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Abstract

Human affective state extracted from touch interaction takes advantage of nat-

ural communication of emotion through physical contact, enabling applications

like robot therapy [88, 104], intelligent tutoring systems [25], emotionally-reactive

smart tech, and more. This work focused on the emotionally aware robot pet con-

text and produced a custom, low-cost piezoresistive fabric touch sensor at 1-inch

taxel resolution that accommodates the flex and stretch of the robot in motion.

Using established machine learning techniques, we built classification models of

social and emotional touch data. We present an iteration of the human-robot inter-

action loop for an emotionally aware robot [110] through two distinct studies and

demonstrate gesture recognition at roughly 85% accuracy (chance 14%).

The first study collected social touch gesture data (N=26) to assess data quality

of our custom sensor under noisy conditions: mounted on a robot skeleton simulat-

ing regular breathing, obscured under fur casings, placed over deformable surfaces.

Our second study targeted affect with the same sensor, wherein participants

(N=30) relived emotionally intense memories while interacting with a smaller sta-

tionary robot, generating touch data imbued with the following: Stressed, Excited,

Relaxed, or Depressed. A feature space analysis triangulating touch, gaze, and

physiological data highlighted the dimensions of touch that suggest affective state.

To close the interactive loop, we had participants (N=20) evaluate researcher-

designed breathing behaviours on 1-DOF robots for emotional content. Results

demonstrate that these behaviours can display human-recognizable emotion as

perceptual affective qualities across the valence-arousal emotion model [83]. Fi-

nally, we discuss the potential impact of a system capable of emotional “conversa-

tion” [89] with human users, referencing specific applications.
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I have been fortunate to have been able to collaborate with a number of people

throughout the studies described in Chapters 2 – 4. For each work, I describe the

nature of my role and recognize my colleagues for their contribution.

Chapter 2 (Gesture Classification) is a conference paper published at Interna-

tional Conference on Multimodal Interaction (ICMI 2015) 1on touch gesture clas-

sification and is presented here in its entirety. My co-authors include labmates Paul

Bucci (fellow MSc student), Andrew Strang (Research Engineer), Jeff Allen (PhD

student), Sean Liu (summer undergraduate research assistant), and supervisor Dr.

Karon MacLean. The study concept, analysis procedures, and full paper writing

were done by me. However, collaborators provided regular feedback and helped

refine my original study proposal, informing the resulting study design and analy-

sis process. Furthermore, Paul and Sean worked with me to conduct the actual data
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with Paul and Karon.
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and Dr. Jussi Rantala, a post-doc visitng from the University of Tampere in Fin-

land at the time of the study. The author list consists of myself, Dr. Jussi Rantala,

labmate Paul Bucci, and supervisor Dr. Karon MacLean. My independent contri-

1Cang XL, Bucci P, Strang A, Allen J, MacLean K, Liu HY. Different strokes and different folks:
Economical dynamic surface sensing and affect-related touch recognition. In Proceedings of the
2015 ACM on International Conference on Multimodal Interaction 2015 Nov 9 (pp. 147-154). ACM.

iii



bution to this project includes the original study proposal, all touch-related back-
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Chapter 1

Introduction

Communication between people is made richer with affective clues. We pick up on

each other’s eye contact, vocal inflections, body language, touch behaviour as much

as we do with words. Machine recognition of these kinds of cues improves the

quality of Human-Robot Interaction (HRI) in collaborative tasks [36], intelligent

tutoring systems [48], assisted driving [31], and the list goes on.

Using machines to recognize social touch specifically leverages natural human

inclinations to express emotional closeness through physical contact and is gaining

attention within affective computing [20, 33, 51, 93, 110]. As interpersonal touch

encodes significant emotional content [43], investigating machine-sensed social

touch is a stepping stone toward real-time emotion detection. One such applica-

tion: the therapy robot pet takes advantage of the emotional communication in

touch between human-animal without having to first address many of the com-

plexities elicited in human-human interactions [78]. Therapy animals have long

been shown to have physiologically measurable benefits on patients [10, 24]; for

those who are unable to maintain long-term contact with pets—allergies, anxiety,

cost—therapy robots have been employed with surprising success [46, 54, 103].

With better affective prediction, we can develop more naturally reactive therapeutic

robots approaching that of a touch-based human-animal interaction loop as defined

by Yohanan et al (2012) (see Figure 1.1).

Currently, there are obstacles to developing affective social touch recognition

between a human and an animal-like robot pet, the biggest of which asks what pa-

1



Figure 1.1: One complete iteration of the Human-Robot Interaction
loop [110]: (1) Human expresses emotion; (2) Robot recognizes Hu-
man signal; (3) Robot expresses reaction to interpreted human expres-
sion; (4) Human recognizes Robot expression

rameters of touch behaviour conveys emotional content and whether or not touch

sensors can capture it. We focus here on those we think are significant and logi-

cal steps towards emotional communication in robot pet therapy. First, the robot’s

touch sensitive skin must flex with motion yet maintain data integrity under defor-

mation. Second, classification of affective state in touch is less mature relative to

some other modalities [4] and has fewer established techniques. Integrating touch

with multiple channels known to contain affect increases our confidence in emo-

tion detection. Third, even once affect classification is solved, our interaction is not

complete without robot response. Researchers have studied emotions as exhibited

in the behaviour of many different animals [12], however it’s unclear if a robot sim-

ulation of affective expression is still human-identifiable as emotion. Meanwhile
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(fourth), we must be mindful of real-time viability throughout the entire interactive

cycle – from sensing human touch, to predicting affective state, to developing ap-

propriate robot responses – and consider ways to trim computational cost wherever

possible.

In this thesis, we focus on the therapy robot pet application and describe a cus-

tom sensing mechanism as a method for extracting touch data, supported by three

distinct studies. In the first, we compared classification of touch gestures under a

variety of deformation conditions, allowing us to recommend a set of conditions

that balances user preference with data quality. The second study collects emotive

touch data, supported by gaze and biometric sensors. The multimodal approach

helps us understand how users express emotion as well as compares affect classifi-

cation accuracy between touch alone vs with support; this chapter concludes with

design recommendations for an affective robot pet. To close the loop, we investi-

gate emotional expressiveness in robot breathing where participants identify robot

expression of affect while interacting with small single Degree-of-Freedom (DOF)

robots performing a variety of breathing patterns. Finally, we outline the outcomes

and impacts from this body of work and ground our findings in future work for

furthering the therapeutic robot pet.

1.1 Background
Here we describe the bigger-picture background that leads to us to this work. More

focused literature reviews are included in each forthcoming chapter.

1.1.1 Robot platforms

Multiple robot form factors attempt to imitate animal therapy success though it

is not yet clear which characteristics generate the measurable physiological im-

provements in cardiopulmonary pressures, neurohormone levels, and anxiety in

patients [24]. Some are plush, cuddly versions of larger mammals like Paro, a

seal, or the Huggable, a teddy bear; others have no Earth-born analogue, like the

furred, green Probo with a long articulated nose or the Haptic Creature, a round,

furry object reminiscent of a cat/rabbit hybrid. Each robot has distinct sensory and

actuation capabilities (see Table 1.1), but all are designed to allow for common pet
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Figure 1.2: A collection of therapy robots designed to study the social and
physiological impacts of robots-as-companions on human lives: (a)
Paro; (b) Huggable; (c) Probo; (d) Haptic Creature; (e) CuddleBot.

interactions, including stroking and hugging.
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Table 1.1: An overview of robot platforms intended for therapeutic use.

Robot Modalities Actuation
(DOF)

Special Features Form Surface

Paro [46, 90]

sight (light v dark) neck (2) weighs 2.7kg

baby harp seal soft white fur
sound (direction and
speech)

front paddle (1) pacifier

balance rear paddle (1) reacts to stroke and hit

touch ∼2inch taxels eyes (2) pacemaker-friendly

Huggable [94, 95]

touch: temperature,
force, electric field

neck (3) recognizes 9 gestures

teddy bear soft butterscotch fursight: video camera in
eyes

eyebrows (2) wireless connectivity

sound: microphone shoulders (2) speaker for audio out-
put

balance: Inertial mea-
surement unit

ears (1)

Probo [86]

sight: digital camera eyebrows (4) wifi-enabled touch
screen

elephant-caricature soft green felt

sound: microphone trunk (3) classifies 3 touches

touch: position sensors,
temperature

mouth (3) facial recognition

head (3) speech analysis

eyes(3)

eyelids (2)

ears (2)

Haptic Creature [108]
touch: 60 FSRs over
entire body

ears (2) fiberglass shell
cat/rabbit-like form soft brown synthetic fur

balance: internal ac-
celerometer

breathing (1)

purr (1)

CuddleBot [3, 19]

touch: 256 taxel fabric head (2) WIFI-enabled

guinea pig-like form soft minky
balance: accelerometer
and gyroscope

ribs (1) 3D printed skeleton

spine (1)

purr (1)
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Paro The choice of emulating a baby harp seal exploits cuteness and recognizabil-

ity, without being too familiar and pre-empting users expectations of behaviour [104].

Paro is fully autonomous with tactile sensing systems that allow it to recognize

whether it is being stroked or hit, adjusting behaviour as appropriate [46]. The cus-

tom ubiquitous tactile sensors employed on Paro [90] are pictured as large palm-

sized pressure sensors and placed where touch contact is most likely – the head

and back, while avoiding more difficult to manage locations like the joints. Use of

Paro as a companion in care homes for senior citizens has been well-documented,

particularly as a comfort animal surrogate for dementia patients [21, 35].

Huggable The Huggable is primarily designed for pediatric care and is intended

as an augmented comfort object for children experiencing the stress of hospitaliza-

tion [96]. An accompanying web-based logging program can be used to monitor

the patient’s distress levels through video and audio channels, as well as touch or

behavioural data. The web interface also enables an operator, such as a therapist or

caregiver, to control Huggable’s many actuators and react to a patient’s behaviour.

Probo Probo, also intended for engagement with children, relies mainly on facial

expression of emotion. The cartoon elephant sports an articulated trunk as well as

an interactive touch screen installed in the belly [86]. Like the Huggable, Probo

requires an operator to communicate with the child where interaction is intended

to evolve into a friendship [38].

Haptic Creature The Haptic Creature was developed to highlight touch-based in-

teractions in social robot therapy, reducing visual cues as much as possible [108].

While there are multiple actuation avenues, simple regular breathing motions from

the lifting fiberglass body plates is enough to elicit significant calming effects as

demonstrated by biometric measures of reduced heart and breathing rates [88].

All of these robot platforms target therapy and are equipped with impressive

kinematic abilities; our goals for complex and autonomous affective touch commu-

nication, however, require more sophisticated sensing and processing of affective

touch signals. In fact, only Paro is actually intended and equipped to react to users

in the absence of a human interpreter and operator. Our desired interaction, how-

ever, assumes a larger and more complex emotion set necessitating comprehensive

full-body touch sensing as well as an embedded touch prediction engine.
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1.1.2 The CuddleBot and CuddleBits

To build upon the developments of the Haptic Creature, other members within the

lab created the CuddleBot, a new platform for study in therapy robot [3]. Improve-

ments include increasing the touch-sensitivity to cover the entire body, more real-

istic motion with a 3-D printed, articulated full skeletal structure on 5-DOF, Wi-Fi

connectivity for use with a web interface to define and adjust behaviours. The core

structure is driven by modular, centrally positioned, rod-driven actuators as robot

designers were mindful of keeping the kinematics easy to modify, enabling quick

exploration into design alternatives. The CuddleBot, like Paro, is designed to be

fully autonomous, but with a more complex on-board real-time affect interpretation

engine able to interpret emotional expression in touch and reacting accordingly.

Many engineering parameters were considered when designing the CuddleBot,

including designing for full modularity so that each degree of freedom could be

developed and studied independently. To explore expressivity of individual actu-

ation methods, a family of single DOF robots, dubbed the CuddleBits, was cre-

ated [18]. Internal tools were also developed, enabling the sketching and fine-

tuning behaviours to investigate the perception of emotionally expression of these

simple machines [15].

For either robot platform, the affective prediction model, its mapping to a set

of robot responses, and the human perception thereof remained undeveloped.

1.1.3 Sensing technology and classification techniques

Classification procedures depend on polling rate, resolution, format, and expected

purpose of the data collected. If we only intend to distinguish between two touch

gestures, say stroke and hit as in the case of Paro [46], the larger ubiquitous tactile

sensor [90] in conjunction with a prediction system that detects pressure threshold

is sufficient for use. For classification of more nuanced touch, however, not only are

more taxels of higher resolution required, but also more sophisticated processing.

Sensing
High resolution sensors, such as those employed in robot grippers, are well-

developed for very precise, dextrous manipulation and are successful for telema-

nipulation or even robot-assisted telesurgery [63]. However, this level of precision
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far exceeds our needs for affective or social touch gesture interpretation, and would

be excessively expensive, both financially and computationally.

A survey of other touch sensors including Force Sensing Resistors (FSRS), grid-

based pressure sensors (available at www.plugandwear.com), and fabric stretch

sensors (www.vista-medical.com) revealed that they either must be affixed to a

rigid substrate, were not capable of multi-dimensional stretch, or did not reflect

multi-contact touch. Other requirements include fully-stretchable, full-body con-

tinuous taxel coverage, while being financially and computationally cheap. Un-

fortunately, existing sensors could not satisfy all criteria (requirements and touch

sensors described in more detail in Section 2.1.3 and Section 2.2.2 respectively).

Classification
Classification procedures that make use of both pressure and location param-

eters have performed at up to 94% accuracy (chance 11%) with random forest

models built on gestural touch data [33].

In contrast, machine recognition of affective touch alone does not perform

nearly so well, with results at up to 48% accuracy (chance 11%) [4]. By enhancing

unimodal touch data with information from other comparably nonverbal sources,

however, we may be able to do much better.

Affective state directly influences physiological measures [32, 62] and has been

classified with accuracies as high as 95% (chance 25%). Tracking gaze behaviour

has also been promising in determining emotional state and attention or inter-

est, leading to improvements for intelligent tutoring systems [48] and educational

games [25], to name a few.

Affect recognition in touch may benefit from integrating multimodal support

of gaze and biometric channels, both of which are associated with commercially

available sensors and feature extraction software. As far as we know, there does

not currently exist a study that triangulates even two of these three signals.

1.1.4 Interaction Styles

To complete the touch interaction loop, we require that on-board robot sensing,

affect classification and motion response work together.

Looking at 1-DOF at a time, we begin by focusing on breathing behaviours due
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to its range of emotional expressivity [13] as well as its proven ability to reduce

symptoms of stress [88]. Section 4.1 delves into greater detail on robot behaviour

complexity and believability.

We consider possible designs for the interaction model in two relevant interac-

tions types, as defined by Sharp [89]: Instructing – where users issue instructions

to a system – and Conversing – where users have a dialog with a system.

Instructing interactions can be conceived of as a continuously listening Robot

waiting for Human direction. Once the recognition engine provides a prediction,

the Robot performs the appropriate mapped behaviour and returns to a listening

phase – completing one iteration of Yohanan’s interaction loop (see Figure 1.1)

where each iteration is completely independent. Producing appropriate responses

requires that our prediction system perform with high accuracy and be able to

gauge user intent with little room for error.

Conversing interactions are more suited for affective response: the Robot is con-

tinuously listening for Human input whereupon touch input triggers a prediction,

generating a Robot behaviour. Upon detecting Human reaction to the earlier re-

sponse, the Robot reflects on the previous behaviour and decides either to correct

or continue the reaction.

While many human-human or human-animal interactions are well-adapted to

instructing interactions, emotional communication is much better described in con-

versing style. Whether engaging with other humans or with animals, we assume

some rate of error and are continuously evaluating and correcting behaviour based

on increasing information. Although this more realistic model is outside the scope

of this thesis, we lay the groundwork for modelling this kind of emotional human-

robot conversation.

In either interaction style, interesting and believable human-robot interactions

necessitate a large and complex behaviour set where each behaviour is human-

recognizable as an emotional response. Unfortunately, generating emotional robot

behaviours is difficult without more insight into the perception of platform-specific

robot behaviours.
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1.2 Approach
The overarching goal of this thesis is to explore and improve affect recognition in

touch behaviour and expand its use for a variety of emotionally intelligent applica-

tions. We focus on social robot therapy because this application is easy to motivate

for participants and naturally elicits human emotional expression.

To satisfy the sensing needs of a fully touch-sensitive robot pet in motion, we

customized a Do It Yourself (DIY) fabric touch sensor of 1-inch taxels in a 10×10

array to be consistent with human social touch behaviours in terms of pressure

range and polling rate [92]. The sensor reports pressure and location dimensions

as required for gesture recognition [33] and is used in both gestural and affective

touch studies (sensor construction is fully detailed in Section 2.3.1).

The literature reflects an assumption that there is emotional encoding within

gestures [4, 33] and recognition engines of other robot platforms build on this scaf-

fold. For example, Paro responds to stroke positively and hit negatively [46], and

the Huggable and Probo respectively detect nine [96] and three [86] touch ges-

tures to react to emotionally. While we acknowledge this is a reasonable approach,

we choose to explore an independent relationship between gestural and emotion

behaviour, electing instead to perform distinct collection procedures and report

classification results separately.

Machine recognition of affect in touch remains largely unsolved: we have not

yet reliably pinpointed the aspects or artifacts of touch that decode emotional state.

However, since emotions are experienced multisensorially, we can borrow from the

classification techniques of more mature sensing channels and introduce a multi-

modal approach by integrating gaze and biometrics support with touch. We then

compare touch-only performance with touch plus additional modalities and discuss

the use of multimodal sensing across a number of applications.

Finally, we evaluate the expressivity of breathing by designing a number of

behaviours on the 1-DOF CuddleBit robots and compiling user reactions to them.

By evaluating each stage of the interaction loop independently, we isolate require-

ments and limitations, gaining a deeper understanding of how to engage in the full

HRI touch interaction loop. While out of scope of this thesis, these results be-

gin to extend naive loop iterations to smarter behaviours with error correction and
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improve the HRI experience.

1.3 Thesis Organization
The remainder of the chapters of this thesis are organized by the studies conducted.

In Chapter 2 (Gesture Classification), we describe the sensor used in both touch

interaction studies and perform gesture classification. A major goal of this study

was to assess impact on recognition performance of sensor motion, substrate and

coverings. We collected six gestures most relevant in a haptic social robot context

plus a no-touch control (N1 = 10, N2 = 16) and ran classification on a random forest

model of 100 trees using Weka, an open-source machine learning program. Results

allowed us to conclude that under realistic conditions (CuddleBot in motion, with

foam substrate, and under a fur cover), recognition using our custom sensor is

sufficient for many applications of social touch including affective or functional

communication, from physically interactive robots to any touch-sensitive object.

