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Abstract 

This work investigates a novel interaction paradigm of implicit, low-attention user control, 

accomplished by monitoring a user’s physiological state. Additionally, we provide feedback to 

the user regarding system changes in response to this implicit control through touch. We 

explored the implicit interaction concept, termed the ‘Haptic-Affect Loop’ (HALO), in the 

context of two use cases. 

In the first, we developed a HALO interaction to bookmark then resume listening to an audio 

stream when interrupted. A user’s galvanic skin response is monitored for orienting responses 

(ORs) to external interruptions; our prototype automatically bookmarks the media, allowing the 

user to resume listening from the point he/she is interrupted. In a controlled environment, we 

found an OR detection accuracy of 84%. We further investigated the usefulness of two forms of 

haptic feedback for bookmarking: notification of bookmark placement and display of bookmarks 

during navigation. Results show that haptic notification is able to provide a significant 

performance benefit in terms of navigation speed when paired with visual-spatial indications of 

where bookmarks have been placed over conditions with no notification; also, performance was 

no worse with the haptic display of bookmarks than the visual display. Participants tended to 

prefer haptic notification at interruption time, and both haptic and visual display of bookmarks at 

resumption.  

We used a second use case, music-listening, as a framework for another HALO implementation 

to estimate user preference for music. In a pilot experiment, we collected physiological and 

music rating data while participants listened to music. Combining this with structural feature data 

extracted from the music, we obtained state-space models which were used by a Kalman filter to 

estimate user rating of music selections. Results currently show poor performance in terms of 

ability to estimate rating of music both known and unknown to users possibly due to a false 

assumption of system linearity.  

The outcome of this effort was a first pass implementation of HALO which provided insight into 

its strengths and weaknesses. This work enables further exploration in how HALO can benefit 

interactions in other contexts by providing validation of the technological feasibility, utility and 

behavior of the Haptic-Affect Loop. 
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1 Introduction 

1.1 Context 

The development of modern user interfaces has largely depended on explicit channels of 

command and control driven by unambiguous requests from the user [1]. In this type of 

interaction, a computer or device receives specific, explicit inputs provided by a user who is 

(ideally) consciously aware of his/her actions within the context of the interaction. Information is 

passed from users to devices through explicit gestures like key-strokes, verbal commands and 

finger swipes, and is received by users from devices through visual, auditory and, more recently 

haptic (touch) channels. The advantages of this ‘explicit interaction’ are readily apparent: 

virtually every consumer electronic device utilizes explicit communication channels between the 

user and device. 

When well designed, this clear, controlled form of interaction has the important benefit of 

leaving little room for misinterpretation. However, there are circumstances where the demands 

and costs of an explicit interface encumbers its utility and efficiency, most noticeably in 

multitasking scenarios [2]. In one time- and safety-critical example, steering and handling a 

vehicle often requires most of the driver’s attention; yet a variety of secondary vehicle controls 

(e.g., adjusting audio system settings) compete for the same perceptual and cognitive resources. 

The resulting diversion from the primary driving task can impair safety. In other cases, the cost 

of explicit control demands may be in convenience, privacy or attentional fragmentation [3], [4]: 

a user may wish to alter a device’s behavior, but cannot or prefers not to use explicit commands 

(e.g., adjusting an mp3 player when doing chores or exercising); a badly timed device 

notification may temporarily dip in priority and then be quickly forgotten (e.g., a pop-up meeting 

notification). 

Trends in technological growth and ubiquitous computing indicate that the problems of 

interruption and fragmentation will become compounded as explicit-based technologies becomes 

increasingly pervasive in our daily lives [5–10]. Users will need to interact with more explicit 

interfaces, each demanding its share of the user’s attention and cognitive resources. Human-

technology interactions which can reduce the requirement for explicit interaction can help to 

mitigate the cognitive burden on users, freeing them to focus on the activities that are most 

important to them within their current context.  



2 

To address this and similar issues in human-computer interaction (HCI), in this thesis we 

consider the design of an implicit interaction loop that aims to move an interaction from the 

foreground to the background, understanding and adapting to our needs without demanding our 

full attention. We propose an interaction model employing implicit user-device communication 

in [11], [12]. This paradigm utilizes physiological signals – indicative of user affect – 

incorporated into a device’s control loop, thereby allowing the device to respond to changes 

implied by the user’s affective state. To further our minimal-attention goals, we have suggested 

using haptic feedback to provide immediate, private and unintrusive (in terms of attention 

required from the user) indication of the device’s response to the user’s state: a reassuring 

confirmation which closes the interaction loop. 

1.2 Theory and Motivation 

Foreseeing the rise of ubiquitous computing, Weiser and Brown in 1996 argued that rather than 

abruptly demanding a user’s focus, interactions should slide transparently between the 

attentional periphery and center, “calmly” providing context and orientation [10]. Since then, 

Schmidt proposed that a system could recognize a user’s actions not primarily aimed to facilitate 

interaction with a computerized system, and use it as a system input – he termed this concept 

implicit human-computer interaction (iHCI) [13]. 

Progress in areas such as computer vision and machine learning has allowed for the development 

of iHCIs where explicit user control and the inherent related cognitive load are significantly 

reduced. Using such technologies, it can be anticipated that devices will be able to adapt their 

behavior automatically from sensor-based observations of the user and their current context. For 

example, some work has been done at having computers recognize affective facial expressions 

[14], [15] which help the computer in choosing how to act in a socially acceptable and 

responsible way. There have been several other proposed implicitly-derived input channels 

beyond facial expression recognition utilizing physiological measurements instead. 

Physiological sensors such as heart rate, respiration, skin temperature, and 

electroencephalographic sensors, have been used in the medical and psychological fields for 

quite some time; however, their use in the domain of human-computer interaction is relatively 

recent. Only recently have physiological-sensing devices developed for HCI been released to the 

consumer market – e.g., Emotiv [16] and NeuroSky [17] EEG-based headsets developed for 

video gaming and educational applications. With training, these devices allow users to implicitly 
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control computers, electronics and even robots. Several researchers within the HCI field have 

recognized this potential and have developed interactions based around user physiological 

sensing [18], [19].  

In developing any interaction method, explicit or non-explicit, we recognize that the system must 

act transparently such that the user understands how interaction is performed and what behaviors 

are to be expected. Thus, the system should always keep users informed about what is going on, 

through appropriate feedback within reasonable time – a feedback mechanism is required to 

notify the user that the behavior, mode or operation of the device has changed in response to 

alterations in the observed state of the user [20]. In keeping with the goal of low cognitive load 

for implicit interaction design, it would be suitable to implement such a user-feedback system 

through a low-attention channel as well: bombarding the user with visual or auditory feedback 

undermines the goal of reducing cognitive resource requirements of the user in the interaction. 

Alternatively, there is a wide body of literature which suggests that haptic displays can be used 

for this purpose and convey information to the user [21–25]. In addition to being underutilized 

and a natural communicative method, research has shown that humans are able to reliably 

discriminate and classify haptic signals, without expending significant attentional resources [26], 

[27].  

1.3 Introducing the Haptic Affect Loop (HALO) 

In this thesis, we explore and substantiate a method of a human-device interaction that 

synthesizes the ideas presented above, namely: 

 using implicit physiological monitoring to drive the interaction rather than explicit 

commands; and,  

 providing low-attention haptic signaling to provide feedback to the user with regards to 

system state and/or behaviors. 

We directly incorporate these two principles into an iHCI control loop in anticipation that such a 

system can effectively support the user without requiring considerable cognitive resources, 

especially in task-laden environments. Building on the knowledge that some human affective 

(emotional) states can be estimated from physiological signals captured with off-the-shelf 

biometric sensors [14], [15], [28], our implicit channel is a user’s voluntary and involuntary 

physiological responses to a situation. We incorporate this biometric response directly into the 
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application’s interaction loop, such that it responds to changes implied by the user’s affective 

state as shown in Figure 1. The loop is closed with an immediate but unintrusive indication of 

system recognition and response to the user’s estimated state using haptic feedback, 

communicating to a user that the system has responded and performed some action as a result of 

their estimated affective state. We call this novel approach to device interaction the Haptic-

Affect Loop (HALO).  

 

Figure 1. Proposed HALO (haptic-affect) implicit interaction loop structure. 

The premise behind the HALO concept can be best illustrated by an example:  

While on the job as a programmer, Lily likes to explore and listen to new songs through an 

internet music service while working. Sometimes while listening, however, she finds that some of 

the songs do not suit her changing tastes, or are quite distracting from her work. Normally, she 

would have had to suspend whatever she was working on, and switch windows to the internet 

browser and tell the music service to jump ahead to the next song. Recently, however, Lily (the 

user) began using a wrist-mounted device able to save her the hassle of constantly switching 

between her programming task and the internet music service. The device continuously measures 

key physiological indicators and, using signal processing and machine learning, is able to 

estimate Lily’s emotional state (implicit path affect interpreter). Thus, when the device detects 

that she dislikes a currently playing track or is stressed, it automatically executes a script which 

tells the music service to play the next song in queue (device state controller enacting state 

changes). Additionally, the device notifies Lily of this action through a very gentle vibration of 

the watch-like device (haptic confirmation). If she finds that the action taken by the device is 

incorrect, she can press a button on the watch to automatically reverse the device’s decision 
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(explicit path). Lily finds that this new way of exploring music allows her to be more focused on 

work instead of spending time fiddling with the music service. 

In the example, we see that the watch-like device instantiates the HALO concept by mediating 

the transition between a primary task (programming) and secondary task (music listening). With 

this proposed technology, we hope to improve users’ ability to multitask between various 

activities. That is, the HALO model discussed herein provides a mechanism for supporting low 

priority tasks at the periphery of the user’s attention, freeing up focused cognitive resources to be 

used for more urgent/primary tasks.  

1.4 Related Work 

Although novel, the concept for the HALO paradigm is founded on prior work conducted in the 

areas of affective classification and computing, iHCI, and physiologically-based interaction. 

Here, we provide mention of this work to provide a backdrop for the research conducted in this 

thesis. The topics presented here represent common themes across all chapters within the thesis. 

Other literature and background information more specific to each chapter will be presented 

separately in their own sections within the chapter (Sections 2.3, 3.3, and 4.2). 

1.4.1 A Framework for Affect  

As would be expected, performing research in affect-based systems requires some understanding 

of what affect is, how it is generated and how it can be quantified or measured. However, herein 

we find a classic problem in affect research: literature reveals that there is no standard agreement 

as to how affect or emotions are defined [28–31]. Following from this, we find that the criteria 

for which we can distinguish an emotion from other emotions or bodily processes, and what 

constitutes a base set of emotions are also ill-defined. However, many researchers agree with a 

standard view of affect, which suggests that: 

 affective responses represent an information processing strategy that is potentially 

valuable for organisms in terms of dealing with certain situations [15]; and, 

 emotions are both cognitive and physical - not only can emotions be generated by the 

brain, but also by changes in physiology and bodily chemistry [28]. 

Rather than trying to use a definitive classification scheme to assign categorical labels for 

affective states, we use Russell’s Circumplex Model of Affect [32]. His model, shown in Figure 

2, suggests that all emotions are linear combinations of valence (positive or negative) and 
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arousal (high and low) dimensions. Strong, positive emotions (e.g., elation) appear in the upper 

right of the valence-arousal, whereas weak, negative emotions appear in the lower left (e.g., 

depression). Although other popular models of emotion and affect exist (see [33] for a 

comprehensive review of emotion models), Russell’s model has been widely used in the social 

sciences due to its simple structure and uniform representation of affective states on a two-

dimensional plane [34]. For this reason, we have chosen to use the circumplex model as a 

framework for affect understanding in this thesis. 

 

Figure 2. Circumplex model of affect as illustrated by Posner et al. [35]. 

1.4.2 Implicit Human-Computer Interaction Systems  

Implicit human computer interaction (iHCI) is defined as ‘ an action, performed by the user that 

is not primarily aimed to interact with a computerized system but which such a system 

understands as input’ [13]. The concept of iHCI is built on the underlying notion that the 

computer system participating in the interaction has obtained, or been provided with, an 

internalized representation or information which could be used to construct a model of certain 

behaviors of a human participant (the user model). These behaviors are usually inferred through 

sensing and recognition of the user’s physical gestures, facial expression, physiology or a 

combination thereof and are fed as inputs into the computer system. Behaviors that are 

recognized through comparison to the user model can be used to enable the system to respond 

and automatically enact alterations to its state, creating the impression that the system is ‘smart’.  
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Early work in this area yielded several interaction schemas utilizing iHCI principles [36–41]. For 

example, Schmidt et al. developed an iHCI scheme which could facilitate ‘real-world 

bookmarking’ [36]. In this application, passive RFID tags are integrated into physical objects 

linking them to an object-specific URL or application. A user sporting a wearable RFID tag 

reader could interact with these RFID-enabled objects, triggering the link/application to be 

opened on a mobile device. For example, picking up a spoon could bring up a webpage 

suggesting a recipe and opening a wallet could bring up a user’s stock portfolio. However as 

reported by Poslad, many researchers cite difficulties in determining user context mainly due to 

the non-deterministic nature of the human user or the environment which may not correlate well 

to the system’s internalized model [9]. Additionally, users may find it difficult to interact with a 

system which purposefully hides some of the interaction from them.  

1.4.3 Physiologically-Based/Affective Interaction 

In review of work conducted in implicit interaction, we find that there are close ties between the 

domains of iHCI and affective computing; there is a large body of work dedicated to estimating 

human affect to be used as a potential iHCI input [14], [15], [19], [42–52]. Prior work indicates 

that emotions arise from cognitive interpretations of core physiological experiences, which have 

spawned the development of dimensional models of emotion such as Russell’s Circumplex 

described above [35], [53]. Naturally, this in turn suggests that examining core physiological 

features may provide insight into affective experiences. As such, several groups of researchers 

have focused on developing a mapping between user affect estimates and physiological signals 

However, even with the mapping of affective states, researchers have found that correlating 

physiological signals to affect is not straightforward. Human physiological measurements vary 

not only between users, but also due to other factors such as the time of the day, environment 

conditions, or even whether medication was consumed prior to the measurement being taken.  

To overcome these challenges, several methods of processing bio-signal sensor measurements 

have been used to develop user affect models include filtering [19], [52], neural networks [50], 

[54], machine-learning classifiers [47], [49–51] and statistical analysis [47], [49]. For example, 

in their early work in affective computing, Picard et al. classified emotions using physiological 

sensors [28], [47], [48]. With algorithms such as Fisher Projection and Sequential Floating 

Forward Search, they obtained emotional state recognition accuracy of up to 81% after 2-4 min 

of algorithm training per subject, for eight categories. Kim et al. aimed to reduce signal 
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monitoring times and system training requirements through feature extraction and pattern 

classification of data (electrocardiography, skin temperature variation and electrodermal activity) 

pooled from multiple subjects [19]. A recognition rate of 78% for three emotion categories was 

obtained after 50s of monitoring. 

There have been attempts to use physiological signal processing in implicit man-machine 

interface applications. For example, Conati et al. has explored the use of physiological 

monitoring to measure engagement and emotional states in children while playing educational 

games [42]. In this work, pedagogical agents act on a probabilistic model of the user’s affect to 

generate interventions which are able to achieve a compromise between a user’ s learning and 

engagement. Another example includes a wearable video camera system which monitors a user’s 

galvanic skin response (GSR) to detect physiologically arousing events (e.g., orienting 

responses) in users [52]. When such an event is detected, the camera records a series of digital 

images of the user’s environment, capturing the event which produced the startle response for 

the creation of an image-based diary for offline examination. More recently, Liu, Rani and 

Sarkar presented a framework for closed-loop human-robot interaction through a robot-based 

basketball game [55]. The objective of this game is for the player to throw a ball into a basket 

mounted on a robotic arm manipulator that could move in different directions and speeds 

according to the game’s difficulty setting. The group used various physiological measures 

including skin temperature, GSR, electrocardiographic and electromyographic activity to model 

player affective state and anxiety using a regression tree. Classification accuracy of player 

affective states using this model was reported to be 88%. Based on this model, the robot was 

able to respond to higher anxiety by decreasing difficulty and vice versa. The group reported that 

the robot could influence lower player anxiety for 79% of the participants during the game. 

1.5 Objectives  

The research presented in this thesis is grounded in work conducted by Hazelton, who first 

investigated the potential for the HALO paradigm [56]. Using focus groups, technical validation 

studies, and participatory design, he was able to define system requirements, preliminary 

guidelines and design principles for the HALO interaction. However, the scope of his work did 

not extend beyond rigorously gathering requirements, leaving implementation of the interaction 

loop as future work. Here, we continue to build upon Hazelton’s preliminary work, and expand 

development through realization of technical elements within the HALO paradigm.  
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The objectives of this thesis are twofold: to establish the technological viability and efficacy of 

the HALO paradigm we propose, and to explore its design space.  

