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Abstract

Interactive human-computer systems can be enriched to interpret and respond to

users’ affective states using computational emotion models, which necessitates the

collection of authentic and spontaneous emotion data. Popular emotion modelling

frameworks rely on convenient, yet static abstractions of emotion (e.g., Ekman’s

basic emotions and Russell’s circumplex). These abstractions often oversimplify

complex emotional experiences into single emotion categories. In turn, emotion

models guided by such emotion annotations leave out significant aspects of the

user’s true, spontaneous emotional experience.

Richer representations of emotion, negotiated and understood between parti-

cipants and researchers, can be created using mixed-methods labelling–assigning

an emotion descriptor to a recorded segment of experience–approaches. However,

resulting emotion annotations are often not ready-to-use in computational models.

In this thesis, we investigate (1) ways to improve meaningfulness of self-reported

emotion annotations, and (2) to understand the implicit expression of emotion in

touch pressure. For the first, we propose three strategies to interpret multiple ver-

sions of self-annotated dynamic emotion through combining (multi-label classi-

fication), extracting (of alignment metrics), and resolving (of conflicts between)

emotion labels.

We evaluate our label-resolution strategies using the FSR EEG Emotion-Labelled

(FEEL) dataset (N=16). The FEEL dataset includes brain activity and keypress

force data captured from a 10-minute video of user gameplay experience, annot-

ated with two methods of self-reporting emotion–a continuous annotation and an

interview. By featuring multi-pass self-report and user-calibrated scales, the data

collection protocol prioritized the capture of genuine emotion evolution. We trian-
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gulate multiple self-annotated emotion reports and evaluate classification accuracy

of our three proposed label resolution strategies. For our second research question,

we compare models built on keypress force and brain activity data in an effort to

understand the implicit expression of emotion in touch pressure. Finally, we reflect

on the trade-offs of each strategy for developing computational models of emo-

tion. Our findings suggest that touch-based models outperform those built on brain

activity, and mixed-methods emotion annotations increase self-report meaningful-

ness.
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Lay Summary

To investigate how touch behaviour reflects our emotion expressions, we used a

dataset of 16 people playing a horror video game, capturing their touch pressure

and brain activity. We associated (or “labelled”) their touch pressure with their de-

scriptive emotion language from an interview and their joystick drawings of their

emotion trajectory while they watched their gameplay recording. We evaluated

three strategies for training machine learning models to recognize emotion: (1)

predict emotion trajectory after recognizing an emotion word; (2) predict whether

or not participants were feeling a given emotion (for all provided emotion words);

and (3) predict only after being trained on experiences we were confident repres-

ented a specific emotion. Overall, we find that touch pressure is better at predicting

emotion trajectory than brain activity and that emotion words are more meaningful

than emotion trajectory: knowing the context of an emotion leads to better predic-

tions of emotion trajectory.
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Preface

All of the work presented henceforth was conducted in the Sensory Perception and

Interaction Laboratory (SPIN) at the University of British Columbia, Vancouver

campus. All projects and associated methods were approved by the University

of British Columbia’s Research Ethics Board [certificate #H15-02611: Interactive

Affective Touch].

I used the pronoun “we” in this thesis instead of “I”, and rely on this preface

to indicate the scope of my own and others contributions. The “we” reflects the

collaborative environment in which this research was developed, consisting of my-

self, my dear graduate and undergraduate colleagues, and my supervisor Dr. Karon

MacLean. Other researchers will have different critical reflexive practices than my-

self. As the writer of this thesis, I will not speak on their behalf, but recognize that

the result of much of this work has been a culmination of our collective positional-

ities, influencing the decisions and reporting style discussed in this thesis.

All the analyses in this thesis are performed with the FSR EEG Emotion-

Labelled (FEEL) dataset, originally collected in 2018 by my fellow graduate stu-

dents Laura Cang and Paul Bucci, and, then undergraduate researchers at SPIN,

Laura Rodgers, Hailey Mah, Qianqian Feng, and Anushka Agrawal. Chapter 3

features a detailed description of the study protocol behind FEEL, as well as pre-

liminary results obtained by Laura Cang (PhD candidate) and Bereket Guta (at the

time, undergraduate researcher at SPIN).

Chapter 4 (Exploring Multi-Pass Emotion Self-Reports) presents analyses that

were done in collaboration with graduate and undergraduate researchers at SPIN. I

am responsible for most of the analysis reported in this chapter, with exception of

Section 4.2 (Commonality in Interpreting Emotion Words), performed by Chuxuan
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Zhang, and 4.4 (Comparing Motion Characteristics of Emotion Dynamics), per-

formed in conjunction by Bereket Guta, visiting graduate researcher Shinmin Hsu,

and myself. I carried out results interpretation, reporting, and final editing in con-

junction with Laura, Bereket, and Karon.

I led investigation on conceptual development, data preparation, analyses and

reporting pertaining to the content discussed in Chapter 5 and 6. Laura, Bereket,

and Karon were involved in the early stages of concept formation and contributed

to manuscript edits.

A version of Chapters 3, 4 and parts of 7 has been published in:

Cang, X. L., Guerra, R. R., Bucci, P., Guta, B., Rodgers, L., Mah, H.,

Hsu, S., Feng, Q., Zhang, C., Agrawal, A., MacLean, K. E. (2022, Oc-

tober 18th). Choose or Fuse: Enriching Data Views with Multi-Label

Emotion Dynamics. IEEE 10th Int’l Conf on Affective Computing &

Intelligent Interaction (ACII).

Laura Cang was involved in concept formation, results interpretation, and lead ma-

nuscript composition. I was the second author, responsible for most of the analysis

(presented in Chapter 4 of this thesis), as well as manuscript composition. Paul

Bucci contributed significantly in concept formation. Bereket Guta, Shinmin Hsu,

and Chuxuan Zhang contributed with analysis and manuscript edits. Dr. Karon

MacLean was the supervisory author and was involved throughout the project in

concept formation and manuscript composition.

Last, I take responsibility for the concept of this thesis, chapter integration, and

all other formal writing.
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Chapter 1

Introduction

Have you ever felt frustrated that your emotions aren’t being understood by others?

We all know the feeling of being so gutted you can’t speak; so ecstatic that you can

only jump for joy. When your emotions get the better of your ability to communic-

ate your feelings, it can take time for other people to interpret and understand what

you are feeling and why you are feeling a certain way.

Being able to intentionally communicate emotions as we feel them, verbally

or otherwise, is not always feasible. To intentionally communicate feelings, there

exists the process of “I feel → I recognize my emotions → I communicate them →
(I am understood).” This emotion communication is vulnerable to a myriad of dif-

ferent factors: having the language to explain what you feel, having the cognitive

capacity to process your feelings, having enough control over your body to com-

municate your emotional state. This is true whenever there is a communication

breakdown, for instance, between adults and young children who are still in the

process of acquiring language, or due to difficulty in identifying feelings in people

who experience dementia [67]. More broadly, and independently of a person’s

physical or cognitive capacities, intentional communication becomes challenging

when we are at the height of powerful emotions, pushing us to rely on spontaneous

emoting.

Emotion-aware technologies are also affected by these challenges. Building

such technologies requires an understanding of how people express emotions. In

operationalizing this understanding, we rely on self-report of genuine emotions in
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controlled, although real, situations. However, as noted above, self-reporting itself

is a delicate process. Conceptualizing how to build and use trustworthy self-reports

that yield adequate models is an open area of research [13].

Conversely, effective emotion-aware technologies should automatically respond

to a person’s affective state, captured implicitly through different interaction chan-

nels. Selecting application-appropriate interaction channels through which emo-

tion expression can reliably be identified is also an open area of research [97], and

often depends on self-reports to re-construct a ground-truth of emotion experience.

In this thesis, we explore a novel emotion dataset containing triangulated emo-

tion self-reports. We are interested in exploring (1) ways to improve meaning-

fulness of emotion self-reports; and (2) the understanding of the physicality of

emotion expression in the context of touch pressure. Our overarching goal is to

contribute fundamental knowledge which will enable unobtrusive touch-mediated

affective technologies that can dynamically and effectively process and respond to

ever-changing, human emotions.

1.1 Understanding and Interpreting Emotion Language
To create interactive systems capable of interpreting and responding to users’ emo-

tions, we first need to understand how to operationalize subjective emotion ex-

periences as computational models. Whether building robots that detect anxiety

through touch interaction or video games that dynamically adjust level difficulty to

optimize player engagement, challenges arise in developing these computational

models from true and spontaneously evolving emotions.

Emotion theorists have long observed time-varying dynamics of emotion ex-

pression, attributing them to complex neurological and physiological regulation

mechanisms [33], appraisal effects [72], cognition and contextual factors [68, 76].

To simplify in-lab research, computational emotion modelling often relies on an

“emotions-as-point” metaphor [12, 56], represented as a dimensionless point in

an emotion plane in which self-reporting static emotion labels for classification

involves easy-to-read scales, often along dimensions of arousal, valence, and dom-

inance [15]. While these models are convenient, for real-time use we need to re-

cognize emotion evolution over time, rather than distilling a lengthy event into a
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single label.

Operationalizing authenticity in emotion data is a significant obstacle. Our

memories and emotional assessments are affected by time and reflection [72, 76];

how representative of someone’s “reality” can a reporting scheme be? Commonly

used labels on the arousal-valence circumplex model [84], Positive and Negative

Affect Schedule (PANAS) [105], or Self-Assessment Manikin (SAM) [11] (among

others) quickly become intractable for sampling at the rates at which emotion can

potentially evolve (ranging from a few seconds to several hours [100]).

Challenges to building emotionally reactive machines exist both in determining

the appropriate measurement instrument to detect relevant emotion markers and the

right timing to respond to that marker.

Independent of the measurement instrument, self-report of emotion incites ques-

tions of generalizability across the population. A researcher’s understanding of the

instrument scale may be very different from that of a participant [12]; our compre-

hension of an emotional ‘landscape’ or internalized emotion frames of reference

are highly subjective, influenced by life experiences and personal history [10]. We

presume that any set of ground-truth labels for self-reported emotion are similarly

personalized: i.e., the experience or scale for anger for one person may not be

recognizable for another.

For emotionally reactive machines, finding the ‘right time’ for the machine to

act requires that our machines understand the transitional nature or direction of

their inherently emotional human patron (users). In particular, machines may need

to respond differently to emotions as they increase or decrease in some identifiable

parameter, such as intensity or polarity. To forecast the direction of emotion ex-

perience, we can predict transition directly or indirectly – by predicting position

and then calculating transition. Evaluating emotion based on dynamic qualities

will advance the accuracy of machine recognition of human emotion experiences.

Better forecasting of a user’s near-future emotional expression allows for system

responses that are temporally and situationally appropriate.
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1.2 Is Reading Emotion from Affective Touch Possible?
Studies exploring the bi-directional connection between emotion and touch have

been prominent in neuroscience [36, 62, 71] and social sciences [29, 53], suggest-

ing that touch can both communicate and influence a person’s emotional state. Kin-

nunen and Kolehmainen [53] argues that touch is a vital part of affective histories

after analyzing 68 touch biographies, in which authors narrate their lives through

the ways in which they have touched, been touched, experienced touch and been

socialized to touch.

The uptick in research of touch-based affective technologies is far newer, how-

ever, having particularly accelerated during the past decade [25]. Aside from lim-

itations in sensing technology, the disparity of progress among fields can be partly

attributed to the difficulties in capturing genuine, non-scripted touch in scenarios

characterized by authentic emotion expression. Touch pressure (defined broadly)

has been shown to encode implicit emotional content that can be interpreted by

people [40]. Machines can distinguish identity [14, 30] and many gradations of

social touch gestures that we tend to consider emotionally expressive [4, 15, 50].

Although the biological mechanisms through which emotion modulates touch

are still unclear [38, 40], touch is a promising modality for inferring–and poten-

tially altering–emotion experiences [59]. Touch is a concrete, perceivable and ex-

pressive act [53]. When compared to signals commonly used in emotion research–

Electroencephalogram (EEG), brain imaging, heart-rate, facial configurations, body

posture, speech [92, 97]–touch is less intrusive, and gives the participant more

agency over what data they consent to have recorded–not feasible when recording

biological signals, for example.

Studies of the recipient of affective touch demonstrates that ‘pleasant’ touches

activates C-fibre tactile afferents1in the skin which trigger pleasure centres in the

brain and has evolutionary impact on how we form attachments to one another –

pleasant physical touch is crucial in forming prosocial behaviours and relationships

for humans throughout our lifetimes [8, 38, 66]. In contrast, investigation into the

performer of affective touch has largely been behaviour observation-based where

researchers record and evaluate the behaviour while the ‘toucher’ is expressing a

self-reported emotional experience [15] or acting in an emotional context [111].
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While it is not entirely clear if emotion “leaks” into non-affective touch, studies

into typing behaviour on pressure sensitive keyboards demonstrate that stressed

typing is linked to harder key strikes resulting in higher keypress forces and shorter

keypress duration (and incidentally, a higher error rate) [37, 64, 103]. Now we ask,

could people exhibit similar implicit emotional touch where emotion expression is

not the primary purpose of the interaction?

1.3 Research Questions and Approach
In order to model spontaneously evolving emotions, we analyze the data from the

Force EEG and Emotion-Labelled (FEEL) dataset, previously collected using the

emotion annotation (also referred to as “emotion labelling”) protocol described

in Cang et al. [16]. The data includes 64-channel brain activity and 5-key keypress

force data as well as two emotion labelling passes2, self-reported at high and low

densities, collected from 16 participants. Both input modalities–keypress force and

brain activity–have been shown to encode emotion [3, 37, 64] and are reasonable

to collect during video-game play. All data is time-aligned to an emotion task,

playing Playdead’s Inside [79] – a horror video game featuring chase and puzzle

scenes, navigated serially and thus amenable to temporal alignment of game-play.