Chapter 3 (Affect Detection) describes our multimodal collection and classifi-

cation of emotional expression in touch (measuring force magnitude or pressure

and location), gaze (location), and biometric (skin conductance, blood volume

pulse, respiration) data. We asked participants (N=30) to relive intense emotional

memories while touching a stationary, furry robot, eliciting authentically experi-

enced emotions under controlled lab conditions. Each participant interacted with

the robot while experiencing two opposing emotions: Stressed-Relaxed or De-

pressed-Excited. To better understand the data, we partition by level of system

knowledge of participant information [labelled, unlabelled, leave-out] and across

time-varying windows [2s, 1s, 0.5s, 0.2s], we found classification accuracy rates

improve with increasing system knowledge of participant. Adding modalities of

gaze and biometric data improve accuracy only when a participant’s instances are

present in both training and test sets. To address the computational efficiency re-

quired of dynamic and adaptive real-time interactions, we analyze relative subsets

of our multimodal feature set, and provide design recommendations for our thera-

peutic robot.

The last stage of a single loop iteration requires robot reaction, investigated in

Chapter 4 (Behaviour Sketching). We describe our design of breathing behaviours
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via direct waveform modification, displayed on the CuddleBits, one flexible, furry

FlexiBit and the other a rigid, wooden RibBit. Emotive behaviours were designed

by experimenters and interpreted by N=20 participants based on an arousal/valence

emotion grid, specifically Excited, Stressed, Relaxed, and Depressed. Our findings

indicate that these simple robots haptically conveyed emotion with success similar

to that of more complex systems.

Finally, Chapter 5 (Conclusion) highlights the outcomes and impacts of each

study and describes future work to improve the behaviour design in a human-robot

conversation.
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Chapter 2

Gesture Classification

Earlier robot constructions such as the Haptic Creature have used FSRS as the touch

sensing system [109] requiring a firm, plexiglass construction that was heavy and

offered insufficient degrees of freedom for convincing, complex motion. A full

redesign yielded the CuddleBot [3] whose light 3D-printed skeleton necessitated

an even lighter-weight sensing system. We needed a touch-sensitive skin that

could flex around multi-DOF motion without losing data integrity, kept a low-

computation profile to facilitate real-time processing, and was inviting to touch.

No sensor quite fit all of our requirements until we found inspiration in maker

culture. Following existing DIY-sensor guidelines [77], we did a custom modifi-

cation using commercially available conductive fabrics 1in order to capture both

pressure and location dimensions required for gesture recognition [33]. While

this sensor is not presented as a contribution, we highlight its development in this

Chapter. The same sensor is used to collect touch data in Chapter 3.

This chapter features a conference paper previously published at the ACM In-

ternational Conference for Multimodal Interaction (ICMI’15) [19], presented here

in full. Prior to attempting the more complex affect recognition, it was necessary to

verify that the use of our custom fabric sensor in gesture recognition tasks demon-

strated results consistent with the literature. This paper also highlights the noise

concerns when engaging the CuddleBot robot in real-use. We present results from

data collected under increasingly difficult conditions (stationary to moving; firm,

1Sensor fabric purchased from 〈www.eeonyx.com〉
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flat substrate to soft, curved foam; no cover to high density fur) and recommend a

configuration that balances performance with user preferences.

Abstract
Social touch is an essential non-verbal channel whose great interactive potential

can be realized by the ability to recognize gestures performed on inviting sur-

faces. To assess impact on recognition performance of sensor motion, substrate and

coverings, we collected gesture data from a low-cost multitouch fabric pressure-

location sensor while varying these factors. For six gestures most relevant in a

haptic social robot context plus a no-touch control, we conducted two studies, with

the sensor (1) stationary, varying substrate and cover (n=10); and (2) attached to a

robot under a fur covering, flexing or stationary (n=16).

For a stationary sensor, a random forest model achieved 90.0% recognition

accuracy (chance 14.2%) when trained on all data, but as high as 94.6% (mean

89.1%) when trained on the same individual. A curved, flexing surface achieved

79.4% overall but averaged 85.7% when trained and tested on the same individual.

These results suggest that under realistic conditions, recognition with this type of

flexible sensor is sufficient for many applications of interactive social touch. We

further found evidence that users exhibit an idiosyncratic ‘touch signature’, with

potential to identify the toucher. Both findings enable varied contexts of affective or

functional touch communication, from physically interactive robots to any touch-

sensitive object.

2.1 Introduction
Words can sometimes be inefficient for communicating instructions or affective

content. In many contexts, touch may be the best modality for conveying direc-

tive and emotion: imagine how informing someone to get out of the way quickly

and clearly with one simple touch. To harness this communication channel, social

robots working in tandem with humans must recognize the same haptic language

that we use, of which gestures and affect are key components.

We focus on exploring the range of touch gestures detectable by a custom-built

flexible fabric pressure sensor and evaluating the added noise from curvature, mo-
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tion and material cover. Using common machine learning techniques, we highlight

salient features of touch for recognizing both the type of gesture being performed,

and the person performing the gesture—both the ‘touch’ and the ‘toucher’.

Reliable gesture recognition is an important step towards further research in

the field of affective touch. A strong foundation of research on gesture may allow

us to detect the toucher’s emotional state [50]. Until recently, this kind of research

was difficult, as touch sensors were not easily deformable nor cheap in both price

and computational resources. Our 10×10 sensor has 100 fingerpad-scale taxels

recording pressure and 2-D location data, and we use a random forest classification

method to approximate in situ recognition rates.

We first collected touch data for a set of six validated touch gestures [110]

plus one control on a stationary sensor under a variety of substrate stiffnesses and

coverings. We then mounted the same sensor on an actuated robot skeleton and

collected similar data while varying the sensor’s covering and motion (Fig. 2.1).

Recognition rates were within 80–95% for all conditions we tested (chance 14.2%),

a level of accuracy which will suffice for many purposes and is enough to merit

empirical comparison to human recognition ability in future work. At the same

time, we found individuals’ touch signatures were idiosyncratic enough to permit

identification of toucher within this sample, at an accuracy rate similar to that of

the gestures themselves.

2.1.1 Questions and Contributions

We wished to learn:

Q1: How accurate is our flexible fabric sensor in predicting gesture and differen-

tiating between users?;

Q2: How does sensor performance hold up under deformation due to curvature

and motion, such as that produced by a zoomorphic social robot?; and

Q3: Is real-time gesture recognition computationally viable?

With 20-fold cross validation on random forest models, we contribute initial results

of:
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Figure 2.1: (a) Top view of the CuddleBot skeleton. (b) Touch sensor, pinned
to foam substrate wrapped around the skeleton and corresponding to a
No touch×No motion×No cover condition. (c) Full range of breathing
motion used. (d) The fully-covered robot; a covering of nearly identical
material was used in the study to facilitate quick condition changes. (e)
The fabric pressure sensor constructed out of EeonTex conductive fabric
〈www.eeonyx.com〉, wired to an Arduino microprocessor.

• deployable accuracy in gesture recognition (6 gestures + control): 91.4% on

a firm, flat surface, 90.3% on a foam, curved surface, and 88.4% on a foam,

curved, moving surface;

• differentiating toucher at 88.8% accuracy (n=26);

• factors underlying recognition performance;

• feasibility of real-time gesture recognition.

We also make our data and analysis publicly available2.

Our study compares gesture recognition performance across a variety of con-

ditions that approach real-time dynamic gesture recognition. Toucher recognition

accuracy shows promise for incorporating personalized responses to an individual

touch signature.

2.1.2 Applications

Accurate gesture recognition on a fabric touch sensor opens up gesture-based con-

trols on any electronic device. For example, patients with limited speech could

use a smart blanket with gesture recognition capabilities for comfort or health-

2All collected data and select analysis can be found at 〈www.cs.ubc.ca/labs/spin/data〉
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reporting purposes. In the context of social robots, a sensor that can wrap around

any irregular form could be used as a touch-sensitive skin. Outside of explicit ges-

ture recognition, pressure-sensitive hospital sheets could alert caregivers of bedsore

risk.

In a behavioural education context, a soft touch-sensing playmate capable of

recognizing touch signatures may use this data to interpret and influence emotional

state [50]. Such a robot could aid students testing on the autism spectrum by re-

sponding to anxious or agitated strokes with slow, soothing, regulated breathing—a

behaviour shown to have calming benefits [88].

2.1.3 Detailed Requirements

Our sensing requirements are dictated by a zoomorphic robot, affectionately dubbed

the CuddleBot, that invites touch with a soft furry body. Since a user will expect to

interact with the CuddleBot via touch, having a full-body sensor that deforms with

robot motion is required.

Movement and elasticity: The sensor must be highly flexible, somewhat elastic,

and perform well while mounted on non-rigid and/or actuated surfaces.

Pressure range: Based on a preliminary survey of these touch pressures, we

determined that our sensor needed to register touches between 0.005 and 1 kg.

This range is appropriate for light tickles to heavy pats.

Multitouch: Multitouch capability allows us to compute varying pressure over

an area, differentiating touches like constant and pat from tickle and scratch.

Resolution and computational cost: Taxel resolution, sampling rate, and com-

putational cost must be balanced to achieve usable recognition accuracy. For real-

time, our computational cost is dominated by sensor polling and grows with the

number of taxels per grid edge. Our recognition tasks and feature selection explic-

itly analyze the differences between frames. In this case, accuracy plateaus with

fingerpad-scale taxels, when sampled fast enough to capture voluntary movement

(peaking at 10Hz [92]). We must be able to recognize changes in pressure and

localized hand motions up to this frequency.

Single-fingerpad resolution (≈2 taxels per inch) could capture small fluctua-

tions; however, our gestures (not including our control no touch) either involve the
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flat or palm of hand (constant, pat, rub, stroke), or tend towards quickly cross-

ing many taxels (tickle, scratch). This suggests that using statistical features that

emphasized the changes from frame to frame could be used to achieve reasonable

classification rates even at ≈1 inch taxels [33].

2.2 Related Work
We situate our work in the context of social robotics and affect-encoding social

touch. Gestural touch has been identified as a key component of human-robot co-

operation [7]. However, the semantics of that touch is conveyed through nuance.

For example, the same gesture could halt, contribute or modify another person’s

behaviour [7] depending on the emotional content inferred from pressure dynam-

ics [50].

2.2.1 Social & Affective Touch Communication

In collaboration with human workers, robots employed in a laboratory or workshop

setting presupposes a lexicon of social touch for operational interactions [36]. To

ensure safe and effective communication, Gleeson et al identify the requirements of

both a comprehensive gestural dictionary and lightweight sensing technology. The

intimate nature of collaborative robotic household help emphasizes the importance

of affect detection for social robots in this context [2, 79].

Previous work revealed correlations between gestural social touch and emo-

tional communication [44, 50]. Humans recognize the affect encoded in gestu-

ral touch [43, 44], suggesting that machine recognition of emotional state can be

achieved with sufficient sensing technology and clever feature extraction.

Much of the current work on social touch recognition uses a sensor worn on

a static human or robotic arm [50–52, 93]. The collected data and signal process-

ing procedures may not account for the added deformation noise of a soft-tissue

zoomorphic robotic form in motion.

The use of animals [24] and interactive robots in animal form (such as Sony’s

pet-dog AIBO [9, 97], the seal-shaped PARO [46, 64, 91, 104]) suggest potential

benefits in therapeutic use. Other touchable social robots include the teddy bear-

like Huggable [94]; and Probo [85], which does not have a recognizable animal
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analogue. However, while real pets respond to complex touch commands anywhere

on the body, this has been difficult to achieve without a generalized touch-sensitive

skin.

In trying to establish zoomorphic robots as an emotional agent [33, 110], touch

sensing strategies have included fur-level conductive threads, extensive biometric

data, gyroscopes and accelerometers, to name a few. While this cavalcade of sens-

ing produces encouraging results for social gesture classification [33, 110], it is far

from the light-weight system required for automatic, real-time recognition.

An unexpected result emerging from social touch recognition is the demonstra-

bly higher accuracy results for within-subject classification over between-subject

[33, 51]. Leveraging this result may allow us to use touch behaviours to identify

individuals and thus, recognize the nuances of an individual’s “touch signature” to

better predict touch gestures and, eventually, basic emotional content.

2.2.2 Flexible Pressure-Location Sensors

Real-time classification of social touch gestures on a flexing, noisy surface requires

that we have manageable signal processing while retaining the ability to represent

pressure and location.

Here we examine the suitability of existing sensing technology and recognize

their influence on our custom build. We do not present our sensor as a contribution.

While many highly accurate pressure-location sensors exist, such as those de-

veloped for robot grippers used in dexterous manipulation [82, 100], these tend

to be insufficiently flexible, overkill in terms of resolution, and considerably too

expensive for the objectives outlined here.

Other work has used Force-Sensing Resistors (FSRs) affixed to a hard shell [110].

This reduces the need to calibrate for sensor drift over continued use, however,

the trade-off non-aesthetic tactility, and difficulty in detecting touches between

sensors—limiting rendered motion [7, 20].

Stretch sensors designed for medical purposes by Vista Medical3 is the fore-

most inspiration for our custom sensor. However, Vista’s sensors recognized only

pressure without localization and did not have multitouch capability.

3Stretchable sensors can be purchased commercially from Vista Medical 〈www.vista-medical.
com/subsite/stretch.php〉
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Several multitouch, flexible fabric sensors are available [52]. However, flexi-

bility alone does not afford a full range of motion; it must be able to stretch and

deform to approximate animal skin.

The design and sensing capabilities described by Flagg et al [33] informed

many of our requirements and suggested that the bulk of the recognition accuracy

could be achieved by the “below surface” sensor alone. However, Flagg’s study did

not consider the full design space of a robot in motion including a non-sensing fur

and a variety of configurations. To evaluate how much information is compromised

under these conditions, we applied a variety of realistic use noise sources to the

sensor, both directly and indirectly.

2.3 Studies
We hypothesized that:

H1: gesture recognition rates will decrease with noise-creating factors—allowing

us to rank these factors’ impact on recognition performance, and their inter-

actions therein.

H2: variability in gesture execution will be higher between subjects than within

subjects—giving rise to the potential of differentiating individuals based on

personal touch signatures.

2.3.1 Apparatus

We constructed a sensor by layering two squares of conductive EeonTex4 Zebra

fabric, aligned at 90 degrees, with a plastic standoff mesh separator and a sheet of

EeonTex SLPA 20kΩ resistive fabric. Resistance value across a given taxel drops

when pressure is applied, compressing the mesh separator so the conductive layers

more closely approach each other. A circuit is constructed using an Arduino Mega

microprocessor. Each fabric stripe is connected to a single I/O pin: the top layer is

connected to analog input pins, and the bottom layer is connected to digital output

pins (Fig. 2.1(e)).

4Sensor fabric purchased from 〈www.eeonyx.com〉
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The sensor is polled by sequentially sending a voltage through the bottom

layer’s digital pins. The analog pins read current; resistance (and hence current)

varies with pressure.

Preliminary testing of our sensor using stationary weights showed that under

ideal conditions, we were able to achieve a touch weight range of 0.005–1kg using

1kΩ resistors. Under the most severe conditions, lighter touches were lost in the

dense fur; at the heavier end, touches were equalized by the yielding foam sub-

strate. For Study 1, the curved-foam substrate with thick fur cover was the most

obscuring condition; for Study 2, this was the cover condition with bot in motion.

Dynamic range is modulated through choice of resistor value. We found that

values greater than 1kΩ allowed our sensor to register greater forces, but lost res-

olution; conversely, lower values gave greater granularity in recognizing very fine

touches, but were too vulnerable to saturation at commonly applied force levels.

The same sensor and microprocessor set were used in all studies described here.

2.3.2 Methods

Our two studies assessed how realistic conditions impacted sensor data and hence

recognition accuracy; gestures and data collection procedures were unchanged.

Gestures and Sampling

We selected gestures from Yohanan et al’s touch dictionary [110], choosing items

most appropriate for human-animal interactions [33]. The sensor was placed on a

table in front of a seated participant, a reference sheet with very general definitions

for six selected gestures and one control was provided (Table 2.1). Participants

were instructed to interpret each gesture as they saw fit; no further performance

clarifications were provided.

A frame consisted of pressure data from all 100 taxels in the 10×10 grid. We

collected 10 seconds of continuous hand touch data at 54 frames per second for

each combination of gesture and condition, randomizing gestures and conditions

wherever possible.
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Table 2.1: Touch gesture instructions as provided to participants.

Gesture Suggested Definition
no touch no contact with the sensor (control)

constant touch contact without movement

pat quick & gentle touches with the flat of
the hand

rub moving the hand to and fro with firm
pressure

scratch rubbing with the fingertips

stroke moving hand repeatedly

tickle touching with light finger movements

Study 1: Cover and Substrate on Static Robot

We first measured gesture recognition for the static (unmoving) case, to assess

impact of the sensor’s substrate stiffness, curvature and covering thickness in ab-

sence of movement noise. This produced a factorial design of 4× 3× 7 (cover×
substrate×gesture), using gestures listed in Table 2.1.

Cover: The fabric’s pile or density varied from no cover (participant touched

sensor directly) to a very long, thick synthetic fur. Minky (a short furry fabric gen-

erally used for baby blankets), and a longer-furred fabric comprised intermediate

variations.

Substrate: The material underneath the sensor consisted of a firm, flat surface

(sensor affixed by velcro to a table); a spongy foam, flat surface; and a spongy

foam, curved surface. In cases with foam, the sensor was pinned directly to the

foam substrate.

To minimize sensor reading disturbances due to transitions (i.e., unwrapping

and replacing the sensor on/off the robot body), we blocked our design on the

cover× substrate conditions. Condition order was randomly generated for every

participant, and gesture order was further randomized over each condition set. All

participants completed all twelve masking conditions, with each generating 48 2s

sample windows per gesture. A study session took approximately 50 minutes to

complete. 10 volunteers (4 female, 6 male) were compensated $10 for their time.
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Study 2: Stationary vs Moving Robot

Our second study focused on the impact of the robot’s breathing movement. We

varied cover×motion×gesture, for a 2×2×7 factorial design. Factors consisted

of cover = {cover, no cover}, motion = {breathing, not breathing}, and gesture =

{set of seven gestures}. Each participant performed each condition combination

twice in a randomly generated order.