We examined the HALO in terms of the two main loop components separately: physiological 

sensing of affect and haptic feedback. For each component, we wanted to determine:  

 if the technology for the component can be built/modeled in the context of a use case; 

 how well the technology works within the use case; 

 what problems arise in terms of technological limitations and/or user experience;  

 if the technology developed can be extended to a more generalized HALO model or 

theme, applicable to a wider range of applications, especially those in multitasking and 

ubiquitous technology environments as determined from experimental results; and, 

 what technologies need to be further improved or developed to improve applicability and 

robustness of HALO. 

We approach these objectives by examining HALO in the context of two use cases where the 

HALO framework has been applied, descriptions of which appear in the following section. 

1.6 Outline of the Thesis 

The main body of this thesis presents two primary use cases through which the HALO concept is 

explored. 

1.6.1 Use Case 1: Audio Stream Bookmarking 

Chapters 2 and 3 of this thesis describe work where the feasibility of the HALO interaction 

method is explored in the context of a specific interrupted audio stream listening use-case, where 

a user, engaged in listening to an audiobook or podcast, is suddenly interrupted by a disruptive 

element in the environment, such as a friend coming by to say hello, an incoming call on the 

user’s cell phone, or a knock at the door. Often times, users forget to pause or stop the audio 

stream ‘in the heat of the moment,’ forcing the user to blindly navigate and rewind to the point 

where the user had left off prior to the interruption. Of particular interest to us was to explore 

what improvement HALO could offer to the user following the interruption, particularly in the 

context of audio stream resumption through the generation of physiologically-triggered 

bookmarks.  
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In this stream of work, we have developed an ‘auto-bookmarking’ system which detects and 

marks a user’s orienting response (OR) to an interruption. For this work, we looked at using a 

single physiological measure: electrical conductance of the skin – more commonly known as 

Galvanic Skin Conductance (GSR) – as an indicator of ORs. Bookmarks placed near the 

estimated point of interruption can be accessed later via a graphical or haptic tool.  

In Chapter 2, a series of experiments are described which are primarily designed to determine if 

the feasibility of HALO paradigm in terms of the audio-stream use case. To this end, we wanted 

to determine: Does GSR exhibit a consistent and detectable change in response to interruptions 

of a level that distract users? If so, we could then proceed to design and set up elements of the 

interaction itself – this leads to having to answer research questions specific to the audio-stream 

interaction use-case itself. For example, where should a mark be placed for greatest utility; and, 

is there a correlation between interruption duration and how far back users tend to rewind the 

audio stream?  

In relation to the study of the HALO concept, implicit interaction methods have traditionally not 

been well defined or understood. Thus, successfully designing and implementing the affect 

recognition portion of the HALO concept poses a significant challenge. The work described in 

Chapter 2 is meant to provide an introductory glimpse into the HALO concept’s overall 

feasibility. Content in this chapter is published in the Proceedings of the ACM Conference on 

Human Factors in Computing Systems (CHI’11) and can be found in [11]. This work was 

completed in collaboration with Gordon Chang, Gokhan Himmetoglu, AJung Moon, Karon 

MacLean and Elizabeth Croft. 

Chapter 3 describes an effort to continue and complete the work described in Chapter 2 in terms 

of ‘closing of the loop’. Here, there was a focus on exploring and developing appropriate haptic 

feedback practices to notify a user of bookmark placement after an interruption has been 

detected, and to assist the user in navigating to the bookmark of interest. Additionally, this work 

serves to complete implementation of the HALO within the media stream bookmarking scenario 

and investigates its efficacy and viability through user testing.  

The work presented in Chapter 3 has been submitted to the IEEE Transactions on Haptics and is, 

at the time of the writing of this thesis, pending review and approval. Co-authors of this paper 

are: Joanna McGrenere, Elizabeth Croft and Karon MacLean. 
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1.6.2 Use Case 2: Music Listening 

Music-listening is often a secondary or tertiary task – usually users are attending to more 

cognitively-demanding tasks while listening to music such as driving home from work or 

diligently toiling on a take-home assignment from school. However, there are times where users 

need to interact with the media device to change how or what audio content is being delivered 

due to changing tastes or contexts. This interaction is generally based on well-established 

interface design principles where information about system status is explicitly displayed and 

explicitly visible to the user; device behavior is changed through a series of button presses or 

touchscreen swipes. As both the act of explicitly transmitting and receiving data to and from the 

device requires significant attentional resources to process, the music-listening task is no longer 

a secondary task – it has instantly moved from the periphery to the center of attention. 

Depending on the importance of the primary task at hand, the severity of this change in task 

priority may have dire consequences (e.g., driving). Thus, this scenario provides great 

opportunity for study and application of the HALO interaction paradigm.  

Much like the audio stream bookmarking use case discussed in Chapters 2 and 3, the notable 

feature in this particular use case is the presence of several tasks simultaneously competing for 

the user’s attention. The potential of the HALO concept to provide devices with emotion- and 

context- aware behavior allows for interactions with the media player to be kept within the 

periphery. 

Chapter 4 of this thesis describes preliminary work on this music-listening use case; the scope of 

which was limited to developing user affect recognition in response to music. Here, we 

developed a unique approach in applying a variation of the Kalman filter to recognize user 

affective states from music features and user physiological signals (e.g., heart rate, skin 

temperature etc.). This system was used in an exploratory pilot experiment to address questions 

of technological feasibility. 

1.6.3 Conclusions 

Over-arching conclusions drawn from these linked explorations are presented in Chapter 5. They 

involve recommendations for implementing a HALO-style interaction loop in a portable audio 

system, a discussion of generalizability to other use cases, and suggestions of relevant areas for 

future work. 
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1.7 Contributions 

To achieve the objectives of the research described in this thesis, the following contributions 

were made: 

 Development of an orienting-response detection algorithm for automatic placement of 

bookmarks in audio streams based on skin conductance;  

 A haptic signaling system for system feedback to the user indicating when and where 

such bookmarks have been placed, completing implementation of the HALO concept for 

an audio stream bookmarking application;  

 A novel affect recognition platform using an unscented Kalman filter to predict user 

music preference based on physiological measurements and music features; and, 

 Experimental qualitative and quantitative results based on the use cases which 

demonstrate which situations can be adequately serviced by the HALO interaction 

concept and where it fails. 

The research described here defines new models for a unique user-device interface driven by 

implicit, low-attention control. To test this paradigm, we have developed experimental setups 

testing the HALO for two media-based use cases. These use cases have provided us specific 

understanding as to the viability of the holistic HALO interaction model and how best to refine it 

such that it may be appropriate for a wide range of applications.  
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2 Physiologically-Triggered Bookmarking1 

Motivated by the need to substantiate the benefits of the previously unproven HALO paradigm 

described by Hazelton [56], in this chapter we consider a representative use case to serve as a 

context for a first pass implementation of the HALO. Here, we are interested in the utility and 

effectiveness of the HALO implicit control paradigm, illustrated by this scenario:  

A woman listens to an audiobook on her portable media player in a dentist’s waiting room. 

Her name is called; her focus shifts from the audiobook to the hygienist. She fumbles in her 

bag to pull out the device, and eventually finds the “pause” button. The hygienist waits. 

Or, 

… her focus shifts. Reluctant to make the hygienist wait, she pulls out her earbuds and gets 

up, leaving her player running until the book ends. Later, she iteratively scrolls and listens 

backwards through the audio stream, trying to find the last familiar point and estimating 

forwarding intervals when she overshoots. 

Both trajectories highlight how an explicit interface can ‘demand’ a user’s attention, with 

negative outcomes if attention is not given. But what if instead: 

… her focus shifts. A sensor embedded in her bracelet
2
 captures this, signaling the system to 

mark the audio stream which continues to play. She feels a small pulse on her wrist that 

signals the placement of a bookmark. She follows the hygienist, pulling out the earbuds when it 

is convenient. Later when alone again, she scrolls through the audio stream, feeling for 

discrete vibrations on her wrist indicating bookmarks. She jumps back through two or three 

automatically placed marks, locates the one placed just before the interruption where she 

stopped listening, and continues playback from there. 

This scenario illustrates the HALO implicit interaction method: an ‘auto-bookmarking’ system 

detects and marks a user’s orienting response (OR) to an interruption by monitoring galvanic 

skin response (GSR) in real time. Bookmarks placed near the estimated point of interruption 

                                                 

 

1
  A version of Chapter 2 has been published. [M. K. X. J. Pan] et al., “Now Where was I? Physiologically-

Triggered Bookmarking,” in Proc. ACM Conf. CHI, 2011, pp. 363-372. 
2
 Pasquero, Stobble and Stonehouse describe a wristwatch capable of haptic signaling in this reference:  

J. Pasquero, S. J. Stobbe, and N. Stonehouse, “A Haptic Wristwatch for Eyes-Free Interactions,” in Proc. ACM 

Conf. CHI, 2011, p. 3257. 
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can be accessed later via a graphical or haptic tool. This use case highlights the example of a 

mobile application used in a predominantly hands-free mode. At this stage, we do not seek to 

change the underlying nature of existing explicit control or replace its channels; but rather to 

bypass points of dysfunction with a new, lower-effort channel when appropriate.  

2.1 Research Questions 

This research example of attentional bookmarking, defines a model for a unique user-device 

interface driven by implicit, low-attention control. With this platform, we have assessed the 

viability of a holistic interaction model that may be appropriate for a wide range of applications. 

We have focused on two questions pertaining to our implicit interaction model, with respect to 

the audiobook-listening use case:  

1. Does GSR exhibit a consistent and detectable response to interruptions in realistic contexts? 

2. How should the system respond to this information? 

In this chapter we demonstrate empirically that GSR can be used to detect orienting responses to 

interruptions under controlled conditions, and have data suggesting that this ability can be 

extended to noisier, chaotic environments. We built an OR detection system based on this result, 

and to explore Question 2, made quantitative and qualitative observations of its use in a setup 

simulating audiobook listening scenarios. The latter effort gave us specific insights towards how 

best to refine our implicit interaction model in both this and more general cases. We explored the 

HALO interaction paradigm without the haptic feedback component shown in Figure 1, as the 

feedback dynamics warrant a more in-depth examination than can be offered here. This feedback 

component is explored in detail in Chapter 3. 

2.2 Structure 

In the remainder of this chapter, we summarize related work regarding the GSR and ORs 

(Section 2.3), describe our hardware/software setup for detecting and displaying ORs (Section 

2.4), and present the experimental methods and results by which we quantified GSR-based ORs 

to interruptions and applied it to our interaction paradigm use-case (Section 2.5). We conclude 

this chapter with discussion of results (Section 2.6). 

2.3 Background and Related Work 

It is well known that the OR is an immediate reaction to the perception of a novel element or 

stimulus that is not sudden or intrusive enough to elicit a startle reflex. ORs are often examined 
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to gather insights on human attention shifts and information processing [57]. An OR can be 

detected in many ways, including heart rate and electroencephalography (EEG), but the 

simplicity of measuring GSR and its strong relationship to OR is attractive.  

The GSR (i.e., electrodermal activity) has been studied since the late 1800s. It is currently 

believed that the GSR is caused by the electrical activity of the sweat glands, and is connected to 

the sympathetic nervous system; it has been linked with the physiological instantiations of 

emotion, arousal and attention [53], [58–60]. Firth and Allen showed that short-term changes in 

GSR reflect ORs [57]. Previous research has shown that within normal ranges of ambient room 

temperature and controlled subject state and motion, there is a high correlation between OR and 

GSR [59]. Other literature suggests that GSR measurements can be more easily discriminated 

than other physiological measures such as heart rate and EEG, since they can be detected quickly 

and without complex analysis [60].  

GSR measurements are most sensitive on volar surfaces, suggesting a future possibility for 

sensors that can be worn unintrusively as a ring or shoe insert during daily activities. GSR 

sensors are inexpensive, wearable and pose no risks for the user. Disadvantages include latency 

in signal detection (i.e., 1-4s lag periods are common), significant response variance between 

subject groups (e.g., gender, age), possible habituation over time, and non-specificity [53].  

There have also been initial attempts to use GSR-based classification to augment traditional 

interaction techniques. For example, Healey and Picard’s StartleCam - a wearable video camera 

- monitors a user’s GSR to detect when a user is startled [52]. When GSR indicates a user’s 

heightened arousal, a time series of digital images are saved to mimic the user’s “flashbulb” 

memory of the event causing the startle, autonomously generating an image-based diary for 

offline examination and memory assistance. 

We chose GSR as, on balance, the most promising physiological input to our control loop - 

keeping its limitations in mind. Since we require only OR information, with GSR we can bypass 

the complexity of a full affective model. Our interaction model builds on the results of the prior 

work presented in this section with the aim of providing transition support between primary and 

secondary tasks. Beyond offline review, we seek a fluid continuous interaction where marked 

moments are used to propel the user towards a goal with minimal disruption.  
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2.4 Experimental Apparatus 

In our use case, marks are placed automatically during interrupted listening to an informative 

audio stream. Bookmarks are placed near GSR-detected ORs, without explicit user direction. 

The marking system used here is intended as a platform to demonstrate and study the broader 

implicit interaction paradigm. In this section, we describe our physical implementation. The 

‘loop’ is illustrated in Figure 3: the user’s GSR was sensed, processed and sent by network to a 

control computer which analyzed the GSR stream, placed bookmarks, and made the bookmarks 

accessible to the user via a graphical list. A user can control the audio stream directly and/or via 

bookmark selection. Bookmarks can also be placed manually by a user (“Bookmark Functions” 

in Figure 3). Some parts of the system were developed specifically for this use case (e.g., the 

audiobook player and bookmark manager). Others, in particular the interruption detection 

algorithm and software, are of more general applicability. A general overview of the system is 

provided here.  

 

Figure 3. Diagram of bookmarking system architecture. 

2.4.1 GSR Apparatus and System Architecture 

Our GSR measurements were obtained with Thought Technology’s ProComp Infiniti® 

physiology-measurement hardware system [61]. The ProComp encoder reads data from a GSR 

sensor which uses dry electrodes attached to the index and middle fingers of the non-dominant 

hand. The encoder transmits the filtered, digitized signal to a notebook computer via USB. Skin 

conductance was measured in microsiemens (μS) and recorded at 256 Hz (the equipment default 

recording rate). 
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To test various feature-based OR detection approaches, we developed a distributed system based 

on a TCP/IP client-server architecture (see Figure 3). The client CPU received GSR data via a 

custom MATLAB program which performed OR detection and bookmark generation. 

Bookmarks are sent via TCP/IP to a custom MP3 audiobook player which we developed running 

on the server notebook. This architecture was designed for flexibility and future use in 

implicitly-controlled media players in mobile or distributed environments, with the wired USB 

connection replaced with a Bluetooth link from a wearable sensor.  

2.4.2 Audiobook Player and Bookmark Manager 

Users interacted with a custom Java audiobook player (Figure 4a), on which the user could place 

bookmarks explicitly using a custom bookmark-manager graphical interface (Figure 4b). 

Participants used the bookmark GUI to navigate through existing marks labeled by type (GSR-

derived and explicitly user-created) and time. In the future, we plan to render device-to-user 

communication and bookmark placing through other channels (e.g., haptics) to further reduce 

demand on a user’s visual faculties. 

(a)  

(b)   

Figure 4. Screen capture of the a) audiobook player; b) and bookmark manager. 
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2.4.3 Interruption Detection Software 

Figure 5a shows a process flow diagram outlining the detection process and subsequent auto-

bookmarking behavior, which was implemented in MATLAB. The GSR was measured in real-

time, then down-sampled from 256 to 32 Hz to permit online processing (literature and our own 

results have shown that GSR rise times for ORs are in the range of 1-3s [60]; the Nyquist-

Shannon theorem translates this to sampling requirement of >5 Hz). The resampled signal is 

smoothed by convolution with a 32-point Bartlett window (Figure 5b) to reduce noise in the 

signal, and then differentiated (Figure 5c) similar to the procedure used by Kim et al. [19]. 

(a)  

(b)    

(c)    

Figure 5. a) Flowchart of OR detection process. b) Typical smoothed GSR waveform (3200 samples). c) Smoothed first 

derivative GSR waveform (3200 samples). 
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To detect an OR, we first identified zero-crossings in the first derivative of the smoothed GSR, 

noting the signal’s direction at these points (‘-’ to ‘+’ or ‘+’ to ‘-’). A positive to negative zero-

crossing, signifies a peak in the raw GSR signal. Following this, a bookmark is placed if the 

following inequality holds true: 

               (   )            Equation 1.  

 

Where Threshold is a pre-determined value established in Section 2.5.1, GSRpeak is the maximum 

value of a peak, and SMA640(GSR) represents the moving average of the last 640 samples (20s). 