From FEEL’s multi-pass self-reports, we construct two emotion-labeled time

series – Continuous Annotation (CA) and the Timeline with Calibrated Words

(TWCW). Diverse self-reports may capture perspectives that are authentic in dif-

ferent ways. There may be conflicts that arise between labelsets generated on the

same timeline, the resolution of which could improve classification performance

and allow for flexible emotion outputs, which can be personalized based on the

application scope.

1. How do we improve meaningfulness of emotion self-reports, capturing sub-

jective and dynamic emotion in computational emotion models?
Nuances in users’ emotion language, manifesting as apparent inconsistency in

emotion self-reports, can interfere with emotion model performance and valid-

ity [49]. We ask: [RQ1a] does user-centring of emotion self-reports add new
1C-fibre tactile afferents are nerve receptors in human skin that generally respond to non-painful

stimulation such as light touch [66].
2Also referred to as “multi-pass”.
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information? For example, do people rank common emotion words similarly? In

what ways does labelling data differ by pass? What do we gain from quantifying

the differences? When designing computational models, [RQ1b] what are effective

ways of incorporating triangulated labels for modelling dynamic emotion?

Our present focus is to demonstrate and evaluate Machine Learning (ML) mod-

els of dynamic emotion in terms of the trajectory or direction of emotional move-

ment and compare to those of momentary state. We investigate use of triangulated

emotion self-reports collected using mixed methods which play out at different

timescales (continuous annotation and participant interview), and consider the be-

nefits and drawbacks of model parameters in terms of label definitions and window

size.

2. What does touch pressure tell us about emotions?

User data collected during operation of an emotionally responsive device can be

used to track a person’s dynamic emotion expression. We are interested in explor-

ing implicit emotion encoded in pressure data from keystrokes in the context of

gameplay.

We investigate touch pressure as a non-intrusive modality through which emo-

tion expression can be captured, and, in the future, leveraged to create emotion-

responsive technologies. We further refine our initial research question: [RQ2]
What does keypress force tell us about emotions in a tense gameplay? In a video

game play scenario, we compare keypress force–a readily available modality cap-

tured by game controllers3–with brain activity at a much higher temporal and spa-

tial resolution (over the head rather than just the fingers). EEG for emotion state

classification is well-studied using Event-Related Potentials (ERP) as snapshots of

expression [61, 74, 104]. Keypress force (and touch pressure more generally) has

been shown to encode emotion during purposed tasks like typing and other gesture

behaviours [15, 37, 64]. We wonder how touch performs, in comparison to more

intrusive methods, over an extended time-series for emotion prediction and what

key contributions this modality offers.

3In this case, arrow keys and the action key “ALT”.
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Figure 1.1: Overview of the stages of data analysis performed in this thesis, highlighting where each guiding
perspective influences our work.
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1.4 Guiding Perspectives
Given the exploratory nature of our focus, we guide our analysis efforts with meth-

odologies informed by literature in the field of data mining (Chapter 1.4.1) and

social sciences (Chapter 1.4.2). Figure 1.1 presents an overview of the high-level

components of this thesis, highlighting how the frameworks presented in this sec-

tion influence our work in subsequent chapters.

1.4.1 Data Analysis Framework

Data mining involves exploring and analyzing large blocks of information to glean

meaningful patterns and relationships. For projects involving exploration and un-

derstanding of complex data relationships–such as between Force Sensing Res-

istor (FSR) and emotion self-reports–the Cross-Industry Standard Process for Data

Mining (CRISP-DM) [106] proves to be a useful process model. The CRISP-DM of-

fers an adaptable framework that focuses on problem understanding, while provid-

ing a uniform set of processes relevant to a data analysis project. In this thesis,

we use the CRISP-DM to guide our analysis efforts of the FEEL dataset. Figure 1.2

presents an overview of the CRISP-DM process applied to the FEEL dataset.

Problem Understanding in this stage, we focus on understanding the problem

area, objectives, and requirements of the project. We do so in this thesis by looking

at related works that explore emotion labelling procedures and computational affect

modelling in varied modalities.

Data Understanding focuses on identifying, collecting, verifying quality, and ana-

lyzing the datasets that can help in accomplishing the project goals. We highlight

that although collecting data usually takes place at this stage, the data collection

efforts precedes the involvement of the author. At this stage, we performed rounds

of data exploration, cleaned up the data by removing artifacts of the collection

methods, and devised experiments to further understand the information contained

in different streams.

Data Preparation comprises of preparing the dataset for modelling. This step can

include selecting the appropriate data streams, and cleaning, extracting, integrating,

and formatting data as necessary.
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Figure 1.2: Cross-Industry Standard Process for Data Mining (CRISP-DM)
process cycle applied to the FEEL dataset.

Data Modelling includes devising the test design, selecting modelling techniques,

building, and assessing models. At this stage, we selected relevant strategies from

previous works in affect modelling, as well as consulted theory work grounded in

Psychology for further insights.

Evaluation while technical assessment of models happens during data modelling,

the evaluation stage looks more broadly at whether the initial problem (or research

question) has been addressed. We also reflected on the process and determined

future work during this stage.

Deployment is the final phase for most data mining projects. In this stage, we

prepare models to be deployed to the final user and create maintenance plans, as

well as finalize any relevant reports that will accompany the work. Due to the

exploratory focus of this work, deployment to users is out of scope of this thesis.

1.4.2 Emotion Analysis Guideline

In studies of emotion, researchers often capture instances of an emotion experi-

ence, coupled with a set of defined emotion labels, in an attempt to discover bio-
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markers in the brain or body for the corresponding emotion categories. In regards

to analytical methods, these experience-label pairs are commonly evaluated on a

single Machine Learning or Deep Learning technique [97]. This practice relies

on the assumption that reported emotion labels refer to objective patterns that can

be discovered. In this thesis, we adopt the premise that emotion expression and

categorization are processes heavily influenced by a person’s social and cultural

experiences [9, 17].

The study of human emotions spans over multiple research fields. As an effort

to ensure that our methodological decisions and reporting are consistent with our

assumptions of emotion as psychologically and socially constructed subjective ex-

periences, we performed a brief review of previous works on emotion modelling

beyond the domain of Computer Science. As a result, we implement the following

recommendations when analyzing emotion data [5, 52, 97, 112]:

1. Create personalized models and analyze emotion expression at an individual

level [52, 97, 112].

2. Use more than one computational method to analyze data. This mitigates the

extent to which modelling methods are responsible for any observed incon-

sistencies [5].

3. When using Machine Learning, compare multiple supervised classification

algorithms and feature selection methods on the same dataset to explore im-

plications of methodological decisions discovered [5].

1.5 Contributions
• Insights into the descriptive properties of a multi-pass labelling protocol.

• A set of evaluated strategies of how to employ triangulated emotion labels in

computational models.

• Evidence of effectively modelling emotion expression in keypress force (KFP),

contrasting with better studied comparable EEG-based models.
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1.6 Researcher’s Position and Ethics Considerations
Models are representational tools that can help us think, reason, or make predic-

tions around a phenomenon of interest. We create models which are adequate and

limited to a purpose, and not to provide true, holistic, perfectly accurate renditions

of real-life processes and experiences. No model is morally neutral or free of sub-

jective value judgments. When creating models, we have to make choices on what

and how to model, what “truths” or assumptions we rely on, and what to conclude

when interpreting our outputs [77]. As the primary decision-maker on most of the

modelling work done in this thesis, I would like to provide the reader with a bigger

picture of my trajectory up to this point.

I have a personal motivation in this topic of research as having grown around

family members who struggle to communicate and process their emotions. I be-

lieve in the potential of emotion-responsive applications to benefit them and those

around them. Academically, I come from a background in Systems Engineering,

with an emphasis in Computational Intelligence. I moved to Vancouver in 2020

to pursue my Master’s degree in Computer Science, and have since focused my

efforts in learning more about how to design with and for people. Prior to my

affiliation to University of British Columbia (UBC), I had the privilege to under-

take basic Cognitive Psychology courses at the University of California, Berkeley,

which gave me a jump-start in understanding emotion modelling research. Person-

ally, as a South American, gender non-conforming, international student, I have

both benefited and been harmed by societal structures around racism, sexism, ho-

mophobia, capitalism, and educational inequality. While my experiences made me

aware of broader life perspectives, I acknowledge that I am not immune to personal

biases.

As an former student at the Federal University of Minas Gerais, I would like

to acknowledge that the land on which I studied is the traditional, ancestral, and

unceded territory of the Aranãs, Xakriabás, Kaxixós, Pataxós, and Pataxós Hã-

hã-hãe, and many others whose history and culture remains undocumented. As

a graduate student at UBC, I would like to acknowledge that the land on which I

currently live and study is the traditional, ancestral, and unceded territory of the

xwm@kw@ý@m (Musqueam People). I recall the unjust, racist, and colonial prac-
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tices that have had a lasting legacy, and continue to create prejudiced obstacles for

Indigenous peoples across Canada and Brazil.

Finally, I used the pronoun “we” in this thesis instead of “I”. The “we” reflects

the collaborative environment in which this research was developed, consisting of

myself, my dear graduate and undergraduate colleagues, and my supervisor Dr.

Karon MacLean. Other researchers will have different critical reflexive practices

than myself. As the writer of this thesis, I will not speak on their behalf, but

recognize that the result of much of this work has been a culmination of our col-

lective positionalities, influencing the decisions and reporting style discussed in the

chapters to follow.

1.7 Organization and Audience
This thesis is organized as follows:

• Chapter 2 presents related works in emotion modelling, followed by a brief

background of the Machine Learning terms used in this thesis.

• Chapter 3 expands on the data collection protocol for the FEEL dataset and

summarizes preliminary results using brain activity data.

• Chapter 4 dives into multi-pass emotion self-reports, exploring the informa-

tion contained in each reporting pass.

• Chapter 5 compares emotion models built on FSR data with those built on

EEG data.

• Chapter 6 presents different strategies for implementing computational mod-

els with multi-pass labels on FSR data, further relating to how emotion ex-

pression occurs via touch.

• Chapter 7 highlights reflections and recommendations to computational mod-

elling of emotions based on results of Chapters 4, 5 and 6.

• Chapter 8 concludes this thesis, summarizing key findings and next steps.
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1.7.1 Audience

In an effort to make this thesis accessible to the general Human Computer Inter-

action (HCI) community, we include a summary of key Machine Learning (ML)

concepts (see Chapter 2.2). This section is self-contained and may be skipped

without loss of significant information for those with a general understanding of

ML theory.
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Chapter 2

Related Work

What is emotion?

Clore and Ortony [17] describes emotion as the ability to make evaluations

about our environments, the appraisal of “something as good or bad in some way”.

Our understanding of emotions has changed considerably throughout the years.

Much of current emotion modelling work is based in the theory of Core Affect [97,

112], which propose modelling these evaluations on a two or three-dimensional

scale of level of arousal, valence, and/or dominance that reflect subjective emo-

tional experiences [84]. Language and culture play major roles in emotion categor-

ization within these different dimensions [9, 10, 17].

We can motivate recognizing and understanding of emotions through emotion-

ally reactive applications, which often begin with developing computational mod-

els. We build models as representational tools capable of estimating emotion given

a set of inputs.

Most studies in computational emotion modelling (also referred to as “emotion

modelling” in this thesis) share a set of building blocks: (1) an emotion elicit-

ation task, where we take care to consider what emotions we are inducing and in

what context; (2) a set of inputs through which we infer emotion expression–touch,

speech, images of facial configurations; (3) emotion reports, through which either

the participant provides an estimate of a "ground-truth", or someone else annotates

that data with what they perceive the participant is feeling. The resulting data from

these blocks build up to the models themselves, often involving statistical analysis,
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qualitative methods, or, as in this thesis, machine learning.

In this chapter, we provide an overview of decisions that factor in emotion data

collection and summarize previous work in computational emotion models relevant

to what we propose in this thesis. In interest of making this thesis accessible to the

general public, we add an expanded glossary (Chapter 2.2) covering ML terms used

in the coming chapters.

2.1 Emotion Data
Machine interpretation of spontaneous emotion encoded in expressive modalities

involves building models on ecologically valid labelled emotion data. We relate

to existing literature key considerations around three aspects of building a model:

emotion elicitation, self-reports used to label emotion data collected in real-time,

and the selection of an emotion metaphor on which to focus the computed model.

Labelled datasets are necessary to train and evaluate models for estimating

emotion. Studies that aim to collect emotion data generally involve key decisions in

defining the emotion elicitation task, selecting (or creating) emotion measurement

instruments, capturing one or more affective expression modalities, and construing

emotion metaphors from collected labels.

2.1.1 Emotion Elicitation

Where applications require in-time recognition of emotion, data must represent

realistic emotion expression [32, 43]. Relived or recalled emotion is one proxy [15,

27]. Participants are prompted with an emotion word (the single label) and asked

to recount the story of a past intense experience.

While successful in eliciting authentic and wide-ranging responses, this over-

simplifies an episode to emotive homogeneity [15]. Furthermore, participant stor-

ies are hyper-individualistic, not amenable to a search for commonalities. Con-

versely, entertainment media can root participants in a more uniform elicitation

stimulus, with many validated video and music clips used successfully for this

purpose [18, 34]. Video games have shown promise in producing physiological

responses analogous to that of real life evocations [96].
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2.1.2 Self-Report Methods

Classifying emotion requires capturing and labelling emotional experiences. Rep-

resentation thus impacts how we ask users to report their experience.