In the breathing condition, the sensor was attached to the CuddleBot, a cat-

sized robot designed for therapeutic use. Fig. 2.1(a-b) shows the naked skeleton

and the sensor pinned to the foam intermediary. The robot’s ‘breathing’ motion

was created by extending and contracting the paired rib assemblies in a 14◦ arc

from the spine at 0.5Hz (Fig. 2.1(c)). We draped and pinned fabric over the sensor,

approximating a full fur jacket for condition randomization while limiting sensor

disruption (Fig. 2.1(d)),

Each session began by asking the participant to interact freely with the covered,

moving robot for 1 minute to reduce novelty. Each condition was then presented

twice, in random order, for a total of ((2×2×7) + 1) = 57 trials. 16 participants (10

female, 6 male) were compensated $5 for the 30 minute session, each providing 32

2s samples of each gesture for every condition.

2.3.3 Analysis and Results

We discarded the first and last second of each 10s gesture capture and divided the

remaining 8s into four 2s windows. The 2s window (at 54Hz) was chosen to allow

each gesture some periodicity; all gestures fit completely within 1s (Flagg [33]).

Given the challenge of determining gesture boundaries in a realistic, real-time set-

ting when a motion is steadily repeated, a 2s window allows capture of at least 1

complete gesture cycle.

To account for translatory gestures, we also calculated a centroid (average ge-

ometric centre) weighted by the pressure reading for each frame. Centroids were

defined by row Cx (Eq. 2.1) and column position Cy (Eq. 2.1 with i and j indices
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Figure 2.2: Mean gesture prediction accuracy rates with added pressure noise
when (a) varying substrate or cover in Study 1 and (b) varying motion
and cover on the same curved structure as in Study 2. Each bar repre-
sents an average accuracy rate over 10 trials; error bars are omitted as ∆

across trials < 0.001% in each case.

reversed):

Cx =
∑

10
i=1 ∑

10
j=1 i∗ pressure(i, j)

∑
10
i=1 ∑

10
j=1 pressure(i, j)

(2.1)

We calculated weighted pressure by summing readings across each row, multiply-

ing by index, and dividing by the unweighted frame sum (the sum of the full frame

sensor reading). Repeated for each column, this provided a tuple of frame sum and

centroid per frame.

As a “baseline” for both studies, we sampled sensor frames in the absence of

gestures. In Study 1, each of the 12 (4 cover× 3 substrate) condition sets con-

tributed 4320 frames; in Study 2, each of the 4 (2 motion×2 cover) condition sets

contributed 6912 frames. To establish the effect of noise under each condition, we

ran MANOVA over three frame-level dependent variables: pressure, Cx-coordinate,

and Cy-coordinate. In all cases except one5, all three variables showed significant

differences at the p < 0.001 level. This indicates that the sensor is sensitive to
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changes in these conditions.

The data fails the Shapiro-Wilks test of normality; however, visual inspections

of residual Q-Q plots did not reveal any systematic patterns. Together with our

large sample size (n > 4000 frames per condition), we proceeded with the normal-

ity assumption, alert to risk of inflated Type I error.

The six gestures (omitting no-touch data) were then compared with each other

under the conditions of each study. MANOVA over the same three metrics (pres-

sure, Cx, Cy) showed that gesture and participant combinations were statistically

significant (p < 0.001). Differences in participant touch were detectable at frame

level.

We calculated seven features across these three dimensions (frame value, Cx,

Cy) for each 2s window for a total of 21 features. For each dimension, features are

{maximum, minimum, mean, median, variance across all frames, total variance

within the 2s window, area under the curve}. Condition variables (curvature, f ur)

or (cover, motion) make up the other features. Participant labels were included

for gesture predictions and vice versa.

Each capture produced four 2s windows, providing repetition for training. Pair-

wise comparisons of all within- and between- capture windows generated two bino-

mial distributions for statistically significant pairs using two-sample Kolmogorov-

Smirnov (KS) tests. Permutation testing [37] using the KS test statistic did not

detect a statistically significant difference (p = 0.214) between the distributions.

This is consistent with our observations of participants varying touch behaviour

both between and within captures.

We used Weka, an open-source machine learning application to classify ges-

tures [41]. Flagg’s comparison of random forest and a number of other algorithms

showed that random forest performed best in gesture recognition of this kind [33].

We ran k-fold Cross Validation (CV) on Study 1 participant data for k = {5, 10, 20,

100} and found less than 1% improvement between 20- and 100- folds. While this

CV technique does ensure that any one instance is included in the test or training

set and not both, it cannot promise subject-independent classification. Running

Leave One Out (LOO) classification yielded slightly improved results but we were

5For Study 2, the condition of with-cover×with-motion under no touch did not show statistically
significant differences in Cx data.
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Figure 2.3: A modified Hinton confusion matrix for gesture classification.
Horizontal (row) gestures are classified as the vertical (column) gesture.
Saturation in non-diagonal squares represents number of misclassifica-
tions.

cautious to the inflated bias [58]. All reported classification performance is there-

fore based on the slightly conservative 20-fold cross validation of random forest

models. Accuracy is defined as the percentage of data instances that are correctly

classified.

Gesture Classification by Condition

H1: Gesture recognition rates will decrease with increase in noise-creating
factors—accepted.
Comparing classification under Study 1 conditions (static surface), we found high-

est recognition accuracy with no cover on the firm, flat substrate case. Lowest per-

formers were dense fur and curved, foam substrate. In Study 2 (dynamic surface,

heavy versus no cover), conditioning across each of surface and motion factors had

minor effect recognition rates (all ≈88%).

With models trained on individual, Study 1 showed little change in gesture
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prediction rate compared to all-data models. Study 2 individually-trained results

are more similar to other studies, which also report training on single-condition

data [33, 52, 68, 98].

Cover-substrate-motion: Fig. 2.2 shows overall gesture recognition accuracy

by study and condition set.

We assessed relative noise levels by calculating effect sizes of significant con-

ditions. Cohen’s d reveals a large effect (|d| ≥ 0.8 [23]) with the introduction of

curvature (vs no substrate) and fur and short minky (vs no cover) in Study 1. Large

effects (|d| ≥ 0.8 [23]) from Study 2 were from introducing the cover (regardless

of motion), and from the combination of having motion and cover. Interestingly

enough, adding motion by itself produced a very low effect (d ≤ 0.08). Further

investigation into the interaction between cover and motion on pressure readings

included Tukey’s HSD of adjusted p-values to clarify the significance of stratified

factors. While all other combinations remained significant at p < 0.05, the case of

varying motion in the presence of a cover was alone insignificant at p.ad j = 0.7.

A confusion matrix (Fig. 2.3) indicates how gestures were misclassified. In

both studies, the most-misclassified was tickle.

Participant: We classified gestures with models trained by participant. In

Study 1, mean accuracy was 89.1% (max=94.6%)6. Models trained on all Study 1

data were accurate at 90.0%, i.e. within 1% of the mean accuracy of the individual-

trained models. This indicated that training on participants did not improve recog-

nition when data was not conditioned on noise-creating factors.

For Study 2 (fewer noise factors) we found a greater effect for models trained

on participants (mean=86.5%, max=97.3%)7. Training across all data gave 82.1%

accuracy.

The motion× cover condition had an overall 79.4% recognition rate. Train-

ing on the subset of data with the most challenging conditions (in-motion, with-

cover) still produced a higher recognition rate when using individual-trained mod-

els (mean=85.7%, min=73.7%, max=95.1%).

6Study 1 gesture recognition accuracy by participant: P1-93.0%, P2-83.8%, P3-85.0%, P4-
92.6%, P5-93.2%, P6-88.0%, P7-94.6%, P8-91.7%, P9-86.0%, P10-83.4%

7Study 2 gesture recognition accuracy by participant: P1-90.2%, P2-86.6%, P3-86.6%, P4-
91.1%, P5-81.3%, P6-86.1%, P7-84.8%, P8-79.5%, P9-95.5%, P10-79.5%, P11-90.2%, P12-93.8%,
P13-97.3%, P14-83.0%, P15-79.5%, P16-79.5%
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Figure 2.4: Cohen’s d effect sizes of participant by gesture for each study.

We compared mean pressure of gesture behaviours by individual versus that

of the entire pool (i.e. how P1 performed scratch versus how all participants per-

formed scratch). All incidences were significant at p< 0.05 (Cohen’s d effect sizes

reported in Fig. 2.4).
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Toucher Recognition

H2: Variability in gesture execution will be higher between subjects than
within subjects—partially accepted, for the case of data compared within the
same noise conditions.
The ability to recognize toucher may have great impact on reading emotional state.

We compared performance in participant classification for models trained across

the entire dataset, with those trained on the 6 meaningful gestures of our gesture

set (omitting no touch). We also look at accuracy rates on data collected in the

most realistic condition (in-motion, with-cover).

Recognition rate by study: We compare recognition rate by study and gesture

in Fig. 2.5. Study 1 achieves an overall accuracy rate of 78.5% (chance 10%), but

for models trained by gesture, a mean of 87.9%. The highest contributing gesture

is constant at 92.7%, followed by pat at 88.9%.

Using all Study 2 data, participant recognition was 80.3%. Training by gesture

again showed recognition improvement; constant was best at 93.8%, followed by

pat at 89.8% (mean, all 6 gestures: 85.4%).

Conditioning on only the in-motion, with cover factor, referred to in Fig. 2.5 as

Study 2b, average recognition rates of participants are 89.8%. Further splitting data

to additionally train models by gesture does not provide additional improvement in

mean performance (85.2%); this time pat is the highest performer (93.8%) and

constant a close second (90.6%).

We again refer to effect sizes (Fig. 2.4) to consider the role of pressure in partic-

ipant recognition; individuals making different gestures exhibit considerable vari-

ation in pressure patterns.

2.4 Discussion
We discuss our findings in direct response to questions posed in Section 2.1.1.

Q1a: Potential accuracy of sensor in gesture recognition
Unsurprisingly, we found the highest recognition rate (94.8%) for the case of no

covering and a flat, stiff, stationary surface (Study 1); these are the least demanding

conditions and the ones we expected to perform the best.
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Figure 2.5: Mean subject recognition rates by gesture and study over 10 tri-
als; error bars omitted as ∆ across trials < 0.01% in each case. Study
2b refers to the ‘in-motion, with cover’ condition.

In evaluating the degree to which noise factors degraded performance, we ex-

pected the noisiest conditions to be in Study 2: moving, curved, springy surface

under a heavy fur cover. This achieved 88.6% recognition rate of our 6 gestures and

‘no touch’, among the lowest we observed. However, at just under 90%, this value

is still usably high. Further work is required to assess the impact of nonuniform

motion, as well as unknown gesture segmentation boundaries in lesser controlled

conditions.

Q1b: Potential accuracy of sensor in user differentiation

Our studies show that the ability to pick a particular ‘toucher’ out of a known

group varies by gesture. A priori knowledge of a condition also improves predic-

tion accuracy, jumping from 80.3% trained over all data to 89.8% when trained on

in-motion, with-cover, the noisiest condition. To see how this may change over

the various gestures, we refer to Fig. 2.5 which ranks constant and pat as most

identifiable. Fig. 2.4, which compares the effect size of pressure reading by par-

ticipant and gesture, reveals that there are many large effects for constant gesture.

This focus on pressure suggests that there may be revealing variations in individual

‘heaviness of hand’.

Q2a: Impact on accuracy due to cover, substrate and motion
Over our two studies, we examined variations in cover thickness, substrate stiffness
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and curvature, and motion. Summarized in Fig. 2.2, we now discuss the impact of

these factors individually.

Cover: The effect of a cover on classification performance is significant; more

so than the underlying motion (as noted by Section 2.3.3). Fig. 2.2 further illus-

trates this. Regardless of whether we partition our data by cover on/off or motion

present/absent, we achieve gesture recognition of at least 88.1%, 6% higher than

training overall (82.1%).

The pressure applied over a denser, heavier fur cover may muffle some of the

lighter touches and degrade transmission of touch pressure and/or location, thus

confusing some gestures.

Another possible explanation could be from added familiarity that the cover

affords. For example, according to one subject, “When it had the fur on, I had

a more pleasant experience...Without the fur, I found it difficult to touch it.” (S7)

This opinion was expressed in some form by 10 of 16 Study 2 participants. More

research is needed to determine if the fur invited more naturalistic touching.

Substrate: Compared to a flat, hard surface, a flat foam substrate decreased

recognition accuracy by about 1% (Fig. 2.2a). It had slightly less impact than

curvature or, comparing to Study 2, than motion. Given the sensor’s piezoresistive

construction, we anticipated the effect of firmly compliant backing to be small; this

finding confirms that a somewhat springy underlying surface (helpful for conveying

the sense of an animal body as well as a pleasant tactility) is feasible under a large-

body touch sensor.

Motion: The relatively small effect size of motion in raw frame data is unex-

pected. However, in the context of Tukey’s HSD results (with a cover, the motion

effect is insignificant), we gain some further insight into just how small the effect

of regular periodic motion is, and we confidently rank motion noise behind that of

a cover.

This is very promising for the larger premise of reliable touch sensing on a

flexing surface.

Interaction of motion and cover: There is a large effect size for the interaction

between cover and motion, which is absent in recognition performance conditioned

on added noise factors (Fig. 2.2). This consistent improvement over training on all

data (overall at 82.1%) suggests that these large effect sizes of noise interference

31



Figure 2.6: Top features as selected by Weka for each study. Classification
tasks are Gesture and Subject, by Location (Cx,Cy) and Pressure fea-
tures. Features selected at under 25% frequency in 20-fold cross valida-
tion are omitted.

have little effect on recognition as long as we train and test on the same condition.

Q2b: Gesture Recognizability:
Gesture confusion patterns reveal a considerable range of misclassification (the

more saturated cells in Fig. 2.3). In Study 1, the most commonly misclassified

gesture is rub as tickle; in Study 2 scratch is most misclassified as rub. Both pairs

are commonly executed as quick back-and-forth motions. This may be related to

relative gesture pressure by individual: gestures like constant, generally more sta-

tionary, are predicted consistently and also indicate a larger effect size by pressure

(Fig. 2.4). Quick motions being lost in the heavier covering may also contribute to

these errors.

Q3a: Feature Utility
Making computational economy is the key to real-time recognition. Prioritized

feature selection allows us to focus on high-performing dimensions. To help un-

derstand relative feature utility in our recognition tasks, we used Weka’s Attribute

Evaluator function to find the highest-weighted features for the random forest

model (Fig. 2.6).

The feature set with the greatest ability to differentiate gestures related to pres-
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sure variance; meanwhile, location variance facilitated toucher recognition. Peo-

ple’s touch signatures may vary more in physical location range, but, a gesture may

be better characterized using pressure when toucher is known (Fig. 2.4).

These results suggest that using a subset of the features described here could

increase computational efficiency, depending on the priority of recognition task

needed and the variance exhibited by an actual data pool. Meanwhile, evaluating

the performance of a reduced feature set is difficult due to the lack of a benchmark

for comparing accuracy rates [51].

Q3b: Computational viability of real-time gesture recognition
The conditions evaluated here approached realism in some respects, specifically

that of sensor covering, substrate, and underlying motion. Our post-hoc analysis

indicated that a modern microprocessor could keep up with both sampling and

recognition.

Our setup fell short of realism in at least one important factor: people are

unlikely to perform distinct, discrete gestures with well-defined boundaries. A dif-

ferent computational architecture will be required to handle this problem (a topic

of ongoing work). However at present, computational load is dominated by sam-

pling rather than recognition, an overhead cost that will not necessarily change with

real-time use (unless more selective sampling can be employed based on observed

patterns of touching). It is thus quite likely that a more capable recognition engine

will also be feasible with comparable computational resources. In situ real-time

recognition may be better approximated by speaker-independent Leave-One-Out

(LOO) sliding window. Our work uses k-fold CV as the more conservative accu-

racy rate (as compared to LOO), as we do expect a calibration process in which

speaker behaviour is learned. Until we optimize, the best window size is unknown.

2.5 Conclusions
The results described here represent an initial feasibility assessment of the impact

of flexing surfaces on gesture recognition performance. We found recognition rates

from 80–95% for optimal to noisy conditions when distinguishing between social

touch gestures relevant to interacting with a small touch-centric robotic entity. We

further found an ability to distinguish individual toucher at a rate of 78.5% and
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80.3% in Study 1 and Study 2 respectively. In the noisiest case (also the most re-

alistic), training by condition increased participant recognition accuracy to 89.8%.

The next step is evaluating more comprehensive sets of movement conditions.

The implication of a sensing system able to detect both individuality touch and

toucher is considerable. For example, a sensor able to differentiate between users

could provide a personalized set of experiences or controls.

Further, identifying the touch brings us closer to differentiating affective in-

tent [50]; identifying toucher may allow us to qualify their touch behaviour. A

sensor loaded with a personal touch profile could determine how far an individual

deviates from that profile on a given day, and infer emotional status. To build such

a profile, it will be important to establish the dimensions of a touch signature.

2.6 Future Work
We foresee many ways in which to extend this work.

More extensive movement conditions: The present study employed steady peri-

odic motion of an underlying surface for a flexible sensor. A more general, and

potentially challenging, environment will include irregular and unexpected mo-

tions.

Continuous gestures: The single-gesture samples of this study removed the need

to segment data in pre-processing. In future, an algorithm will not know of ges-

ture boundaries or length a priori, and will need to handle the case of seamlessly

transitioning gestures.

One approach is to run several sampling windows of different length to search

for varying touch activations at the cost of increased computational load. Future

work needs to explore this and other architecture to determine a strategy to optimize

for computational efficiency.

Pragmatic gestures: In this study, participants were instructed to perform a partic-

ular named touch gesture, but not with communicative intent or emotion context.

The semantics of a “natural” touch will be dependent on context of situation and

the user’s own state; to determine communicative intent, it may be necessary to

observe other factors as well.
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Our participants often varied in how they interpreted a given gesture, both be-

tween participants, and individually between and within conditions. For the latter,

we suspect users may have performed more authentic gestures on the moving, fur-

covered robot than when it was flat, stationary and/or uncovered. We also observed

differing touch behaviour from the beginning through the end of one capture, but

our sensing mechanisms are unable to distinguish these cases.

Gesture stabilization and system interactivity: Finally, with more efficient algo-

rithms deployable in realistic conditions, we plan a longitudinal study of long-term

interactions in natural settings to investigate how individual gestures change over

time as a toucher learns to interact with the sensing system.
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Chapter 3

Affect Detection

Automatic affect detection allow machines to extend beyond communication via

instructional gestures to access more contextual cues. Emotions are expressed

through many physical channels, including (but not limited to) physiology [62],

facial expressions [60], eye behaviour [48, 74], speech [73], vocal prosody [59],

and even touch [43]. Since machine recognition of emotional expression through

touch is still largely unsolved and as yet unreliable [4], we use multimodal sensing

to triangulate affective signals by leveraging gaze and biometric support of touch.

