instances as well as multi-class weighted
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F1-scores based on the instance count of each class.

We used Weka, an open-source machine learning platform [108], for k-fold

cross-validation (CV) using a Random Forest (RF) classifier – so chosen for its

known efficacy for touch recognition [87, 152] and low training and computa-

tional threshold – to assess classification accuracy on both pressure-location and

frequency domain features. We chose a relatively moderate value of k = 20 for our

CV, to support comparison with other studies which have shown this method to be

effective in touch classification [5, 41, 87, 150]. We included subject-dependent

tests for models trained on all participants as there is no restriction on whose data

instances are included as training or test data, so long as the same data instance is

not in both.

Subject-independent Emotion Classification: For subject-independent analysis

(no participant knowledge), we use two types of Leave-One-participant-Out (LOpO)

classification: (1) one participant’s data is left out and the training set includes all

other participants (LOpO-All) (i.e., training N = 30−1) and (2) one participant’s

data is left out and the training set includes all other participants who performed

the same emotion tasks (LOpO-Half) (i.e., training N ≈ 15−16).

LOpO-ALL simulates a system that has no knowledge of a new user and has

been trained on all emotional touch behaviours (chance ≈ 25%). LOpO-HALF
simulates a system that has no knowledge of a new user and has been trained only

on the 50% subset of behaviours this user will be performing (chance ≈ 50%).

Subject-dependent Classification: Given the highly individual nature of the touch

behaviours we observed, it is possible to expect LOpO classification to perform at

or near chance. We also performed CV for conditions classifying:

1. Participant: represents a system trying to identify who is performing the

interaction.

2. Emotions given explicit participant knowledge: participant labels are in-

cluded as a feature;

3. Emotion given implicit participant knowledge: participant labels are omit-

ted.
6Test sets are comprised of data instances from participants who performed Stressed and Relaxed

(NSR = 16) or ones who performed Excited and Depressed (NED = 14)
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Table 5.5: Weighted F1-scores from 20-fold cross validation varying factors
of Gap(+/-), Participant Labels(+/-), and Window Sizes (0.2s, 0.5s, 1s,
2s) on touch T , gaze G, and biometric B features, classifying emotion
(25% ≤ chance < 50%). Classification accuracy is within 0.003 from

these values. Weighted F1-scores that are from 0.01 to 0.03 below
classification accuracy are indicated with *.

Participant Labels- Participant Labels+
Win T G TG B T G TG B

Gap +

0.2s .666 .412* .704 .997 .871 .744 .884 1
0.5s .693 .448* .735 .996 .881 .773 .897 1
1s .719 .489* .759 .996 .886 .781 .909 .999
2s .566 .465* .597 .892 .793 .651 .765 .942

Gap-

0.2s .754 .475* .822 1 .923 .788 .944 1
0.5s .761 .505* .823 1 .921 .803 .939 1
1s .768 .530* .821 1 .921 .811 .937 1
2s .761 .569 .815 .999 .918 .813 .931 1

5.4 Results
Consistently with past studies on biometric-based emotion classification [155], our

biometric data alone gave accuracy rates from ∼90% to near 100% (Table 5.5).

This section describes our results from running classification using our full fea-

ture set on emotional touch and gaze behaviour across a number of experimental

conditions (compared to that of biometrics alone) (Table 5.5). We also look at

subject-independent tests of emotion classification which also employed the max-

imal combination of modalities (touch + gaze + biometrics) (Table 5.6). F1-scores

and accuracy differ by less than 0.03 (3%), with most within 0.001 (0.1%) differ-

ence. Since they follow the same patterns by condition, we discuss them in terms

of accuracy outcomes for comparability to other multiclass affective classification

literature [5, 114, 115, 153, 155].

5.4.1 Subject-Independent Emotion Classification

Subject-independent classification, LOpO-ALL (chance ≈ 25%) was run as a single

RF trained on all emotions while LOpO-HALF was built on two RFs trained inde-

pendently for excited-depressed and stressed-relaxed respectively. For each LOpO
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Table 5.6: Overall classification performance across all test conditions and
modality combinations by accuracy and weighted F1-scores.

TEST DESCRIPTION CHANCE ACC F1
LOpO-
ALL Predict one of four emotions 25.0% 34.5% 0.318

LOpO-
HALF Predict one of two emotions 50.0% 58.0% 0.574

level, classification was performed at each window size and gap condition.

Some participants fit the model well, most performed at chance, and, interest-

ingly, a few consistently contradicted the generalized model. For all LOpO levels,

window sizes, and gap conditions, accuracy was very near chance (Table 5.6,

LOpO-ALL and LOpO-HALF).

5.4.2 Participant Classification

Previous results have demonstrated that participants have a touch signature: ways

or styles of touching which can be sufficiently idiosyncratic to identify the toucher [41,

87]. Individual touch behaviours were both internally consistent and externally

unique.

To see if this was true of our data, we performed 20-fold CV 7on the full set

of data instances, to predict subject label (who performed the gesture) on touch

instances, resulting in a classification accuracy of 78%, where chance is 1/30 or

3.33%. High accuracy rates on participant prediction confirms that individual dif-

ferences are indeed highly expressed in this type of behavioural data.

5.4.3 Subject-Dependent Emotion Classification

With participant classification (Section 5.4.2), we looked for touch behaviour high

in both individual differences and consistency. With emotion classification we seek

commonalities in touch behaviours across individuals, under given emotional con-

ditions. We expect one of the following to be true: (a) participants feeling the same

emotions touch the robot similarly, s.t. we can differentiate solely on emotion

condition; (b) given knowledge of a participant, we can differentiate between two

7Fold-count chosen to balance the reduced data set of subject-dependent models (roughly 1/16 of
subject-independent data). Lower folds creates more variance in performance metrics.
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emotion tasks; or (c) some combination where a system does not explicitly know

who a participant is, but can differentiate given a touch signature characteristic of

a specific participant.

(A) is unsupported based on our LOpO results where named emotions are re-

cognized at near chance. We focus this section on the feasibility of personalized

models of emotional touch: the consequences of (b) and (c); the effect of noisy

or inconsistent data to simulate real-world operation; and finally, how the relative

contribution of touch and gaze compare with respect to classification accuracy.

We review classification performance with respect to data factors described in

Table 5.4.

Accuracy by Emotion

We break down the average accuracy rates for emotion classification and compare

how the classification task affected performance for each emotion (see Fig 5.3).

Unsurprisingly, subject-dependent CV results in higher performance than subject-

independent LOpO; notably, however, Excited behaviours can be classified at roughly

similar rates. There are a few contributing factors to be considered: (1) Excited

behaviours were of consistently high arousal with quick motions; while Stressed

was also high arousal, participants often associated it with fighting Depressed feel-

ings. (2) Participants provided longer samples of Depressed and Excited expres-

sions, which led to more data instances when cut into equal-length windows (see

Table 5.3).

Window size and Gapping

Comparing classification accuracy by window size, we see that overall, increasing

window size improves performance.

We imposed data gaps to simulate real-world loss, reducing temporal inter-

dependency. Where data was uninterrupted (Figure 5.2c,d), classification rates are

relatively stable regardless of window size.

While introducing gaps (data discontinuity) causes expected dips in perform-

ance, larger window sizes suffer disproportionately. Closer inspection reveals

that this accuracy drop-off coincides with a decrease of training instances – most
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Figure 5.2: Emotion classification accuracy rates from 20 fold
cross-validation by modality (Touch + Gaze, Touch only, and Gaze
only), window size (0.2s, 0.5s, 1s, 2s), as weighted averages from
Table 5.5. Comparisons are also made between having participant

labels included (b) & (d) vs excluded (a) & (c), and where 2s gaps are
imposed to simulate data loss (a) & (b) vs no gaps (c) & (d). Including

biometric data consistently achieves 90-100% accuracy across
windows, labels, and gaps (accuracy dips only under the sparsest data

conditions: gapped-2s window cases, regardless of whether subject
labels are present).

severely at 2s, where data instance count drops from 7435 instances down to 676,

an over 90% data loss.

Participant knowledge

Where participant labels are known (Figure 5.2b,d), classification accuracy im-

proves over cases with no participant knowledge (a,c). This effect is seen consist-

ently across modalities with jumps as high as 10-20% for touch- and gaze-only,

respectively.
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Figure 5.3: Comparing how each classification task performed by emotion
using touch and gaze features. For subject independent analysis (c) we

trained 2 RFs–trained on Excited-Depressed and Stressed-Relaxed
separately (no between-set classification – blank entry for

Depressed-Stressed). In contrast, a single RF was trained on all 4
emotions in (d).

Comparing modalities

We refer to Table 5.5 to assess how touch (T), gaze (G), touch + gaze (TG), and

biometrics (B) compare in subject-dependent emotion classification performance

(20-fold CV).

Taking modalities alone, we see that gaze performs comparatively lower than

touch. When participant labels are available (Figure 5.2b,d), classification on both

single modalities improve. However, combining touch and gaze further increases

accuracy. Particularly under the best condition of maximal information ((d) – with

participant labels, no gaps), touch and gaze together can approach that of biomet-

rics performance (97-100%) – in line with previous work showing high classifica-

tion performance on physiological data [155].
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Figure 5.4: Feature selection count by statistic as ranked by Weka’s Best
First Attribute Evaluator. Selection % represents how often the feature

is selected for use in 100 iterations of 20-fold CV. The dark box for
Touch Distribution-Location x Median indicates that this feature is
selected 100% of the time; white boxes indicate features that were

never selected.

5.4.4 Feature Set Analysis

To understand feature contribution, we ran Weka’s Best First Attribute Evalu-

ator [315] on the Touch and Gaze feature set. This tool iteratively selects the best

feature subset for each classification trial in 20-fold CV, producing a list of features

and the frequency with which they are selected.

Figure 5.4 breaks down each parameter by modality and relative selection count

as a heat map, where each cell represents the number of features of a statistical type
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selected at each iteration. Higher saturation indicates a higher number of times

selected at this percentage. For example, Median-Touch Location was selected in

every CV trial.

The most selected features were the 11 calculated medians of touch location,

chosen 100% of the time during 20-fold CV. Overall, when using Classic Touch

Location data, we recommend calculating Median, Min, AUC, Mean, Max features;

in contrast, when using Classic Touch Pressure data, Total Variance is not chosen

at all and may be left out.

5.4.5 Reports of Experienced Emotion

Participants reported their current emotional state with Russell’s 2D affect grid [237]

during two neutralization tasks and following two emotion tasks. After completion

of all emotion tasks, we interviewed our participants on their experience; highlights

are covered in this section.

Self-reported emotion movement: In Figure 5.5, there is variation where we ex-

pected participants to report emotion movement towards the quadrant extremes. In

decreasing order: Excited (all 14 participants reported moving towards the quad-

rant extrema); Stressed (13/15); Depressed (6/15); and Relaxed (2/16). In paired

t-tests, we found significant differences in self-reports between neutral and emo-

tion tasks for each of Stressed, Depressed and Excited in both arousal and valence

(p < 0.05).

Paired t-tests showed no significant difference (p > 0.05) in neutralization

tasks, nor order effect in emotion tasks.

Figure 5.5 plots each participant’s emotion trajectory across the 2D affect grid

for each relived emotion instance, from starting state to recall conclusion. Both

high arousal emotions (Excited, Stressed) were consistent with expectations where

participants reported a shift in emotion toward the grid corner of the target emotion

word.

Authenticity: Each participant self-reported how authentically they experienced

the target affect in each emotion task. On a scale of 1–10 with 1 being completely

contrived or artificial and 10 being completely authentic as in the original experi-

ence, participants rated authenticity highly (between 7.5 ≤ µ ≤ 8.29) with Relaxed

123



Figure 5.5: Changes in individual’s self-report of emotion after
Neutralization (start) and Emotion tasks (finish); N=14 for Stressed &
Relaxed and N=16 for Depressed & Excited. Overall, we see a move
from the origin to the representative quadrant. Stressed and Excited
show the strongest overall change along both Arousal and Valence

axes. Relaxed shows the least change with disconnected points
referring to “no change” from neutral state.

and Stressed tied, and then Excited and Depressed in increasing order.

Added insight from interviews: For some, immediacy or recency of recalled

events helped to highlight emotions. This experiment was run around final-exam

and holiday reunion time. Both are cited as reasons for ease of recall.

“I’m leaving to see my family for the first time in three years, I can’t

stop being Excited.” – P09

“Excited was easy – the situation was more recent and was more im-
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portant [than my Depressed memory].” – P22

“I have a lot of school assignments right now and I kind of toggled

between many memories [Stressed]. It was hard to pick one to feel but

I think that might have added to the feeling.” – P21

“[W]hen I was doing Stressed, I felt like I wanted to punch something

it was so gut-wrenching.” – P29

The low arousal emotions, Relaxed and Depressed, moved as expected in valence

but not arousal, which remained overall at its neutral “resting” position. In the case

of Relaxed, this might be explained by perceived similarity between this emotion

task and the ‘resting’ start condition.

“Relaxed was easy to express because it’s pleasant and I want to feel

it and also, I’m sitting on a couch which helps.” – P27; similar reports

by P02, P18

For these two emotions, some participants reported that the emotion Depressed

was linked to Stressed in their memories (e.g., feeling stress about exams was also

depressing), which may explain some of the unexpected movement in arousal for

Depressed. Four participants also reported feelings so strong that their Depressed

memory evoked active tears, while others indicated that these feelings were some-

what mitigated by the experience of stroking a soft body.

“My [Depressed] memory was very clear and I was able to recall a lot

of details. It really helped to be touching a soft thing and felt like it

was taking some of my sadness.” – P26, also P15, P24

Another possibility for both of these emotion targets is that participants were simply

unable to turn down their arousal state to this degree during the short time of the

session.

5.5 Discussion
We summarize result highlights before contextualizing them in our research ques-

tions:

• Using both touch and gaze improved accuracy rates over touch alone.
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• Increasing window size had little effect on accuracy.

• Adding data blackouts or gaps did not noticeably decrease classification
accuracy except for 2s windows.

• Due to individual differences in touch behaviour, it is necessary to include

participants in the training set for potentially usable recognition:

1. Classification accuracy for whom (participant performed a data instance

was comparable to that of WHAT (emotion), implying that individual

differences can be captured;

2. Both LOpO-ALL and LOpO-HALF analyses performed at or near chance;

3. Including participant information in the training set improved accur-

acy rates, but participant labeling is not necessary for recognition.

5.5.1 RQ1: Ability of Touch and Gaze to Predict Emotion

As anticipated, accuracy of distinguishing between emotions based on a full suite

of biometric signals approached 100% in the best-case model (Figure 5.2a) trained

on participant-labeled data (Table 5.5, column B). When full-suite biometric sig-

nals can be effectively employed, they will give the best result. Even partial bio-

metric sources – e.g., heart rate variability (BVP) alone – do well relative to each

of the less intrusive modalities. We can expect improvement in the wearability or

embeddability of some biometric channels, so this result is important to note.

Of modalities not requiring sensors to be worn (touch, gaze), touch reaches

92% accuracy8, improved with gaze to 94%; however, performance worsens in

more adverse conditions. This level of classification accuracy may be adequate for

many applications, e.g., when the goal is simply to establish large-scale movement

between quadrants.

Classification accuracy favours pressure-location distribution features: At 54Hz,

touch distribution features of pressure and location were most frequently selected

for emotion-classification performance (Figure 5.4).

Touch frequency-domain features have been used successfully [5]; the con-

trast may be our relatively low sample rate coupled with short windows (0.2-2s vs

8While classifiers differentiated four emotions, each participant performed only two. Chance is
thus more like 50% when participant labels are known.
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8s in [5]). Further, emotion classification using gaze data appears to consistently

benefit from inclusion of features calculated on Fourier transforms of gaze posi-

tion. Since frequency-domain features are relatively compute-intensive (realtime

FFT vs. pre-processable pressure-location set), it may be reasonable to reduce the

feature set to touch distribution features where efficiency is a priority.

5.5.2 RQ2: Individuality

Recognition rates increase with greater participant knowledge: LOpO results

near chance (for both iterations–ALL and HALF) imply low generalizability of a

model to other individuals’ emotional behaviour.

Participant knowledge matters, but not labels: We propose a touch-centric ro-

bot that exploits individual differences and, instead of an out-of-the-box general

training model, builds personalized models of a short list of users. Having parti-

cipant knowledge is important for classification; all expected users of a single robot

should be included in a model’s training pool. However, including participant la-

bels adds only minor benefit (Table 5.5 with labels vs. without) when training data

already includes the test participant. This may be due to the relatively high par-

ticipant classification rate (Table 5.5; chance 3.3%) wherein participant-specific

behaviours may influence classification such that even though participants are un-

labelled, the system is able to guess. When high accuracy is needed, a priori user

identification (participant-labelled data) may be a helpful refinement.

Excited is most recognizable emotion: Based on confusion matrices describing per

emotion performance (Figure 5.3), Excited may be most generally recognizable.

The emotion self-report (Figure 5.5) shows that Excited was experienced consist-

ently (all participants reported the expected emotion direction). Similar emotional

experiences may translate to common touch and gaze expressions in these high-

arousal, high-valence emotion spaces.

5.5.3 RQ3: Sample Density for Realtime Responsiveness

Larger windows and including gapped data reduces classification accuracy:
With post-hoc classifications, increasing window sizes and eliminating data seg-

ments (discontinuities with gapping) reduces data instance count. We discuss the

127



effects from conditions where greatest data instance count are in no gap-0.2s win-

dow conditions and least with 2s gap-2s windows, with respect to real-time classi-

fication.

Size: From Figure 5.2, increasing window size from 0.2s to 2s results in marginal

improvement of classification under no-gap conditions. In this case, increasing sys-

tem response rate (by using 0.2s windows rather than 2s of data) may be favourable

as little accuracy loss is experienced.

Continuity: Gapping data does indeed drop accuracy by 10% in T , G, and T G

(Table 5.5). We considered the possibility that the performance decrease is related

to low data instance count, but even when removing that confound and comparing

equal instance intervals of gapped vs. non-gapped signals 9 we found that each

single modality’s performance on adjacent data streams (non-gapped) resulted in

higher accuracy rates than that of gapped data10.