Russell’s circumplex [84] is a commonly used instrument depicted as a spatially

continuous 2D space of arousal and valence (plus dominance in 3D [6]). It un-

derlies popular labelling schemes, most involving a participant locating emotion

words on its axes; e.g., words associated with PANAS [105].

Self-Assessment Manikin (SAM [11]) simplifies emotion labelling with a non-

verbal pictorial assessment representing a combined Likert scale on pleasure, arousal,

and dominance dimensions [93, 108].

Natural language reporting methods are used when experiences (maybe a self-

contained memory [14], or a touch [39]) are sufficiently brief, simple to fit a single

label, and precede an opportunity for the participant to report without experiential

interference. They become intractable for segments that are longer than a few

moments, span multiple emotions, and/or require rapid computed response (before

the segment ends).

Still with a dimensional representation, others have collected temporally con-

tinuous emotion ratings using a mouse- [19] or a joystick [88, 110]. For hands-free

activities, a joystick allows for high temporal-resolution concurrent reporting, but

at the cost of emotional intrusiveness. Post-hoc ratings require review of a recorded

experience.

2.1.3 Emotion Metaphors

In order to estimate an amorphous quantity like emotion, for classification purposes

or otherwise, one must first explicitly or implicitly choose a representation meta-

phor which defines how we regard the emotion experience, the language we use to

describe it, and the parameters with which we attempt to capture it [12, 56, 76].

Altogether, this descriptive framing and parameterization is sometimes referred to

as emotion modelling [72]. To avoid overloading the term “model” or confusing

the use of emotion models with classification models of emotion, we adopt [12]’s

terminology of emotion metaphor to refer to how we think about emotion rep-
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resentation. We use model to refer to the computational (e.g., machine learning)

model implementation. In preparation for building computational models of emo-

tion, we start by addressing commonly used emotion metaphors: emotion states,

dynamics, and appraisal.

Emotions-as-State

Classifying emotion as state has many practical benefits for machine recogni-

tion. There are many validated instruments for identification and measurement,

such as Russell’s circumplex grid [84] and the Self Assessment Manikin or SAM

scale [11]. These are beautifully simple measurement scales which employ forced

choice and offer simple and straightforward classes for data labelling. In contrast,

emotions rarely fit into convenient boxes. Rather than clean-cut 2D quadrants of

arousal and valence or elegant linear scales of dominance, our emotional lives are

complexly dynamic in situation-dependent ways: who we are with, how recently

our physical and emotional needs have been met, and why we are in the present

moment with all the baggage of our cultural and personal history [10].

Emotion Dynamics

Emotions evolve throughout the course of a single event or experience, as well

as longer extents of time [56]: consider the emotional journey followed by your

favourite engaging movie scene. Psychologists Kuppens and Verduyn [56] pro-

pose dynamic emotion metrics to describe changes across an emotional experience,

with the most prominent being emotion inertia (resistance to variation, quantified

as signal autocorrelation); emotion instability (mean square of successive differ-

ences as the amount of change); and emotion variability (within-subject variance

respectively to represent the range of change) [44, 94]. Operationalizing concepts

rooted in emotion dynamics for computational applications requires labels cap-

turing transitional emotional experiences as they happen. We propose the use of

emotion direction as a dynamic emotion metaphor to describe where a present

emotional experience may evolve towards.

Before diving into the literature around computational emotion modelling, it is

important to define the common terminology underlying Machine Learning (ML)

17



theory used in this thesis. The following section is framed as an expanded gloss-

ary of terms mentioned in the next chapters, and may be skipped without loss of

information.

2.2 Learning Machines
The concept of “learning” in ML represents the process through which we build

self-improving models based on existing data, that is, computational models can

learn to achieve better performance without being explicitly programmed.

2.2.1 Types of Learning

Machine “learning” comprises of three different processes through which a com-

putational model can be estimated [73]:

1. Predictive or supervised learning: in this modality, training data comes in

observation-label pairs. The end goal is to derive a model that generalizes

well to new data, i.e., , by being capable of mapping new, unlabelled obser-

vations in the label space.

2. Unsupervised learning: in cases where only a collection of inputs is avail-

able, it is possible instead to derive underlying patterns, i.e., , describe pos-

sible correlations between features, cluster observations in a few groups

based on similar behaviour, and detect outliers. This type of learning is

often referred to as knowledge discovery.

3. Reinforcement learning: the basic components of these types of systems

involve perceptions, actions, and rewards. A agent interacts with a environ-

ment and is rewarded depending on whether or not its actions are in accord-

ance with the main purpose of the system. This way, the goal of the agent

is to learn the behaviour that maximizes its expected cumulative reward over

time.

This thesis focuses mostly on supervised learning, with unsupervised learning

as an exploratory analysis tool. In particular, we focus on supervised classification

tasks. A classification task involves mapping observations to discrete categories
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(or “labels”)1. The number of outputs that can be attributed to an observation

determines the type of classification task at hand. Figure 2.1 illustrates the different

types of classification tasks explored in this thesis.

Figure 2.1: Illustration of single label classification tasks. At the right, we
exemplify binary classification–pick one of two categories–and at the

bottom, multi-class classification–pick one of many categories).

Single-label binary supervised learning: In binary classification, we attribute a

single output from a set of two possible labels to an observation. For instance,

we could train a model to predict whether someone is “stressed” or “not stressed”

based on their heart-rate data.

Single-label multi-class supervised learning: We attribute a single output from

a set of many possible labels to an observation. For instance, we could train a

model to predict whether someone is emoting “anger”, “sadness”, “happiness”, or

“disgust” based on their facial configuration.

Multi-label supervised learning: In multi-label classification, we attribute one or

more outputs from a set of many possible labels to an observation. For instance, we

1A regression task can be described as a generalized classification with continuous labels
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could train a model to predict whether someone is feeling more than one emotion

(e.g., sleepy and angry) at a given time based on their EEG data.

Soft-label supervised learning: In the previous examples, a “hard label” repres-

ents a binary membership relationship–someone is either feeling “sad” or “happy”.

Soft labels allow for flexibility: we output a score (probability or likelihood) of the

observation belonging to each one of the possible categories (e.g., predict a 30%

chance that someone is feeling “sad”, and a 20% chance of feeling “angry”).

2.2.2 Learning with Multiple Labels

Single-label learning is the default implementation for many off-the-shelf ML al-

gorithms [78]. Conversely, there are many ways of approaching multi-label learn-

ing. In this thesis, we choose two strategies based on simplicity of implementation

and interpretation of outputs: flat multi-label learning and hierarchical learning.

Figure 2.2 illustrates both approaches.

Figure 2.2: Illustration of multi-label learning tasks. At the top right, an
example of flat multi-label classification, in which each label is

considered an independent category. At the bottom, an example of
hierarchical multi-label classification, where decisions on certain label

categories can influence each other.
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Flat Multi-Label Models In our flat multi-label approach, we adopt a one vs. all

strategy, creating several binary classifier models, one per category. The models

are trained independently, and the results are outputted as a set.

Hierarchical Multi-Label Models In our hierarchical multi-label approach, we

adopt a multi-stage one vs. all approach. In each stage, we train several binary

classifier models, one per category. These models are trained independently, and

the results of the upper levels inform the classifiers at the lower levels, i.e., , the

label outputs of each level become feature inputs to the following levels.

2.3 Machine Classification on Implicit Emotion
Expression Modalities

Humans reveal a wealth of emotion non-verbally, by communicating it to others

through modalities such as facial expression [7, 70], touch behaviour [15, 49],

body language and posture [95]. Our work builds on the body of work on machine

classification of emotion; here, using multi-pass emotion self-report as labels over

brain activity and keypress force during video gameplay–a dynamic emotion ex-

perience.

Affect in Typing

Social touch pressure has been shown to communicate current affect [15, 39].

While not social touch, keyboard typing behaviour or keystroke dynamics in the

context of emotionally intense experience offers a view of the connection between

manual activity and real experienced emotion [58, 65]. Classification systems us-

ing keystroke dynamics have largely employed features related to keypress timing

(e.g., typing speed, time between keystrokes, and delete/backspace frequency) to

predict the emotion experienced during keyboard use [28, 65, 75], resulting in ac-

curacy rates approaching 88% (chance at 50% for two-level models [28]).

Investigating keypress force or pressure during keyboard use for emotional

content, however, is relatively new [37]. Using pressure-sensitive keyboards, emo-

tion has been classified using typing pressure with up to 93% accuracy (chance

17%) [64], with Hernandez et al. [37] finding a positive correlation between stress

and keypress force in typing behaviour. In our work, we explore how keypress
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force might communicate emotional transitions between Stressed and Relaxed on

pressure-sensitive control keys.

Affect in Brain Activity Measured by EEG

Although brain activity data is out of scope for this thesis, we include an overview

of related works with this affective modality for later comparison with results from

FSR data.

EEG measures changes in electrical potential around the scalp through the use

of electrodes placed at various locations around the head [55]. This data stream

captures aspects of the physiological state of an individual and has been shown to

predict symptoms of various brain disorders (epilepsy, seizures, sleep disorders,

etc.) [20, 45, 99]. Due to EEG’s high (millisecond) temporal resolution, various

studies have used it to capture short-lived emotion experiences [23, 60, 74]. Its re-

latively low signal-to-noise ratio is a recognized challenge, requiring the creation

of reliable features from the original signal [55]. Energy spectrum-based features

tend to perform well, achieving accuracy rates near 87.53% using an Support Vec-

tor Machine (SVM) classifier (chance at 50%) [104].

Building on the success of deep learning models, Xing et al. [109] applied

a Long Short-Term Memory (LSTM) model using features generated with an Au-

toEncoder to classify time-based features directly; and obtained a mean accuracy of

81.10% on valence labels (chance 50%) [109]. Recently, 2D differential entropy-

based features, which are capable of capturing spatial relationships, have been

combined with Convolutional Neural Networks (CNN) models to classify emo-

tional experiences (positive, negative, neutral) at an accuracy of 97.10% (chance

33%) [1].

Classification of brain activity is dominated by data instances highlighted by

Event-Related Potentialss (ERPS), wherein time windows are often constructed

around 100ms - 750ms after an event [22, 26, 83]. ERP is not conducive to captur-

ing emotion evolution, where brain activity may change over the course of minutes

and hours [102].
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2.4 Emotion Modelling with Multiple Reporting Passes
Emotion may also evolve under scrutiny and cognitive processing [72, 76]; with

some time and reflection, emotional assessment of an experience may be categor-

ically different than the initial evocation [76]. Emotions may be most intense while

directly in or just after an experience [89, 102] but a person may only be able to

articulate it after an emotional peak has passed, requiring time to assess and con-

sider the appropriate language [98]. This timing tension suggests there may be an

ideal time for naming the emotion [24] somewhere shortly after an experience to

give enough time for processing [89] but before memory degrades [81].

Although some studies report analysis on multiple labelling schemes (e.g. Ek-

man’s emotion categories and Russel’s dimensions) [82, 92, 97, 103, 112], most

research on computational emotion models relies on a single pass of either ob-

served2 or self-reported emotion annotations [82, 92, 97, 112]. To the best of our

knowledge, the present work is the first attempt to conduct research on multiple

passes of self-reported emotion.

We posit that combining self-reported emotion labels collected at different time

frames, but close enough to the primary elicitation task to avoid memory degrad-

ation, will lead to better performing models. Moreover, we are interested in ex-

ploring touch data as a potential modality for capturing implicit emotion expres-

sion in computational models, comparing performance to more intrusive, but more

studied, brain activity signals. To this end, we elect the Force EEG and Emotion-

Labelled (FEEL) Dataset as the base from which we build our analyses. In the

following chapter, we detail the collection protocol for FEEL, discuss preliminary

results, and identify next steps.

2Annotated without the participant by one or more judges
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Chapter 3

FEEL: Force EEG and
Emotion-Labelled Dataset

To model spontaneously evolving emotions, we analyze data from participants

while they played an emotionally evocative videogame. The data, collected prior to

the work reported in this thesis1, follows a multipass data labelling protocol [16],

recording brain activity in the form of Electroencephalogram (EEG) data and key-

press force via an Force Sensing Resistor (FSR)-embedded keyboard. In this chapter,

we detail the collection protocol for the Force EEG and Emotion-Labelled (FEEL)

dataset, illustrated in Figure 3.1. Last, we describe preliminary results obtained

from modelling emotions using Electroencephalogram (EEG) data, which we refer

to in Chapter 5.

Figure 3.1: Overview of the Force EEG and Emotion-Labelled dataset
collection protocol.

1Data collected without the author’s involvement (see Preface).
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3.1 Collection Protocol
In the following, we report the FEEL collection protocol and data schema in detail,

to put the data in context for its use in Chapters 4-5. Some is drawn from [16] (for

which the thesis author is a co-author) and further describes the data collection.

The Force EEG and Emotion-Labelled (FEEL) dataset contains 64-channel brain

activity and 5-key keypress force data as well as two emotion labelling passes,

self-reported at high and low densities, collected from 16 participants. All data is

time-aligned to an emotion task, playing Playdead’s Inside – a horror video game

featuring chase and puzzle scenes, navigated serially and thus amenable to tem-

poral alignment of gameplay. The dataset consists of comma separated value (.csv)

files which are organized by participant. Video data is excluded for participant pri-

vacy. Gameplay averaged 13min 24sec (minimum: 8min 25sec, maximum: 21min

37sec, std 3min 08sec).