Thus, this criteria is met if the peak is sufficiently above the average GSR signal over a 20s 

window period. To avoid the placement of extraneous bookmarks, new bookmarks were 

suppressed for a 20s “blackout” window following the most recent placed bookmark. This 

procedure incorporates contextual information (GSR amplitude) for the signal under 

investigation, which can vary greatly across individuals and time.  

Latency and Window Length  

GSR measurements experience a natural latency of 1-4s [60]. The auto-bookmarking system 

introduces a delay due to differencing, smoothing and other operations, measured at 100ms. 

Computational latency associated with OR detection was experimentally assessed to range from 

0.5-2s due to differences in GSR signal rise time after different stimuli. When summed, there is a 

1.5-6s lag between the actual occurrence of a stimulus and the GSR-based recognition of the OR.  

We have hypothesized that users could more easily re-orient after jumping to a few seconds prior 

to a perceived interruption, than to the exact point of interruption. Experimentally, we found that 

users tended to rewind audiobooks to approximately 10s prior to the start of an interruption
3
. We 

therefore placed bookmarks 15s prior to the detection of an OR, corresponding to 9-13s before 

the actual interruption based on our estimate of recognition latency. Figure 6 shows a timeline of 

these events.  

                                                 

 

3
 Refer to Section 2.5.2. 
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Figure 6. Approximate timeline of the auto-bookmarking system. Horizontal bars indicate timeline variability, black 

vertical lines show an example timeline for a participant introduced to vocal stimulus. 

The choice of averaging window length was the result of a compromise. If the averaging window 

is too long, false detections arise from large-amplitude, low-frequency GSR changes that are not 

characteristic of ORs. If the window is too short, the analysis will be too localized and the 

algorithm will fail to identify ORs. As we were more concerned with failures in detecting ORs 

rather than producing false positives within this preliminary work (i.e., we preferred sensitivity 

over precision of our algorithm), longer window lengths were favored over shorter ones
4
. In pilot 

studies, we tested various window lengths and observed effects on bookmark placement under 

different interruption conditions. We found that a 20s window provided the most stable 

algorithm sensitivity; hence, this value was used in Experiment 3 (Section 2.5.3).  

2.5 Experiments  

Our main objective was to support development of and then validate the general implicit 

interaction paradigm, within the context of the initial audiobook marking use case. We structured 

our research questions to be broad, but answerable and relevant from this use case perspective. 

We conducted three experiments to answer the research questions posted in Section 2.1 above. 

Experiment 1 (E1) examined the usability of GSR as an indicator of true interruption. We used 

Experiment 2 (E2) to refine parameters of the bookmark algorithm; e.g., the distance by which 

                                                 

 

4
 We realize that by preferring sensitivity over precision, the window length chosen may by overly sensitive to 

fluctuations in GSR, thus causing a large amount of false positive bookmark placements. However, as we’re testing 

the utility of placed bookmarks in these experiments rather than the effect of false negatives, we felt that this 

decision was justified in the context of this experiment.  
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bookmarks should be advanced from the point of measured interruption. In Experiment 3 (E3) 

we showed our bookmarking implementation to users and invited their qualitative feedback. 

Finally, in a preliminary pilot experiment (E4), we logged and examined additional GSR data in 

an uncontrolled, noisy environment to assess the algorithm’s viability in more realistic situations. 

2.5.1 Experiment 1: Evaluation of GSR Utility 

Our first experimental question addressed physiological responses to interruptions - specifically: 

Q1: Does GSR exhibit a consistent and detectable change in response to interruptions of a level 

that distract users? 

Bookmarks should be placed at or near the point where the user is interrupted. To do this, we 

need to know what GSR looks like when the user has really been interrupted. Only some events 

at some times are interruptive enough to distract users who are focused on a primary task (here, 

audiobook listening). For example, one may be able to mentally block a nearby conversation in a 

café, but will be distracted by the sound of a door opening in a quiet room. We would like to 

differentiate between these two situations using only features extracted from GSR 

measurements. E1 was conducted to answer Q1 by specifically addressing the following 

hypotheses: 

H1: The GSR signal amplitude exhibits a range that corresponds to ranges of interruption 

levels; and 

H2: Disruptive interruptions exhibit a characteristic GSR profile and amplitude range that can 

be detected with usably high (>80%) true-positive rates. 

This would provide the empirical grounding necessary for development of an OR detection 

system. An 80% accuracy rate was chosen as baseline as this was comparable to results obtained 

by Kim et al. [9] for the recognition of three emotion types; thus, we considered this value to be 

adequate for our purposes practical applications. Usability of detection rates is examined in the 

Discussion (Section 2.6).  

Design 

Four female and seven male subjects (    ) aged 23-30 participated in E1 under consent 

(Refer to Appendix A for consent form). Subjects were pre-screened for potential confounds 

including diagnosed attention disorders (obsessive-compulsive or attention-deficit) and 
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familiarity with the audiobook used through a pre-experiment questionnaire (see Appendix A). 

Data from one male subject was discarded due to sensor malfunction.  

At the beginning of the experiment, half of the subjects were asked to put in their pocket a cell 

phone provided by the experimenter that was programmed to emit an auditory ringtone triggered 

by an experimenter. The other half were asked for their own cell phone numbers, then asked to 

set their cell phones to vibrate mode and place them in a pocket. This was done to determine if 

there is a net noticeable difference in GSR when a familiar stimulus from the participant’s own 

cell phone is presented versus an unfamiliar one from cell phone provided by experimenters. We 

observed no discrepancy between the two cases in terms of average peak values of the GSR 

response.  

During the experiment, subjects were asked to sit in a silent experiment room facing a wall and 

to don a GSR sensor and pair of headphones. To reduce noise in the GSR, subjects were asked to 

avoid making large physical motions. The entire experiment was video-recorded for post-hoc 

comparison with GSR data. The experimenters sat on the other side of a visual divider from the 

subject, as shown in Figure 7, to avoid unintentional distraction or anticipation thereof. To 

encourage interruption responses typical of focused listening, subjects were instructed to listen to 

the audiobook carefully as they might be tested on concepts described in the audiobook; no test 

was actually administered.  

 

Figure 7. Experiment 1 Setup. 

After collecting two minutes of baseline GSR data where the participants were asked to silently 

relax, experimenters started playback of the first chapter of the audiobook “Free” by Chris 

Anderson [62]. The chapter, which describes the invention and marketing of Jell-O and Gillette 
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disposable razors, was verified to be of neutral arousal level in a pilot study; that is, listening to 

the audiobook did not impact the user’s GSR signal except at the start or end of play. The 

content was considered interesting but boring (not inducing any strong, emotional reactions) by 

most subjects and was reused in E1, E2 and E3.  

After approximately a minute of playback, the experimenter began to cause interruptions without 

pausing or stopping the player. Four different interruptions were used: knocking on the 

experimenter’s desk three times {K}, tapping the subject on the shoulder twice from behind {T}, 

calling the cell phone in the subject’s pocket {C}, and verbally activating the subject {V}. These 

interruptions were chosen as they were perceived to be common in daily-life settings within the 

context of an audio-listening task. Each interruption was used twice. Intervals of at least 1 min 

between interruptions allowed the subject’s GSR to settle. 

Eight interruptions were presented to all subjects in the following order: {K}-{T}-{C}-{V}-

{V}-{C}-{T}-{K}. During piloting, we did not discover any significant difference in any 

measured quantities as a result of stimulus order in terms of GSR response; therefore, to 

standardize the experience of the interruption order across users we did not randomize this 

sequence. Subjects were not informed of the order of interruptions. The same experimenter 

introduced all interruptions throughout all sessions with consistent volume and tone. The 

duration of phone rings was constant, and the two verbal instructions in the experiment were 

scripted as: 

V1: "[Subject Name], I just want to let you know that you are doing great." 

V2: "[Subject Name], we are going to continue to take more measurements, and let you know 

when the experiment is over, OK?” 

The experiment was followed by a post-hoc questionnaire and a semi-structured interview (refer 

to Appendix A for questionnaire and interview questions). The questionnaire aimed to discover 

which interruptions were most disruptive. For each type of interruption, the subjects were asked 

whether they: a) were distracted, b) found it hard to refocus on the book after the interruption, 

and c) would have liked to rewind the book to a time just before the occurrence of interruption. 

In the interview, we collected general feedback on the experiment with a focus on each 

interruption. Qualitative data from the questionnaires and interview was statistically analyzed to 

test H1. Quantitative data from the recorded GSR was analyzed with pattern detection algorithms 
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to test H2. The length of E1 excluding preparation and administration of the 

questionnaire/interview was 20 min. 

Results 

Questionnaires & Interviews: Post-experiment questionnaires revealed that 81% of participants 

agreed or strongly agreed that they paid close attention to content in the audiobook. Of our 

participant pool, 73% agreed that they were interrupted during the experiment. From a set of 

yes/no questions for each type of interruptions, 91% of participants agreed that they were 

interrupted by verbal interaction {V}; 55% of subjects stated that {K}, {T} and {C} were 

interruptive. Qualitative analysis of the post-experiment interview showed that verbal 

interruption was found to be the most disruptive; it was also found that {K} did not register as 

either annoying or disruptive to most participants. Three subjects reported that they did not 

notice a knock at all. Users found the level of disruption by tapping or cell phone to be in 

between that of knocking and verbal interruption. Hereafter, we refer to {K} as non-disruptive 

and {V}, {T}, and {C} as disruptive interruptions. 

GSR Signal Analysis: The algorithm’s performance was evaluated by sensitivity and precision 

metrics as defined in Table 1. We considered an interruption “detected” if an OR occurred within 

-4 to +11s from the presentation of an interruptive stimulus; this range was derived from the sum 

of the 1–6s detection latency (see Section 2.4.3) and ±5s which was allocated to account for 

variation of when ORs were detected. We tested both the sensitivity and precision of the 

algorithm’s interruption detection. Sensitivity reflects the frequency of true positives, i.e. 

detection of when an interruption occurred. For example, if 4 out of 6 disruptive interruptions 

were detected in a single trial, sensitivity = 67% (NTP = 4, NFN = 2). Precision indicates robustness 

to false positives. If 4 out of 10 detect ions correspond to disruptive interruptions, precision = 

40% (NTP=4, NFP=6). A false positive proved difficult to define because nonspecific responses – 

those that occur in the absence of an identifiable stimulus – could be caused by valid internal or 

otherwise unobservable stimuli.  

Figure 8 shows the results of our OR detection algorithm for a typical trial, illustrating disruptive 

interruptions and detected ORs. Supporting our previous approximation of 1.5 to 6s, the average 

interval between an interruption’s actual occurrence and “true” OR capture was 3.52s (   

    ).  
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Table 1. Definitions of test outcomes, conditions and measures. 

Name Definition 

True positive (TP) 
A detection occurred within a 15s time window from 

the start of a labeled interruption (-4 to +11s). 

False negative (FN) 
No detection occurred within a 15s time window from 

the start of a labeled interruption. 

False positive (FP) 
A detection occurred without a corresponding a labeled 

interruption within a 15s period. 

True negative (TN) 
No detection occurred when there was no labeled 

interruption within a 15s period.  

SENSITIVITY 
Proportion of interruptions that are detected by the 

algorithm - NTP/(NTP+NFN). 

PRECISION 
Proportion of detections that are interruptions -

NTP/(NTP+NFP). 

 

 

Figure 8. GSR signals overlaid with interruption and detection lines for one representative trial (threshold set at 0.07 μS). 

We examined the algorithm’s sensitivity to detection threshold by computing the average 

sensitivity and precision for threshold values ranging from 0.01 to 0.70μS as shown in Figure 9. 

Sensitivity and precision are inversely and directly proportional, respectively, to threshold in a 

roughly linear fashion. A threshold of 0.07μS (shown by the red line in Figure 9) was found to be 

optimal in terms of providing a maximum sensitivity of 84%, though at a precision of 32%.  For 

these experiments, we used a threshold value of 0.07 μS since we were more concerned with 
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detecting the highest number of interruptions over an increased number of false positives to 

evaluate utility and effect of bookmarks. However, from Figure 9, we see that using a threshold 

of 0.07 μS will cause the precision of our algorithm to be at 35%.  For application of this 

bookmarking algorithm in realistic scenarios, we realize that this threshold will be overly 

sensitive causing a large amount of false positives. Thus, we recommend that the threshold 

should be increased to provide a more balanced trade-off between sensitivity and precision 

beyond these experiments.  For example, from Figure 9, we see that at a sensitivity of 70%, our 

precision rises to a more usable 55%.   

Still, given this overly sensitive threshold, interruptions were missed by the bookmarking 

algorithm using a smaller threshold as shown in Figure 10. Upon further analysis, we found that 

most, if not all, of these interruptions were not detected due to slower rise times of the GSR 

signal and smaller peaks.  

E1 subjects received a total of 80 interruptions, 20 of each type. The average sensitivity of each 

type of interruption is plotted in Figure 11. Additionally, we calculated the sensitivity of detected 

interruptions deemed to be disruptive, by excluding the apparently non-disruptive {K} types. 

With the detection threshold set to 0.07μS, the average trial sensitivity of disruptive interruptions 

was 84% (      ). A two-sample right-tail T-test verified that the sensitivity of disruptive 

interruptions - {V}, {T} and {C} - is significantly greater than the sensitivity of non-disruptive 

{K} interruptions (p=0.02). However, inspection of GSR data from E1 does not show notable 

qualitative differences between interruption types. 

 

Figure 9. Average sensitivity and precision versus detection threshold. The red line refers to the maximum sensitivity 

when the threshold is set to 0.07μS. 
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Figure 10. Sample GSR trace showing a missed detection of an interruption. 

 

Figure 11. Average algorithm sensitivity (proportion of interruptions detected of total) for interruption types. Error bars 

represent standard deviation of sensitivity across all subjects. 

2.5.2 Experiment 2: Observation of Desired System Behavior 

In E2, we sought data that would help guide the design of an auto-bookmarking application for 

an average user. Specifically, 

Q2a: Where should a bookmark be placed for greatest utility? 

Q2b: Is there a correlation between interrupt duration and how far back participants rewind the 

audio stream? 

According to E1 results, verbal interruptions (conversation, verbal instructions and questions) 

were the most disruptive of those tested; verbal interruptions are also controllable in duration. 

Thus, to maximize the number of rewind events, we used only verbal interruptions in E2.  
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Design 

Four females and seven males (n=11) aged 23 to 30 participated in E2 under consent (see 

Appendix A for consent form). The same audiobook used in E1 was reused in E2. We required 

that subjects chosen for E2 had not previously listened to nor read the book prior to the 

experiment. Additionally, we ensured that no participants from E1 participated in E2 to prevent 

participants from having prior knowledge and expectation of interruptive events occurring 

during the experiment. 

The setup for E2 is shown in Figure 12. The visual divider used in E1 was omitted as we felt 

verbal interruptions lacking eye contact was unnatural. A second experimenter recorded interrupt 

durations. Both experimenters were out of the participant’s immediate sight to prevent 

anticipation of stimuli. Subjects used the MP3 player shown in Figure 4a; the pause function and 

‘track time’ display were disabled to simulate our use case. After a brief training session on the 

customized player, subjects were instructed to pay close attention to the content of the 

audiobook, to rewind whenever desired, and that there would be content-related questions 

following the listening session. The player automatically logged timestamps of user rewind 

actions. Both visual (i.e., trackbar display) and audio cues (i.e., audio scrubbing) were used to 

assist subjects in determining how far they had navigated backwards in the audiobook. 

Subjects were asked to relax for two minutes at the outset of the experiment to collect baseline 

GSR data. Experimenter 1 initiated verbal interruptions periodically after the subjects’ GSR had 

settled, with short (2-13s), medium (14-28s), and long (29+s) conversations. A total of six verbal 

interruptions (two short, two medium and two long) were used for each subject. One medium 

and one long question were related to the content of the audiobook. Finally, the video recording 

of the experiment was played back to the subject in a semi-structured interview, to understand 

the rationale for various rewinding patterns. As in E1, the length of E2 excluding preparation and 

administration of the questionnaire/interview (and thus the length of the audio stream segment) 

was 20 min. 
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Figure 12. Experiment 2 set-up. A similar set-up was also used for E3. 

Results 

We expected all 66 stimuli to be interruptive - six per subject across the 11 subjects. 19 of these 

generated user-driven rewind events that corresponded to an interruption. 33 of the remaining 

stimuli did not cause any rewind event, and the other 14 were discarded either because subjects 

reported that they caused unrelated rewinding (i.e., due to mind wandering etc.), or subjects were 

not able to remember their reasons for rewinding the audiobook at that particular incident during 

the interview. It was found that users tended to rewind multiple times for a short duration after 

an interruption for reasons such as seeking for the ‘best’ location. This was still counted as a 

single valid rewind event. 