Interestingly, for most window sizes (0.2s, 0.5s, and 1s — where gapped and

ungapped instance counts are on the same order of magnitude) results suggest data

loss should not be devastating to real-time emotion classification of touch, even

when the gap (2s) is 10x that of the collected instance (0.2s). Given a relatively

predictable signal interruption pattern, we can select a window size range knowing

that even if a signal is lost for up to 10x that of the collected window, classification

accuracy may still be tolerable.

This performance differential exposes a role of signal continuity in these chan-

nels’ expression of human behavior and emotion reaction: a possible explanation

is that emotion expression evolves in even short timeframes. While larger, adja-

cent windows may marginally improve classification accuracies for short (single-

window) snapshots, they may introduce error for longer interactions. Periodic sys-

tem re-training may help to build a more robust user model. Since this may inter-

fere with actual system use, re-training could be suggested as participant behaviour

changes and participant classification accuracy drops – an indication of significant

behavioural departure from the current model.
9Addition of gaps between 2s windows reduces the data set instance count by over 90% (7435 to

676 instances).
102s windows / unlabelled participants generated for T : 90.4% (adjacent) vs. 56.7% (gapped); T G:

improved to 78.8% vs. 47.5%.
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5.5.4 RQ4: Experimental Methodology

We chose an experimental approach based on the use case of a robot pet. Sev-

eral elements were nonstandard: emotion elicitation method, choice of emotions

investigated, study framing (including how existing emotion models may influence

the emotion task: a participant interacting with an unresponsive furry object), and

analysis aspects. With results in hand, we critique these innovations.

Emotion elicitation: While the technique of memory re-telling was validated by

literature [57, 179], we elicited stronger emotional reactions than we expected. In

some cases, this could be due to participants playing a ‘good-subject role’, trying

to please experimenters [203] and artificially inflating the perceived efficacy of this

protocol. However, we anticipate some degree of this characteristic in any labor-

atory study. Furthermore, we noted some strong physical and embodied emotional

reactions (such as genuine tears) that suggests this method could still be a valuable

tool, particularly in a laboratory setting where people may otherwise find it hard to

act naturally. We plan to employ variations in our own future studies.

Emotion set: We reported both high and low classification accuracy rates, but nev-

ertheless question whether accuracy is an indicator of a successful emotion model,

even when corroborated by F1-scores. There is certainly value in accuracy met-

rics, but underlying assumptions of both dimensional and discrete emotion models

present known problems for classification. Specifically, discrete systems based on

dimensional models suffer from a problem of distinguishability in which semantic-

ally dissimilar emotional labels are placed in the same bins [40].

Study and Emotion Task Framing: We assumed that participants express a roughly

steady state emotion, felt across the entire memory recall. However, it is possible

that strong emotions may be felt only for an instant before autonomic emotion reg-

ulation or coping mechanisms take over [101]. The horizon over which we sample

a participant’s emotional state, and the assumption of immediacy impact decisions

an interactive system should implement. Our discrete classification system can

identify differences in minute-long interactions, but cannot estimate an emotional

inflection point (i.e., transition from one emotion to another). A truly interactive

system would need to react to the change in an emotional state and adapt over many

samples.
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Furthermore, in natural emotional exchanges, interactions with pets or friends

allow for error correction: an initial misjudgement can be corrected with further

context. An adaptive rather than prescriptive model might go further towards de-

velop a meaningful relationship over a direct and immediate call-and-response in-

structing interaction [264]. Using touch data in context with gaze and biometric

analysis lays the groundwork for extending haptic human-robot interactions from

instructional directives to meaningful conversational relationships.

5.5.5 Implications for Social Robot Applications

From our findings, we consider next steps in designing the classification system for

our social touch-centric robot.

Out of the three nonverbal modalities we studied, touch may be most relevant

for applications such as social robot therapy. Our findings indicate that for a pre-

viously known user, distinguishing between a few emotional states is feasible for

touch-alone. This provides intriguing opportunities for development of therapeutic

robots that could run human-affect recognition and respond by adjusting their be-

havior.

While gaze and biometrics improved classification, their use in practical scen-

arios remains challenging. For robust detection of gaze, the user must always face

the robot at a certain angle or wear a calibrated head-mounted gaze tracker. In-

cluding biometrics is even more restrictive as participants must don a series of

body-hugging sensors, then remain emotionless during periods of neutral user cal-

ibration before departures from neutrality (emotion) can be detected in signals such

as heart rate and skin conductance. Embedding biometric sensors into the robot

system may be possible but still poses some difficulty: touch interaction with the

robot typically consists of momentary touch contact that may be too short and in-

frequent for measuring biometric signals. However, these sensory systems can be

integrated in situations with careful sensor placement for gaze attention and train-

ing data collection sessions.

To be used effectively in therapy, an expert such as a therapist would need

to introduce the robot and guide potential users in providing training data for re-

cognition of emotions via touch. As participant-knowledge appears to be a key

component to increasing emotion classification performance, we can conceive of
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a system training procedure that extends beyond simply including participant info.

The robot could be personalized to first recognize and then work from a custom

user profile where accuracy is crucial. Although this implies a setup cost for use,

potential benefits in environments where real animals cannot be used (such as some

hospital environments) may compensate.

5.6 Conclusions
We presented affect classification results from emotionally influenced touch and

gaze behaviours, verified against better-understood biometric data. Participants

recalled intense emotional memories spanning Russell’s 2D arousal-valence affect

space, namely Depressed, Excited, Stressed, and Relaxed. We collected data across

the three modalities via a custom fabric touch sensor embedded in a small furry

stationary robot; a gaze tracker; and a biometric suite including skin conductance,

respiratory rate and heartrate variability. Our data is both quantitative (sensor cap-

ture during interaction, and self-ratings of emotion genuineness and intensity) and

qualitative (post-experience interviews).

For models trained with test participant data using pressure-location features,

the overall emotion recognition rate was roughly 83% for touch, 87% for touch +

gaze, and 99% for touch + gaze + biometrics. Performance drops steeply when test

participants were left out of the training model, resulting in 31%, 31%, and 29%,

approaching chance (25%). We tried increasing the feature set by incorporating fre-

quency features for touch and gaze modalities. This resulted in emotion recognition

rates of 79% for touch frequency features, 85% for frequency and pressure-location

touch features, and 85% for touch frequency, touch pressure-location, and gaze fre-

quency features combined. LOpO performed similarly poorly at 30%, 32%, and

35% respectively.

We summarize findings that will inform our next stage of design for robots capable

of real-time emotion classification:

1. Emotional behaviour encoded in touch and gaze interaction may be suf-
ficient. While including biometric data greatly improves accuracy, current tech-

nology requires they be worn, resulting in a more restrained experience. Setup

interferes with natural emotional expression and sensors affixed to the hand and
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body can feel restrictive.

2. An individualized training or calibration phase is crucial for a personalized
prediction system. Increasing participant information greatly improves the clas-

sification model’s prediction accuracy. While this stage likely requires guidance

from an expert or therapist, the training investment facilitates the learning of user-

specific characteristics and develops a more robust user behaviour model, thereby

allowing for a personalized and productive experience.

3. Sampling density and feature count may be reduced to improve compu-
tation load. During real-use, the speed of classification and reaction is a serious

concern. Lossless continuous capture is ideal, however, in real-time we may find

that packets must be dropped from slow or problematic data captures. We experi-

mented with introducing gaps in data for this reason, and our findings indicate that

interruptions in data collection at up to 2s intervals may be tolerable.

4. Limitations of commonly used emotion models should inform future re-
search in this field. Although we achieved possibly usable classification rates,

reflections from the field suggest that existing affect models have clear limitations

that must be addressed [38]. People do not experience emotions in isolation nor

discretely; emotional experiences follow a trajectory with distinctive peaks and

valleys. Future detection systems must model the rise and resolution of an experi-

ence. While this study used a stationary robot, a deployed interactive system must

acknowledge that its response has influence over user emotional reaction, necessit-

ating dynamic adjustments to behaviour modelling.
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Part II

Dynamic Emotion Modelling
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In Part II, we iteratively refine our computational model of emotion expres-

sion. We begin by proposing a multistage emotion elicitation and self-reporting

protocol (Chapter 6) and conclude with a reflection on how to advance design on

technology that supports human emotional experiences (Chapter 9). Building from

our experience with the work in Chapter 5, participant comments, the literature on

emotion regulation, and from our own personal lived experience, we acknowledge

that memories focusing on a single strong emotion inevitably involve resolution,

personal background, and event context that complicate the emotion experience.

To highlight the richness and dynamism that is inextricable from the emotion re-

call experience, we developed a multistage emotion labelling protocol that allows

us to root the emotion data in personal history. This protocol is presented as pub-

lished in Chapter 6.

Developed in tandem with the contributions in Chapter 6, Chapter 7 is the

implementation follow-up. While the former focused on protocol development,

describing the data labelling process and justifying / validating the procedure, the

latter features the analysis of the multimodal data and describes important conclu-

sions coming from incidental touch (as collected by force-sensitive resistors).

To highlight the practical implications of creating personalized models for

emotion classification of affect expression, we constructed a proof-of-concept of

the model training process. In Chapter 8, we outline how we collected both bi-

osignals (heart rate and skin conductivity) and touch behaviour expressed during

an emotional storytelling task. By labelling this emotion data with time-varying

emotion in multiple stages, we constructed training and test sets for emotion clas-

sification.

Finally, in Chapter 9, we look forward to the development of emotionally re-

sponsive devices and consider the guiding principles that can best serve the better-

ment of their human users.
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Chapter 6

Dynamic Emotion Detection: A
Multistage Emotion Self-Report
Labelling Protocol

Summary
Many emotion classification and prediction approaches focus on emotion state,

defined as static and single-valued. In contrast, our in-body experience is of sensa-

tions that can quickly evolve, consistent with scientific evidence of physiological

regulation mechanisms. Can we reframe classification to estimate dynamic emo-

tion parameters at interactive rates?

For insight into dynamic emotion characteristics, we developed a multipass

labelling protocol to capture controlled yet genuine emotion evolution elicited as 16

participants played a tense video game. We analyze and align multiple self-report

outputs, inspect the signals for emotion dynamics, and consider label metaphors of

position and angle – “where I am” vs. “where I’m going”. Finally, we reflect on the

benefits and drawbacks of such a protocol for developing models of fast-evolving

emotion.
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6.1 Introduction
Whether building robots that detect anxiety through touch interaction or video

games that dynamically adjust level difficulty to optimize player engagement, com-

putational models of authentically developing emotions are the foundation of tech-

nology. Challenges arise in developing these computational models from true and

spontaneously evolving emotions.

Emotion theorists have long observed time-varying dynamics of emotion ex-

pression, attributing them to complex neurological and physiological regulation

mechanisms [100], appraisal effects [198], cognition and contextual factors [194,

211]. To simplify in-lab research, computational emotion modelling often relies on

an “emotions-as-point” metaphor [38, 169], represented as a dimensionless point

in an emotion plane in which self-reporting static emotion labels for classifica-

tion involves easy-to-read scales, often along dimensions of arousal, valence, and

dominance [42]. While these models are convenient, for realtime use we need to

recognize emotion evolution over time, rather than distilling a lengthy event into a

single label.

Going from theoretical to computable: Obtaining authentic emotion data is a signi-

ficant obstacle. Our memories and emotional assessments are affected by time and

reflection [198, 211]; how representative can a reporting scheme be of someone’s

“reality”? Commonly used labels on the arousal-valence circumplex model [237]

or PANAS [309] or SAM [30] (among others) quickly become intractable for

sampling at the rates at which emotion can potentially evolve.

Emotion is personal: Independent of the measurement instrument, self-report of

emotion incites questions of generalizability across the population. A researcher’s

understanding of the instrument scale may be very different from that of a parti-

cipant [38]; our comprehension of an emotional ‘landscape’ or internalized emo-

tion frames of reference are highly subjective, influenced by life experiences and

personal history [20]. We presume that any set of ground-truth labels for self-

reported emotion are similarly personalized: i.e., the experience or scale for anger

for one person may not be recognizable for another.

We propose that evaluating emotion based on dynamic qualities will advance

the accuracy of machine recognition of human emotion experiences. Better fore-

136



casting of a user’s near-future emotional expression allows for system responses

that are temporally and situationally appropriate.

6.1.1 Approach

We assess the viability of building computational emotion models based on dy-
namic conceptualizations of emotion change to bolster our capacity to predict and

respond to human emotion based on observed behavior or self-reports. Multi-pass

labelling requires high investment in early model building, which can pay off by

highlighting how to optimize labeling in later real-time use. As outlined in Fig-

ure 6.1, this paper evaluates reporting consistency between passes of a data collec-

tion and emotion labelling methodology, leaving model building and classification

performance for future work.

Specifically, we reflect on our multi-pass protocol which (a) triangulates emo-

tion self-reports with modality-agnostic observable data; and (b) employs co-creation

of personalized calibrated emotion scales which form the frame of reference for

multi-pass self-reports, collected with minimal intrusion on the primary emotion

event. Using a joystick for spatiotemporally high-resolution post-hoc ratings, we

can construct data windows that are (c) versatile to accommodate a variety of emo-

tion metaphors at our choice of time scale.

Figure 6.1: Roadmap for developing an emotion-prediction engine for an
emotionally responsive application.
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6.1.2 Research Questions

Two lines of inquiry guided our assessment of this approach to operationalize real-

time models for emotion forecasting.

1. Do user-centered emotion reports add new information? Nuances in users’

emotion language, manifesting as apparent inconsistency, can interfere with emo-

tion model performance and validity [148]. We center users by including (a) per-

sonally calibrated emotion scales where we create a shared understanding of instru-

ments and measures [38], and (b) multiple labelling passes at different resolutions

and retrospective distance; then assess the information gained from these elements.

For example, do people rank common emotion words similarly? In what ways does

labelling data differ by pass? What do we gain from quantifying the differences?

2. How might we incorporate the dynamic nature of emotions into our com-
putational models? Operationalizing dynamic emotions requires models that rep-

resent the natural evolution of an emotional experience.

We begin with the prevalent movement-based metaphor of emotions-as-position

(‘where I am’, an ordinal value on an emotion scale), and propose another of

emotions-as-angle (‘where I’m going’, the direction and sharpness of change). We

add to these previously-proposed emotion dynamic measures of inertia, instabil-

ity, and variability [130], and compare the properties of each with each other and

in between-participant variability for insights into how they might have value for

responsive computational models.

Through these investigations, we contribute:

• A multipass labelling protocol with insights into how to employ triangulated

emotion labels, including the role of personalized emotion word calibration;

• Insights into the descriptive properties of various dynamic emotion paramet-

ers, relating to their potential for use in responsive computed models.

In the following, we root our protocol development in the existing literature,

describe the devices and instruments we created to measure continuous dynamic

emotion, outline the data collection procedure, and evaluate the data according to

our questions. In discussing our findings, we consider where these new model

elements may provide the greatest value.
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6.2 Related Work
Protocols featuring internally consistent emotion metaphors, measurement instru-

ments, and elicitation procedures increase the likelihood of representing true parti-

cipant experiences [38].

6.2.1 Emotion Self-Report

Classifying emotion requires capturing and labelling emotional experiences. Rep-

resentation thus impacts how we ask users to report their experience.

Russell’s circumplex model [237] is a commonly used instrument depicted as a

spatially continuous 2D space of arousal and valence (plus dominance in 3D [13]).

It underlies popular labelling schemes, most involving a participant locating emo-

tion words on its axes; e.g., words associated with PANAS, the Positive-Negative

Affect Schedule [309].

The Self-Assessment Manikin (SAM [30]) makes this more natural with Likert

scale dimensions [274, 317].

Natural language reporting methods are used when experiences (maybe a self-

contained memory [41], or a touch [114]) are sufficiently brief, simple to fit a single

label, and precede an opportunity for the participant to report without experiential

interference. They become intractable for segments that are longer than a few

moments, span multiple emotions, and/or require rapid computed response (before

the segment ends).

Still with a dimensional representation, others have collected temporally con-

tinuous emotion ratings using a mouse- [61] or a joystick [263, 318]. For hands-

free activities, a joystick allows for high temporal-resolution concurrent reporting,

but at the cost of emotional intrusiveness. Post-hoc ratings require review of a

recorded experience.

We drew on these approaches to design our own joystick-based continuous
emotion annotation system.

139



Figure 6.2: Participant tasks and resulting data. At lower left is an EWC example: word stickers placed on a
Relaxed-Stressed scale, plus P09’s other annotations. The latter resulted from P09 later contextualizing their

in-game experience.
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6.2.2 Characteristics of Emotion Dynamics

The methods above imply emotion as “state”. Even models that feature sequences

(i.e. Bayesian emotion models) denote each stage as a single state [59, 211].

Regarding emotion instead as a process, as in appraisal theory [198], may bet-

ter reflect human experience; but this perspective must be operationalized. One ap-

proach is to calculate emotion dynamics, by quantifying progression in three fluc-

tuation parameters on one’s emotional movement: (1) inertia (the time it takes), (2)

instability (by how much), and (3) variability (the range of those changes), calcu-

lated as autocorrelation, mean square of successive differences, and within-subject

variance respectively [130, 278]. Using these summary metrics over a report time

series, researchers have evaluated emotional character arcs in movies [121], ex-

amined the role of exercise in emotion regulation [23], and even predicted mood

disorders [278].

Can we use these markers at high resolution, to capture transitions and sup-

port concurrent response or are other motion characteristics more appropriate? We

investigate sourcing labels from a report’s emotion dynamics.

6.2.3 Labelling and Timing

Timing is key to regulation, reflection, reporting, and in-event reactivity. Emotions

evolve at multiple time scales; an event may evoke a different emotion after cog-

nitive reflection on an in-time reaction [211]. The optimal timing for capturing a

self-report is complex. Too soon may curtail rich and valuable reflection [198]; too

late incurs memory decay [76]. Concurrent emotion evaluation is typically imprac-

tical: probing for labels is intrusive and distracting – naming a feeling is a form of

reflection and regulation [100, 102, 103].