3.1.1 Participants

FEEL is collected from N=16 participants, 8 female and 8 male; 8 between 19-24

and the other 8 between 25-34 years of age. All played videogames regularly from

a few hours a month up to 4 hours daily, nearly all of whom report 1-6+ hours per

week; none had played the videogame featured in the data collection protocol. See

Appendices A.1 and A.2 for recruitment poster and consent form, respectively.

As part of recruitment, participants completed a questionnaire adapted from

the Trait Meta Mood Scale (TMMS) [85]. Only those who self-reported as having

high emotion clarity and low emotion suppression were invited to participate in the

data collection. Participants were compensated with an honorarium of $30 for the

2-hr data collection session.

3.1.2 Data Capture and Preparation

Collection Sequence Overview: Data was collected in four steps that produced the

FEEL dataset components which are illustrated in Figure 3.1 and described below

in detail.

1. Initial Gameplay generated streams of participant brain activity (EEG) and

25



keypress force (from an FSR-embedded keyboard). Scree recordings and

player video was excluded from FEEL due to privacy considerations.

2. In Word Scale Calibration, participants provided their personal understand-

ings of emotion words relative to one another, for later use.

3. Then in the first self-report cycle (Interview with Calibrated Words (IWCW))

participants reviewed the gameplay video and annotated it with their calib-

rated word sets.

4. Finally, in the second self-report cycle (Continuous Annotation (CA)) they

used a 1-D joystick to annotate the video.

Task Order: Task order was carefully chosen to minimize influence on emotion

elicitation while increasing the likelihood that participants would use a common

set of emotion words to describe their experience. During Step 3, the interview al-

lowed players to explicitly process their emotions out loud, guided by researchers

looking for notable emotional events – e.g., strong emotions, startling or uncom-

fortable moments, odd behaviour. Leaving the joystick evaluation as the final step

lets participants internalize and contextualize the emotion scale in preparation for

the continuous annotation.

Data Alignment: It was crucial that all temporal data (collected from initial game-

play and continuous annotation) was synchronized. For these time-linked steps 1

and 4, the setup was configured such that a single button press sent a synchroniza-

tion signal from the game-play computer to the modality logging systems handling

each data stream, and triggered a screen colour change on the game-play com-

puter’s screen. This produced a synchronized timestamp to align the modality

streams and, later, the continuous annotation input with each frame of the video-

game play.

Brain Activity Data Stream (EEG)

Brain activity signals were captured using EGI’s EEG 400 system2 which features

a 64-channel Routine Hydrocel geodesic sensor net and proprietary NetStation data
2EGI EEG research system details available at: https://www.egi.com/research-division/

eeg-systems/geodesic-eeg-systems
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collection and visualization software. Data was sampled at 1kHz, with a band pass

filter of 1Hz to 50Hz applied in post-processing. This range was chosen to remove

high frequency jitter and 60Hz mains noise [113] yet retain the frequency bands

(α , β , and γ) associated with emotion processing [2].

Initially, the data cleaning procedures included: artifact removal with MNE-

Python tools3 and used Independent Component Analysis (ICA) to detect and re-

move electro-oculogram (EOG) artifacts, such as eye blinks. Parallel to the work

in this thesis, we developed scripts to identify channels with unusually high noise

levels, verified by visual inspection, and removed affected segments. Since these

measures did not produce significant classification improvement, we report classi-

fication results with only the band-pass filter as described above.

Keypress Force Data Stream (KFP)

Keypress force was recorded from a standard keyboard with Whadda force-sensitive

resistors4 (FSRS) embedded in game-specific control keys (four direction keys and

ALT). The analog signals from these 5 FSRS were processed into digital signals us-

ing an Arduino Mega 25605 running Standard Firmata and a custom node.js server

keylogger using the johnny-five API. Amplitude or force ranged from 0 (no con-

tact) to 1024 units (∼1kg) at 52Hz6. Reported results and the published dataset use

downsampled FSR data matched to the videogame framerate at 30Hz.

Timeline with Calibrated Words (TwCW)

The Timeline was created from collection sequence Steps 2 and 3, described now

in more detail.

Word Calibration: Following the gameplay, players first calibrated a Stressed-

Relaxed emotion scale, contextualizing points along the scale with memories of

their recent gameplay experience and marked with 13 pre-selected emotion words

from the PANAS [105] (“Calibrated Words”): Cautious, Satisfied, Hopeful, Frus-

3MNE description and tutorials available at https://mne.tools/stable/index.html
4Whadda FSR WPSE334 available at: https://whadda.com/product/

force-sensing-resistor-fsr-wpse334/
5Arduino Mega 2560 available at: https://store.arduino.cc/products/arduino-mega-2560-rev3
6As defined by the FSR specifications available commercially at https://whadda.com/product/

force-sensing-resistor-fsr-wpse334/.
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trated, Anxious, Nervous, Threatened, Resigned, Alert, Accomplished, Fearful,

Dread, and Curious. Write-ins were allowed though not used for classification in

present analysis. Figure 3.2 exemplifies the result of this step.

Figure 3.2: Illustrative example of contextualized emotion word calibration.

Calibrated Interview Self-Report Procedure: Players then carried out their first,

low data density annotation pass of gameplay video review by indicating which

(calibrated) emotion word applied at gameplay points that they recalled having

some emotional intensity.

TwCW Construction: We constructed a TwCW by integrating the Calibrated Words

and the Interview results. Each interview annotation consists of a specifically cal-

ibrated word plotted as its calibrated value at the annotation timestamp along the

videogame play.

Continuous Annotation Stream (CA)

In the second gameplay review, the CA is generated from a non-biased joystick (one

that holds the last position rather than returning to centre) tracing an emotion time

series, where the height of the curve represents the participant experience between

Relaxed and Stressed over the timeline of the gameplay experience. Joystick po-

sition readings were matched with video frame rate of 30Hz to ensure alignment
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with video playback. To reduce some of the analog jitter in the joystick data, we

used a simple moving average filter as a smoothing step before analysis and dataset

publication. Joystick values are normalized to range from 0 to 1.

In total, the outputs of this protocol are player specific gameplay streams (EEG

and FSR), emotion word calibrations, and the TWCW and CA – two time-series

of emotion self-report annotated on the same dimensional plane of the Stressed-

Relaxed scale over the gameplay timeline. Figure 3.3 illustrates the data collected

during the study.

Figure 3.3: A sample of the data streams collected during the FEEL study:
EEG from brain activity (top) and the FSR from keypress force
collected during gameplay, superimposed with self-reported

Continuous Annotation and Timeline of Calibrated words (bottom).

3.2 Preliminary Results Using Brain Activity with
Continuous Annotation

For the FEEL dataset, preliminary results of emotion expression in EEG data have

been obtained in analysis spearheaded by the authors’ collaborators Guta and Cang
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(see Preface). As the work is not yet published, we overview it here with their

permission. It is relevant to Chapters 4-5.

Figure 3.4: Overview of classification pipeline for EEG data.

Using the same time window boundaries as the emotion labels (0.5s, 1s, 2s,

and 5s), data instances were generated from the brain activity signal. The EEG

data is high density, ideal for classification using deep learning models. Cang and

Guta trained time- and frequency-domain models–using Long Short-Term Memory

(LSTM) and Convolutional Neural Networks (CNN) models respectively–with the

Pytorch7 deep learning framework. Figure 3.4 summarizes the classification pipeline

implemented for EEG data.

3.2.1 Time Domain and LSTM Classifier

LSTM models capture time dependence within a given window and are ideal for

tasks where interpreting the current instance of information depends on recent

context e.g., natural language speech recognition and translation [41]. For emo-

tion evolution over time, the LSTM as structured in Figure 3.5(b) is used to model

EEG emotion expression, classifying time domain features directly.

Time-Domain Feature Extraction by Autoencoder: To combat overfitting to

signal noise, Cang and Guta explored dimensionality reduction by applying an

autoencoder for feature extraction [109], compressing the 64-channels down to 12

variables. For a given window of length N timepoints, they constructed a time

domain feature set of size N ×12 variables as shown in Figure 3.5(a).

7https://github.com/pytorch/pytorch
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Figure 3.5: The AutoEncoder (a), LSTM (b) and CNN (c) models used for
brain activity classification. The AutoEncoder is trained in order to

encode the 64 channels at every data point in a given window down to
12 variables. The LSTM uses the encoded features from the

AutoEncoder to generate a 3 class output. The CNN uses the 5 bands ×
64 channels × 64 channels frequency features as an input to generate a

3 class output.

3.2.2 Frequency Domain and Convolutional Neural Network
Classifier

The use of Convolutional Neural Networks (CNN) models has increased signific-

antly as they have come to solve a wide range of 2D based classification tasks.

Specifically, Cang and Guta build upon the model CNN model structure proposed

by Ahmed et al. [1] for affect classification. Based on initial experiments, they

found a model consisting of a single convolution layer and a single fully connected

layer as depicted in Figure 3.5(c) to be best as more complex architecture tended

to overfit to the data.

Frequency-Domain Feature Extraction: For emotion classification using CNNs,
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differential entropy (DE) features calculated in the frequency domain tend to be

more robust to noise [90]. Cang and Guta calculated the DE for each of 5 fre-

quency bands [23]: delta (1-4Hz), theta (4-7Hz), alpha (8-12Hz), beta (12-30Hz)

and gamma (30-50Hz), so chosen due to demonstrated activity during emotion ex-

pression [1, 47].

3.2.3 Classification Performance

Cang and Guta report F1-scores over chance. Chance is dependent on participants’

class distribution by emotion label generated from self-report and window size.

Figure 3.6 summarizes scores for CNN and LSTM models.

Figure 3.6: F1-scores for EEG models by window size.

Based on their results, Cang and Guta highlight that:

(1) CNN models outperform LSTM in every experimental condition, with LSTM

landing at or below chance;

(2) the highest F1-scores are achieved with the smallest windows.

3.3 Summary
In this chapter, we detailed the collection protocol for the Force EEG and Emotion-

Labelled dataset, which features brain activity and keypress force data annotated

32



with two distinct time series of self-reported emotion. In addition, we summarized

preliminary work performed using EEG data and continuous annotation of emotion.

Before further exploring FEEL, we acknowledge some of its limitations:

1. Single-session data: while FEEL includes a collection of curated emotion

annotations, we cannot assess how participant behaviour might change from

one session to another.

2. One-dimensional emotion scale: participants annotate their experiences from

relaxed to stressed, and are primed to use emotion words aligned with this

scale, narrowing the range of emotions our models can capture.

3. Single calibration pass: calibration might change from one session to an-

other, or even before and after an emotion experience.

4. Elicitation activity: the tense videogame provides a dynamic emotion exper-

ience, but we cannot assess how well the emotion annotations conform to

other types of experiences.

5. Limited touch data: while keypress force is unobtrusive to collect in this

scenario, we are only able to infer keyboard activity and pressure informa-

tion. We wonder how implicit expression of emotion happens in other di-

mensions of touch (e.g., shear, hover).

In the next chapters, we investigate how different reporting passes align and

what kinds of information can be extracted from each. Then, we analyze the impact

of annotation style on machine classification of dynamic emotion using touch data.
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Chapter 4

Exploring Multi-Pass Emotion
Self-Reports

Our present analytical goal is to explore the properties of and relationships among

the reports obtained in the FEEL dataset, primarily by examining the degree and

nature of their [dis]similarity over a range of metrics, and probing for physical

intuition among them.

4.1 Label Metaphors
In labelling the emotion experience, participants directly annotated the gameplay

timeline with a Continuous Annotation (CA) curve. For label definition purposes,

we call the curve E where E (t) is the value on the Relaxed-Stressed scale at time

t. We use zero-hold interpolation of the CA (downsampled to 30Hz) for temporal

alignment with the processed FSR (30Hz) data.

To track dynamic emotion, we refer to emotion direction as the overall rate

of change of E in a given time window, calculated by finding the slope m of the

best fit line (minimizing the Least Squares Error). We restrict the domain of m by

transforming it into an angle using arctan(m), bounded by (−π

2
,
π

2
), scaled and

translated to (0,1).

Emotion position labels are calculated as the mean reported value over the time
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window1. We calculate this metaphor by taking the arithmetic mean of E (t) in a

given window.

To evaluate whether a reduction in noise would improve classification, we cre-

ate a third label metaphor of an emotion based on the idea of area, here referred to

as an emotion accumulator, which is the additive overall sum of emotion values

or the area under the E (t) curve of a given time window. Specifically, we find the

mean using the Trapezoid rule

1
N

N

∑
i=1

E (ti−1)+E (ti)
2

where N is the number of data points in a given window.

All emotion metaphor calculations are in the range of (0,1); for the purposes of

classification comparison, we transform label metaphors into three distinct classes

by splitting the scale into thirds, specifically, [0, 1
3 ), [ 1

3 , 2
3 ), [ 2

3 , 1].

Figure 4.1 depicts the label distribution of these three classes for each metaphor

of direction, position, and accumulator. To overcome class imbalance during model

building, we over-sample underrepresented classes by bootstrapping and use F1-

macro average as our reporting score.

4.2 Commonality in Interpreting Emotion Words
To assess across-participant similarity of calibration ratings (as a proxy for model

generalizability), Figure 4.2 plots rating variance for each of the calibrated words

in order of decreasing agreement (increasing variance).