We measured how many seconds the subject rewound prior to the onset of the interruption. For 

example, we recorded a value of -2 if a subject rewound the audiobook to a position 2s prior to 

the start of an interruption. The average rewind period during the 19 valid interruptions was 

found to be -9.37s (SD = 7.65), i.e. on average, a subject rewound the audiobook to 9.37s prior to 

the occurrence of the disruptive interruption event. We also recorded the duration of each 

interruption. The duration of the 19 valid interruptions ranged from 7 to 56s. The correlation 

coefficient between interruption length and extent of the rewind event was r=0.03, which 

suggests that the rewind distance was unrelated to length of interruption. 

2.5.3 Experiment 3: Interaction Utility Assessment 

In E3, we tested the utility of our tuned GSR-based auto-bookmarking algorithm. E3 re-used 

E2’s procedure and set-up (Figure 12) but employed the bookmarking algorithm in real-time. 

Data from E3 provided insight into user reactions to the bookmarking prototype.  
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Design 

One female and four males (n=5) aged 23-29 participated in E3 under consent (refer to Appendix 

A for consent form). The system used in E3 is described with its parameterizations in Section 

2.4. While the previous experiments provided us with information on how to detect disruptive 

interruptions and how to use that information, E3 specifically addresses the question: 

Q3: Do our system-generated bookmarks consistently provide utility after interruptions? 

We used the same pre-screening procedure and setup as in E2. In addition, E3 subjects were 

asked to use the custom MP3 player and associated custom bookmark manager interface (Figure 

4b). Subjects were instructed to use this manager as their first method of rewinding when 

rewinding was desired – reverting to manually navigating through the audiobook only if the 

bookmarks were unsatisfactory. Subjects could rewind from any bookmark, but were advised to 

try the most recent one first. Interactions with the MP3 player and bookmark manager were 

logged, and video and audio recordings of the experiment were saved.  

To better understand their strategies for interrupt recovery, we asked subjects to view the 

recorded video stream while commenting on each interruption in a post-experiment 

questionnaire. Finally, we conducted an interview to understand user satisfaction and usefulness 

of each bookmark (refer to Appendix A for questionnaire and interview questions). 

Results 

Each subject in E3 was exposed to six interruptive stimuli, for a total of 30 events. 26 of these 

stimuli were reported as disruptive, valid interruptions. 21 of these caused subjects to rewind 

immediately following the interruption. 18 of the 21 rewinds utilized only system-generated 

bookmarks; in 13 of these, subjects used only the latest system-generated bookmark, whereas 

subjects in the other five instances continued to try older bookmarks. In the remaining three 

rewind events, subjects manually navigated through the audiobook. Subjects rated 76% of the 

automatically-placed bookmarks that they used as ‘appropriately positioned’.  

The semi-structured interviews provided constructive feedback: users were surprised to see such 

a system, and were interested in seeing further application areas of such interaction. In general, 

subjects provided positive feedback on the system’s usefulness and utility. Few suggestions on 

bookmark follow-up were raised. Two subjects suggested the system should pause when the user 

is interrupted, and to play again by user's manual control. One subject reported that the system’s 

visualization and/or interaction quality could be improved.  
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2.5.4 Experiment 4: GSR Field Assessment (Pilot) 

As a final early validation step, we assessed the potential effectiveness of this implicit interaction 

implementation in a less controlled environment. We were keen to preview through a pilot what 

would be involved as we moved to the field to guide our own future work. Specifically, we 

wanted an initial indication of:  

Q4: Are there quantifiable differences between GSR measurements obtained from a controlled 

vs. uncontrolled, possibly noisy environment which may affect utility or effectiveness of the 

interaction? 

Design 

Two male subjects (n=2) aged 23 participated in the E4 pilot. During rush hour at a busy outdoor 

bus terminal, each participant was seated (alone) on a bus bench for the duration of the study and 

asked to attend to an audiobook played through headphones. Subjects wore a GSR sensor and 

were instructed to use a pushbutton marking device to signal moments where they felt 

interrupted enough by an event to wish the audiobook to be rewound. An experimenter (out of 

the participant’s view) also recorded major events that could have potentially caused ORs. 

Results 

An informal analysis of data from two male participants showed little qualitative (wave shape, 

event responsiveness) difference between raw GSR measurements obtained from our controlled 

tests (E1 and E2 results) and the bus terminal. The primary distinguishing characteristic was 

absolute GSR amplitude: subjects in E1 and E2 tended to exhibit baseline and OR GSRs in the 

range of 3-6μS, whereas GSR measurements in E4 were 6-15μS; an example comparison is 

shown in Figure 13. As the software algorithm designed for the auto-bookmarking use case does 

not utilize absolute signal amplitude, but rather amplitude of peaks relative to the moving 

average, this preliminary result suggests that system operation should be minimally affected by a 

chaotic, noisy environment. 

Although E4 results are informal and preliminary, this pilot study suggests (although does not 

prove) that at the cost of more sophisticated signal processing, information regarding ORs will 

still be present in GSR data collected from less controlled environments. 
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Figure 13. Raw GSR data collected from a participant in a) a controlled test environment and b) a bus terminal at rush 

hour. Thick, dotted lines represents interruptions; thin, solid lines represent bookmarking system OR detections. 

2.6 Discussion 

Q1: Does GSR indicate disruptive interruptions?  

E1 showed that GSR can be used to detect disruptive interruptions in an audiobook listening 

context. According to subject interviews and self-reports, our {V}, {T} and {C} interruptions 

did disrupt subjects. E1 results (Figure 11) confirmed that different types of interruptions 

correspond to different levels of disruption as indicated by GSR. Thus, H1 – our hypothesis that 

the GSR signal amplitude exhibits a range that corresponds to ranges of interruption levels – is 

confirmed for the range of interruptions that we tested. Moreover, for GSR data obtained in E1, 

we achieved an 84% recognition rate in detecting disruptive interruptions, (i.e., true positives of 

type {V}, {T} and {C}). This supports H2, where disruptive interruptions produce salient GSR 

signal features, detectable by our algorithm with an acceptable true-positive rate; false positives 

were difficult to detect, as explained in Section 2.5.1.  

Only four types of interruption stimuli were tested in these experiments; the design space of 

possible interruption stimuli and contexts is much larger. As such, validity of our results is 
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coupled to the primary task and interruption stimuli used here. For example, while a gentle 

knock was not disruptive in this context, it certainly could be in other situations. Nevertheless, 

our approach – evaluating the GSR signal in context and tuning an algorithm variant to that 

context – is perhaps general enough to be applied to other primary tasks such as watching 

television, housecleaning, gardening, working at a computer and perhaps driving. 

As seen in Figure 9, there is a tradeoff in sensitivity versus precision as a function of detection 

threshold, i.e. between false negatives and false positives. Based on subject interviews, we 

believe that higher sensitivity with slightly lower precision is a reasonable tradeoff. However, 

the optimal balance will depend on the environment and individual responsiveness to ORs. 

Q2: Where should a mark be placed relative to interruption? 

E2 provided data for designing the bookmark placement system. Its results indicated that users 

preferred to rewind the audiobook to a location approximately 10s prior to the onset of an 

interruption, independently of interruption length. This implication for mark placement advance 

may be applicable to interruptions in other use contexts. Conveniently, the results also imply that 

it is not crucial to measure or estimate the length of interruption, a potentially challenging task in 

the field. However, we believe this finding only applies to interruptions under a minute. Longer 

interruption may affect user’s behavior and the desire of bookmark location; for instance, a 10-

minute interruption may cause the user to replay the entire chapter of the audiobook, because the 

content has slipped out of his short-term memory. Likewise, our observation of mark-advance 

independence from interruption length may apply to other use cases, but this will need to be 

verified.  

Q3-Q4: Do our system-generated bookmarks consistently provide utility after interruptions? Is 

GSR informative in uncontrolled environments?  

GSR signals are known to be susceptible to noise from sources such as bodily motion and 

cognitive workload [60]. We generally found (E1-E3) that our algorithm was quite robust to 

small hand or arm movements and subtle posture changes, but we had false-positive detections 

in the absence of an identifiable stimulus. Although it is not feasible to explain each one, we 

expect that some occur through internal distractions, such as when a phrase or a word in the 

media being perused initiates mind wandering. E4 results suggest that GSR is robust in a chaotic 

environment.  
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Subjects did not always find rewinding the audiobook necessary despite being interrupted – 

particularly for short interruptions (<11s – as determined by the length of the longest ‘short’ 

interruptive conversation in E2 without causing users to rewind). We found that no rewinding 

occurred for 81% of the short interruptions presented to subjects in the experiments. Subjects 

reported that even if they stopped listening to the audiobook to attend to short interruptions, they 

could quickly pick up the gist of what was being said afterwards. We believe this was 

representative of this use case, and it seems that users sometimes use a ‘multi-tasking’ strategy to 

cope with interruptions.  

E3 and E4 served to briefly explore the potential of our implicit control algorithm in controlled 

and uncontrolled setting; the small sample size limits our ability to provide any concrete 

evidence pertaining to the usefulness our system in the field and thus caution is required when 

evaluating the significance of these results. They give some indication that our algorithm 

provided a usable detection rate; further investigations with larger sample sizes are required. 

Subjects reported appreciation of, and surprise at, the presence of automatic bookmarking. 

Perhaps most relevantly, many comments were directed to bookmark follow-up as opposed to 

the actual bookmark generation, supporting the conclusion that the current bookmarking 

algorithm is reasonably accurate. We see here that our vision of a loop-closing system is of 

potential utility and a natural next step is to concentrate on using the bookmarks themselves.  

Our next step in this work was to provide users with a low-attention notification that the 

application has acted in response to the user’s physiology (for the use case presented here, that a 

mark has been placed). The following chapter describes our continued work in developing low-

attention display of bookmarks to users.  
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3 Exploring the Role of Haptic Feedback in Physiologically-Triggered 

Bookmarking5  

In Chapter 2, we described two scenarios within an audio stream listening scenario that 

emphasize how a user’s attention could be demanded by an explicit interface and the undesirable 

result if the user does not fulfill this demand. In these scenarios, the user is forced to interact with 

the device regardless of environmental context or else is penalized. To further our minimal-

attention goals, we have suggested using haptic feedback to provide immediate and unintrusive 

indication of the device’s response to the user’s state: a reassuring confirmation which 

effectively closes the interaction loop as shown in Figure 1. In this work we explore the 

implementation and effect of this feedback on the implicit interaction experience within the 

context of this audio stream use case presented in Chapter 2. Given this new interaction 

paradigm, we present a revised trajectory for our use case:  

… her focus shifts. A sensor embedded in her bracelet captures this, signaling the system to mark 

the audio stream which continues to play. She feels a small pulse on her wrist that signals the 

placement of a bookmark. She follows the hygienist, pulling out the earbuds when it is 

convenient. Later when alone again, she scrolls through the audio stream, feeling for discrete 

vibrations on her wrist indicating bookmarks. She jumps back through two or three 

automatically placed marks, locates the one placed just before the interruption where she 

stopped listening, and continues playback from there. 

In this scenario, we employ a user’s electrodermal activity measurement to drive an auto-

bookmarking system for audio streams. Bookmarks are algorithmically placed when an orienting 

response - an organism’s immediate response to a change in the environment - to an interruption 

is detected. We posit that haptic feedback will be usable at the time of interruption to inform 

users when bookmarks will be placed, providing reassurance to users that they can attend to the 

interruption without worrying about losing their place in the audio stream. We also theorize that 

haptic signaling will be useful at resumption of the audio stream listening task to indicate 

                                                 

 

5
 A version of Chapter 3 has been submitted for publication: [M. K. X. J. Pan], J. McGrenere, E. A. Croft, and K. E. 

Maclean, “Exploring the Role of Haptic Feedback in an Implicit HCI-Based Bookmarking Application,” Submitted, 

p.12, 2012. 
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positions of automatically-placed bookmarks when navigating through the audio stream, 

augmenting bookmark display in the visual channel as shown in Figure 14. We chose this use 

case as our representative scenario as it is able to encompass the main mechanisms and effects of 

the implicit interaction loop - it provides an example of a mobile application which can benefit 

from non-explicit communication and haptic feedback. Other examples can be envisioned in the 

design space of in-vehicle information displays and workplace environments where multi-tasking 

causing attention fragmentation is common. 

S
y
s
te

m
 A

c
ti
o

n
s
 W

h
ile

 U
s
e

r 

A
tt
e

n
d

s
 t
o

 I
n

te
rr

u
p

ti
o

n

U
s
e

r 

N
a

v
ig

a
ti
o

n
 o

f 

A
u

d
io

s
tr

e
a

m

U
s
e

r 
L

is
te

n
in

g
 

to
 A

u
d

io
s
tr

e
a

m

Resumption of Audiostream Listening

Time

Detection of Orienting 

Response

Haptically Notify User of 

Bookmark Placement

Visual 

Display of 

Bookmark

Haptic 

Display of 

Bookmark

External 

Interruption

R
E

S
U

M
P

T
IO

N
 

T
IM

E

IN
T

E
R

R
U

P
T

IO
N

 T
IM

E

Place Bookmark in 

Audiostream

Resumption of Audiostream Listening

 

Figure 14. Flowchart showing progression of events in the audio stream bookmarking use case.  
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3.1 Purpose 

The purpose of this work is to present a complete implementation of the HALO paradigm within 

the audio stream bookmarking scenario, and investigate its efficacy and viability through user 

testing. We have developed a method of detecting orienting responses to external interruptions 

that automatically bookmarks streaming media such that the user can attend to the interruption, 

then resume listening from the point he/she was interrupted (described in Chapter 2). That work 

substantiated the feasibility of an interaction based on implicit, low-attention user control by 

demonstrating that the required information is available with reasonable reliability from 

conventional physiological sensors. However, it left as a next step testing of the closed-loop low-

attention interaction paradigm complete with confirmatory haptic feedback. Here, we have run 

an experiment to test the usability, appropriateness and perceived value of haptic feedback which 

notifies a user of bookmark placement after an interruption has been detected, and assists the 

user in navigating to the bookmark of interest. 

3.2 Structure 

This chapter will provide an overview of prior work in the areas of implicit HCI, low-attention 

systems, and haptic feedback techniques (Section 3.3). This is followed by a summary of our 

questions (Section 3.4), a brief description of the hardware/software systems used to explore our 

interaction paradigm (Section 3.5) and methods used to test our research questions regarding the 

use of haptics in an implicit HCI system (Section 3.6). We present the results of our experiment 

(Section 3.7) followed by an examination of how they apply to our original research questions 

(Section 3.8). 

3.3 Background and Related Work 

Here, we review several areas of research relevant to, and supportive of, the work presented in 

this chapter in addition to literature presented in Section 1.4.  

3.3.1 Low-Attention Haptic Systems 

A review of prior work indicates that much work has been done in the area of low-attention 

haptic systems in the context of mobile environments; and suggests that haptic feedback 

augmenting the display of bookmarks in an audio stream could be very effective. MacLean 

presents a comprehensive review in this area in [27], a few highlights of which are mentioned 

here.  
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Using haptic feedback with, or in lieu of, visual displays has the potential to reduce overall 

mental workload relative to purely visual display of that information, if properly designed [25], 

[63–66]. For example, Leung et al. found that adding haptic feedback to visual elements such as 

graphical icons on a touch screen interface made these elements much more usable, especially 

when users were under cognitive strain [67].  

Evidence on the effectiveness of haptic feedback when provided without a visual interface has 

been mixed; however, Swerdfeger showed that users are able to perceive, learn and interpret 

ordinal and icon data haptically, even in high workload environments where the user is engaged 

visually with another task [68]. More recently, Pasquero et al. demonstrated that a haptic 

wristwatch could successfully be used to convey information in a work environment with simple 

eyes-free interactions [69]. Brewster et al. and van Erp et al. both established the utility of short, 

tactile messages or ‘tactons’ to unobtrusively display contextual information to users in 

attention-demanding environments [22], [23]. Through several experiments where users were 

performing a primary task (typing or driving), various tactons were signaled to participants 

indicating the occurrence of ambient events such as the proximity of a friend in a plaza, or 

upcoming course changes during in-vehicle navigation. Both studies showed that presenting 

tactile information caused faster reaction times, lowered mental effort and reduced workload. 

Taken all together, these various results demonstrate that non-task critical information about 

ambient events can be presented without disturbing the user’s primary interaction. We are 

seeking to use informative tactile icons to unintrusively provide temporal information to a user, 

which is a simpler problem than displaying information requiring an extensive set of tactile 

icons.  

3.3.2 Wearable Haptics 

Several research groups have been endeavoring to develop haptic technologies which can be 

worn unintrusively as documented by MacLean in [70]. For example, as mentioned earlier in this 

review, Pasquero has developed a wearable wristwatch able to transmit information tactically 

[69]. Additionally, van Erp et al. has prototyped a tactile belt display for waypoint navigation 

and explored the ways that distance and direction information can be coded [71]. In examining 

the design of haptic signals for low-attention notification, Baumann et al. has constructed low-

cost, disposable haptic wearables in an effort to explore the design of socially-gradable haptic 

displays and icons [26]. Peck and collaborators have studied aesthetic touch in the context of 
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marketing, finding the features that tend to invite touching as well as individual differences in 

preference for touching [72], [73]. This work has demonstrated users’ ability to associate 

emotional content with haptic sensations and presents a variety of haptic signal profiles that have 

been associated experimentally with affective descriptions such as ‘relaxed’ or ‘agitated’.  