To capture reflection and generate training data for future responsive models,

we collect reports in two passes and use multi-timescale labelling – giving time

for self-reflection, and mitigating memory degradation with video reminders.

6.2.4 Emotion Elicitation

Where applications require in-time recognition of emotion, data must represent

realistic emotion expression [93, 127]. Relived or recalled emotion is one proxy [42,
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80]. Participants are prompted with an emotion word (the single label) and asked

to recount the story of a past intense experience.

While successful in eliciting authentic and wide-ranging responses, this over-

simplifies an episode to emotive homogeneity [42]. Furthermore, participant stor-

ies are hyper-individualistic, not amenable to a search for commonalities. Con-

versely, entertainment media can root participants in a more uniform elicitation

stimulus, with many validated video and music clips used successfully for this

purpose [57, 103]. Video games have shown promise in producing physiological

responses analogous to that of real life evocations [292].

Here, we use a horror video game to elicit emotion. This genre has shown

high user immersion and engagement, evoking emotions from anxiety to happiness

and contentment [214].

6.3 Data Collection Protocol
Our priority was to obtain triangulating data views on the emotional space of mo-

mentary transitional experiences. N=16 individuals (8 reporting as male, 8 female;

19 to 34 years of age, half under 25) participated. Each participant supplied self-

report data that demonstrates our protocol, by completing four tasks as outlined in

Figure 6.2 and detailed below.

6.3.1 Participant Task 1: Primary Emotion Activity (PEA)

To demonstrate this protocol, we use video game play to elicit authentic and spon-

taneous emotion. We chose Inside [222] to stimulate anxiety without graphic viol-

ence and spark moments of accomplishment or satisfaction, all with easy-to-learn

keyboard controls. We selected participants for their affinity for video games, ex-

cluding those with experience of Inside.

For reviewing the primary gameplay experience in later passes, we videore-

corded participants’ faces and game screen (OBS1, 30fps). Gameplay averaged

13:24m (min 8:25, max 21:37, SD 3:88).

1Open source video recording and streaming. https://obsproject.com/
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6.3.2 Participant Task 2: Emotion Word Calibration (EWC)

To contextualize individual interpretations in later steps, participants rated up to

15 emotion words, two write-ins and 13 from the PANAS [309]: Cautious, Satis-

fied, Hopeful, Frustrated, Anxious, Nervous, Threatened, Resigned, Alert, Accom-

plished, Fearful, Dread, Curious. Figure 6.2, lower left shows P09’s sample scale,

ordering these words between Relaxed to Stressed (chosen to represent diametric-

ally opposing quadrants from Russell’s circumplex of Arousal vs. Valence [237]).

We measured the distance from the Relaxed line to each word’s placement,

mapped it to a 20-point scale ([-10,10]), and aligned the words and their scaled

heights with the interview (I) transcript via timestamps, to form a time-series of

emotion word (and synonym) height.

6.3.3 Participant and Researcher Task 3: Calibrated Interview →
Timeline with Calibrated Words

In the first labelling pass, participant and researcher jointly reviewed the gameplay

video. The participant indicated emotionally notable points while the researcher

marked them on a gameplay timeline. Because participants had previously under-

gone a word calibration, they were primed to consider how the offered vocabulary

were distributed across the emotion scale.

From the Task 2 Interview transcript, we found synonyms and root words us-

ing Python’s Natural Language Toolkit [225]. We constructed the Timeline with
Calibrated Words (TwCW) by placing values where a root matched the EWC,

with each value a numerical distance from Relaxed. For example, P09’s comment

“The barking in the distance filled me with anxiety” would map the calibrated point

value of 14-Anxious (synonym of Anxiety) on P09’s calibrated 20-pt scale at the

timestamp in the game where the dogs began barking.

Participant language included µ=37(σ=7) calibrated word instances with an-

notation frequency µ=0.05(σ=0.015) words/min; duration was roughly double

gameplay.
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6.3.4 Participant Task 4: Continuous Annotation (CA)

In the final pass, participants reviewed the PEA video without pause. They used

a custom joystick (holds position rather than returning to center) to continuously

trace a 1-dimensional emotion rating between predefined extremes (inspired by [61,

263, 318]), here employing the previously calibrated axis. The result is a con-

tinuous rating time-series (256Hz) corresponding to the original gameplay, down-

sampled for analysis to 30Hz to match the video framerate.

During annotation, smoothed joystick position is graphically rendered as the

height of a bar on the video screen, for feedback on proximity to a more Relaxed

(blue) or Stressed (pink) emotional moment.

6.3.5 Task Order

Task order was carefully chosen to minimize influence on emotion elicitation while

increasing the likelihood that participants would use a common set of emotion

words to describe their experience. During Step 3, the interview allowed players

to explicitly process their emotions out loud, guided by researchers looking for

notable emotional events – strong emotions, startling or uncomfortable moments,

odd behaviour etc. Leaving the joystick evaluation as the final step lets participants

internalize and contextualize the emotion scale in preparation for the continuous

annotation.

6.4 Exploring Multi-Pass Emotion Self-Reports
Our present analytical goal is to explore the properties of and relationships among

the reports obtained with this protocol, primarily by examining the degree and

nature of their [dis]similarity over a range of metrics, and probing for physical

intuition among them.

6.4.1 Commonality in Interpreting Emotion Words

To assess across-participant similarity of calibration ratings (as a proxy for model

generalizability), Figure 6.3 plots rating variance for each of the calibrated words

in order of decreasing agreement (increasing variance).
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For a quantitative view of cross-participant consistency, we also conducted an

intra-class correlation (ICC) (inter-rater reliability test [160]). For the subset of

emotion labels rated by all participants (Anxious, Cautious, Frustrated and Satis-

fied), we found ICC(2, k=16)=0.99, p ≪ 0.01 (α=0.05, CI=[0.97,1.0]), based on

mean rating over an absolute-agreement, 2-way random-effects model. ICC values

> 0.9 indicate high reliability [160], suggesting these ratings are overall highly

similar across-participant for this set of emotions. Indeed, the four rated by all

participants had an ICC(2, k=16) of 0.99.

However, this agreement varies as set size increases, first decreasing monoton-

ically then dropping sharply at Satisfied - Resigned to ICC(2, k=4)=0.83. This may

be partially due to the relative sparseness of ratings.

Taken together, these results support that there are substantive differences
in how individuals interpret emotion words, highlighting the importance of
personalized models.

6.4.2 Self-Report Modality Consistency via Time Series
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Figure 6.3: Rating variance by calibration word, ordered by number of
participants who provided a rating for that word.
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(a) Boxplots of emotion dynamics of Continuous Annotation (Task
4) data, by Participant (N=16). Position (M=0.5465, SD=0.2221), Angle
(0.0049, 0.7127), Inertia (0.7666, 0.1215), Instability (0.1316, 0.1086)

and Variability (1.2165, 2.4079).

(b) Representative subset of label distributions:
emotions-as-position (average position; purple), emotions-as-angle

(angle; blue), Inertia (magenta), Instability (green), Variability (red).
Note that longer gameplay results in more samples.

Figure 6.4: Comparison of summary statistics and histograms by emotion parameter.
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High similarity between self reports indicates consistency and perhaps inter-

changeability of report modalities; differences might suggest invalidity of one or

both, or that they capture different information. Interpreting within-participant

TwCW and CA as time-series, we use standard time-series analysis methods [187]

(with appropriate condition verification steps) to check for signal similarity – Pear-

son’s correlation – and confirm that both data streams are appropriate responses to

a common stimulus – Granger’s Causality [258]).

Test Preparation: Using raw report data, we first confirmed that both time-series
were stationary with the Augmented Dickey-Fuller (ADF) test (Bonferroni-Holm

correction α = 0.05, pBH < 0.022), and that their statistical properties did not

change over time [92]. Prior to evaluating cross-correlation between the two re-

ports, we verified that each was not auto-correlated to avoid artificially inflated

correlations [66]). With Python’s statsmodels [251], all peaks were at lag=0 for

all participants’ TwCW and CA auto-correlation plots (i.e., both signals present

low correlations at all lagged versions of itself). We conclude that neither signal
is self-similar.

The TwCW and CA self-reports are sampled at different times and resolutions

(0.05Hz and 30Hz respectively). We downsampled the CA series rather than inter-

polate the sparse TwCW, to minimize bias.

Pearson’s Correlation for signal similarity:3 P01, P02, P08, and P14 had mod-

erate correlation coefficients for the two emotion self-reports (CA and TwCW)

at ρ > 0.3 (pBH < 0.05). However, in general there was no significant correla-

tion between the report streams: p-values exceed the threshold after a Bonferroni-

Holm’s adjustment to α = 0.003. We infer that individuals’ self-reports differed
in the metrics we observed.

Granger Causality Test for source plausibility: Although Granger cannot con-

firm direct causality between different variables [270] (i.e., it does not claim TwCW

causes the CA values), we employ the test to evaluate whether time-series for CA

could forecast TwCW and vice versa. We employed a Bonferroni-Holm correction

2For all except P01 (TwCW): pBH = 0.07, ADF test statistic =−2.671
3Pearson’s correlation results at α = 0.05: P01 (ρ = 0.38, pBH = 0.142), P02 (ρ = 0.38, pBH =

0.235), P08 (ρ = 0.43, pBH = 0.235), P14 (ρ = 0.37, pBH = 0.245)
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(αBH=0.05/N, N = number of participants). We found significance for 15 of 16

participants (pBH < 0.048), suggesting that one label stream could be used to fore-

cast the other for all except P02. This implies the data streams are appropriate
as responses to the same stimulus.

6.4.3 Comparing Motion Characteristics of Emotion Dynamics

We next examined how various parameters computed on these time series might

reveal differing insights. In this scope we included: signal Position (the prevalent

standard, and following an “emotion-as-state” metaphor); Angle (drawing on an

alternative metaphor for emotion as directional and changing); and [130]’s three

emotion dynamic parameters of Inertia, Instability and Variability. Our investig-

ation included comparing these time series (original and computed) through sum-

mary statistics and histograms, all by participant.

Data Preparation: We further analyzed each participant’s Continuous Annota-

tion4data by first partitioning the continuous self-report data into 500ms windows

(window count µ=1587.75, σ=462.50 by participant). Where window boundaries

do not coincide with a logged data point, we imputed with the previous data point,

turning our time-series into a higher-resolution but stepped signal.

We computed Position labels from windows by mean value; and Angle labels

as the rate-of-change per minute from a least squares linear fit, in the form of

an angle θ ∈ [−π/2,π/2]. Using R’s psych package [229], we calculated Inertia

(autocorrelation coefficient), Instability (Root Mean Square of Successive Differ-

ences (RMSSD)) and Variability (Standard Deviation (SD)) by window for each

participant [130].

Comparing Summary Statistics and Histograms by Parameter: Figure 6.4a

shows signal statistics for each participant and parameter. The means for all five

measures track closely across participants. However, spread differs: Inertia is rel-

atively tight and symmetric, Variability is broad and highly asymmetric, Instability

in between.
4Tests for equivalence between the two sets of self-report (CA and TwCW) across each of the

three emotion dynamics parameters (two 1-tailed paired samples t-tests [171] per dynamic measure)
were inconclusive (p > 0.5, t(15)≪ 0.001, d ≪ 0.001). Subsequent emotion dynamics explorations
were done on the higher resolution CA data.
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In an alternative view, Figure 6.4b shows the same parameters and signals, but

now as histogram distributions. Data for these four participants are reasonably

representative.

Comparing these two representations of the same underlying data is insightful.

For example, while in Figure 6.4a Position is clearly less stationary than Angle,

6.4b indicates the form that this takes (broader spread, spikiness). And while the

dominating feature of the other three ED’s boxplots is the uniformity of means

across participants, histograms reveal their internal parameters as starkly different:

Inertia is broad and high-valued, the others low-valued with very long tails.

No insight was gained from visual analysis of spectral qualities (from a Fast

Fourier Transform) of all five parameters.

Which is Best? The preceding section’s results demonstrate that the relatively

high resolution of the CA report (30Hz raw, parameters computed at 2Hz) affords

computation of a variety of descriptive parameters. Getting to the root of what

the differences in label representation mean will require approaches assisted by

synchronized physiological data views.

6.5 Discussion
Compared to past studies of dynamic changes in behaviour or mood [130], our

video game task is short and densely reported. With its data we reflect on our ques-

tions and protocol, highlighting implications for high-resolution real-time models.

6.5.1 Multi-Pass and Personalized Emotion Reporting

To estimate emotion evolution by-the-second, we can select a single dimensional

emotion scale and collect self-reports (as in our CA data). How does adding scale

calibration and a review/interview phase enrich this report stream?

Personalized scales clarify what may be generalizable, as well as improving
personal models’ accuracy: Asking participants to project a set of emotions

onto a specified emotion axis grounds the ratings in an individualized experience

between the Stressed-Relaxed extremes. Plotting the ratings across commonly used

words (as in Figure 6.3), we see that words with low rating variation – Satisfied and

Anxious – may be useful as emotion reference frames. In contrast, high variance
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words like Hopeful or Accomplished may be less useful for labelling without addi-

tional interpretation.

Multipass reporting increases label versatility: A continuous annotation of emo-

tion communicates a highly personal experience at a resolution that is otherwise

difficult to solicit. As a continuous quantitative signal, we can model emotion

as a regression for high-resolution forecasting or elect to discretize (or bin val-

ues) for categorical classification. Additionally, we can compose an entirely new

time-series by incorporating our personalized scale into an interview as a lower

resolution signal where continuous annotation is impractical or unnecessary.

Disagreement may indicate synergy, not conflict: Data from our two passes (an-

notation and interview) are not correlated enough to be interchangeable, yet caus-

ality results indicate they are highly related. Perhaps each has its own authenticity

and value, which could be optimized in protocol refinement, then extracted and

integrated. Further work is needed to identify the different perspective that each

brings.

6.5.2 Incorporating Dynamics into Emotion Models

Reading signal characteristics (like autocorrelation, mean successive differences,

variance) as measures of emotion inertia, instability and variability connects them

to lived experience. What can they mean for intuitive predictive models?

Momentary emotion dynamics as characteristic, not label: Inertia, instability,

and variability can help elucidate “slow emotion” in mood disorders [278], but

lose meaning in rapid-response timescales, and thus as emotion labels. Reframed

as informative signal statistics, they yield hints such as emotion variability’s larger

spread suggesting extra sensitivity (Figure. 6.4a) which could inform model devel-

opment, e.g., by identifying archetypal behaviours for improved model selection.

An abundance of metaphors to fit the need: The metaphor of “emotion-as-

position” does not capture “fast” emotion dynamics. For example, Angle, which

captures relative differences in emotional intensity, has a natural physical meaning

of directionality – where I’m going, not where I am. We have seen that Inertia and

Instability respectively lend insight into responsiveness of emotion to stimuli, and

emotive range.
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Context may dictate choice of label metaphor. To identify if someone is Ex-

cited, we may choose a position representation; to catch getting Sadder, angle may

work best. A position metaphor is more versatile; angle can be estimated from a

set of points but the reverse requires additional information.

6.5.3 Protocol Reflections

At high temporal resolution, reporting can be intrusive and tedious. We reflect

on our multipass labelling procedure for tradeoffs and consider possible improve-

ments.

High-resolution labelling does not have to be intrusive. Since emotion report-

ing happens before and after elicitation, this labelling protocol accommodates any

combination of sensing modalities. The emotion experience can unfold naturally,

since labelling is done in review.

High time-resolution may be best for short time-scales. Continuous annota-

tion is great for tracking emotion evolution during a 20-min video game session

but onerous for prolonged review; and this protocol’s overhead is unsuitable for

occasional low-effort check-ins. Multiple passes are ideal for tasks that promote

dynamic emotional experiences over a short time, and where reflection and review-

dependent labelling are valuable: e.g., therapeutic activities, recalling a memory,

playing a game, interacting with an agent. Simultaneous emotion rating may be

possible while watching a video or listening to music: joystick annotation during

the elicitation, so long as the elicitation activity is hands-free.

Ordered tasks cannot be counterbalanced. We carefully selected the order of

tasks to prioritize emotion reflection and recall. The tradeoff for lightening the

mental effort and reducing time investment for multipass labelling means that we

cannot counterbalance order for the Calibration (Step 2), Timeline with Calibrated

Words (Step 3), and Continuous Annotation (Step 4). We are unable to evaluate

generalizability of the labelling passes in other protocol orderings.

6.5.4 Future Directions

This paper is an initial exploration into the labelling procedure for dynamic emo-

tion modelling. We highlight where future directions are highly promising.
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Parameters computed on high-resolution data are different. What does this
mean? To get behind different characteristics in computable descriptive paramet-

ers, one approach is to compare with other high-resolution data streams such as

EEG and facial encoding. We plan to do this by focusing analysis on particular

events (e.g., timeline regions stimuli known to trigger reactions in all – a scary spot

in the game), and see how these parameters look across multiple participants when

calibrated in a variety of ways.

At what time scale does calibration change? We calibrated our scales prior to the

emotion elicitation task. Could engaging in a highly emotionally charged activity

influence the rating scale upon reflection? In future iterations of this protocol, we

envision performing calibration tasks both at the beginning and end of the self-

report labelling allowing us to investigate how calibration may drift within and

between sessions.

How must models of dynamic emotion evolve? Longitudinal studies will reveal

how to create personalized models that evolve with the individual. Mood, life and

situational context influence perception of emotional events [124] but also change

dramatically over time: we wonder how repeat data collection over the course of

months impacts emotion models.

How to capture a range of emotion experiences? We selected a single-dimensional

scale to simplify annotation; real-life events may trigger far more complex emotion

landscapes where emotions are in conflict simultaneously (e.g., feeling excited and

sad about graduation). How can we make it more intuitive to document multiple

simultaneous scales?

Choose or Fuse: Is report divergence an opportunity? Diverse self-reports

may capture perspectives that are authentic in different ways. We have inspected

characteristics of emotion self-report in the time- and frequency- domains.