For a quantitative view of cross-participant consistency, we also conducted an

Intra-Class Correlation (ICC) test (also known as inter-rater reliability test [54]).

For the subset of emotion labels rated by all participants (Anxious, Cautious, Frus-

trated and Satisfied), we found ICC(2, k=16)=0.99, p ≪ 0.01 (α=0.05, CI=[0.97,

1.0]), based on mean rating over an absolute-agreement, 2-way random-effects

model. ICC values > 0.9 indicate high reliability [54], suggesting these ratings

are overall highly similar across-participant for this set of emotions. Indeed, the

four rated by all participants had an ICC(2, k=16) of 0.99.

1Considerations about data windowing described in Chapter 5.1.2.
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Figure 4.1: Distribution of class labels for each label metaphor and window size.
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Figure 4.2: Rating variance by calibration word, ordered by number of
participants who provided a rating for that word.

However, this agreement varies as set size increases, first decreasing monoton-

ically then dropping sharply at Satisfied - Resigned to ICC(2, k = 4)=0.83. This

may be partially due to the relative sparseness of ratings.

Taken together, these results support that there are substantive differences
in how individuals interpret emotion words, highlighting the importance of
personalized models.

4.3 Self-Report Modality Consistency via Time Series
High similarity between self reports indicates consistency and perhaps interchange-

ability of report modalities; differences might suggest invalidity of one or both, or

that they capture different information. Interpreting within-participant TWCW and

CA as time-series, we use standard time-series analysis methods [63] (with appro-

priate condition verification steps) to check for signal similarity – Pearson’s correl-

ation – and confirm that both data streams are appropriate responses to a common

stimulus – Granger’s Causality [87]).
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4.3.1 Test Preparation

Using raw report data, we first confirmed that both time-series were station-
ary with the Augmented Dickey-Fuller (ADF) test (Bonferroni-Holm correction

α = 0.05, pBH < 0.022), and that their statistical properties did not change over

time [31]. Prior to evaluating cross-correlation between the two reports, we veri-

fied that each was not auto-correlated to avoid artificially inflated correlations [21]).

With Python’s statsmodels [86], all peaks were at lag = 0 for all participants’

TWCW and CA auto-correlation plots (i.e., both signals present low correlations at

all lagged versions of itself). We conclude that neither signal is self-similar.

The TWCW and CA self-reports are sampled at different times and resolutions

(0.05Hz and 30Hz respectively). We downsampled the CA series rather than inter-

polate the sparse TWCW, to minimize bias.

4.3.2 Pearson’s Correlation for Signal Similarity

We analyzed signal similarity between participants3. P01, P02, P08, and P14 had

moderate correlation coefficients for the two emotion self-reports (CA and TWCW)

at ρ > 0.3 (pBH < 0.05). However, in general there was no significant correla-

tion between the report streams: p-values exceed the threshold after a Bonferroni-

Holm’s adjustment to α = 0.003. We infer that individuals’ self-reports differed
in the metrics we observed.

4.3.3 Granger Causality Test for Source Plausibility

Although Granger cannot confirm direct causality between different variables [91]

(i.e., it does not claim TWCW causes the CA values), we employ the test to evaluate

whether time-series for CA could forecast TWCW and vice versa. We employed

a Bonferroni-Holm correction (αBH=0.05/N, N = number of participants). We

found significance for 15 of 16 participants (pBH < 0.048), suggesting that one

label stream could be used to forecast the other for all except P02. This implies the
data streams are appropriate as responses to the same stimulus.

2For all except P01 (TWCW): pBH = 0.07, ADF test statistic =−2.671
3Pearson’s correlation results at α = 0.05: P01 (ρ = 0.38, pBH = 0.142), P02 (ρ = 0.38, pBH =

0.235), P08 (ρ = 0.43, pBH = 0.235), P14 (ρ = 0.37, pBH = 0.245)
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(a) Boxplots of emotion dynamics of Continuous Annotation
(Task 4) data, by Participant (N=16). Position

(M = 0.5465, SD = 0.2221), Direction (0.0049, 0.7127), Inertia
(0.7666, 0.1215), Instability (0.1316, 0.1086) and Variability

(1.2165, 2.4079).

(b) Representative subset of label distributions:
emotions-as-position (average position; purple),

emotions-as-direction (direction; blue), Inertia (magenta),
Instability (green), Variability (red). Note that longer gameplay

results in more samples.

Figure 4.3: Comparison of summary statistics and histograms by emotion parameter.
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4.4 Comparing Motion Characteristics of Emotion
Dynamics

We next examined how various parameters computed on these time series might

reveal differing insights. In this scope we included: signal Position (the prevalent

standard, and following an “emotion-as-state” metaphor); Direction (drawing on an

alternative metaphor for emotion as directional and changing); and Houben, Van

Den Noortgate, and Kuppens’s [2015] three Emotion Dynamics (ED) parameters

of Inertia, Instability and Variability. Our investigation included comparing these

time series (original and computed) through summary statistics and histograms, all

by participant.

4.4.1 Data Preparation

We further analyzed each participant’s Continuous Annotation4 data by first par-

titioning the continuous self-report data into 500ms windows (window count µ =

1587.75, σ = 462.50 by participant). Where window boundaries do not coincide

with a logged data point, we imputed with the previous data point, turning our

time-series into a higher-resolution but stepped signal.

We computed Position labels from windows by mean value; and Direction la-

bels as the rate-of-change per minute from a least squares linear fit, in the form of

an angle θ ∈ [−π/2,π/2]. Using R’s psych package [80], we calculated Inertia

(autocorrelation coefficient), Instability (Root Mean Square of Successive Differ-

ences (RMSSD)) and Variability (Standard Deviation (SD)) by window for each

participant [44].

4.4.2 Comparing Summary Statistics and Histograms by Parameter

Figure 4.3a shows signal statistics for each participant and parameter. The means

for all five measures track closely across participants. However, spread differs: In-

ertia is relatively tight and symmetric, Variability is broad and highly asymmetric,

Instability in between.
4Tests for equivalence between the two sets of self-report (CA and TWCW) across each of the

three emotion dynamics parameters (two 1-tailed paired samples t-tests [57] per dynamic measure)
were inconclusive (p > 0.5, t(15)≪ 0.001, d ≪ 0.001). Subsequent emotion dynamics explorations
were done on the higher resolution CA data.
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In an alternative view, Figure 4.3b shows the same parameters and signals, but

now as histogram distributions. Data for these four participants are reasonably

representative.

Comparing these two representations of the same underlying data is insightful.

For example, while in Figure 4.3a Position is clearly less stationary than Direction,

4.3b indicates the form that this takes (broader spread, spikiness). And while the

dominating feature of the other three ED’s boxplots is the uniformity of means

across participants, histograms reveal their internal parameters as starkly different:

Inertia is broad and high-valued, the others low-valued with very long tails.

No insight was gained from visual analysis of spectral qualities (from a Fast

Fourier Transform) of all five parameters.

4.5 Summary
The preceding section’s results demonstrate that the relatively high resolution of

the CA report (30Hz raw, parameters computed at 2Hz) affords computation of a

variety of descriptive parameters. We investigated what information can be extrac-

ted from different self-report methods, and whether or not self-reports are inter-

changeable. Our findings suggest that although both continuous annotation and

interview methods yield different emotion time series, both seem to be appropriate

responses to the same stimulus. Getting to the root of what the differences in label

representation mean will require approaches assisted by synchronized physiolo-

gical data views.

We finish this chapter with the question: which self-report pass is best for
computational emotion modelling? Before exploring answers, we analyze FSR

data as a viable input for emotion models (Chapter 5). Then, in Chapter 6, we

return to the question, evaluating computational models using the different self-

reports.
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Chapter 5

Connecting Keypress Force to
Multi-Pass Emotion Self-Reports

To summarize where we are, the outputs of the protocol described in Chapter 3.1

are player specific physiological and activity streams (EEG and FSR), emotion word

calibrations, and the TWCW and CA – two time-series of emotion self-report annot-

ated on the same dimensional plane of the Stressed-Relaxed scale over the game-

play timeline.

In this chapter, we model emotion with FSR data, describing our data featuriz-

ation approach and analysis pipeline. We focus on understanding the viability of

computational emotion modelling using manual pressure data, and compare results

to a more largely studied affective modality–brain activity.

5.1 Feature Extraction
FSR data from keypress force has an average of < 1 distinct keystrokes in the same

window length1, disqualifying the use of deep learning models. For this dataset,

we craft new features (a process known as feature engineering) and perform model

selection with classical machine learning models. We extract features using key-

stroke activity, frequency, and statistical analysis, generating data instances of the

same duration employed in brain activity analysis (0.5s, 1s, 2s, and 5s).

1According to recordsetter.com, the world record is 886 distinct keystrokes per minute!
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5.1.1 Data Preparation

Estimating keypress force data with Force Sensing Resistors introduces signal jit-

ter. To mitigate signal noise while maintaining the overall shape of a keystroke, we

apply an Exponentially Weighted Moving Average (EWMA) [46], with smoothing

factor α = 0.5.

In addition, we aggregate the keypress activity in the game to inspect how

pressure alone informs emotion expression. We generate two additional channels

as ‘composite keys’ by (1) taking the sum of force over all five keys and (2) select-

ing the max force from all keys, resulting in a total of 7 channels (composite keys

“A5” and “A6” plus the original five).

5.1.2 Windowing

Each time series (FSR data stream and emotion self-reports) is divided into non-

overlapping, consecutive, equal duration segments, or windows. Modality-specific

features and the associated emotion class calculated from the data points contained

within a window’s boundaries constitute a data instance to be classified. We exper-

imented with windows of duration w where w = {0.5s,1s,2s,5s} in order to assess

the effect that window duration has on emotion classification accuracy, recognizing

that the choice of window duration limits the lowest possible detectable frequency.

Table 5.1 summarizes the count of data instances by window size.

Window size Mean Std.

500ms 4834 876
1000ms 2405 526
2000ms 1203 263
5000ms 544 225

Table 5.1: Aggregated count of data instances by window size.

We set the minimum duration window to 0.5s and the maximum at 5s to cover

the range of emotion duration of "a few seconds" [101, 102]. One and two second

windows match other emotion-related classification studies [15, 60, 104].
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5.1.3 Frequency and Statistical Features

Based on previous studies of emotion expression of social touch pressure [15,

50], we calculate a set of descriptive statistics for each window of pressure data–

minimum, maximum, variance, mean, area under the curve, and sum of absolute

differences. Using Fast Fourier Transform (FFT) and Hamming windows of the

same lengths as the time domain windows, we also calculate the most prominent

frequency (amplitude and frequency bin), amplitude variance, amplitude mean, and

peak count in the frequency spectrum [15].

5.1.4 Keystroke Features

While gameplay is controlled via computer keyboard, participants are not typ-

ing but rather activating keys based on gameplay context. Elements of keystroke

dynamics–such as travel time between keys–are less relevant as features in this

case, so we calculate affective touch features highlighting keystroke fluctuations in

force and duration in the time and frequency domains [15, 50]. In addition, we bor-

row select parameters related to the Attack, Decay, Sustain, and Release (ADSR)

envelope (illustrated in Figure 5.1), commonly employed in synthesizers to de-

scribe different stages of sound as produced by a piano keyboard.

Figure 5.1: Attack, Decay, Sustain, and Release (ADSR) envelope.
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After sectioning the data in time windows, we calculate the following para-

meters for each keystroke in a window: keystroke duration (in ms), peak count,

amplitude of maximum peak, time from keystroke start to maximum peak, time

from maximum peak to key release, force variance, average force, and area under

the keypress curve. We aggregate each of these parameters by taking the mean in

a data window. Table 5.3 summarizes all features extracted from FSR data.

Although the windowing strategy is simple to implement, it can cause keypress

distortion–i.e., when a keystroke crosses window boundaries, creating spurious

peak and release points, and misleading summary statistics. Figure 5.2 shows an

excerpt of windowed keypress force activity from a key and illustrates an instance

of keypress distortion. For the purposes of multi-modal window alignment and

the simulation of real-time application of emotion classification on keypress force,

we elect to follow a uniform data windowing pipeline while recognizing this lim-

itation. Table 5.2 summarizes the count of occurrences of keypress distortion by

window size.

Window size Mean Std.

500ms 0.25% 0.75%
1000ms 0.51% 1.52%
2000ms 1.00% 2.95%
5000ms 0.84% 2.66%

Table 5.2: Percentage of occurring keypress distortion in relation to all FSR

data instances, aggregated by window size.

Features

Statistical features minimum, maximum, variance, mean, area under
the curve, and sum of absolute difference

Frequency features most prominent frequency (amplitude and fre-
quency bin), amplitude variance, amplitude mean,
and peak count in the frequency spectrum.

Keystroke dynamics and ADSR features keystroke duration (in ms), peak count, amplitude of
maximum peak, time from keystroke start to max-
imum peak, time from maximum peak to key re-
lease, force variance, average force, and area under
the keypress curve

Table 5.3: Summary of features extracted from FSR data.
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Figure 5.2: Example of keystroke force as captured by a key-mounted FSR

sensor. Ws and We indicate the start and end of a window (dashed
boundary). P represents the maximum peak force during a single

keystroke (delineated by zero force), and R represents the release point.
Distortion occurs when keystrokes span across multiple windows,

creating spurious peak and release points (P′ and R′, P′′ and R′′), and
distorted representations of keypress activity in a window.