In Chapter 2, we established that the custom-build sensor performed at literature-

levels for gesture classification (80%–95%), so we proceed with the same sensor

here.

In real-use case, a therapy robot pet would need to recognize true expressed

emotional touch in the absence of gestural or emotional direction, contrary to pre-

vious classification tasks [4, 43] where participants were asked to convey emotion

as a proxy to personal experience. Therein lay our first challenge: collecting this

kind of truly experienced emotion in lab as training data. We turned to an in-

teresting emotion recall technique. Relived emotional memories can elicit strong

biometric responses [32] reminiscent of the original emotional experience. Thus

we designed our study around recall of emotionally intense memories and captured

this affect-imbued data using our custom touch sensor, supported by commercially

available gaze and biometric sensors as well as self-reports.
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Abstract
Efficient, unobtrusive machine recognition of human affect will be a key compo-

nent in interactive systems that must respond to human emotional state - e.g., , robot

therapy, assisted-driving systems and emotion-aware game development. Because

affective communication occurs through many modalities, algorithmic recognition

of affect requires the flexibility to sense and integrate information from multiple

sources. Considering the application of therapeutic interaction with a robot pet,

we look here at alternative nonverbal modalities known to reflect affect: mainly

touch (measuring force magnitude and location), supported by gaze (location)

and biometric indicators (skin conductance, blood volume pulse, respiration). We

collected a training data series (N=30) from all three modalities and looked for

emotion-reflecting features and linkages between them.

For training data that reflected true experienced emotion, we asked participants

to relive intense emotional memories while touching a stationary, furry robot, elic-

iting authentically experienced emotions under controlled lab conditions. Touch

data was collected using a sensor embedded under the robot’s fur; gaze data was

recorded using an eye tracker next to the robot; and biometric data tracked us-

ing sensors attached to the participant’s body. Each participant interacted with the

robot while experiencing two opposing emotions: Stressed-Relaxed or Depressed-

Excited.

Targeting improved emotion classification from integrating touch with gaze

and biometrics, we extended past touch classifiers to include features from the

frequency domain. We report accuracy results from a random forest classifier

built on 100 trees with 20-fold cross validation and leave-one-out using Weka, an

open-source machine learning program. Partitioning our dataset by level of system

knowledge of participant information [labelled, unlabelled, leave-out] and across

time-varying windows [2s, 1s, 0.5s, 0.2s], we found classification accuracy rates

improve with increasing system knowledge of participant. Labelled participant

data on adjacent windows achieved accuracy rates as high as 92% on touch data

alone and unlabelled, untrained participant data as low as 27% (chance 25%).

The wide range in classification accuracy suggests possibilities for in situ im-

plementation for a known user base. Adding modalities of gaze and biometric data

improve accuracy only when a participant’s instances are present in both training
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and test sets. To address the computational efficiency required of dynamic and

adaptive real-time interactions, we analyze relative subsets of our multimodal fea-

ture set, and provide design recommendations for our therapeutic robot.

3.1 Introduction
Social interfaces such as robots, smart cars or game systems must facilitate com-

plex and believable interactions with human users such that the machines appear

to respond or adapt to human social cues [34]. Because people prefer to inter-

act with machines as they do with other people [34], it is important for systems

to understand human social cues that can carry emotional significance, including

nonverbal channels such as facial expression, body pose, social touch, eye focus

and vocal prosody. Humans have evolved or learned naturally during early social

development to use such cues to distinguish between emotions such as distress and

happiness [1]. Machines must be explicitly trained to do this in different social con-

texts where the affect-expressing channels may vary [1]. Examples of applications

with different social contexts are given below:

Entertainment: Emotion manipulation plays an important role in how we expe-

rience computer gaming media, but player responses are individual and vary over

time. A system able to, for example, detect excitement and startled could enhance

the experience for players who enjoy being challenged or scared, through auto-

matic, personalized changes in difficulty. Technology for detecting emotional state

could be embedded in a gaming controller and TV screen.

Assisted driving: In assisted driving it is currently difficult to determine when the

system can take over driving safely. Assessing a user’s momentary attention and

stress could be a key to this problem. If the car could sense increases in arousal, it

might control the environment to calm the user down if needed. Sensors could be

built into the steering wheel, mirrors, and seat to assess emotional state and focus.

Social robot therapy: Affective therapies for treatment of anxiety require systems

than can sense human social cues. A number of touchable robots such as the baby

harp seal Paro [102] and teddy-bear-like Huggable [95] have been developed for

this purpose. Studies with the Haptic Creature [110] specifically investigated hu-

man affective touch of and affective display by a zoomorphic robot animal that had
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an array of touch sensors embedded in it.

In this paper, we focus on enabling emotion recognition in the last application

example – social touch robots for therapy purposes. Earlier work indicates that

interaction with such robots can affect human emotional state. [88] showed that

motion of the Haptic Creature lowered anxiety in users who were stroking it on

their laps. However, Sefidgar and MacLean [88] did not set out to investigate

automatic human affect recognition with the robot. This could be a key to providing

benefits comparable to the physiological benefits demonstrated by animal-assisted

therapy [8, 10, 71, 81] – especially valuable where human patients are unable to

engage with actual therapy animals.

Using touch as the primary interaction modality leverages the natural inclina-

tions for physical contact to represent emotional closeness while minimizing inva-

sive sensing. Previous work has shown that affect-related information of human-

animal robot interaction can be extracted from touch gestures such as stroking and

rubbing [4]. However, there is doubt as to whether classifying gestures is helpful

in detecting true emotional state – intuitively, knowing whether a gesture was a

‘stroke’ or a ‘rub’ may not supply deterministic information about the emotional

state of the user while performing that gesture. Furthermore, these studies col-

lected intent style data, where the emotions were expressed to a sensor, and not

experienced by a participant. A therapy robot should recognize a user’s emotion as

it unfolds, thus the model must be built on participants who are truly experiencing

the emotions being studied.

Because recognition of human affect from touch data alone is a challenging

task, we included two alternative supporting modalities that could potentially im-

prove recognition performance: biometrics and gaze. Our choice of these two

modalities over other alternatives such as vocal prosody and facial expressions was

motivated through suitability to our robot pet application. Earlier work has shown

that touch interaction with a robot pet can decrease heart and respiration rates [88].

This suggests that sensing and utilizing such biometric responses during interaction

could make recognition of human affective state more accurate. Additionally, gaze

is a good indicator of visual attention determining whether a user is focusing on

the robot pet and has been used successfully in predicting affect. Jaques et al [48]

has demonstrated that user’s gaze focal points on a computer display are related to
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feelings of curiosity and boredom.

3.1.1 Approach and Research Questions

We investigate how gaze and biometrics could support recognition of affect through

touch interaction with a robot pet. With touch as the central modality, we also

chose analysis methods that originate from social touch gesture classification [33,

51] and borrow features calculated from force magnitude and location (pressure-

location domain) for finding a baseline for emotion classification in touch as well

as pressure characteristics in the frequency domain. By adding established signal

processing from biometric and gaze classification methods, we hope to reveal how

the emotion classification is affected by inclusion of gaze and biometrics.

Finding an optimal machine learning feature subset becomes combinatorially

intractable with increasing modalities and accompanying statistical features1.

However, this is an important endeavour for the eventual end-goal of the creation

of a real-time, automatic emotion modelling system. So we must consider data

collection window size, sampling density, and feature set to reduce computational

load and classification error2. Towards this goal, we investigate three avenues: (1)

various collection windows and (2) sample adjacency by accuracy, and (3) feature

subset performance by selection popularity. Each of these variables are explained

in more detail with their respective research questions.

RQ1 – Touch with Multimodal Support: How accurately can we classify emo-

tional state based on combinations of gaze and physiological data with touch

data?

Multimodal datasets likely provide a more complete picture than touch alone,

due to asynchronous activation, or interaction information.

We expect classification accuracy to improve with increased modality
1Note that our current method of feature creation grows roughly in O(|F ||M|), where F is the set

of statistical features and M is the set of modalities.
2For a random forest classifier, having extra features that contribute little information can de-

crease accuracy rates if they are randomly selected. We have also found that certain features oppose
each other, i.e. including both in a subset decreases accuracy, when each has high information gain
individually.
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support. Gaze and biometric data, both known to encode affective con-

tent [48, 57], help to round out emotional signals from touch.

RQ2 – System Knowledge of Individual: How important is system calibration

of user to affect classification?

Past social touch gesture recognition results suggest that individuals have

distinctive ways of interacting with touch sensors that make recognizing

identity surprisingly accurate [19, 33]. This suggests that a system that has

learned user behaviour may be better at gesture recognition. Leveraging this

result for affect, we perform classification across three different levels of sys-

tem knowledge of participant (hereby referred to as participant knowledge)

and discuss results.

Recognition rates is likely to increase alongside greater participant knowl-
edge: Participant-labelled data where instances from the same individual are

in both training and test sets will yield the highest classification accuracy;

alternatively, lowest predictive accuracy occurs where testing and training

are performed on different individuals.

RQ3 – Sample Density: Is classification robust to interruptions in signal or sam-

ple size in continuous sampling?

Outside of polling rate, we define sample density across two parameters: (1)

window size and (2) window proximity. Window size represents a time inter-

val of continuously sampled data; larger windows cover a longer time snap-

shot and are thus more likely to capture distinguishing emotional character-

istics over a behaviour. Window proximity refers to the increased likelihood

of neighbouring time series samples sharing more characteristics than distant

samples. We examine the influence of window size and window proximity

by aggregating data instances in four different window sizes and comparing

classification accuracy of the same data set, with gap (dropping 2s of data

between windows so adjacent windows are not evaluated) and without gap

data (adjacent windows are included in the training and test sets).

We posit that across both parameters, reducing sample density reduces
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classification accuracy where the worst performance occurs with small win-

dows with gapped data.

RQ4 – Feature Analysis: Which features or sets of features provide the best chance

of high accuracy rates?

Increased computation load and resultant latency are the cost of multimodally-

enabled triangulation on parameter truth, and potentially undermine real-

time feasibility of such a technique. In order to optimize these tradeoffs, we

analyse each of our features in terms of repeated occurrence in automatically-

selected best feature subset. Finally, we assess which features, from a super-

set containing both pressure-location domain and frequency domain, are to

be included in a strong feature set.

Traditional touch and gaze features span the spatial and temporal domain,

we add spectral distribution statistics to incorporate artifacts in interaction

frequency and posit that classification accuracy will be improved with the
addition of frequency domain features.

3.1.2 Contributions

Through answering our research questions, we contribute the following:

• Affect classification performance from combinations of touch, gaze, physi-

ology data in experienced-emotion interactions;

• Feature analysis distinguishing relative recognition contributions from fea-

ture subsets, to maximize multimodal benefits tradeoff with computational

load as well as a recommendation of data features from the frequency do-

main and traditional pressure-location domain in an emotion classification

context;

• Practical recommendations on the use of affect classification in three exam-

ple scenarios with respect to system knowledge of the user.

The remainder of this paper is structured to include a survey of previous work,

motivating our choice of emotion elicitation method and including a history of
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affect classification from each of touch, gaze, and biometrics. We describe our

experiment in detail, describing our data post-processing procedures. Results are

presented from all data partitions that target the influence of multimodal data vs

touch alone, participant knowledge, sample density, feature set, as well as a review

of the emotional experience based on participant reports. Finally, we discuss our

findings and ground this work in relevant application implications.

3.2 Related Work
Here we review past methodologies and motivate the choice of relived experience

to target our emotion set. We also provide a history of affect classification by

modality and note cautions.

3.2.1 Emotion Set

We take Russell’s circumplex model of affect to be our starting point, where arousal

(activation) and valence (pleasantness) are orthogonal axes [83]. Although Rus-

sell’s model is widely used by emotion researchers, there are some inherent limita-

tions with discretizing and labeling the two-dimensional space as we must assume

that: (1) emotion labels will be interpreted consistently by every participant at any

time; and (2) the axes are truly orthogonal.

Consider the emotional context of approaching the axes or origin when working

with such a model:

• it may not be sensible to reach (0,0), presumably a state of full neutrality.

Similarly,

• it may be absurd to talk about independent movement, i.e., , directly along

axes: can one really have an increase in arousal without any change in va-

lence?

As such, many emotion researchers [27, 42, 105] opt to discretize the 2D space

into a grid and rotate it by 45, such that experimental materials and tasks are aligned

with the diagonal axes, namely (high arousal, high valence) ↔ (low arousal, low

valence) and (high arousal, low valence)↔ (low arousal, high valence).
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The literature provides little consensus for which emotion labels are to be em-

ployed, making comparison between studies of even common modalities problem-

atic. Understandably, papers utilizing information of gaze use attention-related

emotion sets – e.g., , Anxiety, Boredom, Confusion, Curiosity, Excitement, Focus,

Frustration [84]. Human recognition of human affect based on touch tries to span

the human experience, namely Anger, Fear, Happiness, Sadness, Disgust, Surprise,

Embarrassment, Envy, Pride [43]. Yet another method is to partition Russell’s

affect grid as discrete labels: touch uses nine3, of which biometric data uses a

subset4. We chose four emotions labels that minimally cover the Russell’s emo-

tion model to avoid overlap in label interpretation: Stressed, Relaxed, Exited, and

Depressed.

3.2.2 Emotion Elicitation

A fundamental problem with eliciting emotions from research participants [22] is

consistently producing valid emotions in a lab setting. Our motivating application

involves a situated social robot that must react to authentic human emotions as they

occur, which poses a challenge in contrived laboratory settings (“Feel angry as you

interact with our robot”). To circumvent these artificial emotion barriers, past work

has typically asked of participants the easier task of simulating intended emotions

(“Imagine feeling anger, then express it to our robot”). For example, to collect

the data used in [110] and [4], participants were presented with a list of emotions

that they had to express by touching a robot. Unfortunately, this does not directly

equate to experiencing an emotion, and may not accurately represent the intensity

of an experienced emotion. Consider the difference between a smile and genuinely

feeling happiness: the former lives in a public space, where the one smiling can

convey an emotional intent to others. The latter is private, the experienced emotion

available only to the individual.

Experienced emotion studies are difficult to conduct and are more rare. Play-

ing entertainment media, specifically emotionally evocative music and/or video,

has been employed as an emotion elicitation method [57]; however, selecting the

3Emotions for classification by touch: Distressed, Aroused, Excited, Miserable, Neutral, Pleased,
Depressed, Sleepy, Relaxed [4].

4Emotions for classification by biometrics: Stressed, Excited, Depressed, Relaxed [57].
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media to be applied as an emotion treatment introduces difficulties. Although val-

idated sets of emotional media exist, they either rely heavily on getting the mood

‘just right’ (music), or demand a high level of attention and divert gaze (video).

Further, cultural and individual differences have great and unpredictable influence

over emotional reactions to either medium.

To channel our scenario of interacting with a social touch robot, we asked

participants to recall and/or retell an emotionally intense memory (as supported

by [32, 62]) while interacting with a furry, touch-friendly robot. Specifically, par-

ticipants were asked to recollect a memory where they had strongly experienced a

specific emotion, and recall or tell the story of that experience to the robot while

touching it. To verify that participants felt the intended emotional state, we used a

self-report scale where they rated their current feeling before and after a task.

3.2.3 Modalities

Affect classification has been explored in each of the modalities explored here, all

with distinct emotion elicitation procedures and labels.

Touch

Touch data can be quickly dissected into force magnitude (or pressure) and location

– dimensions which are used for gesture recognition as well as for control direc-

tives (e.g., , using trackpads and touch screens). Social touch gestures have been

studied and prediction accuracy has ranged from 59% [51] to 86% [33] depend-

ing on collection and classification methods, which, like affect, have no consistent

standard. Still, the high prediction accuracy rates achieved on defined gesture sets

suggest that these touches can be used as directives in systems with embedded

recognition systems.

Accurate recognition for true emotional data analysis seems to be more diffi-

cult: even human recognition of human emotion in touch does not achieve gesture

recognition rates with highs of 59% (chance 8%) [43]. Machine classification has

demonstrated 36∼48% accuracy (chance 11%) [4] depending on inclusion of par-

ticipant knowledge. Both of these studies collected intent data, and not experienced

relived emotion.
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Gaze

An interactant’s eyes give affect cues which are discernible with eye tracking tech-

nology. Partala and Surakka [74] studied the effect of emotional auditory stimu-

lation on pupil size variations; they found that negative and positive stimulation

resulted in significantly larger pupil dilation than neutral stimulation but could not

differentiate stimulus valence. Other factors, such as changes in luminance, can

also affect pupil dilation.

An alternative is to analyze where a person is looking. Jaques et al [48] tracked

students’ gaze when they interacted with a graphical intelligent tutoring system;

gaze features such as fixations and saccades revealed that curious and bored stu-

dents looked at different interface areas – for example, engaged students looked

more at the table of contents. Overall, boredom and curiosity could be predicted

with 69% and 73% accuracy, respectively.

To our knowledge, no studies have investigated whether gaze point is useful

in classifying emotions using the two-dimensional model of valence and arousal.

Compared to pupil size variation measurements, gaze point can be measured in a

less controlled environment (lighting and luminance changes impact data quality

less) with relatively inexpensive tracking technology. Thus, we utilize the Carte-

sian coordinates of user gaze point in our own classification analyses.

Biometrics

Biometric signals such as blood volume pulse (BVP), skin conductivity (SC) and

respiratory rate (RR) have been widely used for multimodal emotion recognition

in a variety of contexts. Examples include facial expressions [60], affective au-

dio [57, 69], gaze behaviours [45], and touch behaviours [88]. In addition, heart

rate variability has been utilized in emotion classification [5, 6, 49, 88] and as a

biophysical indicator of cardiological health [76].

Our work follows in a tradition of earlier explorations into multimodal emo-

tion recognition. The biometric signals that we chose were blood volume pulse

(BVP), skin conductivity (SC), and respiratory rate (RR). Using these three basic

signals, we calculated a set of derived signals that consisted of heart rate variability

(HRV) features, breathing rate variability (BRV) features, and cross-signal features
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such as heart beats per breath. Studies where emotion elicitation is based in true

experience and uses the same emotion sets (as in [57]) are most appropriate for

comparison. [57] uses validated music excerpts to generate authentic responses

crossing four musical emotions (positive/high arousal, negative/high arousal, neg-

ative/low arousal, positive/low arousal), reporting affect recognition rates between

70% and 95% (chance 25%) [57], with higher rates where participant knowledge

is included.