We build on this prior work to demonstrate and test an interaction model that supports online, 

closed-loop transition support between foreground and background tasks. Our HALO paradigm 

brings together iHCI, affective computing and low attention haptics to create a new, fluid, low 

attention iHCI that minimally disrupts the user. This research is novel in that we are examining 

the role of haptic signaling specifically for closing an implicit or low-attention interaction loop.  

3.4 Research Questions 

The main objective of this study was to understand the benefits and limitations of the general 

implicit interaction paradigm with haptic feedback, in the context of an audio stream 

bookmarking use case. To this end, we developed four research questions that when answered, 

would provide an understanding of how users incorporate haptic information in the closing of an 

implicit interaction loop. Perhaps more importantly, we wanted to capture whether or not haptics 

could be utilized and accepted as a method of proactively signaling the user of changes in device 

behavior in response to changes in user physiological behavior.  

Q1. Do auto-generated bookmarks provide assistance to users in the context of interruption? 

Q2. Does haptic notification of bookmark placement at interruption time provide value to 

users? 

Q3. Does haptically-assisted navigation of bookmarks during post-interruption, resumptive 

navigation provide value to users over no display or visual display of bookmarks? 

Q4. Do users feel that the auto-bookmarking/haptic confirmation and navigation feedback 

system is useful? 

Although these research questions were asked in the context of the audio stream-listening use 

case, we applied the implications of this study with a more general scope. With this knowledge, 

we believe it will be possible to construct a fundamentally different approach of device 

interaction employing closed-loop low attention and implicit communications.  
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3.5 Experimental Apparatus 

3.5.1 Overall System 

To test our theories, we developed an audio player system (more fully described in Chapter 2). In 

this prototyped interaction, a user’s galvanic skin response (GSR) is monitored for orienting 

responses to external interruptions which might redirect the user’s attention. Upon detection of 

an orienting response to an external interruption, our prototype automatically places a bookmark 

in the audio stream and signals this action to the user unobtrusively through a subtle haptic icon. 

At this point, the user can direct attention to the interruption without worrying about losing 

his/her place in the audio stream. Afterwards, the user can resume listening by navigating back to 

a bookmark signaling the point where he/she was at in the audio stream before being interrupted. 

The interaction ‘loop’ architecture that we have implemented for this use case is illustrated in 

Figure 15. The detection and bookmarking processes are shown concisely in Figure 5 and fully 

documented in Chapter 2. An overview of the experimental system used in this chapter is 

presented below (Sections 3.5.2 and 3.5.3).  

HardwareSoftware
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Figure 15. System flowchart. 
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3.5.2 Hardware 

A wrist-worn navigational device was prototyped to provide an interactive interface for which 

users could navigate through the audio stream intuitively, as shown in Figure 16. The prototype 

consists of a rotary touch potentiometer placed on the face of the device to supply users with a 

method of navigating through the audio stream. Users are able to skip through the audio stream 

by moving their finger in a circular motion; a clockwise finger swipe around the potentiometer 

causes fast-forwarding while a counter-clockwise motion rewinds the stream. We programmed 

the navigational interface such that movement speed of the finger directly correlates to the rate of 

fast-forwarding/rewinding. A button located at the center of the top face allows users to play or 

pause the audio stream. To provide haptic feedback, an Engineering Acoustics C-2 Tactor [74], a 

voice coil transducer in which signal frequency and amplitude can be controlled independently, 

was fitted into the back of the wrist device where it contacts the skin. An Arduino Lilypad drives 

these components and communicates with our media player software on a nearby experiment 

laptop via USB (in deployment, the loop could be executed on a mobile handheld device). Users 

wore the device on the wrist used for a wrist watch – in all cases, the non-dominant hand. 

 

Figure 16. Exploded view and photo of wrist-worn navigational device and haptic display. 

GSR measurements were collected using Thought Technology’s ProComp Infiniti® physiology-

measurement hardware system [61]. Dry electrodes were attached to the index and middle 

fingers of the non-dominant hand. The ProComp encoder transmits data obtained from the 
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electrodes to a notebook computer via USB. Electrodermal activity was measured in 

microsiemens (μS) and recorded at 32 samples per second which was the sampling rate used in 

work presented in Chapter 2.  

3.5.3 Software 

We developed a custom audio player based on the freeware cross-platform irrKlang library, with 

the ability to display GSR-based bookmarks as visual and haptic icons [75] – different from the 

media player presented in Chapter 2. Its graphical user interface simulated typical mobile 

smartphone functionality, in choice of audio player viewable area and by using a simplistic 

design with only a start/pause button, current track position and time, and the name of the track 

being played (Figure 17).  

 

Figure 17. A screen capture of the media player displayed to participants. The scroll bar represents the current location 

in the audio stream with respect to the current track. Automatically placed bookmarks are shown as green lines above 

diamonds. Green diamonds signify that the user has navigated to that bookmark. 

3.6 Experimental Methodology 

To answer our research questions we conducted a controlled lab experiment to clarify the impact 

of auto-generated bookmarks, haptic notification at interruption time, and haptic assisted 

bookmark navigation during navigation time.  

3.6.1 Participants 

16 participants volunteered (6 female), aged 20 - 28 ( ̅             ). Participants were 

recruited through on-campus advertising, and thanked with snacks for their time. All participants 

were pre-screened for potential confounds including diagnosed attention disorders (e.g., 

obsessive-compulsive behavior and attention-deficit disorders) and signed a participant’s consent 

form (refer to Appendix B for consent form).  
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3.6.2 Conditions 

The experiment conducted was a 2x2x2 factorial design. As shown in Figure 18, factors 

consisted of the presence/absence of haptic notification of bookmark placement during listening 

(tested between subjects to reduce experiment size) and haptic and visual bookmark displays 

later during resumptive navigation (tested within subjects). A balanced Latin square was used to 

counterbalance carry-over effects (e.g., interference, learning, fatigue effects).  

 

Figure 18. Diagram showing factors within the experiment conducted. 

Haptic Notification at Interruption Time (Between Subjects) 

We designed a haptic signal to provide notification of bookmark placement to the user at 

interruption time (as detected by the system in the form of a user’s orienting response). We 

envisioned that haptic notification would serve two purposes during the interaction. First, the 

signal could unobtrusively notify and reassure the user that a bookmark had been placed and no 

immediate action was required while he/she attended to the interruption. Second, notification 

might facilitate search of correctly-placed bookmarks amongst false positives. For example, 

imagine that a user is peripherally aware of a notification that a bookmark has been placed at the 

beginning of an actual interruption, and then another (incorrectly) notification a minute or two 

later. At resumption of audio stream listening, the user can navigate directly to the first (correct) 

bookmark rather than a second, incorrectly-placed bookmark. 

To generate the best ‘feel’ for these purposes, guided by past work suggesting a user assessment 

of slow, sinusoidal haptic signals as ‘relaxed’ and ‘reassuring’ [26], we chose a sinusoidal pulse 

to indicate bookmark placement. The pulse was generated by varying the frequency of the tactor 
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vibration within a sinusoid envelope. Based on pilot testing with 4 subjects, we limited the 

maximum frequency of vibration to 200 Hz and the maximum duration of the pulse to 0.75 

seconds. These values were found to provide the best compromise for noticeability and 

unobtrusiveness.  

Display of Bookmarks during Resumptive Navigation (Within Subjects) 

We also needed to provide low-attention feedback to users concerning bookmark placement 

during search-driven movement through the audio stream during navigation time. Currently, 

MP3 players and smartphone apps which support manual bookmarking of audio streams use 

some form of graphical display to present bookmarks to the user; while intuitive, this requires 

visual attention. We speculated that haptic-enabled navigation of bookmarks would allow eyes-

free interaction with the system, as claimed by Pasquero et al. [69]. Additionally, we sought to 

discover if haptic coupled with visual display of bookmarks and/or haptic notification at 

interruption time could offer a performance advantage over visual or haptic displays individually.  

Pilot study results suggested restriction of tactor vibration to a single frequency for the haptic 

display of bookmarks, based on criteria of salience. Vibration frequency was set at 230 Hz, offset 

from the frequency of 250 Hz at which the Pacinian corpuscles (nerve endings in the skin which 

are sensitive to vibration and pressure) are most sensitive, as most participants found 250 Hz too 

strong. The maximum duration of the pulse was set to 0.5 seconds. 

3.6.3 Apparatus 

The study was conducted using the bookmarking system and equipment described in Section 3.4. 

The software was run using a Core i5 laptop with 4 GB of RAM, running Microsoft Windows 7, 

and connected to a 17” LCD Monitor at 1280 x 1024 resolution. 

An experimenter control GUI was implemented to provide a comprehensive view of the system 

settings including haptic bookmark notification and navigation settings, the user’s GSR trace, 

and GSR bookmarking algorithm sensitivity/thresholding adjustments (Figure 19). In addition to 

these features, the interface also provided the experimenter with the ability to generate 

bookmarks and control over bookmark notification/display factors during an experiment trial. 

When the experimenter selects the visual bookmark display option, the user’s audio player 

window displays bookmarks shown as solid lines directly on the track progress scroll bar as 
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shown in Figure 17. An icon below the bookmark line lights up when a user navigates to a 

particular bookmark. 

 

Figure 19. Screen capture of the experiment settings window (not seen by participants). This window provides the 

experimenter with displays such as currently playing track, track time, the user’s GSR activity, a list of bookmarks that 

have been placed, options regarding how bookmarks are placed, and how they are presented to participants.  

3.6.4 Task 

During each session, participants experienced sixteen trials, each 2-3 minutes in duration; in each 

trial, they carried out a two-part task. The first part was to listen to an audio stream (a podcast) 

segment. They were instructed to attend to interruptions by the experimenter (diverting attention 

away from the audio stream) – once approximately every 2 minutes (±1 minute). In the second 

part following the interruption, participants had to navigate through the audio stream to locate the 

point they were listening prior to the interruption, given a set of feedback parameters which 

always included audio stream playback. 

Each participant listened to two 20-minute fictional narratives entitled: ‘Dave and the Dentist’ 

and ‘Sam the Athlete’ in a single session (see Figure 18 for the streams’ allocation to experiment 

conditions). These stories were obtained from a podcasted radio series called The Vinyl Café, a 

Canadian variety show which features light-hearted stories describing the misadventures of a 
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fictional family [76]. Unlike the audio content used in Chapter 2, this content was chosen to 

engage participants in the audio stream content; we were not concerned with GSR artifacts 

caused by the audio stream itself in this study. The order in which these two narratives were 

presented to participants was counterbalanced. 

Listening and Interruption Phase 

A trial comprised of a verbal interruption to the participant listening task resulting in a 50-60s 

conversation between the experimenter and subject. 16 pre-arranged conversation-starting 

‘scripts’ (one for each trial) were used to ensure that the subject matter of the conversations was 

the same across all subjects; however, ordering of these scripts was randomized across 

participants. At the beginning of each interruption, a bookmark was placed by the experimenter; 

bookmark placement was experimenter-simulated to ensure the experiment was properly 

counterbalanced and to control when bookmarks were placed. 

To simulate realistic performance of the automated bookmarking system described in Chapter 2, 

we provided false-positive bookmarks and their associated notifications/representations (where 

applicable) during the experiment to test participants’ reactions to them and navigation 

performance. Two false positive bookmarks were presented to participants at random times in 

half of the trials under conditions where bookmarks were presented (two trials out of the full four 

per condition for each condition except for DNone). Thus, the precision (the ratio of bookmarks 

that were correctly placed to the total number of bookmarks placed) for a full participant 

experiment was 50%. False negatives or ‘miss’ type errors (failure of bookmark placement for a 

real interruption), were not introduced to participants within the DH, DV, and DV+DH conditions on 

the premise that the DNone condition essentially emulates false negative errors; hence, we 

determined that we would not have obtained any useful additional data by introducing these 

errors into the other conditions.  Thus, bookmark placement sensitivity (the ratio of bookmarks 

that were correctly placed to the total number of interruptions) is 100% for DH, DV, and DV+DH 

conditions, and 0% for the DNone producing an overall sensitivity of 75%. From Figure 9, we see 

this combination of precision and sensitivity is consistent with the middle range of precision vs. 

sensitivity tradeoff (at around 0.35 µS) obtainable by our GSR bookmarking algorithm described 

in Chapter 2.   

Two bookmark placement notification groups were tested in this experiment during the listening 

and interruption phase: 
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 Haptic notification of bookmark placement at interruption (NH) 

 No haptic notification of bookmark placement at interruption (NNone) 

Resumptive Navigation Phase 

Following the interruption and conversation with the experimenter, a participant would 

immediately start scrolling through the audio stream, attempting to navigate to where they 

believed that they had left off just prior to the interruption; this marked the beginning of the 

resumptive navigation phase. 

Four resumptive navigation conditions were tested in this experiment during the resumptive 

navigation phase:  

 visual display of bookmarks are present during navigation only (DV); 

 haptic display of bookmarks are present during navigation only (DH); 

 both bookmark displays are present during navigation (DV+DH); and, 

 no bookmarks are displayed during navigation (DNone). 

The order in which each bookmark display type was used was determined by balanced Latin 

square. Each bookmarking condition was presented to the participant four (4) times. 

An example experiment timeline is shown in Figure 20. Half of all participants received haptic 

notification when bookmarks were placed at interruption time. Each trial session was video 

recorded for post-hoc analysis to determine navigation times for each display. 

 

Figure 20. Representative timeline for data collection portion of experiment, for one participant. Factor levels shown are 

for the within-subject navigation display conditions only; haptic notification display is between-subjects. 
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3.6.5 Procedure 

The experiment was designed to fit within a 1.5 hour session. At the start of the session, 

participants were introduced to the GSR sensor, the audio player software and the equipment 

setup. Training was provided on the haptic/visual navigation displays to encourage 

familiarization with the audio player, the wrist-worn navigational device and the bookmarking 

system. Participants were then informed that the objective of the experiment was to compare the 

concept of automatic bookmarking with haptic notification/ navigation to currently available 

media players (e.g., Apple iPod). They were asked to compare this experience to listening to 

audiobooks or podcasts over their own device and offer feedback after the trial.  

Participants were directed to pay close attention to the information presented in the audio stream 

as they were to be tested on the content at the conclusion of the experiment. They were informed 

that during the session, experimenters would be engaging participants in conversation by asking 

questions. Answering these questions was participants’ top priority, requiring them to divert 

attention away from the audio stream. Participants were also instructed not to pause or stop the 

audio stream, but instead were told to let playback continue while speaking with the 

experimenter; a chance was provided for participants to scroll back to listen to any content they 

might have missed immediately afterwards. Participants were informed that if they did not 

recognize content at one of the later bookmarks, they should try scrolling to an earlier bookmark.  

Following the briefing on the experiment procedure, participants were asked to sit in a silent 

experiment room facing a computer monitor and to don the GSR sensor, the wrist-worn 

navigation device and pair of headphones. They were asked to refrain from marking large 

motions during the experiment except while navigating through the audio stream (to avoid 

triggering excessive GSR noise). The experimenters sat on the other side of a visual divider from 

the participant to avoid unintentional distraction or anticipation thereof. 

After two minutes of rest where the GSR signal was stabilized and baseline established, 

participants were asked to start listening to the preloaded audio track. Four trials for each of the 

four bookmark display conditions were presented, with a 5-minute break in between the second 

and third conditions to prevent fatigue. In each trial, the experimenter interrupted the participant 

and engaged in conversation, taking their full attention away from the podcast. Following the 
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interruptions, participants used the wrist interface to scroll back to the location in the audio 

stream where they believed that they left off.  

Following the session, participants were asked to fill out a structured survey regarding the 

interruptions and device interactions experienced during the study (see Appendix B). They were 

asked to provide qualitative feedback on the interaction in the form of a structured survey. 

Specifically, they were requested to: 

 Describe the effects of the haptic notification (applicable only to the group having 

experienced haptic notification of bookmark placement).  

 Identify the utility of the haptic/visual navigation display conditions.  

 Evaluate how well the overall interaction method works.  

 Provide additional comments regarding the utility of haptic notification and comparative 

feedback of the various display conditions. 

 Note the bookmark display condition (i.e., DNone, DV, DH or DV+DH) they preferred. 

3.6.6 Quantitative and Qualitative Measures 

Two performance metrics were collected for each trial: time required for a participant to acquire 

a listening location following an interruption, and the acquisition accuracy (distance in the audio 

stream between the final navigated position and the ‘true’ position corresponding to the start of 

the interruption). From navigation accuracy, we also determined whether a participant didn’t 

scroll back enough, signifying that they had missed listening to a portion of the audio stream. 