5.2 Understanding Affect in FSR Data
In studies focusing on understanding how emotion can be detected implicitly (i.e.,

from data channels observed in real-time without voluntary effort from the user,

such as through physiological or activity monitoring), brain activity–in particular,

as estimated by EEG–is well represented. Keypress force–touch pressure, more

generally–forms a significantly smaller subset of computational emotion modelling

research [97, 112]. In this section, we compare FSR models on with those built on

EEG to investigate the viability of keypress force as an affective modality to capture

emotion expression.

An emotion trajectory or path traced through an emotion space [12] suggests

a time-series representation of emotion ratings. By windowing the data, we can

create data instances on brain activity and/or keypress force modality and generate

distinct emotion label sets by metaphor. We vary window size, affect expression

modality, label metaphor (position, direction), and report accuracy from classical

machine learning and deep learning models. In this section, we describe these

experimental factors, and explain their relevance for real-time application. To ac-

commodate high individual variability in brain activity and emotion calibration, all
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models are built to focus on individualized models where test and training sets are

from the same individual (subject-dependent models). Details about preprocessing

and model implementation using brain activity data can be found in 3.2 (Figure 3.4)

and 5.2.5.

5.2.1 Labels Sourced from Continuous Annotation

Due to the quantitative nature of the continuous annotation (and its representations

as label metaphors), we can directly use CA self-report data to build ML models

based on real-time physiological data. To allow for comparison between implicit

real-time modalities, we follow the same label extraction procedures from CA self-

report used for models built on brain activity data, which are described in detail in

Chapter 4.1 and illustrated in Figure 5.3.

5.2.2 Classification Pipeline

For the FSR data, we perform grid search cross-validation (k= 5) to select the best

fit (per participant) among seven classical machine learning models, comparing

performance across linear, ensemble, and boosted models (see Table 5.4 for a list

of models and associated parameters tuned through grid search). Models here were

developed in Python using SciKit Learn and XGboost2. Given the high dimension-

ality of our feature set (d = 82 features), we employ a zero variance threshold –

removing all features with zero variance (constant features) – and recursive feature

elimination (RFECV) [35] with cross-validation (k= 5) to select features. We run

30 iterations of this pipeline, randomizing our training and validation sets at each

iteration. Figure 5.4 illustrates the overall pipeline. Source and preprocessing steps

of emotion labels are described in Chapter 4.1 and illustrated in Figure 5.3.

2https://github.com/dmlc/xgboost/
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Figure 5.3: Analysis factors for experiments on continuously annotated emotion experience estimated by dynamic
emotion metaphors. We inspect models built on two affective modalities: brain activity (as estimated by EEG)
and keypress force (FSR), using two emotion label metaphors of direction (best fit line) and position (window

mean), and trained on four window sizes (0.5s, 1s, 2s, 5s).
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Parameters

ExtraTreesClassifier n_estimators: (16, 32),
RandomForestClassifier n_estimators: (16, 32),
AdaBoostClassifier n_estimators: (16, 32),
GradientBoostingClassifier n_estimators: (16, 32), learning_rate: (0.8, 1.0),
XGBClassifier max_depth: (4, 6, 8), min_child_weight: (1, 5, 10),
LogisticRegression penalty: (none, l1, l2, elasticnet), C: (0.001, 0.01, 0.1, 1, 10),

class_weight: (balanced, None), solver: (newton-cg, sag, saga,
lbfgs), l1_ratio: (0.0, 0.3, 0.5, 0.7, 1.0)

SVC kernel: (linear, rbf), C: (0.001, 0.01, 0.1, 1, 10), gamma: (0.001,
0.0001)

Table 5.4: Estimators and parameters used for tuning keypress force models
to each participant.

Figure 5.4: Overview of the experiment setup used to evaluate emotion
models built on FSR data.

5.2.3 Classification Performance of Models Built on FSR Data

We evaluate classification of FSR models using 5-fold Cross-Validation (CV), where

the training set consists of 80% of the data instances with the remainder forming

the validation set. Chance is dependent on an individual’s class distribution by la-

bel metaphor and windowing; in order to compare performance across conditions,

we report F1-score over chance (i.e., , diff(F1-score,chance F1-score)) such that

performing ‘at chance’ results in a score of 0.

On FSR data, we report mean cross-validated F1-scores over chance from the

best performing algorithm by participant by running 30 iterations of grid search

with 5-fold CV with the predefined set of ML models.

We violate Levene’s test for equality of variances for the present analysis,
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F(11,180) = 0.293, p = 0.987. Owing to this assumption violation, we chose to

subject FSR chance-offset F1-scores to a two-way Aligned Rank Transform Ana-

lysis of Variance (ART ANOVA) [107], having three types of labels (direction, po-

sition, and accumulator) and four sizes of windows (0.5s, 1s, 2s, 5s). All effects

are statistically significant at the 0.05 significance level. The main effects of label

type and window sizes, and interaction effect yield F ratios of F(2,180) = 47.793,

F(3,180) = 18.003, F(6,180) = 4.468, p < 0.001, respectively.

We ran post-hoc tests using Holm correction to further investigate the indi-

vidual mean differences, significance at pHolm < 0.001 unless otherwise indicated.

Results show that the mean F1-score was significantly greater between accumulator

and direction scores, as well as position and direction scores, but not at accumu-

lator and position (pHolm = 0.671). On window sizes, post-hoc tests indicate that

the mean F1-score was significantly greater between 5s windows and all other win-

dow types, and 2s and 0.5s, but not at other sizes (1s-2s and 1s-0.5s, pHolm > 0.07.

Finally, on interaction effect, post-hoc results indicate that the combination of ac-

cumulator (or position) and 5s windows perform better than direction at both 0.5s

and 1s (pHolm < 0.001 and pHolm < 0.05, respectively).

To summarize test results of greatest relevance to our investigation:

(1) FSR data with 5s windows perform better than all other window sizes.

(2) Accumulator and position label types perform better than direction; though at

5s windows all three perform similarly.

5.2.4 Feature Evaluation

To better understand how different FSR features inform classification, we analyze

results from Recursive Feature Elimination (RFE) with CV on the feature set of all

models, pulling out the upper quartile (top 25%) of features ranked by importance.

We report how often these top features are selected, grouped by key and feature

type as in Figure 5.5.

We group features by type: “FSR pressure behaviour” features describe the how

much pressure is applied to a key when the key is pressed; “aggregate pressure

2Implemented using R’s ARTool [51]

50



statistics” describe the pressure force applied to a key, including moments when

the key is inactive; “FSR time behaviour” features describe time-related features;

finally, “frequency features” (not shown in Figure 5.5) indicates features calculated

in the frequency spectrum.

Our analysis indicates that FSR features extracted from the right directional

key–the key used to move the character forward through the game–are most im-

portant. Particularly, those describing the area under the curve, as well as max,

mean and variance of pressure in the keypress. The only four features that are not

directly pressure-related features that make the top ranked important features, are

also from the same right directional key. These time-based features are that of key-

stroke duration, pressure peak count, time from peak pressure to key release and

time from press to peak pressure.

From the composite keys (defined in Chapter 5.1.1), we find that the pressure

statistics (max, mean, min, total variance, variance, and area under the curve) are

important for A6 – max force over all keys – followed by the same set of pressure

statistics for A5 – the sum of the pressure across all keys.

Figure 5.5: Relative feature selection count per window size and label type
(D: direction, P: position, and A: accumulator). Darker tone indicates
most commonly selected features in personalized models that perform

above-chance.

5.2.5 Comparing Models Built on FSR, EEG, and Both

The EEG data is dense but noisy; the FSR data is more stable but sparse–how do

these modalities compare to each other in terms of classification performance?
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Could integrating modalities offer the best of both to improve performance? The

dimension size difference between the data streams prevents a simple feature con-

catenation of both modalities. We trained two models separately, one for keypress

force on FSR data another for brain activity on EEG, and test using soft ensemble

voting (sum the probabilistic output and choose the label with the highest sum) to

output a single classification label.

We ask if integrating modalities would produce classification accuracy over

and above models built on single modality data. We built a Soft Voting Classifier

by selecting the highest performing model for each modality. The class with the

largest probability after summing is the prediction class. As described in 3.2, we

use a CNN for EEG data. For FSR, we build models with the XGBClassifier, which

we train on the best performing pressure statistic features calculated over the two

composite keys. We report the F1-score over chance in the final row of Figure 5.6.

Classification Performance

We compare chance-offset F1-scores over all four modalities – EEG (LSTM, CNN),

keypress force (best fit model), and multimodal (combined CNN and XGBClas-

sifier). The data violates Levene’s test for equality of variances so we chose to

subject all chance-offset F1-scores to a three-way ART ANOVA, with three types of

labels (direction, position, and accumulator), four sizes of windows (0.5s, 1s, 2s,

5s), and four model-modality sets. All effects were statistically significant at the

0.05 significance level. The main effects of label type, window sizes, and mod-

alities yield F ratios of F(2,720) = 108.920 (p < 0.001), F(3,720) = 893.344

(p < 0.001), F(3,720) = 3.026 (p < 0.05), respectively. All interaction effects

were also significant, with exception of the three-way interaction among all factors

(F(18,720) = 0.797, p = 0.705).
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Figure 5.6: Comparison of FSR, EEG, and multi-modal classification results on CA by window and label type.
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We ran post-hoc tests using the Holm correction to further investigate the indi-

vidual mean differences, significance at pHolm < 0.001 unless otherwise indicated.

Results show that the mean F1-score was significantly greater between accumulator

and direction scores, and position and direction scores, but not at accumulator and

position (pHolm = 0.583). On window sizes, post-hoc tests indicated that the mean

F1-score was significantly greater between 5s windows and 0.5s (pHolm < 0.01),

but identified no significant difference among other sizes (pHolm > 0.03). Among

modalities, keypress force performs better than all other strategies, multimodal

second, brain activity (EEG CNN) third, and brain activity (EEG LSTM) last. On

interaction effects, post-hoc results indicate that the accumulator (or position) per-

form better than direction at all window sizes (pHolm > 0.001).

In summary, results suggest that the best performing classifier built on FSR

data outperforms the deep learning EEG models. When looking over the models

we personalize, we note that for every participant, there is at least one emotion

classifier for FSR that outperforms the EEG-based deep learning models.

5.3 Summary
In this chapter, we analyzed keypress force estimated by FSR as an alternative to

EEG data for input to computational models of emotion expression. We varied

window size and label metaphor (position, direction), and reported accuracy from

classical machine learning and deep learning models. Figure 5.6 summarizes all

results discussed in this chapter, presented by affective modality (left column),

window sizes (0.5s to 5s), and label type as extracted from CA self-report. On

emotion-as-direction, we notice an upward trend when comparing models built on

FSR data: increasing window sizes lead to better performance. The opposite is

true for CNN models built with EEG data: smaller windows yield better perform-

ance. We hypothesize that this difference is tied to how emotion manifests in each

modality–fast changes in EEG data follow complex brain activity around emotion

processing, while slower changing touch comes through with FSR data as a result

of internal emotion regulation. Last, the best performing classifiers for emotion-

as-position built on FSR data outperform EEG, FSR, and fusion models built.

In summary, our findings suggest that (1) FSR-based models outperform EEG
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and multi-modal strategies; (2) emotion expression in FSR data is better captured

at larger window sizes; (3) pressure statistics are more informative than time-based

features for emotion modelling with keypress force.
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Chapter 6

Which Self-Report Pass is Best
for Computational Emotion
Modelling?

In Chapter 5, we compared models for implicit emotion expression using FSR data

with those using a more studied signal–EEG data, finding that keypress force out-

performs brain activity in emotion modelling using a single reporting pass (CA). In

addition, results from Chapter 4 suggest that while the self-reporting passes are not

interchangeable, they do seem to capture responses to the same stimulus.

To understand how the different labelling passes affect computational model-

ling of emotions, we compare models built on FSR data using CA, TWCW, or a

combination of both. Creating computational models on these disparate self-report

modalities requires special considerations. In this section, we add TWCW self-

reports to the experimental pipeline introduced in the previous chapter (illustrated

in Fig. 6.1), and discuss the strategies for operationalizing multi-pass emotion la-

bels in ML models. Then, we compare results of each strategy evaluated on FSR

data.
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Figure 6.1: Overview of the modified experiment setup, first presented in
Chapter 5, used in all forecasting schemes using TWCW or a

combination of TWCW and CA.

6.1 Using Only Timeline with Calibrated Words
We assess the use of TWCW as labels in comparison to emotion-as-position from

CA. As illustrated in Figure 6.2, multiple calibrated words may appear within one

time window. To create a one-to-one label mapping with window instances, we

consider (a) the mode of TWCW within a window (i.e., represent window with

most used word); (b) a list of words present in a window and use multi-label clas-

sification.

Figure 6.2: Example of timeline with calibrated words.

Single-label TWCW classification: Similarly to the experiment pipeline described

for CA, we perform grid search cross-validation (k = 5) to select the best fit (per

participant) among seven classical machine learning models, comparing perform-

ance across linear, ensemble, and boosted models (see Table 5.4 for a list of models

and associated parameters tuned through grid search). Models here were developed
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in Python using SciKit Learn and XGboost1. Given the high dimensionality of our

feature set (d = 82 features), we employ a zero variance threshold – removing all

features with zero variance – and RFE with cross-validation (k= 5) to select fea-

tures.

Flat multi-label TWCW classification: How can we address mixed-emotions in

classification? To answer this question, we propose a flat multi-label model using

a list of calibrated emotion words as they occur in a window (illustrated by Fig-

ure 6.3). Using Scikit Learn’s MultiOutputClassifier2, we extend the models used

in the pipeline described above to allow for multi-label outputs.