Based on analysis insights, we might choose one approach, for its sensitivity

or practicality. Or, we might fuse them, e.g., using discrepant moments as a spot-

light on emotional conflict or low-confidence labels. We plan to develop concrete

choose-fuse strategies based on focused attribute study, which also lessen intrusion

on emotion experience.
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6.6 Conclusion
We proposed a multipass data collection protocol to develop emotion models for

real-time responsiveness in emotionally dynamic experiences. The protocol en-

tails four sequential participant tasks: (1) emotion elicitation; (2) personal emotion

calibration; and during video review, a (3) detailed interview and (4) continuous

annotation of the emotion task. Using 16 participants’ data, we determine that this

multi-pass labeling implementation adds versatility to collection options, provides

personalized and triangulated insight into nuanced meanings, and offers new

options for signal selection or integration. We show how emotion dynamics
measures and metaphors can add value, in particular emotions-as-positions or

-as-angles; and propose promising next steps.

Ethical Impact Statement
We have proposed a novel multipass protocol for capturing and modeling high-

resolution emotion experience at real-time scales. It is a personalization technique

intended to benefit end-users: an automatable model evolution based on user in-

put. While there is always potential for mal-use, this is mitigated by fundamental

grounding in the individual rather than a generalized understanding of many. The

investing user is the only beneficiary of model improvement; their data is of low

value to others and less likely to invite exploitation.
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Chapter 7

Dynamic Emotion Modelling on
Incidental Emotion via
Videogame Play Controls

Summary
In-body lived emotional experiences can be complex, with time-varying and dis-

sonant emotions evolving simultaneously; devices responding in real-time to es-

timate personal human emotion should evolve accordingly. Models assuming gen-

eralized emotions exist as discrete states fail to operationalize valuable information

inherent in the dynamic and individualistic nature of human emotions. Our multi-

resolution emotion self-reporting procedure allows the construction of emotion la-

bels along the Stressed-Relaxed scale, differentiating not only what the emotions

are, but how they are transitioning – e.g., “hopeful but getting stressed” vs. “hope-

ful and starting to relax”. We trained participant-dependent hierarchical models of

contextualized individual experience to compare emotion classification by modal-

ity (brain activity and keypress force from a physical keyboard), then benchmarked

classification performance at F1-scores=[0.44, 0.82] (chance F1 = 0.22, σ = 0.01)

and examined high-performing features. Notably, when classifying emotion evol-

ution in the context of an experience that realistically varies in stress, pressure-

based features from keypress force proved to be the more informative modality,

and more convenient when considering intrusiveness and ease of collection and
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processing. Finally, we present our FEEL (Force, EEG and Emotion-Labelled)

dataset, a collection of brain activity and keypress force data, labelled with self-

reported emotion collected during tense videogame play (N=16) and open-sourced

for community exploration.

7.1 Introduction
If emotionally reactive machines could interpret the transitional nature or direction

of their inherently emotional human users, responses could be designed to be con-

textually appropriate. Due to variations in human emotion expression and personal

preferences of a desired response, such machines will likely need to be customized

and tuned to the individual. In particular, a system must be able to recognize user-

specific emotion transition through some identifiable parameter, such as intensity

or polarity. For instance, when a custom emotion-aware game system estimates a

user’s “anxiety” levels as low, it could ramp intensity up to a personal “frustration”

threshold, to avoid game burnout.

Natural (unmediated) interpersonal emotion communication relies on many

nonverbal cues: we interpret emotion expressions from others through eye con-

tact, vocal inflections, body language and touch behaviour [7]. Using machines to

recognize social touch unlocks the significant emotional content encoded in phys-

ical contact [114, 273, 321].

To model spontaneously evolving emotion in the vicinity of a participant-defined

Stressed-Relaxed scale, we collected participant biosignal data while they played

Playdead’s Inside [222], an emotionally evocative videogame. We followed the

multipass data labelling protocol described in [46], recording brain activity using

electroencephalography (EEG) and keypress force via a Force Sensitive Resistor

(FSR)-embedded keyboard. Both have been shown to encode emotion [3, 112, 188]

and are reasonable to collect during videogame play. While we considered other

well-studied emotion-encoding biosignals (namely electrodermal activity, pulse

oximetry, and electrocardiography), sensors that were worn on fingers or otherwise

generated electrical interference with the sensitive EEG system proved unsuitable

for this study.

In this paper, we present our FEEL dataset (collected under a separately peer-
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Figure 7.1: An emotion experience trajectory estimated by emotion
transition. We built models on two modalities: brain activity (EEG)

and keypress force (FSR), distinguishing intensifying(+), stable(0), or
resolving(-) stress, at 0.5s and 5s windows.

reviewed protocol [46]) and use it to ask: How well can we classify emotion
transitions or directions using keypress force vs. brain activity collected dur-
ing an emotionally evocative video gameplay? Specifically, we demonstrate

a personalized-to-participant emotion interpretation paradigm, then assess model

performance, efficacy and practicality of classifying emotions as they are in flux,

by comparing two distinct implicit and highly personalized expressive modalities

which play out at different timescales (brain activity and keypress force). To fur-

ther inform model design, particularly with respect to modality-specific frequency

characteristics, we provide an evidence-based reference scale for window size se-
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lection. We contribute:

1. The FEEL dataset, collected using a multipass labelling protocol featuring

co-designed scales for annotating emotion self-report on keypress force and

brain activity data.

2. An empirical demonstration of personalized emotion transition classifica-

tion that distinguishes between emotion transition labels across a Stressed-

Relaxed scale (e.g., cautious +, 0, or - as “feeling cautious and getting more

stressed” vs. “cautious and stable” vs. “cautious but relaxing” respectively).

3. Evidence that hierarchical classification of emotion evolution along a Stressed-

Relaxed dimension using touch pressure features performs nearly twice as

well as continuous brain activity.

7.2 Background
Machine interpretation of spontaneous emotion requires models built on ecologic-

ally valid emotion data. From choice of expressive modality to data labelling, we

ground our data collection and modelling choices in existing literature.

Affect-Encoding Modalities: Although the biological mechanisms through which

emotion modulates touch are still unclear [116], touch is a concrete, perceivable

and expressive act [156] and a promising modality for both inferring and influ-

encing emotion experiences [178]. Relative to other channels commonly used in

emotion research – EEG, brain imaging, heart-rate, facial configurations, body pos-

ture, speech [271, 295] – touch can be easier to harness, less intrusive to collect,

and gives the participant more immediate agency in terms of behaviour compared

to biological signals.

Affective touch classification has largely been based on observation and eval-

uation of toucher behaviour when they are prompted to reflect on a past exper-

ience [42], or to act in an emotional context [321]. While interpersonal touch

pressure has been shown to communicate currently felt affect [42, 114], investigat-

ing keypress force or pressure for evidence of emotion “leakage” in the absence of

communicative intent is relatively new [112]. Using pressure-sensitive keyboards,
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emotion has been classified using typing pressure with up to 93% correspondence

to self report (chance 17%) [188], with [112] finding a positive correlation between

stress and typing force. In a mobile gameplay environment, touch pressure on an

iPhone touchscreen has also been used to classify user arousal and valence at above

chance levels [95]. Now, we explore how keypress force may communicate emo-

tional transitions between Stressed and Relaxed on pressure-sensitive keys during

video gameplay.

Changes in electrical potential in brain activity or electroencephalography (EEG)

[168] for emotion classification is dominated by Event-Related Potentials (ERPs).

However, as ERP time windows are typically constructed within 100-750ms after

an event [70, 235], the ERP fails to capture emotion evolution, where change oc-

curs over the course of minutes and hours [304]. Recently, 2D differential entropy-

based features capturing spatial relationships and Convolutional Neural Networks

(CNNs) can classify 1s data instances over emotional experiences (positive, negat-

ive, neutral) lasting 4 minutes at an accuracy of 97.10% (chance 33%) [1].

Here, we build on machine classification of emotion transition using multiscale

self-reports on brain activity and keypress force during video gameplay – a dy-

namic emotion experience.

Emotion Self-Report: Time-varying emotion expression can be attributed to com-

plex neurological and physiological regulation mechanisms [100], appraisal effects

[198], cognition and contextual factors [194, 211]. To simplify in-lab research,

computational emotion modelling often relies on emotions being represented as a

point in an emotion plane along easy-to-read scales with dimensions of arousal,

valence, and/or dominance [38, 42]. While these models are convenient, in real

use we need to address emotion evolution over time. However, commonly used

labels on the arousal-valence circumplex model [237], PANAS [309], or SAM [30]

(among others) quickly become intractable for sampling at the rate of change for

emotion (ranging from a few seconds to several hours [302]).

Emotion self-report with any measurement scheme raises generalizability con-

cerns. Our understandings of the instrument scale are highly subjective [38, 148]

and influenced by life experiences and personal history [20]. Any set of ground-

truth labels for self-reported emotion are likely similarly personalized: e.g., one
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person’s anger scale may be unrecognizable by another, or even by themselves at

another time. In an evolving emotion experience, recognizing a particular user’s

near-future emotional expression can improve the temporal and situational appro-

priateness of a machine response.

Emotion Modelling with Multiple Reporting Passes: With time and reflection,

emotional assessment of an experience may be dramatically different from ini-

tial evocation [198, 211]. Emotions may be most intense while directly in an

experience [266, 304], but articulation can only occur after some time to assess

and consider the appropriate language [298]. [76] suggests the ideal window of

time for emotion-naming may be shortly after an experience, to give time for pro-

cessing [266] but before memory degrades [232].

Computational emotion models often rely on a single pass of emotion that is

self-reported [234, 271, 295] or observed and labelled by judges. To our know-

ledge, our study is the first to triangulate multiple self-report methods for more

reliable observation of emotion evolution.

We demonstrate the use of our FEEL dataset for exploring classification models

of incidental touch pressure as a modality that captures implicit emotion expres-

sion, comparing performance to models of the more intrusive, but more studied,

brain activity signals.

7.3 Dataset Description
The FEEL collection protocol [46] was a significant investment requiring ∼400 re-

searcher hours: each 2-hour session required a team of 4 researchers, with 2 hrs of

setup, calibration and breakdown time, plus earlier piloting. As a quality assurance

measure, we reviewed protocol adherence during data collection and signal quality

for all 23 participants. Given our plans to publish this dataset, we used a very high

standard for data quality and consistency, setting aside a participant’s entire record

where at any point during the session there was any suspicion of excessive noise in

EEG data, equipment malfunction, synchronization mishap or possible recording

errors. This left us with 16 publishable records (7 omitted due to any combination

of the above set of minor issues).

The FEEL dataset consists of comma separated value (.csv) files organized by
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participant. Video data is excluded for participant privacy. Analyses start with this

5.4GB dataset, available at https://www.cs.ubc.ca/labs/spin/FEEL dataset [to be

posted upon acceptance].

Data Capture and Preparation: As part of recruitment, participants completed

a questionnaire adapted from the Trait Meta Mood Scale (TMMS) [244]. Based

on these results, we invited only those scoring with high emotion clarity and low

emotion suppression based on their responses.

Of the N=16 participants, 8 are female and 8 male; 8 between 19-24 and the

other 8 between 25-34 years of age. All played videogames regularly from a few

hours a month up to 4 hours daily, nearly all of whom report 1-6+ hours per week;

none had played Inside. All were compensated $30 for the 2-hr data collection

session.

Data collection was conducted in four steps [46]:

1. Initial Gameplay generated streams of participant brain activity (EEG) and

keypress force from an FSR-embedded keyboard timestamped from the first

keystroke, indicating the start of gameplay.

2. In Word Scale Calibration, participants placed pre-selected emotion words

relative to one another on a Stressed-Relaxed emotion scale.

3. In the first self-report cycle (Calibrated Interview), participants then reviewed

and annotated the gameplay video with their calibrated word sets.

4. Finally, in the second self-report cycle (Continuous Annotation) they used a

1D joystick (position sampled at 256Hz) to annotate the video.

We timestamped data streams with corresponding frames from the Initial Game-

play video, where participant gameplay averaged 13:24 minutes (min 8:25, max

21:37, SD 3:53).

Brain Activity Data Stream (EEG): Participants were instructed to minimize

conscious movement; researchers noted sessions with excessive motion to check

for unusable EEG data (deciding to omit it if so).

We captured brain activity data using EGI’s EEG 400 system1, sampled at

1kHz, with a band pass filter of 1-50Hz applied in post-processing. We followed
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standard practice in removing high frequency jitter and 60Hz mains noise [326]

while retaining ααα , βββ , θθθ , and γγγ frequency bands (associated with emotion pro-

cessing [2]). We did not downsample because (a) we were able to efficiently cap-

ture important dynamics using spectral-domain features and (b) we are still explor-

ing which frequency components are important.

We checked classification performance over a number of data cleaning proced-

ures using MNE-Python tools2, including artifact removal and baseline correction

by the entire gameplay duration, and by adjacent windows. We also tried apply-

ing Independent Component Analysis (ICA) to address eye blinks and removing

channel segments with exceptionally high noise levels. These procedures yiel-

ded no notable classification improvement or a marginal performance decline over

30 training and testing iterations. So, we report results and publish the dataset

with minimal pre-processing3, largely leaving EEG data “alone” as recommended

by [69]. We used this data version in the classification models reported in this

paper.

Keypress Force Data Stream (KFP): We embedded force-sensitive resistors (FSRs)

on game-specific control keys (four direction keys and ALT) on a standard key-

board. Force ranged from 0 (no contact) to 1023 units (∼1kg)4. We downsampled

FSR data from 52Hz to match videogame framerate at 30Hz.

Timeline with Calibrated Words (TwCW): The Timeline was created from col-

lection sequence Steps 2 and 3.

Word Calibration: Following gameplay, players calibrated a Stressed-Relaxed emo-

tion scale, contextualizing scale-points with memories of their recent gameplay

experience and marking 13 pre-selected emotionally “Calibrated Words”: Cau-

tious, Satisfied, Hopeful, Frustrated, Anxious, Nervous, Threatened, Resigned,

Alert, Accomplished, Fearful, Dread, and Curious. Participants were also allowed

1EGI EEG system details: https://www.egi.com/research-division/eeg-systems/
geodesic-eeg-systems. Model 400 features a 64-channel Routine Hydrocel geodesic sensor
net, proprietary NetStation data collection and visualization software.

2MNE tutorials available at https://mne.tools/stable/index.html
3Included processing ensures labelling format consistency and time alignment across data

streams. The FEEL dataset is published unfiltered with no artifact, segment, nor baseline correc-
tion. Any processing prior to classification is described in Section 7.4 - Methods.

4As defined by the FSR specifications available commercially at https://www.robotshop.com/en/
force-sensing-resistor-fsr.html.
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to write-in up to two additional words. This individualized calibration step con-

textualizes how each person perceives and uses these words with respect to the

Stressed/Relaxed dimension, improving participant-researcher grounding on lan-

guage usage [38, 46].

TwCW Construction: Players reviewed their gameplay video, annotating (calib-

rated) emotion words at timepoints associated with strong emotion (µ=0.05Hz,

σ=0.015Hz). To construct the TwCW, we associated each interview annotation

with the calibration value for that word, at the annotated gameplay timestamp.

Continuous Annotation Stream (CA): In the second gameplay review, the CA

is generated from a non-biased joystick (holds last position rather than returning

to centre) tracing an emotion time series, where the resulting curve is a proxy

for a participant’s true emotion trajectory between Relaxed and Stressed over the

timeline of the gameplay experience. Joystick position readings were matched with

video frame rate of 30Hz to ensure alignment with video playback. We smoothed

analog jitter in the joystick data with a simple moving average filter, then normal-

ized range to [0:1].

Figure 7.1 highlights the data collected during the study: player-specific game-

play streams (EEG and FSR), emotion word calibrations, and the TwCW and CA

– two time-series of emotion self-report annotated on the same dimensional plane

of the Stressed-Relaxed scale over the gameplay timeline.

7.4 Methods
To demonstrate personalized emotion transition classification using our FEEL data-

set, we created participant-specific hierarchical multi-label models to leverage sev-

eral benefits, in the context of multi-label classification tasks featuring multiple

label streams – here, emotion words and quantitative stress measures. By incorpor-

ating a hierarchical structure into the model, we capture the complex and dependent

relationships that may exist between labels, thereby improving classification accur-

acy [272, 297]. This approach is also more flexible in handling different types of

label streams, and comprehensive in its view of the individual’s emotional state in

both brain activity and keypress force.
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Figure 7.2: Our hierarchical machine learning framework employs a two-tiered
classification strategy. Initially, a local multi-class classifier is deployed at the
parent node level to identify the primary category, termed as the ”Calibrated

Word.” Subsequently, for each emotion word identified in the first step,
dedicated models are trained. These models are designed to predict one of

three potential outcomes related to the ”Stressed” category. This architecture
allows for a nuanced understanding of the data by first broadly categorizing
the input and then applying specialized models for a detailed analysis within

each category.

7.4.1 Data Instances: Labels and Window Lengths

We aligned FSR, EEG, and emotion self-report time series, dividing streams into

non-overlapping, equal-duration windows. We analyzed window lengths of 0.5, 1,

2 and 5s, spanning ERP window range [70, 235] up to perceived emotion duration

of “a few seconds” [303, 304]; 1s and 2s windows match other emotion-related

classification studies [42, 182, 308]. Results from intermediate lengths followed

the trend set by the extreme values, so we report only 0.5 and 5s for brevity.

A single data instance consists of features and labelled emotion class calculated

from data within one window. Across all participant sessions, we collected an aver-

age (over all participants) of 1435.13 data instances for 0.5s windows (σ=405.51)

and 142.63 instances for 5s windows (σ=40.75).

To implement hierarchical multi-label outputs, we used the Python package Hi-

Class [196] with algorithms implemented in scikit-learn [219], XGBoost [52], and

the Pytorch framework [218]. In a 2-stage approach, we first trained participant-

specific multi-class models that output the emotion words from the TwCW, then

trained a classifier from the CA by each Calibrated Word, outputting binned direc-
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tion values (slope of best-fit-line as in [46]). The same algorithm was used for both

stages by modality: classical ML for FSR and CNNs for EEG.