Each occurrence of this navigation error was tallied. 

The post-experiment survey asked participants to evaluate disruptiveness and usefulness of the 

haptic notification of bookmark placement, and annoyance and usefulness of the haptic display 

for bookmark navigation on Likert scales (1-10). Participant preference for each condition (i.e., 

DNone, DV, DH, and DV+DH) was tallied. 

3.6.7 Hypotheses 

Users will: 

H1. Perform better when bookmarks are displayed during navigation (DH, DV or DV+DH). 

H2. Perform at least as well with DH as with DV.  

H3. Perform better with DV+DH over DH and DV alone. 
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H4. Prefer DV+DH over DH and DV alone.  

H5. Perform better with NH during navigation so long as bookmarks are displayed (DH, DV, or 

DV+DH). 

3.7 Results 

A 2x2x2x4 (haptic display x visual display x haptic notification x presentation order) repeated 

measures ANOVA was conducted. No significant effects of presentation order were detected; 

thus, we simplify our results by examining only the three main factors. Significance is reported 

at       . Mauchley’s test of sphericity confirmed that the data analyzed did not violate the 

assumption of sphericity. Pairwise comparisons are protected against Type I error using a 

Bonferroni adjustment. We also report partial eta-squared (  
 ), a measure of effect size that can 

be interpreted using the following rule of thumb: .01 as a small effect, .06 as medium, and .14 as 

large [77]. Results are organized by main findings. 

3.7.1 Effect of Display on Resumptive Navigation 

Speed 

Any type of bookmark display is better than no display for increasing resumptive navigation 

speed. Results for navigation speed revealed an interaction between visual and haptic displays of 

bookmarks during navigation (                       
      ) as shown in Figure 21. 

We therefore conducted a 1x4 ANOVA on the four display conditions (i.e., DNone, DV, DH and 

DV+DH) to test the interaction. 

Although it appears that this interaction is disordinal (i.e., conditions co-vary), post hoc testing 

revealed that the conditions had no additive effect. Tukey’s HSD result reveals that DV (  

           ), DH (              ), and DV+DH (              ) conditions 

were all significantly faster than DNone (               ), but that there were no other 

significant differences (Figure 22). This result supports our hypothesis that users will perform 

better when bookmarks are displayed during navigation (H1).  

Both DV and DH significantly reduced navigation time on their own. Trials with and without DV 

and DH showed a mean difference of -2.4 and -3.2 seconds respectively for resumptive 

navigation time. 
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Figure 21. Interaction effect between visual and haptic bookmark display type during resumptive navigation.  

 

Figure 22. Mean navigation time for each bookmark display condition presented during resumptive navigation. Error 

bars show 95% confidence intervals. * indicates that the condition is significantly faster than the control condition (DNone). 

Although DV, DH and DV+DH bookmark display techniques were all helpful, none offered a clear 

benefit over the other. No significant differences in resumptive navigation time were detected 

between DV and DH, which supports the hypothesis that users perform at least as well with DH 

than with DV (H2). Surprisingly, navigation time for DV+DH was not the fastest condition which 

contradicts our prediction that users are able to perform better with DV+DH over DH and DV alone 

(H3). This, in combination with the main effects described above, signifies that DV and DH both 

perform equally better than DNone, but that combining them (DV+DH) offers no additional 

performance benefit in terms of resumptive navigation speed.  
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Accuracy 

DH, with or without DV, significantly increased navigation accuracy. A significant main effect of 

haptic display on navigation accuracy (                    
      ) revealed that DH 

made users more accurate in their navigation with or without DV. No other effects of bookmark 

display type impacted accuracy. 

Self-Reported Measures and Comments 

DH was perceived as useful and not annoying. On a scale of 1 (not annoying at all) to 10 (very 

annoying), participants reported a mean annoyance of 2.3 (      ). On a scale of 1 (not useful 

at all) to 10 (very useful), participants also reported that they found the haptic display to be 

useful (            ). Data on the annoyance or usefulness of DV was not collected as it 

was not considered relevant. 

DV+DH was preferred over all other resumptive navigation conditions. From 16 responses, we 

analyzed the frequency with which each resumptive navigation-time bookmark display condition 

(DNone, DH, DV and DV+DH) was preferred. This was done by calculating the one-dimensional 

Chi-square statistic to determine if the actual frequency was significantly different from the case 

where all frequencies were equal. As shown in Figure 23, the majority of participants (75%) 

reported that they preferred using both haptic and visual display of bookmarks (16 participants, 

  (    )              ), supporting H4. In the post-experiment survey, a few participants 

mentioned that they liked the DV+DH condition due to its affordance for ballistic yet accurate 

navigation trajectories. As one participant stated, “visual confirmation with haptics allows me to 

be much sloppier when getting to a bookmark without overshooting.”  

 

Figure 23. Participant preference for bookmark display. 
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3.7.2 Effect of Haptic Notification on Resumptive Navigation 

Speed 

Haptic notification of bookmarks at interruption time (NH) significantly reduced navigation time 

if bookmarks were displayed visually (DV) during resumptive navigation, but did not do so for 

haptic display during resumptive navigation (DH). A significant interaction effect between haptic 

notification of bookmark placement at interruption time (NH) and visual display of bookmarks 

during resumptive navigation (DV) was observed for navigation time (            

        
      ) as shown in Figure 24. A one-way ANOVA was conducted to investigate the 

interaction which revealed a significant difference of 2.7 seconds or 26% of the total navigation 

time (       ) between trials with DV and NNone (             ), and trials with DV and 

NH (            ). In essence, NH had no significant effect on navigation time when 

lacking DV. Because a significant effect was only observed for NH in the presence of DV and not 

DH and DV+DH, our hypothesis that users will perform better with NH during navigation so long 

as bookmarks are displayed (H5) is only partially supported.  

  

Figure 24. Interaction effect between DV and NH for navigation time. Error bars show standard error of the mean.  
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Self-reported Measures and Comments 

Haptic notification of bookmark placement (NH) was deemed useful and not disruptive. 

Participants who had experienced NH reported on the level of disruptiveness and usefulness of NH 

using 10-point Likert scales. On a scale of 1 (not disruptive at all) to 10 (very disruptive), 

participants rated the level of disruptiveness of NH as low (            ). On a scale of 1 

(not useful at all) to 10 (very useful), participants also reported that they found haptic notification 

to be useful (            ). One participant commented, ‘Although [the notification was] 

noticeable enough that I knew that a bookmark was placed, it was not so much that it distracted 

me from answering [the experimenter’s] questions.’ Another said, ‘It’s good to use vibrations as 

it helps signal to the reader where they left off without worrying if a bookmark was placed or 

not.’  

3.7.3 Secondary Analyses 

False Positives 

Introducing false positives into trials reduced navigation speed. A paired-samples T-test was 

conducted to determine the effect of false positives on navigation speed and accuracy. Results 

confirmed a significant difference in average resumptive navigation speed between trials with 

(               ) and without (               ) false positives ( (  )  

                    ) as shown in Figure 25a. Paired T-tests were conducted to determine 

which conditions exhibited a significant difference in mean navigation time between trials with 

and without false positives. As shown in Figure 25b, DV+DH was the only condition which 

demonstrated this difference between trials with (               ) and without (  

            ) false positive bookmark placements ( (  )                      ). A 

trend from Figure 25b shows that false positives slowed navigation speed in conditions where DH 

was present; whereas this effect does not appear for DV. This may suggest that it may be harder 

for participants to ignore false positive bookmarks when they are presented haptically, rather 

than visually. 
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Figure 25. a) Mean resumptive navigation time for trials with and without false positive bookmarks. b) Mean resumptive 

navigation time for each condition. Error bars represent 95% confidence intervals. The star represents a significant 

difference between navigation times for trials with and without false positive bookmarks within a condition (this 

distinction is meaningless for the DNone condition).  

No significant difference was observed in the mean navigation accuracy for false positive vs. no 

false positive bookmark trials.  

Information Transmission Loss 

Visual + Haptic display of bookmarks during navigation reduced the number of times that audio 

stream information was lost. During navigation, some participants did not scroll far enough in 

the audio stream to reach the point where they were interrupted, resulting in their ‘skipping over’ 

a segment of the audio stream. In most cases, the effect of this error caused participants to be 

disoriented, lacking contextual awareness of new information being presented in the audio 

stream as reported by participants in interviews. Figure 26 shows the DNone condition produced 

the most occurrences (13) where information had been skipped following an interruption. A 

reduction in occurrences of 38% and 53% were observed in the DV and DH conditions; the 

DV+DH condition resulted in the least number of occurrences (1) providing some evidence that 

users perform better with DV+DH (H3).  
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Figure 26. The number of occurrences where information was skipped over due to improper navigation across 

experiment conditions.  

3.7.4 Summary 

We summarize our main findings according to our hypotheses.  

H1. Users perform better when bookmarks are displayed. SUPPORTED. 

H2. Users perform no worse with the haptic display of bookmarks than the visual display. 

SUPPORTED. 

H3. Users perform better with DV+DH over DH and DV alone. PARTIALLY SUPPORTED. 

H4. Users prefer DV+DH over DH and DV alone. SUPPORTED. 

H5. Users perform better with NH during navigation so long as bookmarks are displayed. 

PARTIALLY SUPPORTED. 

Secondary analysis indicates that false positives may slow navigation speed when DH is 

present. Additionally, users perform better with DV+DH in terms of information transmission 

loss than any other form of bookmarking. 

3.8 Discussion 

Given the results of Section 3.7, we review our research questions and discuss our interpretation 

of our findings.  

Q1. Do auto-generated bookmarks provide assistance to users in the context of interruption? 

In response to: ‘Did you find the bookmarks helpful?’ asked in the post-experiment 

questionnaire, all participants (100%) stated that they felt that the bookmarks in and of 
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themselves provided utility. Additionally, there is a performance benefit: bookmarks displayed to 

participants in any form reduced average time required to navigate to the correct position after 

attending to an interruption (Figure 22). It is not surprising that this was the case for the DV 

condition, but the similarity between all of the bookmark display techniques was unexpected. 

From Figure 26, we see that use of any bookmarking display reduced the number of occurrences 

of information transmission loss by at least 30%. 

These results were obtained under conditions where precision of bookmark placement was 50%.  

Overall sensitivity of bookmark placement was 75%; ‘correct’ bookmarks placed at the time of 

interruption were always placed under conditions that displayed bookmarks (i.e., DV, DH, and 

DV+DH conditions)  and never placed for the DNone condition
6
. From graph showing the precision-

sensitivity trade-off in Figure 9, we see this level of precision and sensitivity is obtainable by our 

algorithm described in Chapter 2, and is consistent with the middle range of the precision versus 

sensitivity tradeoff (at around 0.35 µS). Based on this, the results presented here indicate that our 

GSR-based bookmarking algorithm will be sufficient in providing value in bookmarking, 

offering a substantive performance and subjective improvement to the audio stream navigation 

experience.  

Q2. Does haptic notification of bookmark placement at interruption time provide value to users? 

In most cases, the presence of NH made no perceivable difference in either navigation time or 

accuracy (i.e., haptic notification provided no significant main effect or interaction effect with 

the haptic bookmark display condition in resumptive navigation). However, NH in resumptive 

navigation coupled with DV at bookmark placement time does produce a benefit over the NH 

without DV condition (i.e., an interaction effect was present) as shown in Figure 24.  

One possible explanation for this difference may be related to the types of mental models 

developed for the navigation task. Having bookmarks displayed with DV during resumptive 

navigation may allow participants to develop a spatial mental map of where both useful and non-

useful bookmarks have been placed, whereas participants lack such spatial information when 

                                                 

 

6
 As described in Section3.6.4, the DNone condition essentially emulates false negative bookmark placements; thus, 

we did not introduce false negatives into any of the other display conditions to reduce since we determined that we 

would not have obtained any useful additional data.  Thus, bookmark placement sensitivity is 100% for DH, DV, and 

DV+DH conditions, and 0% for the DNone producing an overall sensitivity of 75%. 



58 

working with only DH. As NH provides information that has direct correlation with a spatial 

mapping of bookmarks, the benefit of notification in terms of performance may only be apparent 

with the DV and DV+DH conditions rather than the DH condition. Thus, it may be that haptic 

notification provides a performance benefit to participants only when they are also provided with 

additional means to access or unlock that information; and in the conditions provided here, that 

extra key may have been best obtained through DV, or the visual sensory modality more broadly. 

More examination is required to substantiate this theory. 

With regards to subjective results, all participants except one who received haptic notification 

reported that they found it to be useful. Additionally, general comments from participants 

provided some evidence that NH is able to reassure users that a bookmark has been placed such 

that they could attend to the interruption without worry as stated in our hypothesis H2.  

Q3. Does haptically-assisted navigation of bookmarks provide value to users over no display or 

visual display of bookmark conditions? 

DV, DH and DV+DH produced significant reductions in navigation time over control (DNone) but not 

over each other; only DH (with or without DV) significantly increased navigation accuracy. From 

review of video footage, navigation data and user comments, we believe that haptic-based 

bookmark display afforded navigation using a ballistic trajectory where scrolling could be faster 

and less accurate - the haptic feedback provided a ‘safety net’ which would very noticeably 

inform participants when to stop scrolling. In the visual condition, participants used a different 

navigation method to predictively fine tune scrolling, producing a smoother trajectory. In other 

words, a similar level of speedup was achieved in DH and DV, but through different mechanisms. 

We did not see a significant performance difference (either in acquisition time or accuracy) of 

the DV+DH condition when compared to DH and DV alone – there is not an additive performance 

benefit from combining haptic and visual display of bookmarks. This outcome was unexpected 

and is contrary to our hypothesis that the DV+DH condition would outperform both DH and DV 

conditions. We theorize that this outcome could be explained by the different physical scrolling 

strategies afforded by the nature of the information provided haptically and visually respectively. 

However, participants reported both visual and haptic modalities can used in parallel: they were 

able to benefit from the ballistic scrolling afforded by the haptic modality, while being able to 

predict when to start slowing down through visual cues to prevent overshooting. Further 
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investigation is required to see if greater experience with the interface would allow users to 

integrate these scrolling strategies more effectively. 

On average, participants felt that more could have been done to reduce the annoyance of the 

haptic signal indicating bookmark placement (e.g., shorter duration of signal, weaker strength). 

Additionally, some participants suggested implementing a virtual wall in addition to a haptic 

signal to prevent overshooting of the bookmarks.
7
 In spite of these remarks, participants reported 

that they felt that haptic display of bookmarks offered much utility. Further, we must keep in 

mind that their experience was in a quiet controlled environment, and the haptic signal’s salience 

might be less adequate in more active surroundings. In fact, another large topic for further work 

(and with utility much wider than the present application) is how to adjust haptic signal salience 

to accommodate ambient noise and activity levels.  

Q4. Do users feel that the auto-bookmarking/haptic confirmation and navigation feedback system 

is useful? 

Pending some improvements to the system, the large majority of participants (88%) reported that 

they would use an auto-bookmarking player like the one presented to them. Many of the 

concerns were related to the high number of false positive bookmarks (50% precision of 

bookmark placement); this shows that future work on this bookmarking application should be 

directed at increasing algorithm precision while maintaining or also increasing sensitivity.   

Regardless, results showed that while inaccurate bookmarks do slow users down overall, the 

impact is not worse than if no bookmarks were provided at all; and in general, it may be a 

technically practical strategy to strive for an interaction style that ‘lives with’ substantial false-

positive rates and makes them tolerable, rather than trying to eliminate them. One example of 

this could be to devise a method of distinguishing between bookmarks with lower statistical 

probabilities of a being a true positive from ones with higher probabilities as judged from the 

GSR signal, and to assign a different haptic profile to each bookmark ‘strength’ category – i.e., 

lower probability bookmarks could feature lighter, less noticeable vibrations and higher 

probability bookmarks could use stronger vibrations. 

                                                 

 

7
 This idea was considered but intentionally not implemented in the experiment as we wanted to obtain an accurate 

measure of performance for navigation time and accuracy. 
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General utility of HALO model: 

Reflecting on the larger context of this work, our results suggest that the generalized HALO 

model with low-attention haptic feedback is viable; reactions from participants and quantitative 

performance data both suggest that feedback within an implicit interaction framework is 

beneficial, even perhaps necessary in order to introduce transparency. 

In terms of our use case, we see that providing low-attention haptic feedback for notification of 

bookmark placement at interruption time offers a significant and practically useful performance 

benefit, when combined with visual bookmark display at resumptive navigation time. It is also 

seen subjectively as a benefit to users as a low-disruption, ‘reassurance’ mechanism, and this 

may be its greatest value. In terms of resumptive navigation itself, haptic display of bookmarks 

improves acquisition time and accuracy following an interruption without significantly annoying 

users in spite of the high number of false positives presented to participants in the current 

experiment. In terms of the navigational interface design, the DV+DH bookmark display condition 

provides the best support for users: it offers the best performance in terms of navigation time and 

accuracy. This indicates that it may be worth investigating porting the audio stream system to a 

mobile platform containing both visual and haptic displays, such as a smartphone. However, our 

results suggest that the DH alone could be nearly as helpful, implying that the interaction can be 

performed almost as effectively without visual guidance.  