Figure 6.3: Illustration of flat multi-label classification output with
calibrated words (outputting, for instance, the labels “happy” and

“stressed”).

6.2 Combining TwCW and CA
The results described in Chapter 4.3 suggest that each labelling pass provides dis-

tinct perspectives on what the participant might be experiencing at each instant of

the gameplay. We leverage the information contained in different self-report passes

by combining both TWCW and CA into one label pipeline.

6.2.1 Hierarchical Multi-label Classification

Where am I at with my emotions, and where am I heading to? We propose a

hierarchical multi-label model using the mode of calibrated emotion words as they
1https://github.com/dmlc/xgboost/
2https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputClassifier.

html
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occur in a window (illustrated by Figure 6.3), combined with the direction inform-

ation extracted from continuous annotation. Using the package HiClass [69], we

extend the models used in the pipeline described above to allow for hierarchical

multi-label outputs.

Figure 6.4: Example of hierarchical multi-label classification with calibrated
words and continuous annotation (represented by direction metaphor).

We train a classifier for each parent node. For instance, for the structure illus-

trated in Figure 6.4, we train a multi-class model that outputs the emotion words

sad, happy, and cautious. Subsequently, we train a classifier trained for each emo-

tion word, outputting binned direction values (as described in Chapter 4.1).

6.2.2 Extracting Label Alignment

Multiple labelling passes also create inconsistencies. As illustrated in Figure 6.2,

emotion words might be associated to incongruous values of continuous annota-

tion, when taking into account the word’s calibrated value. We propose two strategies

based on an alignment metric (am) of a calibrated emotion word: label resolving

and instance weighting. Each instance in the dataset receives a score as calculated

by:

am(CW|CA) = 1−d(CW,CA)

We introduce d(CA,CW) as a penalty that considers both temporal resolution

of emotions and disagreement between emotion word calibration values and the

current CA score. We bound the distribution of am to [0, 1] range by taking calcu-

lating d(CA,CW) as the normalized Euclidean distance between a calibrated word
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from TWCW and the CA curve:

d(CA,CW) =

√( tCA

T
− tCW

T

)2
+

(CA−CACW )2

CA2
max

· 1√
2

where tCA, tCW , CA, CACW are the timestamps and observed values of CA and

TWCW, respectively, T represents the length of a window (in seconds), and CAmax

represents the maximum value that both CA and CACW can assume (in this case,

1). To ensure d(CA,CW) ∈ [0,1], we multiply the Euclidean distance, illustrated

in Figure 6.5, by a normalizing factor of 1√
2
.

Figure 6.5: Illustration of d(CA,CW ).

Resolving Label Inconsistencies: The am scores calculated in the previous step

can be interpreted as the likelihood of an observed data instance being correctly

labelled. We model this information by using this set of am scores as a guide for

when to keep or discard labels in a window. When a high disagreement occurs

between CA and TWCW (am(CW|CA)< chance), we eliminate the calibrated word

from that window. To perform classification, we repeat the multi-label framework

described in Section 6.1.

Instance Weighting: The same scores calculated in the previous step can also be

interpreted as the likelihood of an observed data instance being correctly labelled.

We model this information by using this set of scores as weights for each in-

stance during training. When a high disagreement occurs between CA and TWCW,

am(CW|CA)→ 0, eliminating the observed window from training. Conversely, a
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high agreement score between CA and TWCW amplifies the influence of a given

data window during model training. We repeat the hierarchical multi-label frame-

work providing am(CW|CA) as sample weights during training.

We compare performance on keypress force (best fit model) over classification

schemes described in Chapter 6.1 using TWCW or a combination of TWCW and CA,

separating by emotion-as-position and emotion-as-direction, respectively.

6.3 Comparing Performance for Emotion-as-Position
Strategies

We compare chance-offset F1-scores from emotion-as-position models trained us-

ing FSR data. Given that the score distribution violates Levene’s test for equality

of variances, we chose to subject all chance-offset F1-scores to a two-way Aligned

Rank Transform Analysis of Variance (ART ANOVA)[107], comparing five types of

labels (from CA only: position, accumulator; from TWCW only: mode of TWCW in

window, multi-label; combining CA and TWCW: multi- soft-labels) and four sizes

of windows (0.5s, 1s, 2s, 5s). Both main effects were statistically significant at

the 0.001 significance level. Table 6.1 summarizes the results. We ran post-hoc

tests using the Holm correction to further investigate the individual mean differ-

ences, significance at pHolm < 0.001 unless otherwise indicated. Results show that

the mean F1-score was significantly greater at classification schemes using TWCW

than using CA, with no significant distinction between TWCW models. On win-

dow sizes, post-hoc tests indicated that the mean F1-score was significantly greater

between 5s windows and 0.5s, and 1s (pHolm < 0.01), but no significant difference

among other sizes (pHolm > 0.02).

df dfres SS SSres F p η2
p

Label type 3 240 267,037.375 1,130,707.250 18.893 < .001 .191
Window size 3 240 97,687.281 1,300,028.875 6.011 < .001 .070
Label type × Window size 9 240 5,869.156 1,391,930.000 0.112 .999 .004

Table 6.1: Analysis of Variance on Aligned Rank Data (Type III) on
emotion-as-position results.
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Figure 6.6: Comparison of single- and multi-pass classification results on emotion-as-position using CA and TWCW,
reported by window and label type. Single-pass CA scores correspond to the first the top two groups of EEG, FSR

and fusion results, followed by single-pass TWCW implemented as single- and multi-label models. Finally, the
last row indicates models built using information extracted from both self-reports.
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We summarize results in Figure 6.6, comparing label metaphors computed us-

ing the different self-report passes (left column), affective modality, and window

sizes (0.5s to 5s). We notice no significant difference among the models that use

TWCW (last three rows). The best performing classifiers for emotion-as-position

built on FSR data with TWCW outperform EEG, FSR, and fusion models built on

CA only.

6.4 Comparing Performance for Emotion-as-Direction
Strategies

We analyze emotion-as-direction chance-offset F1-scores using a two-way AN-

OVA, with three types of labels – direction using CA, emotion word and direc-

tion labels obtained with hierarchical classification, and emotion and CA direc-

tion labels with hierarchical classification and instance weighting – and four sizes

of windows (0.5s, 1s, 2s, 5s). As summarized in Table 6.2, both main effects

were statistically significant at the 0.001 significance level. The interaction ef-

fect between label type and window size was also significant at p < 0.05. We ran

post-hoc tests using the Holm correction to further investigate the individual mean

differences, significance at pHolm < 0.001 unless otherwise indicated. Results show

that the mean F1-score was significantly greater when combining TWCW and CA

self-reports than when using CA alone, but not between the different approaches

combining TWCW and CA. On window sizes, post-hoc tests were consistent with

previous results: F1-scores were significantly greater at larger windows, but no

significant difference between 1s and 0.5s (pHolm > 0.16).

df SS MSE F p η2
p

Label type 2 3.011 1.506 188.369 < .001 .702
Window size 3 0.949 0.316 39.594 < .001 .426
Label type × Window size 6 0.109 0.018 2.275 .039 .079
Residuals 160 1.279 0.008

Table 6.2: Analysis of Variance on emotion-as-direction results.
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Figure 6.7: Comparison of single- and multi-pass classification results on emotion-as-direction using CA, TWCW, and
a combination of both, reported by window and label type. Single-pass CA scores correspond to the first the

group of EEG, FSR and fusion results, followed by combined self-reports models, implemented as hierarchical
multi-label tasks. The last row indicates models built using the instance weighting strategy.
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We summarize results in Figure 6.7, comparing label metaphors derived from

the different self-report passes (left column), affective modality, and window sizes

(0.5s to 5s). Similar to emotion-as-position results, we notice no significant dif-

ference among the models that use TWCW (last two rows). We hypothesize that

window sizes are too short to capture significant differences in TWCW (sampled at

0.05Hz). Last, the best performing hierarchical classifiers for emotion-as-direction

built on FSR data with TWCW and CA outperform EEG, FSR, and fusion models

built on CA only.

6.5 Feature Evaluation
As a comparison with the feature evaluation procedure described for CA, we ana-

lyze results from RFE with CV on the feature set of the single-label model trained

using TWCW, pulling out the upper quartile (top 25%) of features ranked by im-

portance. We report how often these top features are selected, grouped by key and

feature type as in Figure 6.8.

Consistently with previous results, keypress force features on the right direc-

tional key (used to move the character forward in the game) are most important,

particularly those describing the area under the curve, as well as max, mean and

variance of pressure in the keypress. The only four features that are not directly

pressure-related features that make the top ranked important features, are also from

the same right directional key. These time-based features are that of keystroke dur-

ation, pressure peak count, time from peak pressure to key release and time from

press to peak pressure.

Similarly to models built on CA, we find that the pressure statistics (max, mean,

min, total variance, variance, and area under the curve) from the composite keys

are important for A6 – max force over all keys – followed by the same set of

pressure statistics for A5 – the sum of the pressure across all keys.

65



Figure 6.8: Relative feature selection count by window size in models using
TWCW (single-label strategy). Darker tone indicates most commonly
selected features in personalized models that perform above-chance.

6.6 Summary
In this chapter, we analyzed different schemes for including different self-report

passes in FSR-based computational emotion models. We introduced five vari-

ations of models derived from FSR data that include TWCW self-reports as labels.

Figure 6.9 summarizes all results presented in this chapter. We varied self-report

pass (CA, TWCW), label metaphor (position, direction), window size, and reported

accuracy from classical machine learning, comparing these FSR-based models to

EEG-based deep learning models. We do not observe significant difference among

the models that use TWCW (last five rows). As discussed in Chapter 6.4, we hypo-

thesize that window sizes are too short to capture significant differences in TWCW.

Overall, we observe increased performance when contrasting FSR-based models

built on TWCW to those built using only CA. More investigation is required to

understand how models built on EEG data perform when using TWCW as labels.

In summary, findings suggest that (1) emotion words are sparse, but offer better

performance than continuous annotation when using FSR data; (2) multiple self-

report passes used in combination lead to better performing FSR models.
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Figure 6.9: Overview of single- and multi-pass classification results on emotion-as-position and emotion-as-direction
using CA and TWCW, reported by affective modality, window and label type.
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Chapter 7

Reflections and
Recommendations

In preceding chapters, we described analyses of data collected using the mixed-

method labelling procedure described by Cang et al. [16], and extracted directional

changes in emotion expression in real-time on keypress force as estimated by and

modelled on FSR. Here, we summarize our high-level findings, root them in our

research questions, and discuss the impact each has on the design of emotionally

responsive devices. Finally, we reflect on the challenges faced during the modelling

process, suggesting areas for improvement.

7.1 Re-Establishing Grounding Ideas
Model building requires making choices about assumptions we rely on, what, and

how to include model, and what to conclude from model evaluation. We restate

those assumptions for transparency.

What is a model? Models are representational tools, built to address a specific

purpose. When combining both computational approaches and emotion theories,

the term “model” becomes overloaded–it can mean either a computational model,

algorithmically created to simulate and study complex systems or a theoretical

model, or a framework created to structure, define concepts and explain phenom-

ena. We disambiguate the term, using “models” solely to refer to computational
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emotion models.

What is emotion? There is no consensus of what defines emotions. We interpret

emotions as a spectrum of possible reactions to internal and environmental stimuli,

and operate under the assumption that the language used to describe and process

emotions is highly subjective [9, 17, 97]. Consequently, we focus on building

individualized models for each participant.

How do we evaluate emotion models? Our motivation behind creating com-

putational emotion models is purely exploratory. We aim to understand whether

computational models are able to capture implicit emotion in touch data. Since, at

this stage, deployment is not a concern, we evaluate our models using statistical

accuracy metrics.

What is our gold-standard for computational emotion models? Emotion ex-

pression in EEG data is well-studied, while implicit emotion conveyed through

touch pressure takes a significantly smaller share of the literature [97, 112]. We

use EEG-based models as a benchmark against which we evaluate performance of

our touch-based models.

What is our gold-standard for annotating emotion data? Emotion labels can

be generated automatically–by relying on predefined computational models built

on a “gold standard” signal for emotion detection–observed by third parties, or

self-reported [97, 112]. Given that we are focused on understanding the benefits of

curated subjective emotion language in modelling implicit emotion expression, we

rely on self-reporting of emotions. Specifically, we looked at a continuous report of

emotion trajectory, drawn in a slice of Russell’s circumplex [84] (stressed-relaxed).

We further enriched these annotations by extracting notable emotion words from a

participant-led recount of the emotion activity.

7.2 Real-Time Predictors of Dynamic Emotion: Keypress
Force Outperforms Brain Activity

Personalized classification models built on FSR data perform better than the CNN

models built on brain activity at all window sizes and label metaphors, as shown

in Figure 5.6. Classification of emotion activity in brain activity performs better at
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higher frequency bands at the α , β , and γ bands [47, 104, 113], combined in the

8-50Hz range. Larger windows are more likely to capture lower frequency inform-

ation, which is ideal for manual keyboard interactions for models of keypress force

but of little benefit for higher frequency dependent brain activity models.

Exploit different time resolutions when creating multi-modal models.
Our simple multi-modal model, fusing estimates of brain activity and keypress

force, is a demonstration of multiple classifiers running simultaneously. Here, we

try a fusion model built from brain activity and keypress force modalities, which we

capture in the same time window, but results in Figure 5.6 suggest that there is an

argument to be made for a different approach. We propose that future work exploit

the best window resolution for each modality in an interactive system. Employing

clever voting strategies could be valuable for alerting when behaviours are widely

different between distinct time scales – a fast and sharp hit interrupting slower

stroking behaviour, for instance.