The resulting label set across 16 participants consisted of approximately 11

(µ = 10.94, σ = 1.91) distinct calibrated emotion word labels, out of a possible 15

calibrated emotion words (13 provided and 2 write-ins per participant, Table 7.1).

For each word, there are three possibilities regarding transition direction; e.g.,

Nervous could be nervous+, nervous0, and nervous-, representing being nervous

but with intensification along the Stressed scale, stable stress, and resolving stress

respectively. When looking at transition directions for each word used by each par-

ticipant, we found that all three possibilities appear for most words, except in cases

where an emotion word is mentioned only once or twice (such that it could not

be associated with three distinct directions). Observed distributions were [µ,σ ]:

[2.76,0.53]5s and [2.96,0.22]0.5s).

Figure 7.2 exemplifies the hierarchical process with two streams of self-reported

emotion. Where window boundaries do not coincide with a logged data point,

we imputed with the previous data point, turning our time-series into a higher-

resolution stepped signal. We resolved windows containing multiple labels by us-

ing mode for the Calibrated Words and the slope of the best fit line in the continuous

annotation.

Table 7.1: Full list of Calibrated Words used by at least one Participant in their
TwCW.

Calibrated Word Number of
Participants

Calibrated Word Number of
Participants

Anxious 15 Confused* 11
Frustrated 15 Curious 11
Dread 14 Resigned 10
Indifferent* 14 Threatened 8
Satisfied 14 Annoyance* 5
Hopeful 13 Resolve* 4
Accomplished 12 Excited* 3
Alert 12 Clueless* 1
Cautious 12 Triumph* 1

Participants used 11 of the 13 provided words (none spoke of feeling Fearful nor
Nervous during the interview stage so both are omitted). Starred * words are

participant-generated write-ins.
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7.4.2 Force Sensitive Resistor (FSR) Data:

FEEL’s keypress force (FSR) data exhibited an average of <1 distinct keystrokes

per window, contraindicating deep learning models. We extracted features from

keystroke activity, frequency, and statistical analysis, generated data instances aligned

with brain activity (0.5s and 5s), and performed model selection with classical ma-

chine learning models.

Data Preparation: To mitigate FSR signal noise while maintaining the overall

shape of a keystroke, we applied an Exponentially Weighted Moving Average

(EWMA) [134] with smoothing factor α = 0.5. We aggregated game keypress

activity from the original game-control keys (denoted A0-A4 in the dataset) into

two additional channels as ‘composite keys’, computing over all keys the force

sum (A5) and maximum (A6), resulting in a total of 7 keypress channels.

Frequency and statistical features: Based on previous studies of emotion expres-

sion of social touch pressure [42], we calculated a set of descriptive statistics for

each window of pressure data – minimum, maximum, variance, mean, area under

the curve, and sum of absolute differences. From the same windows, we calculated

the most prominent frequency (amplitude and frequency bin), amplitude variance,

amplitude mean, and peak count for frequency-domain features [42].
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Figure 7.3: Pipeline for model selection and evaluation. We performed grid search
CV (k = 5) on the training set to tune hyperparameters and select best-fit

models for FSR data. The models were then evaluated on an unseen test set to
calculate performance metrics. We repeated this process 30 times per

participant, and report mean test scores across the 30 runs and 16 participants.

Keystroke features: Since participants activated keys based on gameplay rather

than typing, certain features of keystroke dynamics – such as travel time between
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keys – are less relevant here. We therefore calculated touch features highlighting

fluctuations in force and duration in both time and frequency domains [42, 151].

We also borrowed parameters related to the Attack Decay Sustain Release (ADSR)

envelope [140], commonly employed in synthesizers to describe piano keyboard

output. For each keystroke in a window, we calculated: keystroke duration (in ms),

peak count, amplitude of maximum peak, time from keystroke start to maximum

peak, time from maximum peak to key release, force variance, average force, and

area under the keypress curve. Parameters are aggregated by taking the mean over

each data window.

For the purposes of multi-modal window alignment and the simulation of real-

time application of emotion classification on keypress force, we used uniform data

windowing. However, we note that distortion may occur where keystrokes cross

window boundaries.

7.4.3 EEG Data

We calculated Differential Entropy (DE) for the 5 frequency bands demonstrating

activity during emotion expression [1, 75]: δδδ (1-4Hz), θθθ (4-7Hz), ααα (8-12Hz), βββ

(12-30Hz) and γγγ (30-50Hz). For each band, we calculated the difference between

channel pairs to create a 2D Asymmetrical Map (AsMap) feature [1]. The resulting

feature is an image with size 64×64 and a depth of 5 frequency bands.

7.4.4 Classification Model Implementation

To compare EEG- vs. FSR-based models classifying emotion transition, we ran 30

iterations of 5-fold cross-validation (training and validation sets randomized every

iteration). Figure 7.3 summarizes the overall experimental pipeline.

FSR: We performed grid search cross-validation (CV) (k = 5) to select the best-fit

model by participant among seven machine learning models. Due to the sparse-

ness of the FSR data (low sampling rate with some keys pressed in only a few brief

instances), we elect to compare performance across Extra Trees, Random Forest,

AdaBoost, Gradient Boosting, XGBoost, Logistic Regression, and SVM [52, 150,

219], options that are more amenable to the size and scale of this data than deep

learning models. Given the high dimensionality of our feature set (d = 82 features
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per participant), we selected features by employing a zero variance threshold to re-

move all constant-valued features and use recursive feature elimination (RFECV) [106]

with CV (k = 5). We report mean test scores over the 16 participants after 30 runs

using the best-fit model for each, with a 70/30 training-test split ratio.

Figure 7.4: Structure of the EEG CNN model for classification where each
convolution layer uses a 3×3 kernel (of depth 32 and 16 respectively)

followed by a ReLU activation function. The inputs to the model are the
5×64×64 AsMap features [1], while the output is the class output (N = 3).

EEG: We used a CNN model with a 2D feature set to take advantage of the auto-

mated learning demonstrated by deep-learning models. In the interests of balancing

model complexity with overfit risk [51], we implemented the structure proposed by

Ahmed et al(2022) [1] – a 2-layer CNN using 3x3 kernels and 2 Max Pooling lay-

ers – for affect classification, adjusting the input size to 5×64×64 to account for

the size of our features. We created train and test sets with the same 70/30 split

ratio as with the FSR data. Figure 7.4 summarizes the CNN architecture.

We performed grid search CV (k = 5) on the train set to tune the number of

epochs (5, 10, 20), the batch size (128, 256, 512) and the learning rate (10−3, 10−4,

10−5) to select the best participant-specific hyperparameters for our model. Larger

epoch sizes (≥ 100) were omitted from the search space since similar training per-

formances were observed, while being resource intensive. Once we obtained the

parameters that maximized the macro-hierarchical F1-scores (as defined by Mir-

anda et al. [196]), we trained the participant-specific model 30 times on the full

training set, each time using the unseen test set to calculate performance metrics.

We report mean test scores from 30 runs.
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7.5 Classification Performance by Modality
We analyzed macro hierarchical F1-scores [196] by model and window size (Table 7.2)

finding that classification performance monotonically increases with window size.

For brevity, we report in depth on 0.5s and 5s windows. With two modalities

and two window sizes, our data does not pass Levene’s test for equality of vari-

ances (F(3,1916)=51.0, p < 0.001), so we report results using a two-way aligned

rank transform analysis of variance (ART ANOVA), implemented with R’s AR-

Tool [316]. All reported effects are statistically significant at p ≤ 0.001. The

main effects of affective modality (M) and window size (W), and interaction effect

(W/M) yield F ratios of FM(1, 1916) = 5283.98 (η2
p = 0.733), FW (1, 1916) = 56.88

(η2
p = 0.028), and FW/M(1, 1916) = 285.26 (η2

p = 0.130).

Table 7.2: Hierarchical classification scores for each (W)indow / (M)odality where
the best combination is 5s-FSR. All W/M models exceed chance by ∼2-4x.

W/M F1-Score Precision Recall
5s EEG 0.415 ± 0.110 0.415 ± 0.109 0.422 ± 0.123
0.5s EEG 0.494 ± 0.070 0.544 ± 0.118 0.469 ± 0.090
0.5s FSR 0.686 ± 0.039 0.681 ± 0.036 0.682 ± 0.037
5s FSR 0.823 ± 0.012 0.827 ± 0.013 0.825 ± 0.013
0.5s chance 0.215 ± 0.010 0.215 ± 0.010 0.215 ± 0.010
5s chance 0.216 ± 0.009 0.216 ± 0.009 0.216 ± 0.009

Scores are calculated over 480 hierarchical metrics (16 participants × 30 runs,
average macro hierarchical F1 taken over all classes).

We ran post-hoc tests using a Holm correction to further investigate the indi-

vidual mean differences in Table 7.2 (significance at pHolm ≤ 0.001 unless indic-

ated). Results show that (1) mean F1-score was significantly greater for FSR-based

models than EEG-based models; (2) mean F1-score increased with window size,

with 5s windows performing strongest across modalities; and (3) FSR at 5s win-

dows performed best overall. Additionally, we found that the chosen CNN para-

meters for batch size and epochs tend to differ by participant, while the learning

rate remained stable. For 0.5s, the optimal parameters by participant were seen

for batch sizes of µ=160.0, σ=96.0 and training epochs of µ=13.8, σ=6.5; for 5s,

µ=248.0, σ=139.0 batch size and µ=11.6, σ=6.1 epochs. In all cases, loss curves

stabilize by 15 epochs, suggesting diminishing returns in classification perform-
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ance with additional training epochs.

7.6 FSR Feature Analysis
For insight on how features inform classification, we ran RFECV on the feature

set of both FSR models (0.5s and 5s windows), and grouped selected features by

type – pressure-based (direct measures of keypress force), time-based (measures of

duration), and frequency-based (FFT-based features). We analyzed model perform-

ance using F1-score for feature group. Figure 7.5 summarizes the top performing

feature groups.

Our data for both models (0.5s and 5s) again does not pass Levene’s test for

equality of variances (F0.5s(2,39356)=831.74, p0.5s < 0.001; F5s(2,39356)=906.32,

p5s < 0.001) with three feature groups, so we report F1-scores after two one-way

ART ANOVA for each window size. Main effects of both tests are statistically

significant at p ≤ 0.001 significance, yielding F ratios of F0.5s(2, 39356) = 1049.3

(η2
p = 0.051) and F5s(2, 39356) = 761.97 (η2

p = 0.037), respectively.

To investigate individual mean differences, we ran post-hoc tests using a Holm

correction significance at pHolm < 0.001 unless otherwise indicated. The mean F1-

score was significantly greater for models that rely on pressure-based features,
for both window sizes, followed by time-based features.

Window 
0.5s 5s

Keystroke pressure on RIGHT key (auc, max peak, mean, variance) 52.17% 67.43%
Pressure stats on A6 (auc, max, mean, min, sum squared diffs, var) 51.80% 65.15%
Pressure stats on A5 (auc, max, mean, min, sum squared diffs, var) 51.32% 63.72%
Keystroke duration on RIGHT key (attack, duration, peak count, release) 50.89% 61.85%

40.00% 70.00%
Avg. F1-Score

Figure 7.5: Relative feature performance by window size. Darker cells indicate
frequent selection of better-performing features. The RIGHT directional key

is used to advance the character – and game storyline – through the
side-scrolling game. A5 corresponds to the sum of the pressure across all

keys, while A6 corresponds to the max force over all keys.

170



7.7 Discussion and Future Work
Here, we reflect on our research question, and how our findings can inform the

use of touch pressure data in modelling dynamic emotions and contribute to the

development of emotionally responsive devices.

7.7.1 Real-Time Predictors of Dynamic Emotion

Longer Time Windows Favour Keypress Force: For personalized classification

models of evolving Stress built on participants screened for high emotion clarity,

FSR models perform better than those built on continuous EEG for both window

sizes we analyzed. Individualistic emotion evolution inherent in real life events,

particularly when reflecting or reacting to memory retrieval, may require more than

0.5s [279, 302]. We posit that longer windows will better capture lower-frequency

information and thus benefit manual keyboard interactions for models of keypress

force, but may blur the picture of higher-frequency brain activity features [308,

326].

Manual touch pressure encodes valuable emotion content: Our feature extrac-

tion techniques were informed by analyses of a variety of affective touch interac-

tions: keystroke dynamics in typing behaviour [188], pressure and location fea-

tures from social touch [42], and ADSR features from sounds produced from a

music keyboard [140]. Feature evaluation reveals that of the 20 most important

features from all three domains, 16 are pressure- or force-related. Increases in typ-

ing force were previously known to correlate with higher stress experiences [112],

and machine-mediated social touch [151] has been differentiated by variations in

pressure. Now, we have evidence that Stressed-scale emotion expression can also

be captured implicitly through keypress force using an easily modified videogame

keyboard. We continue to investigate other contexts and emotion scales where we

subconsciously express emotion via touch pressure, leaving dimensional examin-

ation of dynamic emotion evolution and touch pattern correlates to future work.

In the meantime, we posit that the information available by tracking pressure in

devices where interactions feature manual affective touch outweigh the cost of

adding this functionality.
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The case for emotion transitions – timing matters: When modelling human

emotions, we may consider how the emotion space changes over time: when we

feel sad, it may be easier to get angry than calm, despite these emotions being

separated by comparable Euclidean distances on the Affect Grid [237]. An emotion

experience can feel more like a trajectory over a constantly changing landscape

than a point [38]. After studying the evolution of stress, we infer that predicting

direction of an emotion trajectory may be particularly important when delivering

interventions for emotion regulation. For example, strategies may differ for the

onset of anger vs. after rage has cooled [266].

7.7.2 Building Effective Models for Dynamic Emotion Prediction

Potential confounds: First, we point out that there are a number of potentially

confounding factors, including (but not limited to): participant interest in, and pro-

clivity for, this video game genre; fluctuations in skin conductivity; extraneous

motion; model complexity vs. availability of training examples per class; as well

as, cognition in action planning; personal experiences of Stress-Relative emotions;

individual differences in the ability to express, appraise, and resolve emotions. We

minimized these limitations through participant screening, personalized word cal-

ibration, multipass data labelling for richer experience capture, and individualized

emotion classification models. However, they may still have influenced the repor-

ted classification performance.

Modality capture: The collection of this dataset was time-intensive and effort-

ful, in large part due to setup and calibration of the EEG data collection system.

Given EEG signal sensitivity to surrounding conditions as well as collection effort

and intrusiveness, the comparable-to-better classification performance of FSR sig-

nals for emotions adjacent to the Stressed-Relaxed scale means that under certain

conditions – e.g., slower evolution as for Stress, emotion reflection tasks requir-

ing appraisal or memory retrieval [279], low compute and/or time resources, or

prioritization of personalized over general models – we are hereby able to recom-

mend reliance on, or the addition of, keypress force or other manual touch data for

emotion interaction.

Labelling effort: Collecting multipass emotion self-reports affords rich triangula-
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tion of a numerical emotion rating onto personalized emotion scales. But it also

incurs a time cost: altogether, personalized calibration, emotion elicitation, inter-

view, and continuous annotation take 3 to 4 times as long as the emotion elicitation

task alone. Where tasks run long, multipass reviewing procedures require careful

consideration to ensure annotation can occur contemporaneously without interfer-

ing with the natural evolution of the emotional experience.

Emotion elicitation and affect scale: Calibrating how users placed emotion words

on a Relaxed-Stressed scale allowed us to simultaneously pool data and personalize

models. While participants had personalized understandings of the measurement

scale, they all engaged in the same emotion elicitation experience (a horror video

game).

For personalized models to work “in the wild”, they must be built on participant-

defined emotion experiences that evolve longitudinally and spontaneously. Human

emotional experience is ever-evolving; so also must be the calibrated scales, train-

ing data, and accompanying models across multiple named emotions and touch

interaction patterns. Future work examines how longitudinal calibration can trace

evolution of emotion models over multiple data collection sessions.

Context Matters in Personalized Emotion Models: A deployed model could

face a wide range of priorities. Naturalness of a responsive agent may value min-

imal latency over accuracy. In other situations, some scenarios may be more

important to capture accurately (‘something’s wrong’) than others (‘everything’s

fine’). Machine learning accuracy metrics are useful for comparing performance,

but for contextually effective machine responses, new metrics may be necessary to

reflect the nuances of the overall experience.

7.8 Conclusion
We present the FEEL dataset, the first of its kind: affective multimodal data (brain

activity and keypress force estimated by EEG and FSR) collected during an emo-

tional videogame experience and labelled using a multipass emotion self-report

described by [46] – resulting in multi-timescale, and personally calibrated emo-

tion labels rooted on the Stressed-Relaxed scale. This paper describes the dataset

and the specifics of its collection, and demonstrates participant-dependent machine
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learning classification performance differentiating emotions in transition – e.g.,

whether one’s stress is growing or resolving, benchmarked here at F1 = 0.82 at

the best case (chance F1 = 0.22, σ = 0.01). We invite the community to explore

other computational strategies and advance the exploration into dynamic emotion

classification.

Comparing classification performance over factors of window size, feature set,

and modality, we find that, overall:

1. Window sizes influence recognition behaviour for both brain activity and

touch pressure, the choice of which depends on intended observation (longer

windows are better able to capture slower changes but shorter windows can

capture high frequency activity)

2. Feature evaluation of the FSR feature set reveals that pressure features used

in machine-mediated social touch rank highest in terms of selection fre-

quency.

From these findings, we propose that emotion interaction systems should (1)

consider window size in labelling; and (2) improve emotion recognition opportun-

ities by incorporating pressure sensors where manual human touch is enacted.
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Chapter 8

Collecting and Labelling Training
Data for Dynamic Emotion
Classification: A
Proof-of-Concept

Summary

Our emotional expressions and experiences are highly contextualized to per-

sonal histories and may not be easily generalizable across populations. To open

up new possibilities for enhancing emotional experiences through haptic feedback,

and foreshadowing the development of personalized and immersive technologies

that capture and respond in time with user emotion, we present a proof of concept

for system training. Intended for personalized models of authentic emotion, this

approach features true emotion expression evolving from expressive, naturalistic

touch elicited through user storytelling. While participants recalled a personal story

that evokes strong emotions, such as describing memories around the best period

in their life, we collected touch data using a 10 inch x 10 inch touch sensor em-

bedded on a soft cushion, along with heart rate and Galvanic Skin Response (GSR)

measurements. Through multiple sessions with Nparticipants = 5 providing between
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1 to 3 sessions each, we gathered Nsessions = 10.