3.8.1 Limitations and Constraints of the Experiment 

A primary constraint in terms of immediately generalizing our results to practice come from the 

controlled lab setting in which this experiment was conducted. While this setting was an 

appropriate first step, further research is required to confirm these results in a more distracting 

environment such as in a busy café or on a bus. In addition, while a pool of 16 participants was a 

reasonable number for this first study, it would be interesting to consider a larger number of 

participants in either a highly controlled or certainly for a less controlled environment. The task 

of returning to a location in the audio stream after attending to an interruption inherently has 

considerable variation across participants, and a large experiment would be required to examine 

the full range of user types in a broad population, especially if it includes those without previous 

experience with circular scrolling devices.  
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3.9 Summary 

In Chapters 2 and 3, we have developed and tested an instance of the HALO paradigm, complete 

with haptic feedback, within the context of an audio stream bookmarking use case. The results 

obtained from experiments conducted confirm that consistent features corresponding to user 

interruption can be derived from physiological measurements. Leveraging this result, we found 

that an automatic monitoring system can be used to detect when a user is interrupted with a high 

degree of accuracy. In context of the use case, we used this system for placing bookmarks in an 

audio stream at any indication of an external interruption to the user. To alert the user to the 

autonomous behavior of the system, we explored the use of haptic feedback (in combination with 

traditional visual displays) to present these bookmarks to the user in a non-intrusive way.  

From a general scope, the results indicate that the HALO exhibits potential to elegantly manage 

user transition between primary and secondary tasks; the implementation of this implicit 

interaction with low-attention haptic feedback represents a first, but large step in confirming that 

the HALO is able to calmly assist the user in an effective manner. However, validation of this 

new interaction method cannot be done on a single use case; more work needs to be done to 

verify the faculties and value of the HALO concept. In the following chapter, we attempt to 

explore the HALO paradigm within the context of another use case: to determine and react to 

user preference during music listening.  
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4 Music Preference Recognition through Kalman Filtering 

For the automatic audio stream bookmarking use case described in Chapters 2 and 3, we greatly 

simplified the loop by reducing dimensionality of the affect estimation problem, i.e., we were 

able to limit the amount of information which requires processing and interpretation by looking 

only at a user’s GSR activity. Although this allowed us to test aspects of the implicit interaction 

loop without having to tackle the complexities of a fully-featured affect recognition system, there 

were some disadvantages to using GSR as the only physiological measure in an interaction. 

Above all, we are only able to obtain information of the user’s physiological arousal - no 

estimate of user valence can be acquired reliably through GSR. Secondly, using only one 

physiological measure reduces robustness of our ability to estimate user affective state - noise in 

the GSR measurement can cause erroneous system behavior, whereas the effect of noise can be 

reduced when using several combined measurements to determine affect.  

As a next step in the work to obtain validation of the technological feasibility of real-time affect 

detection and classification, we investigated the development of a system to model a user’s 

affective state using multiple physiological channel inputs. This chapter describes an exploratory 

pilot to categorize emotional content to determine time-varying user preference during music 

listening.  

4.1.1 Use Case 

Music plays a significant role in the daily lives of many people, yet the exact reason for its 

importance or appeal is not well understood: it is not a necessary requirement for survival and it 

has no known tangible, addictive properties. One commonly accepted theory explains that the 

widespread fascination of music stems from its ability to evoke, project or enhance emotion, 

which in itself could be rewarding [78–80]. This phenomenon, known as musical emotion 

induction, has been studied extensively to address aspects of emotional expression and 

communication in music that are not well understood (i.e., physiological and psychological 

impact) [81–83]. Because music is consistently cited as medium that is able to evoke strong 

emotions and moods within people [80], we chose to consider our HALO system development in 

a music-listening use case context. In particular, we felt that it could adequately serve as a test 

bed for our affect recognition methods while demonstrating the value of the HALO paradigm.  
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The movement of music storage away from ‘hard’ physical media formats (e.g., compact discs, 

cassettes) to ‘soft’ digital files (e.g., mp3, wma) has allowed for music to be easily amassed and 

transferred to digital music players and online. No longer are users restricted to listen to what 

they buy on CD, instead, they are able to explore and personalize playlists using internet music 

services such as Pandora [84], Last.fm [85], Grooveshark [86] and 8tracks [87] which 

promote/encourage exploration of expansive music collections spanning a vast assortment of 

genres. Given the vast collection of songs, these services require user self-reports and ratings 

(i.e., thumbs up, thumbs down) to notify the service which music selections are liked/disliked. 

This information is then used to algorithmically personalize and tailor playlists for the user. 

Alternatively, many of the self-reports are amassed across users to create recommender systems 

where users are associated with other like-minded people. Thus, users are not truly given their 

own customization. 

Often, this ‘music exploration’ experience is quite demanding – if, for example, a user at work is 

performing data entry in a spreadsheet, he/she would have to switch windows and rate the 

experience, interrupting workflow every few seconds to notify the system that the currently 

playing track is liked/disliked. The problem that is faced here is similar to the one described in 

Chapters 2 and 3: the result of this explicit interaction is increased cognitive demand on the part 

of the user, exactly in a situation when the opposite is desired. In order for proper functioning, 

the music service demands that the user focus on the interface, rather than having the system do 

its job quietly in the background. The solution that we propose is also similar in nature to the one 

provided for the bookmarking application: to reduce this cognitive demand, we suggest having 

the system automatically recognize user music preference through user physiological signals and 

to act appropriately provided this information.  

4.1.2 Research Objectives 

Much work performed by researchers such as Picard and Sarkar strongly indicate that accurate 

estimates of affect can be drawn from user physiological measures [19], [45], [47], [48], [51], 

[54], [88]. Building upon this prior work, we attempt to estimate human affective response with 

regards to music preference in real-time (i.e., like vs. dislike) through a pilot study. However, 

unlike much of the research conducted within this field, we have chosen to depart from 

traditional machine learning techniques which operate offline. Instead, we have opted to use an 

optimal state estimator, in particular a Kalman filtering technique [89], to estimate user 
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preference for music. Kalman filtering describes a set of computationally-efficient algorithms 

which are able to optimally generate a best estimate of a system’s current state based on optimal 

use of imprecise linear (or nearly linear) data describing prior states of the system. The filtering 

method is unique compared to other state estimation techniques (e.g., machine learning) as it 

supports estimations of past, present, and even future states, even when the precise nature of the 

modeled system is unknown. We chose to use a Kalman filtering approach for several reasons – 

in particular: 

 the ability of the filter to robustly forecast time series data [90]; 

 its ability to be run in real time using measurements as they arrive, allowing the HALO to 

operate online rather than being forced to react asynchronously [90]; 

 its capacity to incorporate representations of uncertainty and provides a mechanism for 

incrementally reducing this uncertainty over time [91]; and, 

 its use in other areas of intelligent/implicit HCI research such as gesture and facial 

expression recognition [92–96].  

Our system inputs include music selection features (i.e. centroid, spread etc.). Biometrically-

obtained physiological features serve as the outputs of the system which include galvanic skin 

conductance (GSR), the rate of change or velocity of skin conductance (GSRVel), heart rate (HR), 

heart rate acceleration (HRAccel), electromyography (EMG) and skin temperature (Temp). Online, 

continuous participant rating of the music selection serves as our system state. 

A controlled pilot study was undertaken to address the practicality of using Kalman Filtering to 

recognize user preference to music pieces in real-time. An important caveat is that the purpose of 

the study was not to test the feasibility of affect estimation and recognition as a whole; rather, we 

hoped that the experiment could indicate whether time-varying music preference can be 

estimated accurately through Kalman filtering based on physiological and music feature inputs. 

In particular, can the time-varying level of enjoyment of music be inferred using physiological 

data and structural characteristics of the music in real time and how reliably? This research will 

explore whether several physiological signals – such as, heart rate, skin conductance, respiration 

rate and muscle activity – which evolve while listening to music with different user’s levels of 

enjoyment (e.g., like, neutral, dislike) can be recognized and used by a Kalman filter to predict 

music preference in real time. 
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The music listening use case used in this work was first described by Hazelton in his MSc thesis 

[56] to assist in understanding requirements for the HALO paradigm and developing the 

feedback-supported interaction. Hazelton conducted focus groups to determine the perceived 

utility of the HALO paradigm; he mentions that focus group participants indicated that robust 

identification of continuously changing musical preferences is required for the HALO paradigm 

to be effective and valuable in a portable music consumption use case. This objective of this 

work, in some ways, is to build and expand upon the research conducted by Zhogbi and Hazelton 

in [56].  

4.2 Background and Literature Review 

The technical readiness of the proposed HALO interaction paradigm depends greatly on the 

technological feasibility of real-time affect estimation and classification through physiological 

sensing. Significant work has been performed in the area of affect computing, much of which has 

been mentioned in Section 1.4. Here, we present a survey of prior work more central to the work 

presented in this chapter, namely affect estimation during music listening and Kalman filtering.  

4.2.1 Affect Estimation during Music Listening 

Much of the work done on emotion in musical contexts has been largely restricted to analyzing 

subjective survey responses from experiment participants [56], [80], [97–99]. However, more 

recent forays into correlating music with affective response have used physiological measures. 

Chung and Vercoe developed a novel, real-time music arranging system that selects music on the 

basis of physical and physiological cues [100]. The goal of the system was to continuously 

transition the listener to a goal (enjoyable) state based on foot tapping as recorded by a 

microphone, GSR, and subjective evaluation data through probabilistic state transition 

modelling. In other work, Salimpoor et al. have used recordings of sympathetic nervous system 

activity (e.g., GSR, temperature, heart rate, respiration rate) to reveal that there is a strong, 

positive correlation between pleasure experienced by a music listener and their emotional arousal 

[101]. Similarly, Kim and André have performed feature analysis on physiological data sets (e.g., 

EMG, ECG, GSR and respiration) to obtain a set of best features for automatic recognition of 

emotion [102]. To classify musical emotions, they developed a categorization method which 

serially divides a set of training patterns into dyadic groups corresponding to arousal and valence 

classes. Then, multiple binary classifiers are classified corresponding from each dyadic grouping. 

With this emotion-specific multilevel dichotomous classification scheme, they achieved 
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recognition accuracies of 95% and 75% for subject dependent and independent classifications of 

four emotion classes, respectively. Although Kim and André investigate emotion in the context 

of music-listening, they do not explore user preference to music and its emotional implications. 

There have also been several attempts to predict emotional ratings by examining characteristics 

of the music itself. For example in [103], Yang and Lee present a method of mining and 

annotating music emotional content through machine learning analysis of music lyrics, achieving 

a one-dimension emotion intensity classification accuracy of 90%. In a different stream, Eerola 

and colleagues used structural features extracted from the music itself (e.g., timbre, harmony, 

register and rhythm) and tested three data reduction techniques – stepwise regression, principal 

component analysis, and partial least squares regression – to predict emotional representation in 

music [104].   

4.2.2 Kalman Filtering 

The Kalman filter (KF) is a time-series recursive, optimal estimator – inferring parameters from 

indirect, inaccurate or uncertain observations and measurements which can be processed as they 

arrive. The filter, named after Rudolf E. Kálmán, was originally simply described as a recursive 

solution to a discrete-data linear filtering problem, but has since had been widely applied to 

applications such as radar [90], computer vision [105], navigation and guidance [106] and 

economics [107], [108]. The KF is causal, only using present input measurements and past states 

to estimate future state, allowing it to be run in real time. The filter relies upon a state-space 

dynamic model which has known inputs ( ), outputs or observed measurements ( ) and a 

hidden state ( ) that is to be estimated from the former two. The KF recursively runs through 

two phases alternately: the time-step propagation phase (also known as the predict phase) and 

the measurement update phase. The time-step propagation phase uses the state estimate   from 

the previous phase/time-step to produce an a priori estimate of state for the current time-step. 

During the measurement update phase, the KF produces a refined a posteriori state estimate 

which combines the a priori estimate with current observed information – i.e., a trajectory 

correction based on the most current measurements. 

Although the KF is a popular estimation tool, it comes with a caveat that it only performs well in 

cases where state-space models are linear, or approximately linear in nature. To provide better 

estimation for non-linear models, a series of variations on the KF have been developed. In this 

work, we focus on a more recent variation developed by Julier and Uhlmann termed the 
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unscented Kalman filter [109]. The UKF uses a deterministic sampling technique known as 

the unscented transform (see [110]) to pick a set of sample points, designated sigma points, 

which encircle the mean data point. These sigma points are then pushed through the non-linear 

state transition/observation functions, from which the mean and covariance of the estimate are 

obtained. The result is a filter which more accurately captures the true mean and covariance. 

Additionally, it can be shown that the UKF performs equivalently to the generic Kalman filter 

for linear systems, yet generalizes elegantly to non-linear systems [109]. Because of its 

robustness and generalizability, the UKF has been steadily replacing the generic KF and other 

non-linear KF variants. Its use can be seen in non-linear applications such as tracking of 

anatomical features and deformable objects [111], [112],vehicle trajectory estimation and 

planning [113] and speech processing [114], [115]. We use the UKF in this work due to its 

ability to robustly handle non-linear state-space equations which will arise from modeling as 

shown later in this chapter. A comprehensive description of the UKF and its processes can be 

found in Section 4.4.2.  

As mentioned earlier, the KF and its variants has proved to be a very popular estimation method 

being used in a wide range of fields, though its use in emotion estimation and recognition has 

been a relatively new development. Much of the work which uses KF to estimate emotion looks 

at interpreting facial expressions. For example, Maghami and colleagues developed a facial 

recognition system based on KF, where features are selected and tracked continuously [92]. 

Similarly, Essa and Pentland have fed a KF with geometric, physical and motion-based models 

to estimate optical flow of facial motion to analyze facial expressions [116]. Using a KF, 

Schmidt and Kim have been able to form robust estimates of emotion labels for music in the 

arousal-valence space which change over time, during progression of the sound track [96]. In 

their work, a KF attempts to predict emotion labels based on a learned dynamics model and 

octave-based spectral contrast features of the music.  

4.2.3 Summary 

The literature presented in this section highlights advances for music-based emotion recognition 

and estimation. However, we see that relatively little attention has been given to systems that 

account for the time-varying nature of music and musical emotions – most of the work presented 

here aimed at recognizing an emotion or rating over an entire music selection or clip. Such 

generalizations oppose the time-varying nature of music and make emotion-based 

http://en.wikipedia.org/wiki/Unscented_transform
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recommendation difficult, as it is very common for emotion to vary temporally throughout a 

song. Additionally, most methods for categorizing music based on emotion and user preference 

described in the literature above cannot be computed in real-time, especially for non-linear 

systems. Due to these observations, we take a departure from traditional feature extraction 

methods and explore an approach of applying an unscented Kalman filter (UKF) for affect 

estimation.  

4.3 Methods 

4.3.1 Participants 

As this was an exploratory pilot study, only 3 participants (2 male) were recruited for this 

exploratory study (ages 23-32). All subjects were undergraduate students at the university.  

4.3.2 Location of Study and Consent 

The study sessions were run in a controlled environment free from noise and interruption in the 

Usability Lab (X727) of the ICICS building at the University of British Columbia Point Grey 

campus. Participants were briefed on their ethical rights upon arriving and provided consent at 

the outset of the session (see Appendix C for consent form).  

4.3.3 Experimental Setup and Sensor Equipment 

Participants were provided with an online music rating device which consisted of a mounted, 11 

cm long linear potentiometer (i.e., fader). This device (shown in Figure 27) was constructed to 

allow participants to continuously self-report musical enjoyment during music playback on a 

scale of 0 (dislike) to 1 (like). A high potentiometer contact position (1) indicates participant 

enjoyment while a low potentiometer (0) position represents dislike. There was only one detent 

slightly resisting motion of the linear potentiometer knob present at the half-way point (0.5) to 

represent neutral.  

Physiological data was collected through a Thought Technology ProComp physiological 

measurement system [61]. Four sensors were used for this experiment, which included: 

 Galvanic skin response (GSR) sensor;  

 Surface Electromyographic (EMG) sensor; 

 Blood Volume Pulse (BVP) sensor; and, 

 Skin temperature (ST) sensor. 
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These sensors were selected for use based on their fast response rates (< 1s) and use in similar 

applications in prior work [19], [43]. All signals were recorded at 32 Hz. 

 

Figure 27. Photograph of the music rating device. 

4.3.4 Trial Task 

Each trial began with two minutes of baseline data collection where the participant was 

instructed to relax, allowing physiological measures to stabilize at normal, resting levels. 