Manual touch pressure encodes valuable emotion content.
We used feature extraction techniques from a variety of affective touch interac-

tions: keystroke dynamics in typing behaviour [64], pressure and location features

from social touch [15], and ADSR features from sounds produced from a music key-

board [48]. Feature evaluation reveals that of the top 20 most important features

from all three domains, 16 are pressure- or force-related. We know that increases

in typing force is correlated with higher stress experiences [37], and that machine-

mediated social touch [50] can be differentiated by variations in pressure. Now,

we have evidence that emotion expression can also be captured through keypress

force using a keyboard for videogame controls. More investigation is needed to

assess other contexts where we might be subconsciously expressing emotion via

touch pressure. In the meantime, we posit that the benefits to tracking pressure in

devices where interactions feature manual affective touch far outweigh the cost.

7.3 Personalized Labelling: Trade-Offs
Compared to past studies of dynamic changes in behaviour or mood [44], the video

game task which we used to elicit emotion is short and densely reported. With its

data we reflect on our questions and protocol, highlighting implications for high-
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resolution real-time models.

7.3.1 How Do Triangulation and Personalization Enrich Emotion
Self-Reports?

To estimate emotion evolution by-the-second, we can select a single dimensional

emotion scale and collect self-reports (as in our CA data). How does adding scale

calibration and a review/interview phase enrich this report stream?

Personalized scales clarify what may be generalizable, as well as improving
personal models’ accuracy.

Asking participants to project a set of emotions onto a specified emotion axis

grounds the ratings in an individualized experience between the Stressed-Relaxed

extremes. Plotting the ratings across commonly used words (as in Figure 4.2), we

see that words with low rating variation – Satisfied and Anxious – may be useful

as emotion reference frames. In contrast, high variance words like Hopeful or

Accomplished may be less useful for labelling without additional interpretation.

Multi-pass reporting increases label versatility.
A continuous annotation of emotion communicates a highly personal experi-

ence at a resolution that is otherwise difficult to solicit. As a continuous quantit-

ative signal, we can model emotion as a regression for high-resolution forecasting

or elect to discretize (or bin values) for categorical classification. Additionally, we

can compose an entirely new time-series by incorporating our personalized scale

into an interview as a lower resolution signal where continuous annotation is im-

practical or unnecessary.

Disagreement may indicate synergy, not conflict.
Data from our two self-report passes (annotation and interview) are not suf-

ficiently correlated to be interchangeable, yet causality results indicate they are

highly related. Models combining both self-report passes outperform single-pass

strategies, indicating that each has its own authenticity and value. Choices over

which self-reporting pass is best could be optimized in protocol refinement to fit

the application needs.
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7.3.2 Incorporating Dynamics Into Computational Emotion Models

Reading signal characteristics (like auto-correlation, mean successive differences,

variance) as measures of emotion inertia, instability and variability connects them

to lived experience. What can they mean for intuitive predictive models?

Momentary emotion dynamics as characteristic, not label.
Inertia, instability, and variability can help uncover “slow emotion” in mood

disorders [94], but they lose meaning in rapid-response timescales, and thus as

emotion labels. Re-framed as signal statistics, they yield hints such as emotion

variability’s larger spread suggesting extra sensitivity (Figure. 4.3a) which could in-

form model development, e.g., by identifying archetypal behaviours for improved

model selection.

An abundance of metaphors to fit the need.
The metaphor of “emotion-as-position” does not capture “fast” emotion dy-

namics. For example, angle, which captures relative differences in emotional in-

tensity, has a natural physical meaning of directionality – where I’m going, not

where I am. We have seen that Inertia and Instability respectively lend insight into

responsiveness of emotion to stimuli, and emotive range.

Context may dictate choice of label metaphor. To identify if someone is Ex-

cited, we may choose a position representation; to getting Sadder, direction may

work best. A position metaphor is more versatile; direction can be estimated from

a set of points but the reverse requires additional information. Depending on the

context of the application, a combination of both yields promising results.

The case for dynamic emotions: timing is everything.
If you had to choose between starting to regulate your emotions before you

became angry and starting to do so after you rage has taken place, which would be

tougher to manage?

When modelling human emotions, we may consider how the emotion space

itself changes over time: when you feel sadder, it may be easier to get angry than

calm, despite the fact that they are separated by equivalent Euclidean distances

on the Affect Grid. In this situation, an emotion experience is a trajectory over a

constantly changing landscape rather than a point [12].

Predicting directionality of an emotion trajectory allows for the creation of in-
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terventions that respond timely and appropriately. This is especially important, for

example, when we are interested in delivering interventions to help the applica-

tion user in regulating their emotions [89]. Different regulation strategies target

emotional response at different intensities and cognitive processing stages.

7.4 Considerations in Building Effective Models for
Dynamic Emotion Prediction

Choose or Fuse: is report divergence an opportunity?
Diverse self-reports capture perspectives that are authentic in different ways.

We have inspected characteristics of emotion self-report in the time- and frequency-

domains. Based on analysis insights, we might choose one approach, for its sens-

itivity or practicality. Or, we might fuse them, e.g., using discrepant moments as

a spotlight on emotional conflict or low-confidence labels. We note that although

our fusing strategies for resolving conflicts in CA and TWCW did not add benefits,

classification incorporating both label streams performed overall better than other

schemes. Emotion words are sparse when compared to feeltrace, but carry more

consistent meaning.

Fusing yields better performance, but choosing might be more adequate to re-

duce label collection load. Next, we plan to evaluate choose-fuse strategies from

the standpoint of applications. In which scenarios might we need to capture both

label streams? How do we evaluate utility, interpretability, and usability of these

unified labels?

Emotion metaphor and windowing influences classification performance.
From Figure 6.9 we see that the effect of window size is dependent on modality

and label metaphor. For both position and accumulator metaphors, performance

decreases as window size increases – except in high performing FSR models of

keypress force where the opposite is true. Notably, models of keypress force using

the CA and direction metaphor improve the most when window size increases.

As results and statistical analyses show, emotion label metaphors of position

and accumulator behave very similarly (both distinct from direction); we continue

discussion focusing on position and direction.

Over larger window sizes, a more stable trendline can be seen in the joystick
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labelled Continuous Annotation data. The direction metaphor, which we compose

as the slope of the best fit line over the window, benefits most here since shorter

window labels are less robust to outliers. For position labels, the larger windows

can act as a ‘smoothing’ process, dampening valuable variation in emotion.

As expected, models using TWCW are more robust to increases in window

span, although windows explored in this thesis are likely small to detect signific-

ant differences for an interview-style labelling pass with low sampling frequency

(∼0.05Hz).

Short (0.5s) windows increase classification performance of dense-input mod-

els, such as the ones using EEG data, with emotion-as-position or accumulator

labels calculated on CA. We note that label precision at this scale is unreason-

able to obtain by any other means except labelling procedures that feature simple

continuous annotation.

Modality capture:
The collection of this dataset was a very time-intensive and effortful procedure

(Chapter 3.1). Setup and calibration of the EEG data collection system comprised

a significant portion of the effort. Given how involved and invasive EEG data

collection is, how noisy the data can be, and the classification performance relative

to FSR in the same conditions, we are inclined to rely on keypress force or other

manual touch data for emotion interaction data in future.

Labelling effort:
Collecting multipass emotion self-report also incurs a high time cost – the

combination of personalized calibration, emotion elicitation task, interview, and

continuous annotation would run a minimum of 3 to 4 times that of the emotion

elicitation task. Where tasks run long, multipass reviewing procedures would be

impractical unless annotation could happen contemporaneously and would not in-

terfere with the natural evolution of the emotional experience.

Emotion elicitation and affect scale:
Calibrating an emotion scale finds shared meaning in common emotion words

along the Stressed-Relaxed scale. While participants had personalized understand-

ings of the measurement scale, they all engaged in the same emotion elicitation

experience (here, a horror video game). Since we are building personalized mod-
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els on individually defined emotion measurements, we look forward to fully com-

mitting to personalizing the entire experience. Where we want to understand the

building of true personalized models that work “in the wild”, we will need mod-

els that are built on participant-defined emotion experiences that are able to evolve

longitudinally. If the human emotional experience is ever-evolving, so should the

measurement scales, training data and accompanying models. We plan future work

to address how a data collection protocol can address evolution of emotion models

over multiple data collection sessions.

75



Chapter 8

Conclusions and Future Work

We present an analysis of touch pressure data using self-reported emotion extracted

from the FEEL dataset. We compare results from multi-modal data streams (brain

activity and keypress force estimated by EEG and FSR data), collected during an

emotional videogame play experience and labelled using multi-timescale and per-

sonally calibrated emotion labels [16].

Using 16 participants’ data, we determine that this multi-pass labelling im-

plementation adds versatility to collection options–one might choose to collect a

single pass, depending on application requirements, different affect encoding mod-

alities, or even propose different elicitation strategies; provides personalized and

triangulated insight into nuanced meanings of emotion, and offers new options

for signal selection or integration–models can be created from one or multiple af-

fective modalities, and combined with respective emotion reporting techniques and

metaphors to fit the application’s needs. We show how emotion dynamics meas-
ures and metaphors can add value, in particular emotions-as-position–a mean

value of the emotion reported on a personalized calibrated scale over a particular

time window–and the emotion-as-direction–the slope of the best fit line over the

data in the same time window.

In this chapter, we summarize concluding remarks and highlight future direc-

tions for this work.
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8.1 Conclusions
This thesis demonstrates machine learning classification schemes on both sparse

and dense self-reports. Comparing performance over factors of window size, fea-

ture set (features extracted from FSR or EEG data), and label set (Continuous An-

notation (CA), Timeline with Calibrated Words (TWCW)), we find that, overall

1. Ensemble classifiers built on keypress force outperform deep learning mod-

els built on EEG features.

2. Feature evaluation of the FSR data reveals that pressure features used in

machine-mediated social touch rank highest in terms of selection frequency,

outperforming temporally-based features.

3. With dense, continuous self-reports, the best ensemble classifiers using keypress

force perform comparably well on window sizes between 0.5s - 5s using a

emotion-as-position label metaphor. Classifying emotion-as-direction la-

bel metaphor is best under the largest windows.

4. Models built with interview-based self-reports perform well across multiple

window sizes, but are limited to emotion-as-position interpretations given

the sparsity of available emotion labels.

5. A combination of both dense and sparse reporting methods yields custom-

izable label sets that are more robust to temporal resolution–emotion words

from interviews are few and far in between, but meaningful; while continu-

ously annotated labels provide a sense of directionality.

From these findings, we propose that designers of real-time emotionally inter-

active devices should ensure that (1) the selected label metaphor should be planned

with window size in mind, particularly when explicitly describing dynamic emo-

tion labels like that of direction; (2) multi-modal systems should conform to the

best conditions for each modality (i.e., multi-scale windows or multi-metaphor la-

belling) in order to optimize model performance; and (3) if the interaction involves

manual touch, incorporating a pressure sensor in the areas where human touch is

enacted may offer improved emotion recognition opportunities.
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8.2 Future Directions
We presented an initial exploration into the combining labelling procedures for dy-

namic emotion modelling. We highlight where future directions are highly prom-

ising.

Parameters computed on high-resolution data are different. What does this
mean?

To get behind different characteristics in computable descriptive parameters,

one approach is to compare with other high-resolution data streams such as EEG

and facial encoding. We plan to do this by focusing analysis on particular events

(e.g., timeline regions stimuli known to trigger reactions in all – a scary spot in

the game), and see how these parameters look across multiple participants when

calibrated in a variety of ways.

At what time scale does calibration change?
Calibration happens immediately after the elicitation task, and all emotion

words are contextualized around the task. Could engaging in a highly emotionally

charged activity influence the rating scale upon reflection? In future iterations of

the multi-pass protocol, we envision performing calibration tasks both at the begin-

ning and end of the self-report labelling allowing us to investigate how calibration

may drift within and between sessions.

How must models of dynamic emotion evolve?
Longitudinal studies will reveal how to create personalized models that evolve

with the individual. Mood, life and situational context influence perception of

emotional events [42] but also change dramatically over time: we wonder how

repeat data collection over the course of months impacts emotion models.

How to capture a range of emotion experiences?
We report analysis on a single-dimensional scale, designed to simplify annota-

tion; real-life events may trigger far more complex emotion landscapes where emo-

tions are in conflict simultaneously (e.g., feeling excited and sad about graduation).

How can we make it more intuitive to document multiple simultaneous scales?
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How to account for subjectivity when evaluating personalized emotion mod-
els?

We create models as representational tools, adequate to a purpose. Emotion

models cannot provide a true, holistic and perfectly accurate rendition of real-life

processes and experiences. In this work, we attempt to incorporate contextualized

subjective reporting to computational models, quantifying performance based on

the machine learning understanding of evaluation. As we make strides to humanize

emotion reports beyond a quantitative scale, how can we impart subjectivity into

evaluation procedures to best reflect the user’s values and needs? A model that is

able to accurately detect emotions but misses the right time for delivering interven-

tions might not satisfy its purposes. Or conversely, perhaps users are less interested

in receiving correct outputs of ‘satisfied’ or ‘content’, and rather focus on specific

emotions, such as ‘attentive’ or ‘determined’. Machine Learning (ML) metrics are

interesting for investigating and comparing performance, but they do not capture

all the nuances of what a model might need to be considered effective.
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