From participant-reported continuous annotation on their emotion evolution

curve (drawn with a non-biased joystick that stays in place when moved), we define

“emotion direction” labels as calculated by the angle of inclination of the slope of

the curve. Intended for customized device applications, we demonstrate classific-

ation accuracies of emotion direction at 58% (SD 18%), exceeding chance at 25%

using our procedure for participant-dependent models. Results show that negative-

valenced prompts generated emotional stories nearly 2x longer than positive-valenced

prompts, joystick-labelling of emotion evolution may have multiple interpretations

or strategies, and that stories about unresolved emotions around an event evoke the

most authentic and intense emotions, no matter how long ago the original event

occurred.

8.1 Introduction
For emotionally responsive devices to track and recognize our complex and rapidly

evolving emotion experiences, they must be trained with data from representative

dynamic human emotion expression. However, collecting such training data that

is both labelled at the timescale of emotion evolution and also reflects authentic

and spontaneous naturalistic expression is widely acknowledged as a challenge for

‘in-the-wild’ emotion recognition [73, 174] for all technical sensing modalities.

when allowed natural expression, emotions generally arise without our cog-

nitive assessment or naming of that emotion – suggesting that the labelling or

reflection process could interfere with or alter naturalistic emotion onset [211].

Therefore, reflection and labelling can only be done after expression but not so

long after that we lose the fine resolution and clarity of the memory. One ap-

proach to balancing the needs for unencumbered experience with good memory

access is to first fully record the emotive experience with cognitively unintrusive

mechanisms (e.g., tracing the arousal-valence grid with a cursor [61]), then elicit

self-reports in post-review. Common signals examined for emotion classification,

which are available for experiential collection with relatively low emotional inter-

ference, include brain activity [155], skin conductance, heart and respiratory rate

and variability, eye gaze [139] and touch behaviour [114] – all known to embed or
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reflect emotion content.

We focus on touch as a crucial avenue for interacting with both our environ-

ment and the people around us. Understanding the relationship between natural-

istic touch and authentic emotion is crucial for gaining insights into human emo-

tions [114] and developing touch-sensitive devices capable of being emotionally

responsive to in-the-wild dynamic emotion in realtime. Additionally, the highly

individualized nature of touch expression makes for strong identification of the in-

dividual user but presents a challenge for generalized, or participant-independent,

emotion classification [42, 87]. For touch-sensitive emotionally-responsive devices

that are intended for use with a small set of users (perhaps within a household),

personalizing the underlying classification model could greatly improve usability

(much like personalized touchscreen keyboards that adapt to user-specific typing

behaviour [85]).

As a proof-of concept of this approach, in this work we explore the feasibility

and ease of use for building an emotion-labelled training set of natural and spontan-

eous touch occurring during an emotionally prominent experience. The protocol

builds on the multi-stage data collection procedure described in Chapter 6 (pub-

lished as [43]) using a personalized storytelling task for emotion elicitation. Just

prior to the storytelling session, participants were given a soft cushion to hold with

instructions to place their hands on it as we set up the equipment. The cushion

was wrapped in a custom fabric touch sensor and by leaving the hands free from

any other specific activity, we could record their natural and spontaneous touch ex-

pressions arising from emotionally charged storytelling as they played out on the

cushion. Participants also wore physiological sensors that recorded skin conduct-

ance and heartrate; these are known emotion encoding signals [77, 104, 155] col-

lected here to check for emotional corroboration with touch expression. Following

the emotion elicitation task, participants engaged in a multi-stage, multi-resolution

emotion self-report process very similar to [43].

Approach: Our objective was to figure out a way to achieve both emotional eco-

logical validity and computational rigor. To this end, we developed a machine-

learning modeling pipeline on a relatively small sample of training data collected

in this manner. In an exploratory approach, we assessed performance at each stage
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of model-building, and iterated on label binning, label distribution, and classifica-

tion paradigm as we proceeded.

After piloting our procedure on two individuals, we collected data on five more

individuals (mean = 29 years old; sd = 6.6 years). Two people returned for three

sessions each, one for two sessions, and the other two contributed a single session

each, for a total of ten sessions.

This chapter focuses on how we constructed the training dataset and analyzed

the participant responses, to contribute:

1. a proposed procedure for building a more ecologically valid training dataset

for personalized emotion recognition;

2. a software system designed and confirmed to facilitate this complex mul-

timodal data collection and multi-step labeling protocol; and

3. reflections and recommendations on the full process pipeline, leading to im-

proved future iterations of both collection and realtime classification pro-

tocol.

For a future larger study, we can then confidently deploy a protocol based on

findings here.

The remainder of this chapter will feature a brief background on emotion labels

for machine interpretation and associated protocols (Section 8.2), a description of

the data collection and labelling procedure (Section 8.3), and an analysis of the

participant experience (Section 8.4). In addition, for context we summarize the

outcome of the full study in Section 8.5 (full details were the focus of co-author

Guerra and will be reported separately). We finish this chapter with reflections.

8.2 Background
Our approach is rooted in advancing touch-centric emotional interaction between

a human and a responsive device, such as a robot. Here, we examine relevant work

in computational models for emotion recognition and the data that drives them.
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8.2.1 Ecological Validity of Emotion in HRI

Human-machine interactions can be socially and emotionally fraught even when

this is not intended [148]. For example, a study on robot touch interpretation [56]

shows that when a non-social robot “violates” an expected handover event (doesn’t

successfully hand over a block to a human collaborator), the follow-up robot-

initiated tap on the arm is perceived as an apology or other attempt at social repair.

This suggests that while people report wanting to interact with machine agents as

they do with people [88], it may be more a socio-emotional reflex than a considered

preference. Thus when we design for human interaction with machine agents, we

must acknowledge the emotional impact [148] inherent in the narrative users build

as they assume human social touch conventions and the accompanying emotion

expressivity. This is particularly true when we leave the confines of the lab en-

vironment and deploy robots into socially defined spaces like workplaces, care

environments, or homes [147].

8.2.2 Protocol for Eliciting and Labelling Dynamic Emotion

Designing for ecologically valid Human-Robot Interaction (HRI) means that we

have to take into account how human emotion actually progresses. Classifying

emotion as state has many practical benefits for machine recognition – not least of

which are the popularity of reporting scales used for identification and measure-

ment. Instruments like Russell’s Circumplex Grid [237] and the Self Assessment

Manikin or SAM Scale [30] distinguish emotions into two or three orthogonal

dimensions of arousal, valence, and dominance. By offering a forced choice of

simple and straightforward classes for data labelling, they assume a (albeit compu-

tationally convenient) model of a single time-invariable or static emotion per rating.

However, emotions rarely fit into convenient boxes, rather they are complex and

dynamic in situation-dependent ways. Who we are with, how recently our physical

and emotional needs have been met, and why we are here now with all the bag-

gage of our cultural and personal history [20] influence how we feel and how these

feelings will evolve throughout the course of a single event or experience, as well

as over longer extents of time [169]. Operationalizing concepts rooted in emotion

dynamics for computational applications may require introducing new metaphors
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of emotion or class labels that can capture transitional emotional experiences as

they happen [39].

We use storytelling, an elicitation technique based on relived emotion, where

researchers use semi-structured interviews to ask participants to retrieve memories

of a significantly emotional event [57, 179, 180]. Our own previous experience

with this technique has demonstrated its potential for bringing up strong emotions

in participants [42]. However, for this present study, we are not asking participants

for a target emotion [42] but rather for a larger story that explores many strong

and evolving emotions associated with a more general (though still emotionally

charged) prompt. To identify the emotions experienced through the storytelling, we

use another previously explored technique: multistage labelling that incorporates

emotion word calibration, an interview, and continuous annotation of emotion [43,

44]. By using the slope or angle of emotion inclination as a way of determining

emotion trajectory, we can add a dynamic element to describe how an emotion may

evolve.

8.2.3 Spontaneous Emotion in Training Data for Machine
Classification

Machine recognition of human emotion requires training data of naturalistic and

spontaneous emotion – a well-studied example is the Dataset for Emotion Analysis

using Physiological Signals (DEAP) [159] representing emotions via brain activity

and facial expression while participants listened to musical stimuli. To our know-

ledge, a dataset of natural and spontaneous emotion that includes touch interaction

does not currently exist. Publicly available datasets of labeled emotion data syn-

chronized with expressive touch data include ‘performed’ social touch where ges-

tures are acted based on a set of instructions like the Corpus of Social Touch [151]

and the Human-Animal Affective Robot Touch [41], used as affect classification

challenges [152]. In a more naturalistic open-sourced example, incidental emotion

is labelled on keypress force during videogame play [44]. However, this is a very

context-specific environment and may not be representative of general spontaneous

emotionally expressive touch.

To better examine the limitations and challenges of creating such a dataset for

human-machine touch interaction, we begin by collecting multiple samples from a
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small number of individuals and exploring the ecological validity of the procedure

for machine classification of dynamic emotion via naturalistic touch expression.

8.2.4 Comparing Modalities

We choose to examine modalities based on the primary interaction for our intended

application (touch-sensitive machines) to better understand how classification of

emotional touch compares when supported by other data streams that offer known

emotional encoding and can be collected with minimal interference.

Skin conductance (measured as galvanic skin response, or GSR) and heart rate

variability (HRV) offer a proxy measure of emotional experiences [102, 163]. Both

GSR and HRV are influenced by the autonomic nervous system which regulates the

body’s internal organs and controls the body’s response to stress [163]. Sweat, par-

ticularly in hands and feet, can be a response to emotional stimulation and other

psychological processes [163] and makes GSR a sensitive measure for emotional

arousal. HRV has been used as a measure of emotional regulation [8] and has been

shown to be associated with various emotional states, including anxiety, depres-

sion, and stress [261].

Both can be measured with small and relatively unintrusive sensors worn on

the hand not otherwise engaged in naturalistic and emotionally expressive touch.

8.3 Naturalistic Data Collection Procedure
We followed a mixed-method, multi-stage emotion self-reporting procedure [46] to

achieve high-resolution, temporally sensitive, and multifaceted data on emotional

experiences while upholding the reliability and validity of the collected data. By

acknowledging and tracking the temporal dynamics of emotions [169, 250], we can

gain valuable insights into the progression and evolution of emotional experiences,

advancing the move from in-lab to in-the-wild emotion recognition.

8.3.1 Software and Interface

Dynamic emotion classification requires the synchronization of all expressive mod-

alities (here: touch, GSR and heartrate) as well as the self-report emotion labels to

the same timeline [44]. We present a modular emotion dynamic annotation tool that
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generates experience-aligned high-density time series of dynamic emotion on user-

defined emotion scales. We built this tool to label affective touch behaviour dur-

ing an emotional storytelling episode. As such, the interface features a live touch

sensor heatmap, providing valuable potential for building insights on how touch

behaviour evolves with emotion from one millisecond to the next – an essential

first step to developing affective touch-sensitive devices that respond to dynamic

emotions in realtime.

This Javascript tool is designed to facilitate emotion studies involving mul-

tiple self-report stages, with customizable modular components for specific study

needs [43]. We demonstrate easy synchronization for multimodal data collection,

providing support for microcontroller-driven (e.g., Arduino) live sensor synchron-

ization and visualization, including a live heatmap for touch-sensitive interfaces,

multimedia custom labeling on timestamps, and audiovisual biosignal sensor syn-

chronization.

Researchers can easily modify modules including label ranking through drag

and drop and addition of multimedia stimuli files. Component documentation fa-

cilitates customization of input sensor data types and editing of label arrays.
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Figure 8.1: Interface screenshots showing (a) live sensor visualization; (b) emotion word calibration; (c) interview
annotation; and (d) continuous annotation stages.
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8.3.2 Recruitment Summary

After piloting with two individuals engaged in four sessions, we recorded data

from N = 5 participants over ten emotion tasks. Due to the sensitive nature of

personal stories, we wanted to ensure that (a) participants were comfortable shar-

ing in such a way that it was no worse than venting to or sharing with a friend;

and (b) we could reach out to participants to ask how they were feeling a day or

so after each session and that they would be able to answer honestly about their

ability to manage any trauma, should it be triggered. All participants were known

to researchers. Our research team does not include trained psychologists so we

selected participants based on who would be comfortable being open about private

and sometimes deeply unpleasant moments from their lives.

8.3.3 Ongoing Consent Practice

We posit that differentiating between labelled data instances is easier when emo-

tion expressions are strong and distinct. In order to elicit strong emotions, we ask

participants to emote through and describe important and powerful moments from

their lives. We learned from our experiences with participant storytelling in [42]

(Chapter 5) to prepare for sensitive and emotionally fraught experiences and pri-

oritized participants’ sense of comfort by outlining three tactics (determined from

our experiences with piloting and discussions with clinicians): (1) an “ask twice”

consent process wherein researchers would only ask twice about an emotional ele-

ment and if the participant was not forthcoming, researchers would change the

course of the elicitation intent; (2) participants are encouraged to share and express

as they wish including cursing, yelling, singing, over- or under-sharing, whatever

allows them to authentically experience their feelings in an honest manner; (3)

we reviewed collected data with participants, allowing them to decide the level of

privacy they are comfortable at each stage (for example, P1 consented to publica-

tion of their emotion label data but their original story was to be analyzed only be

those present during data collection; P4 consented to public release of anonymized

story text for their second session but not first or third); and (4) after the emotional

storytelling task, we gave participants a chance to decompress as appropriate, and

scheduled a time within 48 hours for a check in.
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8.3.4 Setup

Figure 8.2: Physical setup showing room layout and relative positioning for
participant and researcher over all stages of data collection.

For every session, we collected biometric data (heart rate and skin conductiv-

ity) and touch pressure; these data streams were synchronized to the storytelling

recording (video and audio). In an experiment space furnished to resemble a homey

living room, we instructed participants to sit or lay down on a couch, whatever felt

more comfortable. Heartrate and GSR sensors were placed on their non-dominant

hand; their dominant hand remained on a touch-sensitive pillow that can be po-

sitioned either on their lap or chest, depending on their body position. A large

opaque separator was positioned in front of the couch to obscure participants view

of the rest of the room. Although participants were alerted to the videocamera at

the side of the room, the divider restored some privacy and helped keep focus on

the story and resulting feelings without the distraction of the researcher or other
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setup details.

8.3.5 Data Collection Protocol

We followed the four-stage multipass emotion data collection structure described

in [44, 46]: I. Primary Emotion Task, II. Emotion Word Calibration, III. Inter-

view, and IV. Continuous Annotation, with some customizations. First, we used

storytelling as the Primary Emotion Task in order to collect naturalistic expression

of emotional touch behaviour (rather than incidental touch pressure emerging from

pressing on video game control keys as in [44]). Second, we allowed participants to

define their emotion scales based on the most prominent feelings they experienced

during the Storytelling stage since we could not know for certain what emotions

would be elicited. Lastly, we added a fifth stage: V. Post-Task Reflection to better

understand the participant experience in generating this data.

I. Storytelling

As a preliminary step, we asked participants about their present emotions, noting

the existence of any holdover emotions from earlier in the day or anything ex-

traordinary that might present a challenge to honest expression. For all 10 sessions,

participants reported feeling “fine” or “ready” before hearing the story prompt.

We prepared a set of prompts to help participants hone in on strong emotional

stories as shown in Table 8.1. These prompts are counterbalanced to encourage

rough coverage of positive- and negative-valenced stories.

Participants were given as much time as was needed to fully explore their

prompts. A researcher (who is known to the participant) would ask semi-structured

interview questions to clarify context (“What did that mean to you?”), probe for

emotional content (“How did that make you feel?”), or engage in conversation to

extract deeper emotional memories (“Was that the most difficult/painful/happiest

part?”). The storytelling session ended when the participant was not adding more

to the story spontaneously and the researcher had no more questions rooted in the

original story, or the participant indicated they had completed their story (e.g., “And

that’s pretty much it.” – P4-1).
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Table 8.1: Storytelling Prompts and the Most Prominent Emotions Elicited
as Reported by Participants. Mean(SD) duration of all stories is 9:30

(4:18).

Prompt Reported Emotions Opposites Duration
What are you most proud of? Pride, Contentment Shame 4:48
Tell me about the person you
share news with first. Love, Pride, Gratitude Sadness, Loss 8:53
What is the nicest thing that’s
been done for you? Pride, Accomplished Doubt, Helplessness 5:57
When did you feel the most
satisfied with your life? Connectedness, Longing Loneliness, Anger 7:12
What do you remember about
the best period of your life? Excitement, Nostalgia Shame, Embarrassment 7:00

Mean(SD) 6:46 (1:31)
What is your biggest fear? Anxiety, Dread Accomplished, Fulfilled 10:55
What is the biggest stressor
in your most important
relationship? Guilt, Sadness Fulfillment, Satisfaction 13:15
What was the hardest
decision you’ve ever made? Anxiety, Fear, Gratitude Disgust 7:43
What is your biggest
frustration? Anxiety, Confusion Satisfaction, Gratitude 9:40
What is your current biggest
worry? Regret, Longing Anger, Sadness, Spite 19:33

Mean(SD) 12:13 (4:33)

II. Emotion Word Calibration

To understand the emotional landscape of the story content, participants were asked

about the most prominent emotion experienced during storytelling, marking the top

end of a vertical scale. The participant-perceived opposite of that scale defines the

bottom end. For example, if a story’s most prominent emotion was “Caring”, the

opposite end might be labelled “Indifference”. If participants had a hard time de-

termining an opposite, researchers suggested words until participants were satisfied

with the scale definition.