3.3 Methods
We asked participants to recall emotionally intense experiences while interacting

with our stationary robot pet. We sampled touch, gaze and biometrics sensors, with

self-reports of emotion collected before and after each emotion. Of 30 participants

recruited from across campus, 14 identified as female, 18 had corrected vision, and

of mean age 25.4 years (σ=5.4 years). Participants were compensated $20 for their

time.

In the following subsections we give details of the experimental setup, intro-

duce the procedure, and describe our data post-processing techniques.

3.3.1 Experimental Setup

Configuration and Room

Participants were positioned in a half-prone position on a couch to reduce large-

scale movements while ensuring comfort (Figure 3.1). For valid data collection,

our gaze and touch tracking systems needed to be within a close range; for valid

emotion elicitation, participants had to be comfortable enough during memory re-

call to express the focal emotion. The experiment was conducted in a sparsely

furnished medium-sized office with a window, with the participant’s back to the

door. The experimenter was present except for emotionally intense parts of the

session, as described below.
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Figure 3.1: The experiment setup: participant sits comfortably supported by
pillows, facing the gaze tracker with her hand on the touch-sensitive
surface of a stationary robot. Biometric sensors are worn around the
waist (respiratory rate), thumb (blood-volume pulse), and index and ring
fingers (skin conductance) of the resting hand. One camera captures eye
movements and another is raised on a tripod behind the participant to
capture hand motions over the robot. Both cameras have audio disabled
for privacy. When the participant pulls the rope, a ball leading outside
the room indicates to experimenters that the emotion task is complete.

Touch Sensor on a Passive Robot

We used a custom flexible touch sensing apparatus previously described in [19] that

has been validated to detect 5g∼1kg of weight with resolution of 10×10 inches at

one taxel per square inch5. We chose fingerpad-size taxel resolution similar to

that of earlier work [4, 33] since emotion tasks in touch generally incite broader

movements [43]. Higher resolution sensors have had great success in high preci-

sion tasks such as those seen in touch screens, trackpads, or teleoperative mimicry

and have useful applications in robotic arms [93]; however, they are massively

overqualified in terms of computation load and resolution for our purposes, where
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low cost and high sensor malleability are crucial.

Forming a 10-by-10 grid, this device can sense multiple simultaneous touches

(so-called multitouch), registering varying pressures on each taxel scaled to 1024

levels and polling at 54Hz. This resulted in 54 frames of 100 cells per second, each

reading a touch pressure value between 0 and 1023.

The touch sensor was installed on a stationary and unresponsive furry object,

roughly the size and weight of a football. The sensor was affixed by velcro to a sub-

strate made of soft-shelled binder plastic6, then covered with a uniformly-textured

short, soft minky fabric7 described as “pleasant to touch...[and] reminded me of my

chocolate lab’s head” – P4. Participants were instructed to touch the top surface of

the furry robot (Figure 3.1). All sensors were wired through the robot platform to

minimize visual clutter and connected to a single laptop. Figure 3.2 demonstrates

robot construction. While the robot is capable of motion, we disabled actuation

for this study to reduce confounds from novelty effects, sounds, or expectation of

a reactive robot.

Gaze and Biometric Sensors

We sampled gaze behaviour via Tobii EyeX gaze tracker8, at a rate of 60Hz –

similar in rate to our touch collection. The Tobii EyeX tracker was chosen because

it has been used successfully in a number of studies to track users gaze location

when looking a computer display or tablet [55, 61, 70]. It is also small in size

so we could place it below the robot at an angle where it could see participant’s

eyes while touching the robot (Figure 3.1). Although no specific instructions were

given regarding a required gaze direction, participants were informed that gaze data

collection was best when they were facing forward and did not make large body

movements.

We collected three biometric signals using the Bio-Graph Infiniti Physiology

Suite9, namely Blood Volume Pulse (BVP), Skin Conductance (SC), and Respira-

5Built from commercially available piezoresistive and conductive fabric. Fabric is commercially
available at www.eeonyx.com.

6Specifically, Wilson-Jones Accohide flexible cover binder http://amzn.to/29AiYbx.
7Minky is a soft, short-pile fabric, often used to make baby blankets. Examples can be found

online including http://amzn.to/29L2DBv.
8Tobii EyeX gaze trackers are available at http://www.tobii.com/xperience/products/.
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Figure 3.2: Our robot was constructed from pliant plastic sheets actuated by
a pulley, covered with a custom-built sensor, and finally wrapped in a
furry fabric to invite touch. It remained stationary during the course of
this study to eliminate any effect of participant reaction to robot motion.

tory Rate (RR), all collected at 2048Hz. Following established procedures for de-

rived signals, these were expanded to include a set of Heart Rate Variability (HRV)

features, Breathing Rate Variability (BRV), and cross-signal features such as heart

beats per breath. The cross-signal features were automatically calculated as part of

the Thought Technology Physiology Suite.

Participants were first outfitted with a respiration band worn around the chest

9System manufactured by Thought Technology Ltd. FlexComp ∞ SA7550 Hardware Manual can
be found through manufacturer website at http://bit.ly/29A5NIC.
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– a close fit that did not impede breathing. Once they were comfortably seated,

we positioned the BVP sensor at the thumbpad. Finally, the SC sensors were posi-

tioned on the index and ring finger pads. Both the BVP and SC sensors were held

in place by a small velcro band on the right hand which was not used for touching

the robot.

Video Data Collection

We took video recordings of the participant’s hands and face to help in data analysis

in case of missing gaze or touch data. No sound was recorded out of respect for

privacy. Camera for recording the hands was placed behind the participant and

another camera was placed on the right side of the participant for recording the

face (see Figure 3.1 for placement of the gaze camera).

3.3.2 Procedure

Table 3.1 summarizes the study procedure. The main part of the experiment was

run in alternating stages: (1) a neutral task, (2) the first emotional task, (3) a neutral

task, (4) the second emotional task. Emotion tasks were counterbalanced across

participants.

Introduction and Calibration

The participant was welcomed, consent process administered, and sensing equip-

ment set up. To reduce novelty effects, we introduced the robot, invited touch

exploration, and described the construction of the robot including sensing abilities.

We explicitly indicated that the robot would not move throughout the study. Data

reading range was then checked for each sensing modality in a calibration phase.

Neutralization and Self-report

For each stage, we first presented an emotionally neutralizing reading task where

the participant read a short technical report from a technology magazine. The

participant then reported their current emotional state by marking a sheet of paper

displaying Russell’s [83] 2-dimensional scale of arousal and valence [22]. During

this period, the participant was instructed to keep their hands still and not touch
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Table 3.1: Experimental Procedure Summary

Procedure Description (imposed
duration)

Data
Recorded

Introduction Describe experiment
procedure

none

Apply sensors none

Verified stable Biometric
readings

none

Neutralization 1 Read neutral text (5 min) Biometrics

Self-report Emotional
State

Calibrate gaze tracker
and touch sensor

Calibration
Logs

Emotion 1 Recall Memory Biometrics,
Gaze,
Touch

Self-report Emotional
State

Neutralization 2 Read neutral text (5 min) Biometrics

Self-report Emotional
State

Calibrate gaze tracker
and touch sensor

Calibration
Logs

Emotion 2 Recall Memory Biometrics,
Gaze,
Touch

Self-report Emotional
State

Gesture Calibrate gaze tracker
and touch sensor

Calibration
Logs

8 randomized gesture
tasks (10s each)

Gaze,
Touch

Debrief and
Interview

Interview Qualitative
data

Self-report Emotional
State
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the robot. A definition of arousal and valence were provided, and an experimenter

answered any and all participant questions about the nature of the scale. This

self-report was repeated before and after each neutralizing and emotion task. For

emotion tasks, a genuineness rating of their experienced emotion was included.

Reliving Emotion Task

The participant was next instructed to recall an emotionally intense memory per-

taining to a given emotion word {Stressed, Excited, Relaxed, or Depressed} and,

while comfortably seated, interact with the furry sensing robot. They were in-

structed to relive the emotion as intensely as possible and describe the memory

and associated feelings to the robot in any language they were most comfortable

in at a volume of their choosing. We reminded them that all audio recording in

video cameras was disabled and that we could not hear them speak from outside

the experiment room. Task completion was indicated by pulling a rope that led to

where experimenters were waiting. Data was collected over the course of a sin-

gle recalled memory (duration µ=4.23 min, σ=3.09 min). Once the participant

pulled on a rope to indicate that he or she had completed the emotion task, the

experimenter returned and administered the self-report grid.

The participant then proceeded to the second set of neutralization and reliving

emotion tasks. The emotion of the second emotion task was determined by the

first; participants experienced, in counterbalanced order, either Stressed - Relaxed

OR Depressed - Excited. Due to the taxing nature of the emotion task, we chose to

use only two emotions per participant, determined through discussions with field

experts, piloting, and literature review. Since feeling genuine emotion can take

effort, there was a significant concern about fatigue effects. The condition sets for

the neutralization and emotion tasks are fully summarized in Table 3.2.

Gesture Task

To ensure touch data quality, participants then performed a series of nine touch

gestures for 10s per gesture on the touch sensor. This gesture set was chosen from

Yohanan et al.’s Social Touch Dictionary [110] and is consistent with the tasks as

published in Cang et al. [19] using definitions as described in Table 3.3.
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Table 3.2: Summary of the condition sets for Neutralization and Emotion
tasks. For example, one participant session consisted of R1 neutral task,
Stressed emotion task, R2 neutral task, and Relaxed emotion task.

Task Description Order N=30

Neutral Two neutral texts {R1, R2}
(R1, R2) 16

(R2, R1) 14

Emotion

- 4 Emotion labels [83]

- Each participant recalled

“opposing” emotions

- Counter-balanced by order

Stressed -
Relaxed

6

Relaxed -
Stressed

8

Depressed
- Excited

8

Excited -
De-
pressed

8

Table 3.3: Touch gesture instructions as provided to participants [19].

Gesture Definition Provided
no touch no contact with the sensor (control)

constant touch contact without movement

pat quick & gentle touches with the flat of
the hand

rub moving the hand to and fro with firm
pressure

scratch rubbing with the fingertips

stroke moving hand repeatedly

tickle touching with light finger movements

Debrief and Interview

Finally, we conducted a short interview and debrief, including a final self-report to

ensure that the participant felt comfortable and emotionally stable. The latter was

included after we found in piloting that participants could become very distraught

during these sessions. The entire experiment took approximately 60 minutes.
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Data Processing and Feature Extraction

To check against sensor and/or data degradation, touch gesture data collected dur-

ing the Gesture Task as described in Table 2.1 was processed identically as that

in [19] where the same touch sensor was attached to a slightly larger robot10.

The results of earlier work were consistent with the current gesture data results

showing that gestures such as stroke and rub could be differentiated also with the

touch sensor mounted on a smaller robot. Thus, the touch sensor data quality

should be sufficient for classification of affect-related touch data in the current

study.

The recorded touch, gaze and biometric data was used to calculate features

that could be used in affect classification. We included conventional touch fea-

tures [4, 19, 33]: min, max, mean, median, variance, total variance, area under

the curve for both pressure and touch centroid (x,y). Then we extend these fea-

tures to gaze focal location (x,y) and biometric channels of blood volume pulse

(for heart rate), skin conductance, and respiration rate. As there may be more in-

formation than magnitude and direction in touch and gaze behaviour [4], we also

extracted frequency-domain features, specifically fundamental frequency, ampli-

tude, and peak count for touch: frame-level pressure, frame-level centroid (x,y),

and the window’s nine most visited cells as traced by the centroid; and for gaze:

point of focus on surface (x,y)11.

We down-sampled biometric data from the original 2048Hz to match touch and

gaze sampling rates at 54Hz–60Hz. All features were then calculated over different

window sizes: 2s, 1s, 0.5s, 0.2s, both with and without gaps (See Figure 3.3).

Pressure-location Domain Emotional touch feature extraction reprises known anal-

ysis procedures for social touch gesture recognition constructing three pressure pa-

rameters: {framesum (sum of all taxels in each frame), row-centroid and column-

centroid (weighted measurement of centre of mass)} [19, 33]. These parameters

are split into windows, where a 2s window contains 2s of data, or 106 frames (54Hz

10For our purposes, the larger robot was not feasible, since it had poor sensor coverage on key
parts of its body, and was not able to be easily fixed in relation to the eye tracker.

11Biometric channels also included automatically calculated higher-order frequency features that
came pre-packed with the Thought Technology physiology suite, so further frequency calculations
on biometric data was not reasonable.
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Figure 3.3: The data recorded during a single emotion task is referred to as
a capture. To determine the effect of varying window size on accuracy
rates, we tested at 2s, 1s, 0.5s, and 0.2s windows. Assuming that there
may be similarities learned when trained and tested on directly adjacent
windows, we also compared accuracy rates of data with and without
imposed gaps to remove adjacent window instances.

× 2s – Figure 3.3). Seven statistical features (min, max, mean, median, variance,

total variance, area under the curve) were calculated for each parameter, for a total

of 21 touch features.

Gaze used a total of 34 features: mean, min, max, median, variance of each of

focal coordinate pair (X-, Y-location), saccade length, velocity, fixation duration as

well as window summary features of sample count, sample count on robot, sam-

ples off robot, sample ratio, within range rate, saccade count, saccade rate, fixation

count, fixation-saccade ratio. We used Salvucci’s I-VT algorithm [87] to differen-

tiate between fixations and saccades. Gaze samples with point-to-point velocities

lower than 30 degrees/second were classified as fixations. Samples with velocities
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of 30 degrees/second or higher were classified as saccades.

Biometric features included mean, median, and variance across all channels

provided from the Thought Technology physiology suite, including both base sig-

nals (specifically BVP, SC, RR), and higher order channels dependent on the origi-

nal signals (e.g., , HR, HRV, IBI, etc.), for a total of 228 features across 76 channels.

Across all three modalities of touch, gaze, and biometrics, our maximal pressure-

location feature set contained a total of 283 statistical features.

Frequency Domain As biometric features extend far beyond these simple statistics,

we elected to compare frequency-domain features for touch alone and touch and

gaze interaction.

Inspired by [4]’s use of max amplitude and most activated cell features in the

frequency domain, we extended the set. From the original touch dataset, we sepa-

rated each collection instance to various windows and from each window we per-

formed a Fast Fourier Transform (FFT) of the frame-level pressure and the centroid

coordinates (x,y). Tracing the centroid, we found each frame-centroid cell as well

as its eight surrounding cells and the FFT for each of these nine cells. From these

combined 12 parameters, we found six window statistics: the spectral peak count,

fundamental frequency (Hz), max amplitude, mean amplitude, variance and total

variance of amplitude, resulting in a total of 72 touch features in the frequency-

domain.

We extended the same six window stats to gaze data and on the 2D focal loca-

tion, calculating 12 gaze features.

Across touch and gaze, our maximal frequency domain feature set thus con-

tained 84 statistical features. When we include the 21 touch pressure-location set

to assess all touch features, this number increases to 105 statistical features.

Classification Consistent with earlier work in touch classification [4, 19, 33], we

use Weka, an open-source machine learning application [41], to run 20-fold cross-

validation (CV) using a random forest classifier of 100 trees to report results in

terms of classification accuracy on both the pressure-location and frequency do-

main features. Whether for 20-fold CV or Leave-One-Out, classification accu-

racy is defined as ratio of correctly classified instances over all instances. We use

random forest as it has shown to be effective in touch classification tasks in past
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Table 3.4: A motivating overview of analysis techniques.

(a) 20-fold cross-validation

Description The data is randomly partitioned into 20 equal sized
blocks (folds). One fold is held as the test set, and the
other 19 folds are used as the training set. 20 tests are
run, one for each fold, and results are averaged.

Implication Since the data is randomly partitioned, all
participants are likely to be in both the test and
training sets.

Question How can we expect a system with prior knowledge of
participants to perform?

(b) Leave-one out

Description One full set of samples are left out of the training set
and kept as the training set. Since each participant
did two emotions, we left two participants out for
each LOO test. Results are generated per left out pair.

Implication Since the data is systematically partitioned, two
participants will be completely left out of the training
set for each run.

Question How can we expect a system with no prior
knowledge of participants to perform?

studies [4, 19, 33, 51].

A summary of analysis techniques is reviewed in Table 3.4.

Varying window sizes informs real-time classification in case we choose to

limit how much data to collect before a prediction task. Windows for capturing

gesture data have been recommended at 2s [33]; however, human hand and finger

expression is much quicker at roughly 100-200ms [72, 92].

Therefore, we divided our data into increasing window sizes of [0.2s, 0.5s,

1s, 2s], to provide us with insight into how data length influences classification

performance. Larger window sizes reduces the interrupts required and thus overall

computation time. We also assess the influence of removing adjacent windows by

adding 2s gaps between classification instances and comparing performance when
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all windows are included.

In decreasing knowledge levels, we included participant labels, excluded par-

ticipant labels, and finally used a version of Leave-One-Out (LOO) where wherein

we trained a classification model on a dataset with test participants removed. In

other words, if we are classifying Participant 3’s data instances, Participant 3 is

absent in the training set and only appears in the test set. To ensure that we cov-

ered all four emotions in each run, test sets were comprised of two complementary

participants. Since each participant performed two emotions, we had two mutually

exclusive groups of emotions. Combining one from each group gives us 16 × 14

combinations or 224 unique test and training sets for each modality set and win-

dow size. We aggregated for modality combination and window size and report

classification accuracy.

The emotion classification tasks varying participant knowledge can be thought

to represent real-world applications:

20-fold CV was done with and without participant labels. Training the model

with participant labels simulates a system that knows whose emotions it is attempt-

ing to classify, i.e. has some a priori knowledge of the user.

20-fold CV without participant labels can be read as a simulation of a classi-

fication task where the interactive system’s emotion model has been trained on all

possible users before attempting classification, though not given explicit indication

of the current user. Imagine a system that lives in a limited private domain, such

as family or classroom context, where all users have gone through a calibration

period. The calibration data would be the training set for the model.

In contrast, the Leave-one-out analysis can be read as a simulation of a clas-

sification task where the interactive system’s emotion model cannot be trained on

all possible users. This could work for a system that lives in a public domain,

such as in a museum or institutional context. The training set for the model would

necessarily not include all possible users, since they would not be known ahead of

time.

We also ran 20-fold CV classifying on participant labels to determine not only

how well these feature sets can determine what interaction was performed, but also

who performed it.
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Table 3.5: A motivating overview of analysis conditions.