From a pre-defined list of 12 emotion words – “fear”, “love”, “sadness”, “hap-

piness”, “disgust”, “surprise”, “embarrassment”, “envy”, “pride”, “sympathy”, “grat-

itude”, and “anger” – participants were instructed to drag-and-drop as many as they

wished to a location on their vertical scale as determined by the prominent emo-

tions from the I. Storytelling stage (see Figure 8.1 - top right). The set of words
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calibrated along the emotion scale is heretofore referred to as Calibrated Words.

III. Interview

To ensure a consistent timeline relative to the original emotion expression, par-

ticipants reviewed the video recording from the I. Storytelling stage with a re-

searcher. The researcher paused the video and annotated the event timestamp with

participant comments based on emotionally poignant moments, explanations for

their expressions or verbalizations, unusual or unexpected behaviours (e.g., sud-

den laughter in an otherwise sad story), sudden breaks in prose, etc. During this

stage, researchers asked about elements of the story and participants added other

details; the interview stage often felt conversational with participant background

commentary annotated at storytelling timestamps. By introducing emotion words

in II. Calibration, we intentionally primed participants to use these words or com-

mon synonyms in their descriptions here.

The outcome of the interview stage is a timeseries of phrases and comment an-

notations aligned with the I. Storytelling stage, including touch behaviour, GSR,

and HR data. By aligning participant use of Calibrated Words (or synonyms as

determined using Python’s Natural Language Toolkit or NLTK library1) with the

story timeline, we generated a timestamped set of Calibrated Words. Each data-

point (x,y) consists of x = timestamp along the I. Storytelling timeline, and y =

the vertical distance along the emotion scale of the Calibrated Word used during

the III. Interview. This Timeline with Calibrated Words or (Timeline with Calib-

rated Words (TWCW)) can be used as a supplementary labelset for classifying the

modality emotion data collected during the associated timepoint.

IV. Continuous Annotation

As a final labelling stage, participants are moved to a computer station to rewatch

the original video recording from the I. Storytelling stage through without pausing.

Using a custom-built unbiased 1-D joystick [43, 44], participants annotate their

emotion experience of the I. Storytelling by moving the joystick up/down along

the indicated emotion scale as determined in II. Calibration. They are instructed

1Detailed info found at https://www.nltk.org/
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that moving the joystick up or away from themselves moves the corresponding

marker up towards the top of the vertical scale and so moving the joystick down

or toward themselves moves the marker down to the low end of the scale. The

marker “draws” a continuous line so holding the joystick still shows a horizontal

line, suggesting a relatively constant emotion state for the duration of the hold.

The resultant dataset is a continuous timeseries where the x-axis is the timeline

from the I. Storytelling video and the y-axis is the emotion scale defined in the II.
Calibration stage.

V. Post-Task Reflection

To close the session, we asked a few procedure reflection questions to assess how

participants felt throughout the process, the intensity of their emotion recall, and

how they interpreted the emotion scale across labelling stages. We also used this

opportunity to ask how stable they felt before leaving the study, checked if they

were still comfortable with their earlier data access permissions, and verified that

we could check in with them within 48 hours, particularly if they seemed distraught

during the storytelling and interview stages.

8.3.6 Dataset Description

The data collected at each stage consists of:

• (I) a video recording and a primary timeline for synchronization, emotion

data in the form of GSR, HR, and touch behaviour from interactions with a

touch-sensitive pillow;

• (II) a set of Calibrated Words;

• (III) rich comments and details describing the emotional experience of re-

calling and telling a personal story;

• (II+III) a labelset consisting of a timeline of Calibrated Words (and syn-

onyms) that describes the primary emotional experience due to the storytelling

task that may be the driver of the captured emotion in the HR, GSR, and

touch behaviour data – herein referred to as the Timeline with Calibrated

Words or TWCW.
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• (IV) a continuous annotation forming a timeseries of the emotional experi-

ence from the storytelling on the emotion scale defined in II. Calibration

• (V) an intra-rater reliability check on emotion rating stability

From this dataset, we perform feature extraction on the primary emotion data

(namely the GSR, HR, and touch behaviour) and label extraction on the Continu-

ous Annotation data and the TwCW. Combining and windowing these generates

labelled data instances that we can use as training data for machine learning clas-

sification models.

8.4 Participant Experience
To better understand the data collection and labelling experience, we asked par-

ticipants for their reflections on the protocol and earmarked interesting behaviour

and preferences.

8.4.1 Consent Process

As the story prompts inspire personal tales from participants’ lives, we constructed

a rather comprehensive consent process in the hopes that it would keep every-

one feeling comfortable through multiple sessions. However, from post-session

interviews, consultations with expert researchers, and our own team discussions,

we noted that the consent process does not need to be a heavy process. In fact,

both single and multi-session participants were comfortable with the storytelling

procedure. They noted that they liked the consent check-ins over sessions but pre-

ferred to keep it short in favour of a shorter protocol.

For participants speaking honestly, knowing what data is being recorded and

how it will be used is valuable. In one notable session, our participant decided

at the close of the session that they were uncomfortable with their story being re-

viewed and analyzed, indicating a preference for us to delete the story recordings

completely so we deleted the video recording (and backup) in front of them, retain-

ing only innocuous quantitative records (calibrations and continuous annotation)

Going forward, our consent process will be shortened to focus on the review of

what is being recorded but will still include check-ins both prior to and after each
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session. By highlighting which datastreams are being recorded and how it would

be used in analysis or presentation allows participants to decide their comfort level

with storytelling and future use.

8.4.2 Observations

We note how participants describe the emotions that arise in storytelling and la-

belling.

Emotions in Storytelling
Emotions generated from storytelling prompts are not always predictable. Par-

ticipants’ lives are personal and varied and prompts elicited many distinct emo-

tions, intertwined in complex ways. For each story, we asked about the most prom-

inent emotion that dominated as the relived emotion in the session. Participants

named more than one in every case; sometimes describing concurrent emotions of

contrasting valence. When describing the hardest decision they’d made, one par-

ticipant reported feeling “Anxiety”, “Fear”, and “Gratitude” when asked for the

strongest or most prominent relived emotion.

Overall, the positive-valenced emotions we heard included Pride, Content-

ment, Love, Gratitude, Accomplishment, Connectedness, Longing, Excitement,

and Nostalgia. Negative emotions included Anxiety, Dread, Guilt, Sadness, Fear,

Confusion, and Regret. A Student’s t-test of the story duration found that negative-

valenced stories were longer (significant at p < 0.05, large effect size at Cohen’s d

= 1.60) than the positive-valenced stories.

Emotion Scale for Continuous Annotation
Strategies for continuous annotation ranged from moving the joystick “step-

wise” (P5) to “crank[ing] up or down for extreme emotions” but ”reset[ting] to

neutralish” (P4). P1 noted that they were “playing with the range at first” before

“reliv[ing] the experience to feel the matching trace”.

When referencing the emotion scale during continuous annotation, there was

a range of approaches. P2, P3, and P4 all commented on the scale as intensity,

thinking of the scale as “how intensely did I feel [the emotion at the top]” (P3). P1

also treated the scale as having “two ends ... like the intensity of fear vs pride” but

also added that they “treated the scale more like a binary rather than a spectrum
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[and] felt like it was a little bit bouncing across a binary.” In contrast, P5 felt

that the scale “could have been more like generically positive or negative feelings”

suggesting that they may have looked at it more like a valence-scale. However,

P5 also indicated that they “head[ed] to the end of the scale for stronger emotions

[and] stayed middling otherwise” which suggests a more intensity-like use that is

very similar to P1’s treatment.

8.4.3 Questionnaire Responses

At the end of the storytelling stage, we asked participants to reflect on three ques-

tions about the emotions that they felt while reliving their memory. On a 10-point

Likert scale, they rated

1. Relived Emotion Similarity or how close the relived emotions were to the

actual occurrence (1-Not at all; 10-Perfect Match)

2. Relived Emotion Intensity or how intense the relived emotions were to the

actual occurrence (1-Not at all; 10-Perfect Match)

3. Relived Emotion Resolution or how resolved the events or emotions are at

this time (1-Currently Active; 10-Made My Peace)

Running Pearson’s correlation on these ratings (see Table 8.2), we find

• Relived Emotion Similarity and Relived Emotion Intensity to be posit-

ively correlated at 0.632

• Relived Emotion Similarity and Relived Emotion Resolution had a weak

negative correlation at -0.475

• Relived Emotion Intensity and Relived Emotion Resolution were also

negatively correlated at -0.611

It appears that relived emotions are most similar in kind and intensity to their

original occurrence when the events of the story are not yet resolved (for P2, P4-3,

P5-1) or where the feelings from those stories are recurrent, even though some of

these stories originally occurred in childhood many years ago (for P3-2 and P4-1).

In these cases, participants may have been grappling with active feelings during

their retelling.
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Table 8.2: Relived Emotion Ratings. Participants with multiple sessions are
denoted P#-S where S is the session number (P3-1 indicates participant

3’s first storytelling session).

P#
Similarity
1-Not at All
10-Perfect Match

Intensity
1-Not at All
10-Perfect Match

Resolution
1-Currently Active
10-Made My Peace

P4-1 10 9 1
P4-3 10 9 1
P5-3 6 4 1.5
P2 7 8 2
P3-2 6 6.5 2.5
P5-1 3 7 2.5
P3-1 8.5 4 3
P1 4 5 4.5
P4-2 8 6 8
P5-2 2 2 8

Mean(SD) 6.85 (2.69) 5.95 (2.39) 3.95 (3.36)

8.5 Model Training Summary
As classification is still in progress and the focus of another author, this section

summarizes our model training procedure, in order to provide important context to

the protocol validation – the primary objective here.

8.5.1 Datastream Pre-processing

We constructed a data processing procedure to systematically organize the physiolo-

gical data collected in I. Storytelling stage. A 1D polynomial Savitzky-Golay fil-

ter was applied on both GSR and HR data streams to reduce instrumental noise.

In our preprocessing of the Continuous Annotation data, we used an Exponential

Weighted Moving Average (EWMA) model with a decay parameter of 0.3 to re-

move hardware ‘jitter’. We found through trial and error with visual inspection

that this value provided a satisfactory balance between responsiveness to recent

changes and noise reduction.
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8.5.2 Feature Extraction and Selection

We partitioned the time series data into equal-sized windows to facilitate our data

analysis. Similar to past investigations [44] on touch pressure and its affects on ex-

pression of emotions, we obtained the statistical indicators, including mean, vari-

ance, maximum, minimum, area under the curve and sum of absolute differences

for GSR, HR and touch data. These comprise the features for each window to rep-

resent the participants’ touch behaviours and bio-signal fluctuations. Moreover, we

performed spectral analysis on the touch and bio-signal data streams to compute

features in the frequency domain. We also computed the average sum of the touch

values per window as our touch feature to account for large area touch behaviour

changes.

8.5.3 Label Extraction

Labels serve as the ground truth for model predictions based on input feature

data. To capture participants’ emotion experience, the TwCW and joystick values

marking emotion evolution over the storytelling timeline (from II+III Calibrated
Words+Interview and IV. Continuous Annotation stages respectively) are used

to generate three distinct label types for each session: position, angle, and calib-

rated words.

The position label represents the location or ‘emotion state’ that a participant

was in within the given window and is derived by finding the mean across the con-

tinuous annotation within the window. Across all participants and associated data,

normalized position annotations create four equally sized bins for values between

[0,1].

Representing the direction of emotion evolution, the slope of the curve is cal-

culated within a given window at fixed intervals, normalized, and digitized into

four equal-sized bins for slopes, expressed as angles (- π

2 , π

2 ). These comprise the

set of angle labels.

This comprehensive label extraction methodology ensures the robustness and

accuracy of the ground truth for subsequent model training and evaluation.
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8.5.4 Model Exploration Summary

By using strategic portions of the dataset, we can tease out differences in classific-

ation accuracy by modality, label type, window size, emotion ranges, feature im-

portance, and generalized vs personalized classifiers. Reporting will be based on

3-fold cross-validation during training and include confusion matrices, perform-

ance scores, and best model parameters by estimator.

We evaluate four distinct estimators – specifically Extra Trees, Random Forest,

Ada Boost Classifier, and Gradient Boosting – sourced from the Scikit-Learn en-

semble library to explore how classification performance varies over variations on

training and test data. To optimize model performance, we determined the number

of estimators to be either one or two multiples of the number of features. Specific-

ally, if the dataset comprises N features, our preliminary number of estimators was

set to N and 2*N. For the Gradient Boosting Classifier, we explored learning rates

of 0.8 and 1.0. The training process involved the construction of a Scikit-Learn

Pipeline, integrating Scikit-Learn RFECV and GridSearchCV. The RFECV class

from the Scikit-Learn feature selection library executed recursive feature elimin-

ation with cross-validation to identify optimal features, while the GridSearchCV

class from the Scikit-Learn model selection library systematically explored para-

meter values for each estimator (see Figure 8.3). Overall, training and testing of

emotion direction (as calculated by the angle of inclination from the slope of the

continuous annotation curve) from personalized models resulted in classification

accuracies of 58% where chance is 25% – similar in performance to our previous

work [44].

By Modality
We break down the classification performance by modality to find the min-

imally viable combination of touch, GSR and HR. Feature selection can further

reduce the required computation for a given performance level. Devices designed

for realtime responsiveness may have constrained onboard resources and reducing

the sensing and/or computational load can significantly improve latency issues and

affordability.

By Label Type
We explore classification accuracy by position, angle, and the combination
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Figure 8.3: Pipeline for model selection and evaluation. We performed grid
search CV (k = 5) on the training set to tune hyperparameters and

select best-fit models for the touch data. The models were then
evaluated on an unseen test set to calculate performance metrics. We
repeated this process 8 times per participant-session, and report mean

test scores across the 8 runs and 10 sessions.

thereof to compare the feasibility of using continuous annotation derived labelsets

for dynamic emotion classification. It may be that high resolution labels are not

necessary, in which case we can reduce sampling rate, potentially improving com-

putational efficiency for label generation.

In contrast, we also evaluate the use of calibrated words – a similar class set

for emotion state.

Longitudinal Personalized Models
Personalized models have performed well over generalized models in classi-

fying emotion from touch in past work [41, 42]. To simulate realtime classifica-

tion, we examine how well personalized models trained on past sessions may work

on future sessions by experimenting on models trained on Participantp’s first and

second sessions and test on their third. We can also compare performance from

a generalized model, training on all participants’ sessions and testing on a single

session.

Where personalized training continues to yield higher performance than gen-

eralized models, we would argue for incorporating individualized training through

a similar data collection protocol as described here. Should the performance gain

over generalized models be minimal, then it could be argued for devices to be pre-

installed with a standard model built on data from many individuals. This approach

could improve the immediate out-of-the-box experience, reducing the training ef-
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fort by each individual user.

8.6 Limitations and Future Work
We discuss participant reactions and make recommendations on how to improve

training procedures for emotionally responsive devices, reflecting on limitations in

this proof-of-concept.

8.6.1 More Participant Data

To the best of our knowledge, this is the first training procedure of its kind –

building training data for computational models of naturalistic affective touch that

evolve with the user. In trying to explore the feasibility of intermittent and repeti-

tious model training of strong emotion expression, we invited a very small number

of participants in order to assess and respond to any complications or issues at each

stage. We acknowledge that these five users will not be representative of the full

scope of experience; nevertheless, we use the lessons of these participants to in-

form the design of a more comprehensive evaluative study on model development,

intended to extend to training interactive devices.

Furthermore, all collection to now has been done in-lab. For a device’s training

system to evolve with the user, we know that it must have some reasonable func-

tionality straight out-of-box, and ideally have a relatively seamless in-use training

and collection protocol. Consider how your cellular phone’s keyboard has a pre-

dictive text system that works well enough globally, but with increased familiarity

with your typing and textual composition behaviour, helps you become a much

more productive and accurate texter. As another example, you may have had to ‘re-

calibrate’ your phone’s Map application, periodically having to draw figure eights

with your device to re-orient the gyroscope and improve compass accuracy. In

either case, some data model is pre-loaded prior to use and works ‘well enough’

such that any one can pick it up and be productive straight away, even if it is not

perfectly optimized. Even with a built-in generalized model, our system is likely

to require more of a manual alignment as that of the Maps example than the more

natural in-use learning seen in autocorrect and predictive text, but we imagine that

intermittent requests to ‘recalibrate’ to the user might be welcome to increase the
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system’s prediction appropriateness and improve the user experience.

For class annotation, interpretation of the vertical scale during continuous an-

notation can vary greatly. Joystick movements during Continuous Annotation can

represent a range of usages, from that of a binary toggle to an intensity trace. These

different strategies may present generalizability concerns. A larger participant pool

can also help to identify whether approaches are emotion- or individual-dependent

wherein we can better group labelled data to improve generalized models for clas-

sification.

8.6.2 Emotion Specificity

To evaluate the protocol and understand the range of emotions that can be elicited in

storytelling, we asked very general prompts without expectations of specific emo-

tions. Through 10 prompts, balanced only for negative- and positive-valenced emo-

tions, participants indicated nine distinct dominant emotion words for each valence

range (brackets to indicate the number of stories that featured non-unique emotion,

1 otherwise): Pride (3), Contentment, Love, Gratitude, Accomplishment, Connec-

tedness, Longing, Excitement, and Nostalgia for positive prompts and Anxiety (3),

Dread, Guilt, Sadness, Fear, Gratitude, Confusion, Regret, and Longing for negat-

ive prompts (see Table 8.1).

The approach we chose here focused on the individual experience but it may be

valuable to investigate a small set of specific emotions that are easy to evoke and

explore how the same emotion manifests for a larger set of individuals. Compar-

ing emotions like Pride and Anxiety – each appearing three times as the dominant

positive- and negative-valenced emotion respectively – or Longing and Gratitude –

each appearing as both positive and negative prompts – and contrasting the expres-

sion evolution of each could help highlight how generalizable emotion expression

may be across individuals. For instance, we wonder how Anxiety presents across

people and if it might be more consistent compared to something like Longing

which may be a little more ambiguous in valence.
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8.6.3 Prompting Emotion Evolution

Time is needed to encourage the fullest emotional range through the data collection

sessions. From tracking the story durations, we found that the negative-valenced

story prompts produced nearly double the time of data collection sessions than the

positive-valenced prompts (see Table 8.1).

To better understand the duration discrepancy, we plan to perform semantic

analysis on the recorded stories, including evaluating story word counts, pauses,

direction changes and peak counts in continuous annotation data. We wonder if

the extended length for these negative story prompts may be due to participants

providing more backstory and justification for the negative feelings they harboured,

and/or due to emotional pauses for those who got choked up and paused speaking

in order to let their feelings unfold naturally, or perhaps it takes longer for deep

feelings to resolve to a satisfying story close, particularly where events or feelings

are most active or unresolved.

From observing these longer data collection sessions, we notice elements of

cathartic release from participants. We listened as our participants cried, paused to

collect themselves, made connections to past or current events that triggered strong

responses and gave them time to let these feelings resolve during the session. We

noted how some of these stories involved personal reflections that were reminiscent

of a think-aloud version of journalling. Research has shown significant benefits to

cognitive and emotional processing via journalling [119, 299], whether written or

spoken [195]. Interestingly, it may be that confronting or inviting strong negative

feelings can introduce a coactivation such that positive feelings are experienced in

the aftermath [6]. For devices intended to help with addressing and/or attending to

negative feelings, we wonder if such a protocol of expressing and examining strong

feelings may a two-fold benefit: (1) emulate the natural progression data through

negative and positive emotions for training data and (2) provide a guided process to

help release existing emotional tension [299]; the latter requiring due consultation

with clinical experts.
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8.6.4 Data Collection and Training in Use

For an emotion-aware therapy robot or other interactive agent to respond seam-

lessly to evolving user behaviour, the data labelling procedure needs to allow for

continuous, unsupervised data collection. This could look like a background pro-

cess that captures many diverse contexts, prioritizing multi-session variability to

improve real-time interactivity and personalized emotion modelling. We can ima-

gine that a similar protocol involving the development of conversational agents

may generate and edit instructional texts to assist users in their daily lives, probing

for deeper class justification or description much like the researcher/interviewer in

this in-lab version. In Chapter 5, we assessed the impact of classification perform-

ance after removing recency-based similarities in user behaviour by dropping data

instance neighbours (referred to as gapping). From this, we found that these ’gaps’

contributed to performance loss, particularly where data count was dramatically

reduced. However, in real-world use, models are often built out-of-session, where

training data may have been collected days or months earlier. To better approx-

imate this more challenging classification task, we can train on previous sessions

and test on a later one. Future work examines more classification performance on

longitudinal participants to better understand the effect of model evolution and data

incorporation.

8.7 Conclusion
We presented a data collection protocol for naturalistic affective touch arising from

authentic and spontaneous emotion expression. The four-stage procedure involves

storytelling as the primary emotion elicitation. Participants responded to a simple

prompt that encourages a positive or negative dominant emotion. By using a joy-

stick for continuous annotation of the storytelling experience, participants traced an

emotion evolution curve to describe the emotion dynamics of the session wherein

the horizontal axis is the timescale of the story as in a timeseries. The vertical scale

is participant-defined by the most prominent emotion they felt during storytelling

to their perception of the opposite emotion.

Overall, we found:

• negative-valenced prompts generated stories nearly double in duration than
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positive-valenced prompts

• continuous annotation of emotion evolution over time can have at least three

treatments of the vertical emotion scale: as a true spectrum between oppos-

ite emotions, a binary toggle, or an intensity scale for a reference emotion.

Knowing which approach a participant used may influence how the label is

treated in classification.

• emotional stories that are most active and unresolved, no matter how long

ago the original event occurred, produced the most intense and emotionally

true experiences in retelling.

Reflecting on these outcomes, our future work involves examining the evolu-

tion of specific emotions or a limited range of emotions so as to focus the design

of personalized devices that can better respond to user characteristics, preferences,

and needs under particular circumstances. For instance, if our emotionally respons-

ive devices are intended for management and regulation through negative emotion

experiences, personalized training data can use negative-valenced prompts to be

better attuned to particular expressions.

With evidence that this guided multistage labeling protocol produces classific-

ation rates within the state-of-the-art recognition range for incidental touch model-

ling (Chapter 7), we are poised to further this line of study towards the development

of real-time emotionally reactive machines. The growing interest in naturalistic

paradigms, guided by theoretical models, provides a strong foundation for the con-

tinued exploration of emotions with naturalistic touch stimuli.
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Chapter 9

Conclusions and Reflections

We explored the early stages of building emotionally responsive devices in two

parts: (I) through example devices and the roles they take on for the human user(s)

and (II) the development of an onboard emotion classification model prioritizing

realtime emotion evolution.

As a result of this work, we establish that machines acting in a variety of

emotionally interactive roles can produce and extract emotional touch expression.

There is an opportunity to enhance this interactivity by embedding such machines

with a personalized emotion recognition engine. By periodically revisiting a guided

data collection and labelling protocol, we may be able to update a classification

model such that it evolves with the user over time. Closing the (affective touch)

interaction loop [321] is a challenging design exercise that may require different

approaches by use case and feature priority. In the following, we reflect on four

topics of future investment that can inform real use scenarios, namely (1) machine

responses to users’ emotion expression, (2) protecting trust in technology using

emotion data of a private and personal nature, (3) facilitating long-term engage-

ment extending beyond curiosity for novel technologies, and (4) examining the

real life environments that may best make use of such devices, and (co-)designing

for people most interested adopting machines engaging in emotional touch.
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9.1 Accounting for the Neurophysiology of Touch
Touch sensory systems develop from neonatal stages where infants develop a sense

of touch beginning at 7 weeks gestation within the womb [16, 197]. The import-

ance of physical contact with caregivers in early infancy has been well-established

[26]. From work in the effects of maternal touch on infant pain response [167],

C-tactile fibers are thought to be responsible for associating positive and pleas-

ant sensations from experiencing gentle, slow touch. This effect is felt even when

touch is non-contextualized and purely mechanical (participants feel soft stroking

without knowing who or what is performing the touch) [166].

In future work, we aim to build on the recent developments in our understand-

ing of the neurophysiology of touch to design more conscious touch experiences

that link body and experience. Leaning into the precognition of affiliative touch

may have significant implications for the design of interactive systems that support

emotional well-being and social development.

9.2 Designing for Emotion Reactivity
This thesis takes the approach that using machine recognition or classification of

emotion expression from user behaviour allows for having more knowledge of the

user’s current emotional status which in turn improves the likelihood of triggering

an appropriate device or robot response. Another approach we could have taken

is to assume that users will adapt their emotional reaction and their narrative inter-

pretation to all robot actions.

Jung and Hinds posit that the cultural and social context for interacting with

a robot may be key to understanding robot influence on social and emotional per-

ceptions of an individual [147], alleviating the need for human behaviour/emotion

classification. This wider-angle perspective is necessary for field studies investigat-

ing how robot presence and behaviour may influence a larger social dynamic within

specific environments. For robots intended for use as a personal emotion regulation

assistant or other one (human)-to-one (robot) emotional engagement interactions,

we argue that being able to recognize the individual ‘tells’ or ‘triggers’ may help

reduce some of the risk of negative interactions or otherwise unproductive human

reactions. While we may never eliminate all risk of erroneous classification and
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subsequent robot behaviour, we posit that with the right post-error repair interven-

tion, like apologizing [89] and/or verbal [149] or touch-based reassurance [56], the

trust or emotional bond can still be recovered. As imperfect as people are at inter-

preting the emotions of those around us, humans continue to interpret and respond,

learning to better ‘read’ each other as time goes on, often building and strengthen-

ing relationships despite repeated missteps [99].

Both approaches have great merit and, when used in conjunction, offer a more

holistic understanding of the social and emotional influence robot interactors may

have on both independent individuals and social groups. While we have focused on

naturalistic emotion recognition here, future work includes examining the impact

deployed devices may have on the lives of users and their social circles.

9.3 Designing for Accountability and Trust
With advances in generative Artificial Intelligence (AI), there is a heightened aware-

ness of ethical and safety issues whenever users are providing personal and/or in-

timate data about their private lives. We expect devices purporting to provide intim-

ate emotional help, whether for regulation or outlet, may be privy to raw or volatile

moments. In cases of emotion regulation or therapy-aide applications, users and

clinicians alike need to be able to trust that user data is safe and secure in order

to engage honestly and purposefully. Therefore, the recording, storing, and use

of data should be handled with care and transparency. For instance, we priorit-

ize touch as an embedded emotion modality for its relative unobtrusive collection.

However, we are also aware that by virtue of not requiring on-body instrumentation

for touch collection, it could be easy for users to lack awareness that their touch

data is being recorded and tracked.

Technologies that track private citizens are becoming more prevalent and may

be downright unethical when deployed for societal control [162, 186]. The devices

we are building involve much of the same user data – physiological and beha-

vioural markers, gaze and facial recordings – and we are cognizant that emotion

tracking of private individuals can be fraught with risk. While we intend to develop

devices for individual human flourishing, we must also be aware of the possibil-

ity of irresponsible implementation of technologies and implicit biases that are
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not well-understood – e.g., facial recognition being used as predictors of recidiv-

ism [83, 144] or, in our case, keypress behaviour tracked in a workplace to assess

employee loyalty.

Imbalances in power and data visibility create significant ethical concerns. For

our intended care robot applications, users who are patients with impaired cognitive

function may not be fully aware of what access they are allowing when engaging

with emotionally reactive devices. Patients’ emotions may be the among the last

personal elements not broadcasted to care providers; we argue that this loss of

privacy should be treated with care.

9.4 Designing for Engagement
The form factor and physical properties of a device can be developed for behavi-

oural affordances (e.g., designing something with a head can produce an attention-

orienting response vs. a simple polygon form factor). In order for a sense of ‘live-

liness’ or autonomy, robots may need to have some non-determinism in their beha-

viours to portray that they are independent agents allowed a ‘theory of mind’ [36].

Design is often easier with a palette [49]. If we can create a set of ‘atomic be-

haviours’ – independent motion building blocks that can be strung together with

smooth transitions to construct more complex robot responses – we can quickly

produce a large number of distinct robot behaviours. With a well-designed inter-

face, it is possible that the process could be simple enough to allow for direct user

involvement.

Personalization of form and function can be an element of user engagement [177],

but increased user control in robot design raises a number of interesting questions.

First, “how might user involvement at the design level influence user engagement

with the robot or the perception of robot autonomy?” and “what are the compon-

ents of ‘atomic behaviours’ and how should they be constructed?” Early investiga-

tion into both questions can involve researcher-led co-design workshops to under-

stand more about the kinds of forms and functions that users imagine they’d want

in personal-use robots. Where researchers provide components that are designed

to be mutually compatible such that multiple combinations could be formed, users

are better able to build novel yet feasible constructions. Our work in creating the
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design patterns for the CuddleBit – a highly customizable robot platform for phys-

ical emotion display [35] – demonstrated that even simple motions can be highly

evocative of emotion with the same programmed behaviour triggering different in-

terpretations when on different physical forms. By allowing users to devise their

own form and behaviours [325], motion patterns may emerge that contribute to

determining what could be the basic building blocks of ‘atomic behaviours’.

9.5 Designing for Specific Care Contexts
The original intention of this thesis was to include an investigation into a real-

world application and use case for a touch-centric emotionally reactive device for

a particular care context. Due to the structural complexity and personal nature of

the care environments and in order to respectfully support the needs of workers and

families and engage in co-design, it was necessary to invest time building trusting

relationships, see the use of resources and physical spaces, and understand how

this work was done. We invested a great deal of time over 2018 to early 2020 in

two different but equally valuable care environments.

We spent time with clinicians and researchers at Vancouver General Hospital’s

Willow Pavilion, an acute care ward for senior patients managing dementia, where

research was already underway to involve care robots for therapy. Patients at Wil-

low Pavilion had regular contact with a Paro robot [132] where Occupational Ther-

apist (OT)s and nursing staff created a care protocol of using the robot to gently

redirect patient emotional distress or confusion to the Paro as an external focus.

We spoke with nurses who stated that when patients were interacting with the Paro

placed on a table top with both patient and care provider on the same side of the

table, the Paro robot was treated as a third interactor. After some time, staff could

see a reduction of agitation in patients who would then allow staff to perform ne-

cessary care activities (administer medication, draw blood or take vital sign meas-

urements) that might have been met with resistance otherwise.

We were inspired to define use cases and design opportunities for devices that

enhance and enrich human-human interactions, where some of those interactions

could also be self-reflexive. Mario, an older adult managing the early stages of

dementia, had some experience with the Paro and found it cute but what he really
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wanted was a device that could accompany him at home while he could still live

at home with the care his wife. He was interested in a smaller, unobtrusive robot

that could fit on a nightstand or counter that could provide him comfort and give

him more confidence to live independently as long as possible. He was looking for

something that offered practical functions like audible reminders of when to take

his medication or go to appointments but also more sentimental ones like being

a focus for his care. Mario wanted to devote energy into caring for something

similar to the way that he once did with a beloved pet, but without the disastrous

consequences should he forget to feed or clean it some days – he wanted to avoid

this ‘indulgence’ (as he put it) to be another source of tasks managed by his wife

and family.

Concurrently, we partnered with Canuck Place Children’s Hospice, embed-

ding ourselves as researchers. We interviewed and observed day staff: nurses,

recreational therapists, occupational therapists, and teachers who provided com-

prehensive care for the families. We also met the children with complicated care

needs, the surviving siblings who sometimes travelled long distances and missed

their own activities to accompany their families, and the guardians and parents who

managed to juggle complex and conflicting priorities for important respite care.

I still regularly think of Jonah, a (then) 8-year old boy with minimal motor

control. His family and care team were able to understand Jonah based on some

very small movements from three fingers in the middle of his left hand – a rel-

atively recent development at the time. His recreational therapist, Lisa, knew that

Jonah liked the counter-pressure of firm hugs and relatively heavy touches, inform-

ing us to hold his hand tightly when we read to him and to use consistent and firm

pressure whenever we were in contact. Light touches were less perceptible and the

tentativeness irritating whereas firmer pressure communicated intent, would get his

attention, and provided comfort in companionship as it was not easy for him to re-

quest touch. Lisa wanted a device for Jonah that could be reminiscent of a blanket

or tube snake-like form factor, something that could sit in the wheelchair with him

or that he could lay on or under. She would have liked something with an embed-

ded motor or pneumatic pump that would emulate relatively strong breathing-like

motions against Jonah’s body to provide a sense of live physical presence, particu-

larly for his overnight care. She was intrigued by the thought of using physiological
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and touch sensing that might allow Jonah to initiate emotion communication – up

to this point, caregivers would ask mostly yes or no questions about his emotional

and general comfort and he would lift fingers to indicate agreement or not. If we

were able to create a model of Jonah’s emotions and a device that would report

changes, Jonah could use it as an additional communication avenue, potentially

increasing the frequency and range of social and emotional interactions.

Overall, our goal is not to replace human interactions or reflections, but to

lower the barrier for social and emotional engagement. Much like how the use of

a Fitbit activity tracker might offer reminders and improve motivation to go for

regular runs but does nothing to reduce the necessary human work of running, we

imagine automatic emotion trace might lower the barrier for tracking or collect-

ing data but would still require the emotional regulation and reflection work to be

effective. This thesis begins the work of investigating how to track time-varying

emotion trajectories to offer insight into and visualization opportunities for how

our emotions evolve spontaneously and authentically under naturalistic conditions,

and presents a proof-of-concept for generating evolving personalizable models that

could be embedded into emotionally reactive devices. Models like these depend

crucially on data collection and labelling, which can be challenging for anyone. To

serve Mario and Jonah, who may not be able to consistently provide ground truth

labels themselves, we can tap into the experiences of close caregivers like parents

and care staff. People who recognize their behaviours or triggers and can act as

proxies to report and associate labels on their behalf – a method shown to have

similar performance to self-reporting [324].

For the safety of vulnerable patients and care staff, this line of inquiry was

paused during the COVID-19 pandemic.

9.6 Summary
In Chapter 1, we posed the overarching question: “How can we enable machines to

recognize true and spontaneous evolving emotion expressed through touch?”, and

produced a set of contributions. Over the course of this thesis we have examined the

roles that machines play in emotional interaction with human users and explored

emotion recognition engines that evolve with spontaneous user expression. We
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close by revisiting the contributions that this journey has yielded.

1. While machine recognition of emotion intent in human-designed haptic mes-

sages exceed chance, human users are better at interpreting the same mes-

sages but only when they have valuable context clues and relationship his-

tory. Augmenting human users with machine classification or ‘prediction’ of

transmitted messages may be able to narrow down the possibilities and im-

prove the efficacy of the device as a conduit for machine-mediated emotion

intent between users (Chapter 3).

2. Holding pet-sized robots exhibiting ‘breathing’ behaviours can be shown to

calm or agitate by varying the frequency and regularity of the waveform

(Chapter 4).

3. Telling emotional stories from one’s personal life can produce machine re-

cognizable affective touch expression (Chapter 5).

4. Emotion expression should have a variety of representations, including one

that acknowledges the time-varying experience of emotions (Chapter 2).

5. One way to track emotion as it evolves is to review and appraise an experi-

ence more than once. While multiple labelling passes create more opportun-

ities for label mismatch, it also increases the likelihood of capturing complex

nuance in fast-evolving emotion (Chapter 6).

6. Through a novel dataset of brain activity data and incidental touch pressure

collected while participants played a horror video game (the FEEL dataset),

we benchmark classification performance of dynamic emotion – evolving

emotion within a time window (e.g., differentiating between happy-getting-

happier vs. happy-getting-anxious) – to F1-scores of up to 0.82 from incid-

ental emotion via keypress force data (Chapter 7).

7. Guided emotion labelling with a custom tool can generate natural and spon-

taneous emotion evolution training data required for classification models of

real-world ‘in-the-wild’ emotion evolution (Chapter 8).
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Armed with new techniques for dynamic emotion modelling, we are now in

a better position to build the custom, co-designed emotionally reactive devices of

our imaginations.
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