(a) Window size

Description Data was all sampled to 54Hz. Window size is the
length of time over which a feature is calculated. E.g.
a two-second window has 108 samples.

Implication With a static sample speed, shorter windows simulate
a system with a faster update cycle. There will be
less information per window, but a faster system
response.

Question How can we expect accuracy rates to change with
different sample sizes?

(b) Gap/without gap

Description With no gap, all windows are calculated
contiguously, i.e, every window is directly adjacent
to the one previous. With gap, after every window is
calculated, two seconds of data is thrown out.

Implication Previous work has shown that a touch gesture takes a
little under a second to make, so a two second gap
increases the likelihood that each window captures
different gestures.

Question How does a system trained on more
homo/heterogenous data instances perform?

(c) Participant labels in/out

Description With participant in, participant labels were one of the
features the system could randomly select.

Implication With participant in, the system can tell whose
emotions it is attempting to predict. With participant
out, the system still has knowledge of the
participant’s behaviour, but cannot tell from whom
the behaviour came.

Question If the system is calibrated on a set of individuals,
does it need a priori identification of an individual to
predict emotions well?
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3.4 Results
This section describes our results from running classification using the traditional

pressure-location touch features on a multimodal data set as well as our addition

of Frequency Domain features on touch and gaze data. For both feature sets, we

found similar patterns, where:

• Increasing number of modalities improved accuracy rates,

• Increasing window size had little effect on accuracy rates,

• Decreasing amount of participant information in the training set worsened
accuracy rates,

• Leave-one-out analysis performed at or near chance, and

• Participant classification performed comparably to emotion classification.

In each case, we return to our research questions and describe the feature subset

run on emotion and participant and the nuances from the result set. We also address

the performance of feature set analysis, reporting best performers for emotion clas-

sification. Finally, we detail participant’s self-report of their personal experiences

during the emotion expression tasks.

3.4.1 Pressure-location Feature Set: Emotion Classification

Pressure-location touch features have performed well in earlier touch gesture recog-

nition tasks [19, 33]. To compare the relative classification accuracy with fre-

quency features, we report results from random forest classifiers using 20-fold

cross-validation (CV) on varying degrees of system knowledge by four differ-

ing window sizes. We aggregate across combinations of modalities: touch-only,

touch/gaze, touch/biometrics, and touch/gaze/biometrics, reporting on the relative

impact of each modality set. Biometric classification accuracies are included both

for reference to accuracies found in past work [57], and as a check against the

performance of touch and gaze features.

Table 3.6 is separated into two sets of classification tasks where (1) instances

were adjacent therefore likely to be similar and (2) instances were separated by 2s
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Figure 3.4: Classification performance by modality set, level of system
knowledge (where labels in indicates with knowledge), window size,
and with/without gaps. The Emotion row displays results from classify-
ing emotion, with and without Participant labels. The Participant row
displays results from classifying participant, with and without Emotion
labels. For both cases, increasing the number of modalities improves
accuracy rates, where the inclusion of biometrics provides the strongest
classification rates. However, in the most rigorous test of emotion classi-
fication, Leave-one-out (LOO), all modalities perform at or near chance
for all window sizes. Regardless of classification task, window size
has a small or positive effect on accuracy rates, except for case of 2s-
windows-with-gap. This is likely due to a high decimation of data, i.e.
2s-windows-with-gap has 13% of the number of data instances as 1s-
windows-with-gap.

62



Table 3.6: Results from Classifying Emotion using 20 fold CV on pressure-
location features for Touch (T), Touch + Gaze (T+G), and Touch + Gaze
+ Biometrics (T+G+B)

(a) No Gap between instances, participant labels in

Window T T+G T+B T+G+B Count
0.2s 92.29 94.41 100 100 73835
0.5s 92.14 93.94 100 100 29950
1s 92.13 93.71 100 100 14995
2s 91.84 93.05 99.96 99.97 7435

(b) With 2s Gap between instances, participant labels in

Window T T+G T+B T+G+B Count
0.2s 87.13 88.41 99.99 99.97 6713
0.5s 88.15 89.68 99.93 99.98 5990
1s 88.56 90.96 99.9 99.92 4999
2s 76.33 76.48 93.79 93.05 676

(c) No Gap between instances, participant labels excluded

Window T T+G T+B T+G+B Count
0.2s 75.42 82.2 99.99 100 73835
0.5s 76.11 82.35 99.99 99.99 29950
1s 76.77 82.15 99.98 99.97 14995
2s 76.15 81.45 99.93 99.88 7435

(d) With 2s Gap between instances, participant labels excluded

Window T T+G T+B T+G+B Count
0.2s 66.75 70.36 99.87 99.82 6713
0.5s 69.4 73.62 99.77 99.73 5990
1s 71.93 75.88 99.8 99.76 4999
2s 56.66 60.06 89.79 90.09 676

(e) Leave-participant-out Pairs

Window T T+G T+B T+G+B
0.2s 30.62 30.04 30.14 29.78
0.5s 31.95 31.65 27.24 27.86
1s 32.19 33.08 27.83 27.75
2s 33.05 34.47 29.14 28.22
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to reduce similarity; results show better performance where instances were adja-

cent. Gaze and biometric support greatly improves the accuracy rate, in line with

previous work showing high classification performance on physiological data [57].

Generally, increasing window sizes provides more information. However, we see

a drop-off at 2s. We believe this is due to a reduction in training instances, for

example, in Tables 3.6b and 3.6d, the instance count of 2s windows with gap has

only ∼13% of the number of instances as the next window.

As can be seen in Tables 3.6a–3.6b, we report accuracy rates between 65 and

100%, depending on window size and modality combination. Results are presented

in order of decreasing participant information inclusion in the training set i.e., par-

ticipant labelled, participants unlabelled, leave-participants-out (LOO).

Tables 3.6c–3.6d shows a similar pattern as with participants labelled (above).

Note that with lesser participant information, Touch and Touch+Gaze performance

degrades; however, the inclusion of biometric data maintains stable accuracy rates.

In our most rigorous test, LOO, high classification rates here would indicate

generalizable emotional expression of the population. However, this is not evident

from our feature set under these experimental conditions as, regardless of modality,

results from Table 3.6e approach chance (25%).

The bargraph of accuracy rates from all Leave-Participants-Out test set is shown

in Figure 3.5. Mean rates approach chance (25%), suggesting that the average indi-

vidual’s behaviour during emotional tasks is not generalizable. Interestingly, there

are many individuals who may conform to the group or directly oppose the group

as can be seen in the extrema of the distribution. For example, we note that P22 is

exceptional in that when P22 is included in the test set with any other participant,

emotion classification was consistently well-above chance.

3.4.2 Frequency Domain Feature Set: Emotion Classification

An earlier study by Altun and MacLean [4] reported promising results using two

frequency domain features (peak frequency and corresponding cell index) over the

classic pressure-location touch features. Here we replicate and extend their feature

set over both touch and gaze modalities. Biometric data was not included here

since physiology feature calculations have far more extensive feature sets beyond
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Figure 3.5: This is a bargraph of accuracy rates for every LOO test by partic-
ipant. Most of the accuracy rates are roughly chance=25%, and low SD
suggests the variance of this classification was low across window sizes.
Notice a few interesting outliers: test sets including P22 and P05. P22
has much higher classification rates, suggesting that P22 may be similar
enough to the group to have their emotion behaviours consistently iden-
tified. Conversely, P05’s particularly low rate of classification suggests
that P05 expresses emotions contrary to the group.

these frequency domain calculations [6, 57].

We again calculate features across the same four window sizes and compare

the influence of removing adjacent windows. Results are presented based on data

from Touch Frequency (TF), Touch Frequency/Touch pressure-location (TF+T),

and Touch Frequency/Touch pressure-location/Gaze Frequency (TF+T+GF).

Repeating the same classification tasks from the pressure-location feature set,

we compare how frequency features impact recognition of emotion.

With participant labels, we see the highest performance in cases with high

similarity and high information: adjacent (without gap) instances of multi-modal,

large windows. Without participant labels, the loss of adjacent windows (with

gap) has a large negative impact on recognition. Table 3.7b shows that even in the

best case (multimodal, largest window), the added gapping results in large accuracy

loss. Without participant labels nor test participant data (LOO) results again

approach chance (25%), similar to that of the pressure-location feature set.
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Table 3.7: Results from Classifying Emotion using 20 fold CV on Touch Fre-
quency (TF); Touch Frequency+Touch pressure-location (TF+T); Touch
Frequency+Touch pressure-location+Gaze Frequency (TF+T+GF) fea-
ture sets.

(a) With no gap between instances, participants in

Window Size TF TF+T TF+T+GF
0.2s 78.04 91.83 91.88

0.5s 86.48 93.57 93.48

1.0s 81.67 90.58 90.88

2.0s 92.98 95.79 96.15
(b) With 2s Gap between instances, participants in

Window Size TF TF+T TF+T+GF
0.2s 70.69 83.7 83.9

0.5s 83.1 89.64 90.25

1.0s 76.91 85.74 85.64

2.0s 82.52 89.07 89.49
(c) With no gap between instances, participants out

Window Size TF TF+T TF+T+GF
0.2s 78.04 76.68 76.96

0.5s 86.48 81.9 81.93

1.0s 81.67 75.35 76.38

2.0s 92.99 90.32 90.38
(d) With 2s Gap between instances, participants out

Window Size TF TF+T TF+T+GF
0.2s 42.71 62.36 62.76

0.5s 67.67 76.07 76.86

1.0s 51.08 67.32 68.16

2.0s 58.54 74.17 75.5
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Figure 3.6: Feature selection popularity of pressure-location features of
Touch and Frequency features of Touch and Gaze.

3.4.3 Participant Classification

The sharp decline in classification accuracy associated with eliminating participant

information from training sets in Leave-Out needs further examination. To this

end, we performed 20-fold CV predicting on participant for both feature sets (see

Table 3.8 for pressure-location features and 3.9 for frequency features).

High accuracy rates on participant prediction for pressure-location features

suggests that individual differences are highly expressed in behavioural data ex-

amined at this level. We see a greater negative impact on accuracy from removing

emotion labels Table 3.8a to 3.8c than removing adjacent instances Table 3.8a to

3.8b. However, compared to Section 3.4.3, frequency features perform weakly for

predicting participant.

3.4.4 Feature Set Analysis

Participant information makes a notable difference in classification accuracy of

emotion across all window sizes and adjacency. In order to examine how classic

touch features of pressure-location compares to an extended Frequency features on
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Table 3.8: Results from Classifying Participant using 20 fold CV on pressure-
location features for Touch (T), Touch+Gaze (T+G), Touch+Bio (T+B),
and Touch+Gaze+Biometrics (T+G+B)

(a) No Gap between instances, emotion labels in

Window Size T T+G T+B T+G+B Count
0.2s 84.66 90.48 100 100 73835

0.5s 85.63 90.94 100 99.99 29950

1s 86.18 91.24 100 100 14995

2s 86.24 91.61 100 99.99 7435
(b) With 2s Gap between instances, emotion labels in

Window Size T T+G T+B T+G+B Count
0.2s 75.57 81.68 99.93 99.96 6713

0.5s 78.88 84.36 99.97 99.95 5990

1s 81.5 87.04 99.94 99.98 4999

2s 67.31 71.3 98.52 98.22 676
(c) No Gap between instances, emotion labels excluded

Window Size T T+G T+B T+G+B Count
0.2s 71.96 81.98 100 100 73835

0.5s 73.64 83.28 99.99 99.99 29950

1s 75.43 84.61 100 100 14995

2s 75.74 84.87 99.96 100 7435
(d) With 2s Gap between instances, emotion labels excluded

Window Size T T+G T+B T+G+B Count
0.2s 62.4 70.06 99.88 99.91 6713

0.5s 66.04 74.77 99.88 99.88 5990

1s 69.87 77.96 99.9 99.86 4999

2s 54.59 64.35 98.08 98.22 676
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Table 3.9: Results from Classifying Participant using 20 fold CV on
Touch Frequency (TF); Touch Frequency+Touch pressure-location
(TF+T); Touch Frequency+Touch pressure-location+Gaze Frequency
(TF+T+GF) feature sets.

(a) With no gap between instances, emotions in

Window TF TF+T TF+T+GF
0.2s 53.76 86.8 87.21

0.5s 71.86 90.15 90.48

1.0s 64.25 86.36 87.24

2.0s 87.68 94.82 95.36
(b) With 2s Gap between instances, emotions in

Window TF TF+T TF+T+GF
0.2s 42.46 75.74 76.41

0.5s 67.35 84.86 84.88

1.0s 57.21 79.4 80.99

2.0s 66.87 84.8 85.65
(c) With no gap between instances, emotions out

Window TF TF+T TF+T+GF
0.2s 40.67 76.92 77.97

0.5s 63.37 83.71 84.78

1.0s 50.42 77.78 79.61

2.0s 83.31 91.84 92.24
(d) With 2s Gap between instances, emotions out

Window TF TF+T TF+T+GF
0.2s 31.43 63.45 65.85

0.5s 60.06 76.98 78.86

1.0s 44.1 69.12 71.35

2.0s 53.43 76 78.38
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Touch and Gaze, we ran Weka’s Attribute Evaluator using 20-fold CV of the Best

First search method on the feature set of Touch and Gaze feature set as described

in Section 3.4.2. Note that beyond participant information, the location-median

is the most commonly selected feature, though when normalized by feature count

per parameter, pressure-based features are the most popular, followed by location-

based features. Frequency-based gaze locations are next most popular. Figure 3.7

breaks down each parameter and their relative popularity where each cell represents

the number of features of a statistical type selected at each iteration. The most

often selected features were the 11 calculated medians of touch location which

were chosen 100% of the time during 20-fold CV.

3.4.5 Experienced Emotion Trajectory and Interview Results

Participants provided self-reported emotional state data with respect to Russell’s

2D affect grid during two neutralization tasks and following two emotion tasks.

Paired t-tests showed no significant difference (p > 0.05) between the neutraliza-

tion tasks nor an order effect between the emotion tasks. We therefore ignore

emotion order for subsequent analysis.

In paired t-tests, we found significant differences in self-reports between neu-

tral and emotion tasks for each of Stressed, Depressed and Excited in both arousal

and valence (p < 0.05). The Relaxed task did not show significance. A plot of

emotion trajectory shows participants’ starting state and the movement across the

2D affect grid (Figure 3.8).

Both high arousal emotions (Excited, Stressed) were consistent with expecta-

tions where participants reported a shift in emotion toward the corner of the grid

represented by the target emotion word. For some participants, the immediacy or

recency of the recalled events really helped to highlight these emotions. As this ex-

periment was run towards end of term, this coincided with final exams and holiday

reunions, both cited as reasons for ease of recall.

“I’m leaving to see my family for the first time in three years, I can’t

stop being excited.” – P8

“Excited was easy – the situation was more recent and was more im-

portant [than my Depressed memory].” – P22
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Figure 3.7: Feature selection popularity by statistic. Pressure-based touch
features are most popular, followed by location-based touch and gaze
frequency features on location data also third, when normalized against
total number of features available by modality.
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“I have a lot of school assignments right now and I kind of toggled

between many memories [for Stressed]. It was hard to pick one to feel

but I think that might have added to the feeling.” – P21

“...[W]hen I was doing Stressed, I felt like I wanted to punch some-

thing it was so gut-wrenching.” – P29

The low arousal emotions, Relaxed and Depressed, moved as expected in valence

but not arousal, which remained overall at its neutral “resting” position. In the case

of Relaxed, this might be explained by perceived similarity between this emotion

task and the ‘resting’ start condition.

“Relaxed was easy to express because it’s pleasant and I want to feel

it and also, I’m sitting on a couch which helps.” – P28, corroborated

by P2, P18

For these two emotions, some participants reported that the emotion Depressed was

linked to Stressed in their memories (e.g., , feeling stress about exams was also de-

pressing), which may explain some of the unexpected movement in arousal for

Depressed. Four participants also reported feelings so strong that their Depressed

memory evoked active tears, while others indicated that these feelings were some-

what mitigated by the experience of stroking a soft body.

“My [Depressed] memory was very clear and I was able to recall a lot

of details. It really helped to be touching a soft thing and felt like it

was taking some of my sadness.” – P29, corroborated by P15, P23

Another possibility for both of these emotion targets is that participants were sim-

ply unable to turn down their arousal state to this degree during the relatively short

time of the session.

Each participant self-reported a genuineness rating of how authentically they

experienced the target affect in each emotion task. On a scale of 1–10 with 1

being completely contrived or artificial and 10 being completely authentic as in

the original experience, participants rated µ = 8.29 (σ = 1.38) when Depressed;

µ = 8 (σ = 1.41) when Excited; µ = 7.5 (σ = 1.68) when Stressed; and µ = 7.5

(σ = 1.51) when Relaxed.
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Figure 3.8: Changes in individual’s self-report of emotion after Neutraliza-
tion (start) and Emotion tasks (finish); N=14 for Stressed & Relaxed and
N=16 for Depressed & Excited. Overall, we see a move from the origin
to the representative quadrant. Stressed and Excited show the strongest
overall change along both Arousal and Valence axes. Relaxed shows
the least change with disconnected points referring to “no change” from
neutral state.
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3.5 Discussion
In this section, we return to our research questions and address our suppositions

and research methodology.

3.5.1 Findings

Classification accuracy improves with increased modality support – Accepted.

The accuracy rates of biometrics in CV suggests that any time biometrics can

be artfully employed, they should be. For example, skin conductance sensors may

be useful for many touch systems. However, with touch and gaze performing at

roughly literature accuracies when participant knowledge exists, suggests that emo-

tion classification systems based off of just these modalities would be feasible for

at least some applications. Due to the invasiveness of some biometric sensors, such

a system has many possible advantages.

The biometric signal features were used as a check against touch and gaze

features. For example, in LOO, biometric features performed just as poorly as

touch and gaze features, which suggests a high rate of individual differences in the

features we have calculated. While there may be generalizable features available

in biophysical signals, we are not certain that we have found them here.

Recognition rates will increase alongside greater participant knowledge – Ac-

cepted.

Low LOO results imply low generalizability of an individual’s emotional be-

haviour at least when touch, gaze, and biometrics are chosen as the nonverbal chan-

nels of analysis. Thus, any system that plans to perform emotion classification is

advised to include all expected users in the training pool. As long as users are

included as part of a calibration period, the system does not require explicit user

identification as evidenced by the relatively strong performance of unlabelled par-

ticipants over LOO. In cases where the highest accuracy is needed, the system

should obtain a priori participant identification as seen in the performance using

participant-labelled data.

Reducing sample density reduces classification accuracy – Partially accepted.

From Figures 3.4 and 3.6, increasing window sizes from 0.2s to 2s improves

classification under no-gap conditions. However, when we introduced gaps be-
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tween instances – where windows were not adjacent – a dropoff in accuracy occurs

at 2s windows. Upon closer examination, we notice that the added gaps for 2s win-

dows also decimated the instance count down more than 90%, from 7435 down to

676 instances (see Appendices 3.6b and 3.9b).

In general, larger, adjacent windows result in marginally higher classification

accuracies and can be useful in adjusting parameters to system requirements. Rel-

atively minor reduction in accuracy with adjacent versus non-adjacent instances

suggests that the same individual touches similarly in same period of emotion ex-

pression. It may be possible to decrease computational load during data collection

as continuous capture may not be necessary when using short window instances.

However, seeing how instance count may influence classification performance, we

recommend balancing window sizes with capture length such that short windows

are used with systems that require fast response time.

Classification accuracy will be improved with the addition of frequency-domain
features – Rejected.

At 54Hz, the frequency domain features did not provide a significant improve-

ment in classification performance on touch data. However, the selection of gaze

frequency features (see Figure 3.7) suggests that there may be a benefit for gaze

data. We looked into frequency features in part due to others’ success using frequency-

based features [4]. However, with our low sample rate coupled with short windows,

this does not appear to be salient for this classification task. Furthermore, frequency

domain features require some extra processing by way of Fourier transformations

over the standard pressure-location set prior to model building; therefore, where

processing time is a priority, the standard feature set may be preferred.

3.5.2 Experimental Methodology

Our experimental methodology reflected our primary imagined use case: a zoomor-

phic robot designed for therapy. It had several elements that were not standard, in-

cluding the emotion elicitation method, the choice of emotions investigated, study

framing (the setup itself, with the participant interacting with an unresponsive furry

object), and various aspects of the analysis. With results in hand, it is relevant to

critique each of these aspects for its ability to produce valid data in general, and
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insights on our research questions in particular.

Emotion Elicitation We were surprised at participants’ intensity of expression

during the emotion elicitation tasks; although the technique was validated by lit-

erature, we elicited stronger emotional reactions from our participants than we

expected. The method was shown to be valuable for an experiment run in a labo-

ratory where people can otherwise find it hard to act as they would in more natural

settings. We believe that some variation on recall as a method for eliciting emotion

can be employed in future studies on our robot.

Emotion Set Although we have reported both high and low classification accuracy

rates, we have some skepticism over whether accuracy rates are a good indicator

of a successful emotion model. There is certainly value in an accurate system, but

there are some underlying assumptions of a discrete classification model that we

question.

Here we assume that participants express a roughly steady state emotion, felt

across the entire memory recall. However, it is possible that strong emotions may

be felt only for an instant before autonomic emotion regulation or coping mecha-

nisms take over [39]. The horizon over which we sample a participant’s emotional

state, and the assumption of immediacy has direct impact on what kind of decisions

we would want an interactive system to implement. Our discrete classification sys-

tem can identify differences in minute-long interactions, but cannot provide us with

an accurate estimation of an emotional inflection point (i.e. transition from one

emotion to another). A truly interactive system would need to react to the change

in an emotional state and adapt over many samples.

Furthermore, when engaging in natural emotional conversation, interactions

with pets or friends allow for error correction: if we are mistaken on our first in-

terpretation, further context helps us to reassess quickly and correct our language.

Working towards an adaptive model (rather than a prescriptive one) would go fur-

ther into developing a meaningful relationship over a direct and immediate call-

and-response instructing interaction [89]. Using touch data in context with gaze

and biometric analysis lays the groundwork for extending haptic human-robot in-
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teractions from instructional directives to meaningful conversational relationships.

3.5.3 Application Implications and Future Work

We return to our example applications as a way of grounding our findings and give

concrete ideas of how they could be deployed for use.

Social robot therapy Out of the three studied modalities, touch is the most cen-

tral for social robot therapy. Our current findings indicate that as long as the user is

previously known to the system, distinguishing between four different emotional

states can be done quite robustly. This provides intriguing opportunities for fur-

ther development of therapeutic robots that could automatically run human-affect

recognition and adjust their movement based on it. For example, when the user

is touching the robot in a way that communicates stress, the robot could alter its

breathing behaviour to attempt to calm down the user and reduce possible anxiety.

While gaze and biometrics did improve classification, their use in practical sce-

narios is more challenging. For robust detection of gaze, the user must always face

the robot at a certain angle or wear a calibrated head-mounted gaze tracker. Sim-

ilarly, biometrics requires instrumentation before reliable readings of signals such

as heart rate and skin conductance can be measured. In contrast, touch interaction

with the robot typically consists of momentary touch contact that may too short and

infrequent for measuring biometric signals through sensors embedded in the robot.

However, we believe these sensory systems can be easily integrated where some

considerations are met: careful sensor placement for gaze attention and training

data collection sessions.

To be used effectively in therapy, an introduction period would be required

where an expert such as a therapist would introduce the robot and guide potential

users in providing training data for recognition of emotions via touch. Although

this does imply a setup cost for use, potential benefits in environments where real

animals cannot be used (such as some hospital environments) compensates for the

initial time investment.
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Entertainment As the example with the most controlled environment, embed-

ded sensing systems can be integrated into product development, exploiting many

modality combinations. We can imagine handheld video game controllers using

skin conductance and pressure data because the touch contact with a controller is

likely more continuous than that with a social robot. On the other hand, the spatial

range of motion in touch gestures sensed with the smaller controller surface may

be more limited; in this case, pressure features may provide richer data than loca-

tion. In addition, it could be possible to develop virtual reality (VR) headsets with

gaze tracking and BVP sensors at the temples. Prototyping would be possible with

any existing controller that can be augmented with current commercially available

sensors.

Since the emotional states experienced with games can be different from those

studied in the current paper, it would be vital to run further studies on employing

classification models for emotional game play. Fortunately, gaming applications

have existing personalization paradigms that can be leveraged for model building:

users already log-on with identifying credentials, providing a priori participant la-

bel and in-game tutorial sessions offer an opportunity for collecting and building a

user emotion model.

Assisted driving Cars are environments where collection of touch, gaze, and bio-

metric data could create a sweet spot of low intrusiveness or annoyance, privacy

(not obvious to an observer in or out of the car) and accuracy. Sensors for touch

location, pressure, and skin conductance could be integrated into steering wheels.

Seat and seat belt could be utilized for heart rate measurements, while rearview

mirror and windshield edges offer natural locations for gaze trackers.

Identification of user would not be an issue in the automotive environment

where the number of different people using a particular car is typically low. Per-

sonal information consisting of touch, gaze, and biometric data could be stored in

keyfobs. However, acquiring training data would likely take time, and the assis-

tive features based on acquired emotional data must be downplayed before enough

data is collected for reliable classification. A subtle example of utilizing emotional

information of the user could be to switch to relaxing music when the driver is

detectably stressed.
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3.6 Conclusion
In this study, we presented affect classification results from emotionally influenced

touch and gaze behaviours, and checked with biometric data. Across the three

modalities, data was collected via: a custom piezoresistive fabric touch sensor em-

bedded in a furry football-sized stationary robot; a Tobii EyeX gaze tracker; and

Thought Technology’s BioInfiniti Physiology Suite of skin conductance, respira-

tory rate, and heart rate variability (by way of Blood Volume Pulse) sensors. Our

data set is composed of sensory data as well as self-reports of emotion genuine-

ness and intensity as participants recalled intense emotional memories spanning

Russell’s 2-D arousal-valence affect space, namely Depressed, Excited,Stressed,

and Relaxed. For models trained with test participant data using pressure-location

features, the overall emotion recognition rate was roughly 83%, 87%, and 99%

for touch, touch + gaze, and touch + gaze + biometrics respectively. Performance

drops steeply when test participants were left out of the training model, resulting

in 31%, 31%, and 29%, approaching chance (25%). We tried increasing the fea-

ture set by incorporating frequency features for touch and gaze modalities, 79%,

85%, and 85% respectively for touch frequency features, frequency and pressure-

location touch features, and touch frequency, touch pressure-location, and gaze

frequency features combined where LOO performs similarly poorly at 30%, 32%,

and 35% respectively.

These results inform design of a therapeutic social robot embedded with real-

time emotion classification and we make the following recommendations:

Emotional behaviour encoded in touch and gaze interaction is sufficient: While

including biometric data greatly improves accuracy, current technology requires

they be worn rather than embedded, resulting in a more restrained experience.

Setup restrictions may interfere with natural emotional expression and sensors af-

fixed to the hand and body can feel invasive.

A training or calibration phase increases the model’s prediction ability: In-

creasing participant information greatly improves the classification model’s predic-

tion accuracy. While this stage likely requires guidance from an expert or therapist,

the initial training investment facilitates the learning of user-specific characteristics

and develops a more robust user behaviour model, thereby allowing for a person-
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alized and productive experience.

Sampling density and feature count may be reduced to improve computation
load: During real-use cases, the speed of classification and reaction is a serious

concern. Our findings indicate that interruptions in data collection at up to 2s inter-

vals may be tolerable. Conversely, a recognition system that detects high frequency

behaviours could dynamically update sample density.

Although we have achieved possibly usable classification rates, our reflections

lead us to believe that a categorical affect model has clear limitations that must

be addressed. People do not experience emotions in isolation nor discretely, rather

emotional experiences follow a trajectory with distinctive peaks and valleys. Future

detection systems need to develop models that follow the rise and resolution of an

experience. While this study used a stationary robot, a deployed interactive system

must acknowledge that its response has influence over user emotional reaction,

necessitating dynamic adjustments to behaviour modelling.
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Chapter 4

Behaviour Sketching

Previous chapters have focused on how a robot senses human affect and intent;

now we look to close the interaction loop and consider how a machine can convey

recognizable emotions to the human user.

Robots that interact directly with people will soon become commonplace [29,

66], from manufacturing [36] to healthcare and the home [14]. Such machines must

function with a degree of social intelligence, and for many applications, render and

react to affect via touch and physical gesture [28, 34].

Both the Haptic Creature [108] and CuddleBot [3] were created to study emo-

tional touch and its therapeutic benefits. They use exo- or endo-skeletal, vibra-

tory, heat or pneumatic elements, and sophisticated signal processing and control

requiring powerful computation and architecture. Their high expressive poten-

tial (via, for example, breathing, purring, hunching, and head movement) requires

complicated coordination of single element motion. Inspired by research on emo-

tional breathing [13, 88], we zeroed in on 1-DOF breathing behaviours in two

distinct robot form factors to discern what factors in motion are emotionally sug-

gestive. Originally organized as a case study of periodic breathing, we sketch and

have users (N=20) evaluate behaviours on palm-sized, limbless 1-DOF robots col-

lectively dubbed CuddleBits—flexible, furry, and fully-covered FlexiBit, and the

rigid, wooden, and exposed RibBit (see Figure 4.1).
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Figure 4.1: The rigid RibBit (Left) and fur-covered FlexiBit (Right) explore
very different form factors using similar actuation principles and re-
quirements. Both can be compressed without damage, allowing for a
more naturalistic haptic display.

4.1 Related Work
While physical form is suggestive of emotional traits, we borrow from other anima-

tion methods to suggest anthropomorphism and increase expressivity of inanimate

objects.

Animation of emotion: Attribution theory [56] suggests that humans find agency

in many objects and motions, supporting the communicative viability of very sim-

ple forms. Conveying emotion on non-humanoid forms has been a mainstay of

visual animation from its beginnings, illustrated with Disney’s ‘sack of flour’ exer-

cise (http://tinyurl.com/pjhwrhg) where artists breathe life into a humble bag [99]. Be-

lievable emotion display does not require realistic rendering of the animal or inan-

imate object conveying it, only a recognisable anthropomorphic movement [99,

106].

Emotions and robot believability: To be believable social agents, robots should

seem capable of emotional processing and expression [11]. Many such robots have
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been built in zoomorphic form with encouraging results [67, 86, 101, 107]; but

these forms are much more complex than single degrees-of-freedom.

Animation concepts have been successfully applied to physical expression or

human inference of affective parameters on non-realistic everyday objects, e.g. the

ambient influence of a stick-like sculpture’s movement on a desk-workers activ-

ity [47], and a physically animated phone’s portrayal of emotions spanning Rus-

sell’s 2-dimensional affective grid [30, 83] or an expected liveliness [75]. Expres-

sive animations produced primarily for touching are less common.

Physiological and emotive impact of breathing: Direct physical contact with

another’s breathing motion affects physiology; e.g., in skin-to-skin contact therapy

for premature infants it promotes physiological stabilization [65]. Similar effects

are seen with touch-based social robots [103]. A robot’s felt respiratory motion

can reliably impart a physiologically and subjectively significant calming influ-

ence [88].

Human breathing behaviours reflect affective state [13], and breathing is an

expressive visual animation tool able to capture drowsiness to distress. The Haptic

Creature’s breathing display was crucial to being able to convey emotion [109].

The present work tests the ability of breath-like motion alone to represent a full

emotional range.

4.2 Experiment Method
We recruited 20 participants (11 male, 8 female, 1 other), aged 20–40 with cul-

tural backgrounds from North America, Europe, Southeast Asia, Middle East and

Africa. All participants had completed at least an undergraduate degree and were

compensated $5 for the 30 minute study.

Participants were seated and invited to inspect the inanimate robots, then in-

structed to use one hand to touch the robot and the other to use the mouse (Fig-

ure 4.2). They were given the task of rating each behaviour on a 5-point semantic

differential (−2 Mismatch to +2 Match) for four situations where the robot was

stressed, excited, depressed, or relaxed (see Figure 4.3). For instance, for “FlexiBit

feels stressed”, a participant would play the behaviour and rate how well it matched

the robot portraying stress.
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Figure 4.2: Experimental setup showing a participant touching the FlexiBit
and rating behaviours. The screen’s quadrants present the four situation
descriptions.

During playback and rating, hands obscured participants’ view of the robot;

motion was experienced largely haptically. Noise-cancelling headphones played

pink noise to mask mechanical noises; instructions were communicated by micro-

phone.

Ratings for each robot were performed separately. Robot block order was coun-

terbalanced, with a 2m rest. For each block, all four emotions were presented on

the same screen so participants could compare globally. Behaviours (15s clips)

could be played at will during the block.

Order of behaviours and emotion was randomised by participant for the first

robot. To reduce cognitive load, participants saw the same behaviour/emotion order

for the second block. In total, each participant performed 64 ratings (8 behaviours

× 4 emotions × 2 robots). Each session took ∼30m including a post-experiment
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Figure 4.3: Close-up of the interface participants used to rate behaviours.

interview.

Quantitative data included situation ratings and completion time, estimated by

duration of mouse focus within quadrant. In addition to the 64 behaviour ratings

per participant, we also recorded the time it took for each participant to complete

ratings per situation. This was estimated by adding up the amount of time that

the mouse cursor was in each of the four quadrants of the interface. We approxi-

mated task difficulty with time spent evaluating behaviours, suggesting challenge

in aligning robot behaviours with emotion.

4.3 Results
We ran pairwise Wilcoxon signed-rank tests with Bonferroni correction. Ratings

of the two designed behaviours for the same situation showed no significant dif-

ferences (α = .050/8 = .006; all p’s ≥ .059). Thus, we averaged ratings into four

pairs by emotion target (e.g., (1) & (2) in Figure 4.4); pairs appear on y-axis of 4.5).

The x-axis displays the four emotions. Darker colours indicate higher participant

ratings, and in an ideal case (where participants think the behaviours match the sit-

uations researchers designed them for) the darkest colours appear on the diagonal.
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Figure 4.4: Waveforms of behaviours as designed by researchers.

The behaviour ratings are grouped based on the situation the behaviour was

designed for and the situation for which the behaviours were rated. The ratings

are grouped by the intended representative emotion and the emotional content for

which the behaviours were rated. Darker colours on the diagonal indicate that

where behaviour ratings matched the design intention the behaviours matched the

situations that the behaviours were designed for. For example, it can be seen that

the designed behaviours for Stressed were rated to be a better match for the excited

situation.Excited).

Effect of situation on behaviour ratings. Friedman’s test on behaviour ratings

showed significant differences between behaviours per situation for both robots (all

p’s < .001). Post hoc analyses using Wilcoxon signed-rank tests were conducted

with a Bonferroni correction (α = .050/6 = .008) to further analyse the effect of

situation condition on researcher-designed behaviours (Figure 4.6):
– Stressed, Excited, or Relaxed: Significant differences between high and low

arousal behaviours (Stressed-Depressed, Stressed-Relaxed, Excited-Depressed and

Excited-Relaxed, all p’s ≤ .002). No significant differences between behaviours

with the same arousal level but different valence content.
– Depressed: No significant differences between three high and low arousal

behaviour pairs. A significant difference between behaviours with the same arousal

level but different valence content (Stressed-Excited, p ≤ .007).

For three of the four situation conditions, participant ratings of behaviours
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Figure 4.5: Mean behaviour ratings for FlexiBit grouped by the researcher-
designed behaviours (horizontal) and the situation for which the be-
haviours were rated by participants (vertical). Researcher-designed be-
haviours correspond with (a) to (h) in Fig. 4.4.

were decisive (high color contrast between behaviour ratings on Figure 4.5 y-axis).

Specifically, by situation condition and researcher-designed behaviours:

For situation = Relaxed, Excited, or Stressed, pairwise comparisons between

all researcher-generated low and high arousal behaviours showed significant dif-

ferences in ratings (Depressed-Excited, Depressed-Stressed, Relaxed-Excited and

Relaxed-Stressed, all p’s≤ .002). No significant differences were found for ratings

of behaviours with the same arousal level but different valence content: Depressed-

Relaxed and Stressed-Excited (p ≥ .017).
For situation = Depressed, pairwise comparisons showed significant differ-

ences between the following low and high arousal behaviour pairs with both robots:

Depressed-Excited and Relaxed-Excited (p’s≤ .001). Also, a significant difference
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S E D R S E D R
S-E .391 .142 .159 .076 .759 .037 .007 .017
S-D .001 .000 .004 .000 .000 .000 .012 .000
S-R .001 .000 .014 .001 .001 .002 .032 .001
E-D .000 .000 .000 .000 .000 .000 .000 .000
E-R .000 .000 .000 .000 .000 .000 .000 .000
D-R 1.000 .713 .668 .501 .582 .270 .713 .668

FlexiBit RibBit

Figure 4.6: Pairwise comparison p-values (Wilcoxon) of behaviours (row)
for different situation conditions (col), sig. diff. are darker. Notice
RibBit(S-E, D): in the Depressed condition, Stressed and Excited were
rated significantly differently.

was found between the low and high arousal pair Depressed-Stressed with FlexiBit

(p ≤ .004). With RibBit, a significant difference was found between the positive

and negative valence pair Excited-Stressed (p ≤ .007).
This held for Depressed with some exceptions: no significant differences were

found with either robot when comparing ratings of Relaxed and Stressed behaviours

(p’s≥ .014). In addition, with RibBit, no significant differences were found for the

ratings of Depressed and Stressed behaviours (p = .012), however, comparison of

Excited and Stressed revealed a significant difference (p ≤ .007).

Effect of robot on behaviour ratings (not significant). Wilcoxon signed-rank

tests using Bonferroni correction showed no significant differences in ratings be-

tween the two robots (α = .050/16 = .003; all p’s ≥ .026).

Duration (not significant). A two-way (2 robots × 4 situations) repeated mea-

sures ANOVA showed no significant difference in the time spend on rating be-

haviours.

4.4 Discussion
We address our findings with respect to our hypotheses.

Hypothesis 1: Different levels of arousal are easier to interpret than different levels
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of valence. —Accepted

In general, participants were able to perceive differences in behaviours de-

signed to convey high or low arousal. The main parameter for communicating

arousal variations and most commonly recognized by participants in our behaviour

design was frequency. Speed or frequency was most mentioned as having com-

municated arousal variation: low arousal from low frequency and high arousal

from high frequency. This confirms that this 1-DOF display is able to reproduce

earlier findings [30, 80, 110]. High or low physical activation signals are easily

distinguishable and are good indicators of alertness, evidenced by results where

consistent arousal states were well-matched.

As hypothesised, participants were less able to interpret valence from robot

movement. This has also been a challenge for other physical displays [30, 80].

Possible reasons include: ineffective behavioural language for valence polarity

(non-periodic, asymmetric signal shapes); breathing as a behaviour might not nat-

urally convey valence variations and/or additional DFs are needed to disambiguate

them; materiality played a role (less likely considering consistency between our

two prototypes).

Unexpectedly, ratings for “depressed” situation diverged significantly.

Interviews suggest two reasons: (a) Depressed was being conflated with Stressed.

Participants reported experiencing both emotions in concert or as a result of the

other. And, (b) breathing (by RibBit in particular) did not have the ability to ex-

press depression for some participants. Others simply were not convinced that the

robots, and the RibBit in particular, could express a depressed state via breathing

behaviour alone.

Suggestions to improve believability and differentiability for Stressed included

sighing and avoidance actions like retreating or turning away. Out of scope for this

paper, this will inform future behavioural and actuation design.

Hypothesis 2: FlexiBit’s behaviour will be perceived as conveying more positive

valence than RibBit’s due to its softer and more pleasant feel. —Rejected

Post-study interviews revealed that participants reported the movement ex-

pressed by the two robot forms as sensorially though not necessarily emotionally

different. FlexiBit felt nicer to touch, but the motion was less precise than that
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of the RibBit. RibBit’s movements were interpreted as breathing or a heartbeat

despite the exposed inner workings reducing the ’lifelikeness’ of the forms.

Unexpectedly, while participants specified preferences for FlexiBit’s fur and

RibBit’s motor precision, pairwise comparisons of the same emotions revealed no

significant difference between robots. Movement rather than materiality dominated

how participants interpreted emotional expression; although visual access to form

was restricted during movement, tactility might have modulated perception of, e.g.,

life-likeness.
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Chapter 5

Conclusions and Future Work

This thesis explores one full iteration of the HRI loop in affective touch commu-

nication using a custom-built sensor for our CuddleBot family of therapeutic robot

pets through three distinct studies, each described in its own chapter. We tested our

sensor on classification of gestural touch (N1 = 10, N2 = 16) with results at 79%

– 95% accuracy (chance 14%) depending on noise factors, consistent with litera-

ture values. Using the same custom touch sensor, we ran affect classification on

multimodal experienced-emotion data (N = 30) with overall accuracy rates of 83%,

87%, and 99% accuracy (chance 25%) on touch-only, touch + gaze, and touch +

gaze + biometric data respectively where random forest trained models included

test participants. And finally, as breathing characteristics have been shown to have

recognizable emotional properties [13], we asked participants (N = 20) to label

and rate emotional breathing behaviours on two distinct 1-DOF robots. Results

showed that high arousal designs (Stressed and Excited) were significantly recog-

nizable over low arousal designs (Depressed and Relaxed); distinctions from neg-

ative valence (Stressed and Depressed) to positive valence (Excited and Relaxed)

were more difficult.

From automatic affect detection to human-recognizable robot affective robot

behaviours, we have demonstrated the feasibility of the full HRI loop. The fol-

lowing outlines the impacts of each study and describes future work that builds on

findings from this thesis.
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5.1 Outcomes and Impacts
Each of the three aforementioned studies forms a chapter of this thesis and is ei-

ther a previously published work (Chapter 2 [19]), in preparation for publication

(Chapter 3), or part of a larger ongoing study (Chapter 4). In each case, the im-

pacts extend beyond this thesis – from informing research directions within the lab

to fueling interests of the larger community.

Gesture Recognition and Touch Sensor:

The biggest impact arising from our conference paper [19] reported in Chap-

ter 2 is that of the ICMI Grand Challenge. Led by Merel Jung of the University of

Twente in the Netherlands, we published two datasets, one from our work dubbed

Human-Animal Affective Robot Touch (HAART), the other previously published

and titled the Corpus of Social Touch (CoST) [52]. The challenge posed to the

community involved developing a classification model to better understand or im-

prove on dataset authors’ work. We received 10 submissions from around the world

with subject-independent 1results ranging from 35% to 71% accuracy rate using

Support Vector Machines (SVM), neural nets, and random forest, to name a few

(results lower than the subject-dependent values published by us). Of these, four

teams presented papers discussing their techniques and results at ICMI ’15 in Seat-

tle WA [53].

More locally, we are planning both improvements and full redesigns of our

custom sensing apparatus. While the fabric sensor has served us well for data col-

lection, we can’t help but explore questions on biophysical requirements of polling

rate and resolution. While human control of movement is roughly 5-10Hz [92],

human recognition of tactile sensation is degrees of magnitude higher at up to

10kHz [72]. So while a robot skin that polls at 54Hz will capture human move-

ment, it may yet fall short of human sensory ability. On the other hand, this level

of sensing would overwhelm computational load and it’s not clear whether rates

this high are even necessary. Current planned studies are aimed at determining the

1Subject-independence indicates that classification models know nothing of test participants as
models are trained and tested on data sets with mutually exclusive sets of participants e.g., P1’s
data appears in either the training set OR the test set but not both. In contrast, subject-dependent
testing refers to training and testing on the same participant where the model may learn something
of participant behaviour.
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required range of resolution and polling rate of tactile sensing skins. By exploring

sensing mechanisms, our lab has generated a number of new tactile sensors using

conductive paint, weaving with conductive thread and yarn, as well as silicone-

embedded capacitors (developed in collaboration with UBC engineering students).

Affect Recognition:

A version of Chapter 3’s data collection and work on classification of emotion

is targeted for an upcoming journal deadline. In the longer term, it has also in-

spired further studies for determining emotional trajectory. We considered steady

state emotions to begin our exploration of how to classify affective states, how-

ever, this is only a simplified model of the full emotional experience [17]. Emotion

regulation is an important vehicle for coping with negative feelings, a natural but

highly individualistic vehicle that will influence the emotional path [40]. We plan

an investigation into the artifacts of touch that may help us understand if and when

a change occurs, which may allow us to develop robot systems that act as a catalyst

to hasten or improve that trajectory to more positive-valence emotions.

Affective Robot Behaviour:

The study of haptically recognizable affective robot behaviours leads us to an-

alyze breathing patterns [13], heavily due to it’s calming effects [88]. The findings

in Chapter 4 are part of a larger series of studies that further explore the range

of affective breathing in by expanding the emotion set both in design and inter-

pretation. These behaviours will form a more complete set of complex affective

robot reactions to human input. In the meantime, the sketching and generation of

these behaviours have been demonstrated at two venues already: once as a map-

ping from gesture to reaction as a demo at ICMI’15 in Seattle USA [18] and then

as a behaviour display vehicle at EuroHaptics’16 in London UK [15].

5.2 Future Work
The robots used in the studies of this thesis range from simple 1-DOF haptic dis-

plays of the CuddleBits to the lap-sized 5-DOF modular form of the CuddleBot.

Breathing behaviours created on the CuddleBits not only help to form our impres-

sions of affective reaction recognition, but also to inform further refinement on the

larger, more mature CuddleBot’s requirements. Beyond breathing mechanisms, we
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are also exploring many of the CuddleBot’s degrees of freedom independently; as

posture is also highly expressive [26], we target spinal movements that effectively

create curling and stretching behaviours to reflect fear or dismay and relaxation or

welcome respectively.

Improving affect detection and building a complex set of believable and rec-

ognizable affective behaviours begins our expansion of Yohanan’s HRI loop [110].

The original interaction loop suggests a naive model wherein human output is as-

sessed and categorized, mapping to a robot reaction. However, this is not how

we expect to interact with each other nor how to communicate emotionally with

our animals. The most natural affective exchanges follow a more conversational

model [16, 89] which makes use of error correction as well as posterior maximum

likelihood calculations to develop smarter behaviour iterations that acknowledge

human adjustments to displayed behaviours. Future work towards real-time use of

our therapy robot will include the creation of a more robust HRI model detailing a

probabilistic decision process to determine the most appropriate robot reaction to

human behaviour.
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FRPSHQVDWLRQ�RI�����IRU�WKLV�VHVVLRQ�
7,0(�&200,70(17� ��î���KRXU VHVVLRQ
5,6.6�	�%(1(),76� 7KLV�H[SHULPHQW�FRQWDLQV�QR�PRUH�ULVN�WKDQ�HYHU\GD\�FRPSXWHU�XVH RU�

FRPPHUFLDOO\�DYDLODEOH�DFWXDWHG�WR\V��7KHUH�DUH�QR�GLUHFW�EHQHILWV�WR�
SDUWLFLSDQWV�EH\RQG�FRPSHQVDWLRQ�

&21),'(17,$/,7<� <RX�ZLOO�QRW�EH�LGHQWLILHG�E\�QDPH�LQ�DQ\�VWXG\�UHSRUWV��$Q\�LGHQWLILDEOH�
GDWD�JDWKHUHG�IURP�WKLV�H[SHULPHQW�ZLOO�EH�VWRUHG�LQ�D�VHFXUH�&RPSXWHU�
6FLHQFH�DFFRXQW�DFFHVVLEOH�RQO\�WR�WKH�H[SHULPHQWHUV� 9LGHR�RU�DXGLR�
H[FHUSWV�ZLOO�EH�HGLWHG�WR�UHPRYH LGHQWLI\LQJ�LQIRUPDWLRQ �LQFOXGLQJ�EXW�
QRW�OLPLWHG�WR�REVFXULQJ�IDFH�DQG�RU�YRLFH��DQG�ZLOO�QRW�EH�XVHG�LQ�
SXEOLFDWLRQ�XQOHVV�SHUPLVVLRQ�LV H[SOLFLWO\�JLYHQ�EHORZ�

$8',2�9,'(2�5(/($6(� <RX�PD\�EH�DVNHG�IRU�DXGLR�RU�YLGHR�WR�EH�UHFRUGHG�GXULQJ�WKLV�VHVVLRQ��
<RX�DUH�IUHH�WR�VD\�QR�ZLWKRXW�DIIHFWLQJ�\RXU�UHLPEXUVHPHQW�
,�DJUHH�WR�KDYH�$8',2�UHFRUGHG� տ <HV����������������տ 1R
,�DJUHH�WR�KDYH�9,'(2�UHFRUGHG� տ <HV����������������տ 1R
,�DJUHH�WR�KDYH�$121<0,=('�9,'(2�25�$8',2�(;&(5376�
SUHVHQWHG LQ�SXEOLFDWLRQV� տ <HV����������������տ 1R

<RX� XQGHUVWDQG� WKDW� WKH� H[SHULPHQWHU� ZLOO $16:(5� $1<� 48(67,216� \RX� KDYH� DERXW� WKH�
LQVWUXFWLRQV�RU�WKH�SURFHGXUHV�RI�WKLV�VWXG\��$IWHU�SDUWLFLSDWLQJ��WKH�H[SHULPHQWHU�ZLOO�DQVZHU�DQ\�RWKHU�
TXHVWLRQV�\RX�KDYH�DERXW�WKLV�VWXG\� <RXU�SDUWLFLSDWLRQ�LQ�WKLV�VWXG\�LV�HQWLUHO\�YROXQWDU\�DQG�\RX�PD\�
UHIXVH� WR� SDUWLFLSDWH� RU�ZLWKGUDZ� IURP� WKH� VWXG\� DW� DQ\� WLPH�ZLWKRXW� MHRSDUG\�� <RXU� VLJQDWXUH�
EHORZ�LQGLFDWHV�WKDW�\RX�KDYH�UHFHLYHG�D�FRS\�RI�WKLV�FRQVHQW�IRUP�IRU�\RXU�RZQ�UHFRUGV��DQG�FRQVHQW�WR�
SDUWLFLSDWH�LQ�WKLV�VWXG\� $Q\�TXHVWLRQV�DERXW�WKH�VWXG\�FDQ�EH GLUHFWHG�WR�/DXUD�&DQJ��FDQJ#FV�XEF�FD�

,I� \RX� KDYH� DQ\� FRQFHUQV� RU� FRPSODLQWV� DERXW� \RXU� ULJKWV� DV� D� UHVHDUFK� SDUWLFLSDQW� DQG�RU� \RXU�
H[SHULHQFHV�ZKLOH� SDUWLFLSDWLQJ� LQ� WKLV� VWXG\�� FRQWDFW� WKH�5HVHDUFK� 3DUWLFLSDQW� &RPSODLQW� /LQH� LQ� WKH�
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9HUVLRQ���� ��-XQH�������� ��3DJH���RI��

8%&�2IILFH�RI�5HVHDUFK�(WKLFV�DW��������������RU�LI�ORQJ�GLVWDQFH�H�PDLO�56,/#RUV�XEF�FD�RU�FDOO�WROO�
IUHH����������������

<RX�KHUHE\�&216(17�WR�SDUWLFLSDWH�DQG�DFNQRZOHGJH�5(&(,37�RI�D�FRS\�RI�WKH�FRQVHQW�IRUP�
35,17('�1$0(�BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�'$7(�BBBBBBBBBBBBBBBBBBBBBBBBBBBB
6,*1$785(�BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
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A.1.2 Call for Participation Form
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T H E  U N I V E R S I T Y  O F  B R I T I S H  C O L U M B I A  

  

Department of Computer Science 

201-2366 Main Mall 

Vancouver, B.C.  Canada  V6T 1Z4 

tel:   (604) 822-3061 

fax:   (604) 822-4231 

 

 

Investigation of Interactive Affective Touch 
Principal Investigator: Karon MacLean, Professor, Dept. of Computer Science, 604-822-8169 

Co-Investigator: Laura Cang, MSc Student, Dept. of Computer Science, 604-827-3982 

Version 2.0 / June 6, 2016 
 

The following message will be used to recruit participants for our study. We will distribute this message 
using some or all of the following methods: 

 Emailing the recruitment message to mailing lists maintained by the Computer Science 
department or our research group, such as a list of department graduate students (often 
used for this kind of purpose) and a list of persons who have expressed an interest in 
being study participants. 

 Uploading the recruitment message as an online posting, on craigslist.ca or facebook. 

 Physical postings in public areas. 

 Email and word-of-mouth when conducting purposeful sampling. 
 

From: Laura Cang 
Subject: Call for Study Participants - $10 for Interactive Affective Touch 
  
The Sensory, Perception, and Interaction (SPIN) Research Group in the UBC Dept. of Computer Science 
is looking for participants for a study investigating the sensing, design, and interpretation of emotive 
interactions with a small furry robot and/or other household objects. You will be compensated $10 for 
your participation in a single 1-hour session. 
 
We may ask you to talk about your experiences with household pets and other animals as well as other 
emotion-rich stories or memories. We may ask you to interact with touch sensitive surfaces or one or 
more robots that may produce any number of sounds, motions, and/or vibrations. We may also ask you 
to interact with a device for controlling these robots, and ask you to create, manipulate, or describe 
haptic (touch) sensations. Your touch and eye-gaze interactions may be recorded. 
 
Please visit <URL> or contact me to sign-up for the study. 
You may also contact me if you have any questions. 
 
Laura Cang 
MSc Student, UBC Computer Science 
cang@cs.ubc.ca 
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A.2 Participant Response Forms

A.2.1 Gesture Study Demographic Questionnaire
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A.2.2 Affective Rating Form
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1. How real or genuine was the emotion you experienced when telling the story? 

  

0               1               2               3               4               5               6               7               8               9               10 

(totally artificial)                                          (moderately real)                                    (completely genuine) 

 

 

 

 

 

2. How did you feel when telling the story? Please check the corresponding box below. 
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A.2.3 Robot Behaviour Interview Script
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Version 0.1 / 13 October, 2015 / Page 1 of 1 

PARTICIPANT ID: _________________      

DATE: ____________________________ 

 

Semi-Structured Interview Script 

 

Experimenter: Thank you for participating in our study. We would like to ask a few questions about your 

impressions of the robot display. If you require clarification or are uncomfortable for any reason, feel free to 

interrupt at any time. 

 

Form-factor Impressions: 

 

1.   What are your initial impressions of each robot? How would you describe these forms (e.g., machine, 

animal, cartoon, …)? 

 

 

2.   Where might they have come from? 

 

 

3.   What does it mean when they are not moving? 

 

 

4.   How you might use these robots? 

 

 

5.   Which robot seems to like you more and why? 

 

 

Comparative emotional clarity of the robot displays:  

 

6. Do you think there were differences in how the robots were able to express their feelings? 

 

 

7. Did one seem more dramatic than the other? 

 

 

8. Which robot would you pick for expressing each emotion? 

Stressed   Excited   Depressed   Relaxed 

 

 

Pet Preferences: 

 

9.  Have you had any experience with household pets or other domesticated animals? 

 

- If yes, tell me about your pet or animal.  

 

- If not, do you want a pet, why or why not? 

 

 

10. Do you have any questions or comments for us? 
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