Following this rest period, a selection of music began to play for 90 seconds through the pair of 

headphones worn by the participant. During this time, participants continuously self-reported 

their enjoyment/dislike of the music selection in real time using the continuous music rating 

device. Physiological data recording continued for another 30 seconds. Following each trial, the 

participant would be given some time to fill out a short questionnaire regarding the music 

selection just heard (Appendix D). The questionnaire issued allowed them to: 

 Self-report their affective state during the trial, both visually and descriptively; 

 Indicate whether they recognized the song playing during the trial; 

 Indicate their level of enjoyment of the song played (using a continuous Likert scale); 

 Report whether they had ‘chills’ when listening to the selection and when; 

 Describe any emotional or cognitive associations (if any) with the song if they 

recognized the selection. 
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4.3.5 Procedure 

Pre-Experiment  

Prior to the experiment, participants were asked to provide 10 songs which they enjoyed listening 

to. Additionally, they were also asked to provide another 10 songs which they disliked. The 

songs collected were used to personalize the experiment for each participant. Participants were 

instructed that all selections had to be devoid of vocal lyrics; this was done to eliminate the 

possibility that participants held preferences to music selection based on appreciation of the 

selections’ lyrics (a feature that would be unrecognizable by the UKF) , rather than on its 

structure. Additionally, all music selections had to be from the same genre in an attempt to limit 

the diversity of musical features that the UKF would have to recognize.  

The 20 songs selected by the participant were shuffled to create a customized playlist for each 

participant. In addition to these selections, five additional songs of the same genre (selected by 

the experimenter) were added randomly into the playlist.  

Experiment 

At the start of each session, the experimenter explained that the purpose of the experiment was to 

collect physiological data to determine if we can predict whether or not a machine can recognize 

music preference. The experimenter introduced the function of each of the physiological sensors 

as they were donned by the participant. The participant was provided with an explanation of how 

to operate the online music rating device: a high fader knob position represents that he/she likes 

the currently playing song, while a low fader knob position represents dislike. They were 

instructed to continuously self-report their preference for the music selection in each trial (thus to 

were asked keep their hand on the knob at all times) and reset the fader to half-level (neutral) 

before and after every trial.  

Following the briefing on the experiment procedure, the participant was asked to sit in the silent 

experiment room facing the online music rating device which had been fixed to a desk. He/she 

was asked to don a pair of headphones and was asked to refrain from making any more large 

motions during the experiment (to avoid triggering excessive bio-sensor noise). The 

experimenters sat behind the participant, away from view or audition of the participant to avoid 

unintentional distraction. 
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After two minutes of rest where the GSR signal was stabilized and baseline established, the 

experimenter then started playing the first song in the prearranged, randomly ordered playlist, 

marking the start of a trial (described in Section 4.3.4). The music was stopped after 90 seconds, 

and the participant was asked to complete a post-trial questionnaire. After the questionnaire was 

completed, participants were asked to rest in silence for one minute while they remain seated 

before the next trajectory was presented to ensure that the user’s physiological data returned to a 

near-baseline state. Each participant experienced 25 trials, each taking approximately 3 minutes 

to complete, plus the time required by the participant to complete the post-trial questionnaire; an 

experiment session was designed to take a contiguous time period of approximately 90 minutes.  

4.3.6 Quantitative and Qualitative Measures 

Physiological Measurements (y) 

Several physiological measurements were recorded continuously during the music-listening 

portion of each trial for offline processing, including: 

 Normalized Galvanic skin response (GSR); 

 Galvanic skin response derivative (GSRSpeed); 

 Heart rate, measured in beats per minute (HR); 

 Heart rate acceleration (HRAccel); 

 Electromyographic voltage, measured in µV (EMG); 

 Skin temperature, measured in 
°
C (Temp). 

Measurements were segmented into 90 second portions corresponding to music selection.  

Online Self-Reported Music Preference Data (x) 

Continuous self-reported music preference data generated by the participants was captured 

during the music-listening portion of each trial at 32 Hz using a rating device (shown in Figure 

27). This data appeared as a continuous stream of decimal values ranging from 0 (dislike) to 1 

(like) representing the participants’ preference for the music selection recorded in real-time.  

Music Feature Extraction Data (u) 

Each music selection played to participants was processed using MIRtoolbox – a Matlab toolbox 

which offers a set of functions specifically designed to extract structural features from music 

such as tonality, rhythm, structures, etc. from audio files [117], [118]. Using MIRtoolbox, we 
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extracted a selection of features chosen based on traditional categories of musical elements 

(rhythm, timbre, pitch, form, etc.). A representation of these categories was done by selecting 

only a few basic, continuous-time features which have been described as indicators of emotional 

content within music selections [104], [119]. These features include: 

 root-mean-square of the audio signal energy (RMS); 

 spectral centroid of the audio signal amplitude (Centroid); 

 spectral spread or standard deviation (Spread); 

 relative Shannon entropy of the smoothed and collapsed spectrogram (Entropy); 

 musical key (Key) 

 key clarity (Clarity); 

 key modality, i.e., major vs. minor (Mode); 

 flux of the tonal centroid as detected by the Harmonic Change Detection Function [120] 

(HCDF). 

Post-Trial Survey Data 

We use Russell’s dimensional circumplex model of affect described in Section 1.4.1 and [32] in 

post-trial surveys as an intuitive way for users to report their emotional response to the music. In 

addition to an emotional reflection of the music, users were asked to report on: 

 whether or not the music selection was recognized; 

 how much they enjoyed the music on a Likert scale of 1-10; 

 if they would have changed the song if they had a choice; 

 if they had experienced chills; and, 

 whether they had any strong emotional or cognitive associations with the song (e.g., the 

song had been played at high school prom). 

4.4 Modelling and Filtering 

4.4.1 Modelling 

State Space Model Equations 

For our music preference estimation, we needed to obtain a state-space model structure which 

can be used by the UKF. We assumed an explicit discrete time-invariant system; thus, our state 

space model template consisted of the following equations: 
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  [   ]    [ ]    [ ] Equation 2.  

  [ ]    [ ]    [ ] Equation 3.  

Where: 

 [ ] is the state vector; 

 [   ] is the state vector of the next timestep; 

 [ ] is the output vector; 

 [ ] is the input vector; 

  is the state matrix; 

  is the input matrix; 

  is the output matrix; and 

  is the feedforward matrix. 

Equation 2 represents the state transition equation and Equation 3 represents the output equation, 

also known as the observation equation.  

For this work, our models were developed with respect to a user’s viewpoint, where he/she 

would listen to music ( [ ] – input), develop an internal emotional assessment of the music 

( [ ] – state), and exhibit this state in the form of measurable physiological indicators ( [ ] – 

output). This model structure is reflected in Figure 28. To obtain our state-space model (namely, 

the  ,  ,  , and   matrices) we use a least-squares approximation detailed below. 

 

Figure 28. Diagram showing input (u – features drawn from music), states (x – user preference for the music) and outputs 

(y – physiological measures) of the system model. 
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Least Squares Approximation 

Employing the data collected from the trials, we use a least squares approximation method to 

generate our state-space models for each participant. From time-series data composed of 

physiological, song feature and music selection rating measurements, we generated an over-

determined system of equations: 

      
Equation 4.  

Where: 
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M is a matrix which amalgamates the state (A), input (B), output (C) and feedforward (D) 

matrices of the discrete-time linear state-space model – it fully describes the model by which we 

estimate user music selection preference.   contains input ( ) and state ( ) data at timestep  , 

while   contains output ( ) and state ( ) data at timestep    . Thus, Equation 4 simply defines 

that when   is multiplied by the inputs and state at timestep  , we should obtain outputs and 
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state at timestep      As the matrix M is initially unknown, it is estimated numerically by 

obtaining the least squares approximated solution of systems of simultaneous linear equations. 

Data points where music selection ratings ( ) were saturated (rating at 0 or 1) were removed 

from the self-reported rating data sets during modelling; this was done to remove non-linear 

elements associated with the data during model generation.  

4.4.2 Unscented Kalman Filter 

For this work, we use the UKF to predict a user’s internal emotional assessment of the music 

selection being presented based on: the state model developed through least squares 

approximation on training data, structural features of the music selection and the user’s real-time 

physiological measurements. As mentioned in Section 4.2.2, the UKF uses a deterministic 

sampling technique known as the unscented transform to pick a minimal set of ‘sigma’ points 

around a data point. These sigma points are then pushed through non-linear functions (in our 

case, our state equations), from which the mean data value and covariance of the estimate are 

then recovered [110]. We offer a more in depth procedure below. 

Initialization 

From the least square approximate solution, we obtain the following model:  

  [   ]     (  [ ]    [ ])   [ ] Equation 5.  

  [ ]    [ ]    [ ]   [ ] Equation 6.  

  [ ]   (   [ ]) Equation 7.  

  [ ]   (   [ ]) Equation 8.  

Where  [ ]  [ ] are the averages of the least squares error of states and outputs and  [ ] and 

 [ ]  are the co-variances of the least squares error of states and outputs respectively [110]. Non-

linear saturation of the   [ ]    [ ] term in Equation 5 occurs at 0 and 1. We initialize the 

UKF with the following parameters: 

  ̂ [ ]   ( [ ]) Equation 9.  

   [ ]   [( [ ]   ̂ [ ])( [ ]   ̂ [ ])
 ] Equation 10.  
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Where, 

 ̂ [ ]   estimated posteriori state mean at       

 ( [ ])   expected value of x at       

  [ ]  a posteriori state covariance at       

Time-Step Propagation 

Next, we choose sigma points  ̂( )[ ] for          using the following equations: 

  ̂( )[ ]   ̂ [ ]   ̃( )                    Equation 11.  

  ̃( )  (√   [ ]) 

 
                       Equation 12.  

  ̃(   )   (√   [ ]) 

 
                Equation 13.  

Where, 

 ̂ [ ] = a posteriori state mean 

  [ ] = a posteriori state covariance 

  = number of system states 

To demonstrate the relation between sigma points and the mean, Figure 29 shows a visualization 

of these sigma points in the case where we have two states (thus two state axes). Since our state 

model only uses one state (participant self-reported rating of music),       and the state plane 

is simplified to one dimension only. These sigma points are then propagated through the state 

transition equation to transform them into  ̂( )[   ] vectors as shown in Equation 14. 

  ̂( )[   ]    ̂( )[ ]    [ ] Equation 14.  

Having acquired the  ̂( )[   ] vectors, we can combine them to obtain our a priori 

estimate ̂ [   ]: 

  ̂ [   ]     (
 

  
∑ ̂( )[   ]

  

   

) Equation 15.  
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and covariance, taking into account  [ ], the covariance of the least squares error of the output:  

 
  [   ]  

 

  
∑( ̂( )[   ]   ̂ [   ])

  

   

( ̂( )[   ]

  ̂ [   ])
 
  [ ] 

Equation 16.  

 

Figure 29. A diagram showing the choosing of sigma points (blue dots) around a data point (white dot). 

Measurement Update 

Much like in the time step propagation, we choose sigma points, this time using our a priori 

estimate and covariance acquired in the time step propagation: 

  ̂( )[   ]   ̂ [   ]   ̃( )            Equation 17.  

  ̃( )  (√   [   ]) 

 
                       Equation 18.  

  ̃(   )   (√   [   ]) 

 
                Equation 19.  

These sigma points are then applied to the output equation to obtain  ̂( )[   ] vectors: 

  ̂( )[   ]    ̂( )[   ]    [   ] Equation 20.  
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The vectors are recombined to obtain our output estimate at time step k+1: 

  ̂[   ]  
 

  
∑ ̂( )[   ]

  

   

 Equation 21.  

The covariance can then be obtained - taking into account  [ ], the covariance of the least 

squares error of the output: 

 
  [   ]  
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  ̂[   ])
 
  [ ] 

Equation 22.  

We find that the cross-covariance between x and y can then be calculated to be used in 

determining the Kalman gain: 

 
   [   ]  

 

  
∑( ̂( )[   ]   ̂ [   ])

  

   

( ̂( )[   ]

  ̂[   ])
 
 

Equation 23.  

Finally, a slightly modified version of the original KF equations can be used to perform the rest 

of the measurement update: 

  [   ]       
   Equation 24.  

  ̂ [   ]   ̂ [   ]   [   ]( [   ]   ̂[   ]) Equation 25.  

   [   ]    [   ]   [   ]   [   ]
  Equation 26.  

Where, 

   Kalman gain 

 [   ]   output at time-step     

 

Following this calculation, we move forward one time-step – e.g.,     becomes  , and restart 

the algorithm, performing the time-step propagation and measurement update steps again.   
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4.5 Results 

4.5.1 Performance Evaluation Criteria 

To obtain some measure of how well the UKF estimated user preference for music selections, we 

developed two criteria by which we could test our estimates based on how we could realistically 

use this data in a human-computer interaction: root-mean-square difference and visual 

inspection. 

Root-Mean-Square Difference (RMSD)  

The root-mean square difference (RMSD) is a measure of the average difference between the 

participant’s self-reported and UKF-estimated rating of the music selection, calculated using the 

following equation: 

 
     √

∑ (                        ) 
 
   

 
 

Equation 27.  

As shown in Figure 30, the greater the correlation between the estimated and reported ratings, the 

smaller the value; the less the correlation, the closer the RMSD value will be to 1. We use 0.20 

as a benchmark value which categorizes an estimate as good (<0.20) or poor (>0.20). Any 

difference greater than this is more likely to indicate that the estimated and reported ratings exist 

in different categorization ‘bands’ (0-0.4 = dislike, 0.4-0.6 = neutral, 0.6-1 = like) and thus the 

estimate is generally invalid.  

 

Figure 30. Examples of UKF results showing a) good correlation between estimated and reported music ratings resulting 

in a low RMSD value, and b) poor correlation resulting in a high RMSD value.  
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Visual Inspection 

We used a quick, visual method of inspecting if the estimate is in the same ‘band’ (0-0.4 = 

dislike, 0.4-0.6 = neutral, 0.6-1 = like) as the reported measurement. This measurement 

technique was carried out as a simple indicator of whether the UKF can correctly categorize the 

music selection into an appropriate ‘bin’ and select the correct course of action - e.g., continue 

playing the current selection or to skip to the next song. To take this measurement, we use the 

value of the rating estimate at 40 seconds (work by Hazelton in [56] indicates that users are able 

to develop an emotional response indicating preference within this time period), and compare the 

value to the reported rating at that time as shown in Figure 31. If the two measurements are in the 

same bin, we would categorize the estimate as successful. If the estimated and reported ratings 

are in different bins, the estimate would be considered to have failed.  

 

Figure 31. Examples of UKF results showing a) good estimation performance since both estimated and reported ratings at 

40s fall in the same bin, and b) poor estimation performance since both estimated and reported ratings fall in different 

bins.  

4.5.2 Self-Validation Testing  

Self-Validation Testing (SVT) was used as a simple test to determine if the UKF could indeed 

produce a reasonable estimate of affect. An SVT consisted of applying a UKF seeded with a 

system model obtained from a specified data set on the same data set. Although a high degree of 

correlation between the participant-reported and estimated music selection ratings in the SVT 

doesn’t guarantee that a more general system model will perform well, a poor correlation will 

definitively indicate that a generalized UKF will also perform poorly.  

From analysis of all 75 data sets (3 participants x 25 music selections per participant), we found 

that the average RMSD across all subjects was quite small (M=0.040, SD = 0.026); Table 2 
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shows the RMSD mean and standard deviation for each participant. Only five trials of the total 

75 (7%) exhibited an RMSD greater than 0.1. This indicated excellent correlation between 

participant reported and estimated music selection ratings in this first benchmark test. 

Table 2. Mean and std. dev. of root-mean-square deviation for each participant. 

 Participant 1 Participant 2 Participant 3 

Genre Soul/R&B Hip Hop Classical 

Mean 

RMSD 

0.037 0.051 0.031 

SD 0.022 0.029 0.025 

 

4.5.3 Familiar Music Selection Testing 

Encouraged by the fairly low RMSD results from self-validation testing, we felt that proceeding 

to use the UKF in a more generalized sense was justified. For this test, we generated a general 

state space model for a participant and applied it to all trials where the music selection was 

familiar (as indicated in the post-trial questionnaire). The general state space model was obtained 

by concatenating all of the trial data sets from a participant except for the trial music selection 

being tested and those trials which had music selections which were unfamiliar to the participant. 

RMSD Result 

From RMSD results obtained from data where music selections were familiar to the participants, 

we found that the UKF using generalized models performed poorly: the average RMSD across 

all participants was 0.313 (SD = 0.235), which is greater than our benchmark value of 0.20.  

A one sample t-test revealed that the mean RMSD was statistically different between music that 

was reported as ‘liked’ (n=30, M=0.288, SD=0.246) and ‘disliked’ (n=30, M=0.358, SD=0.217) 

by the participants (p<0.0001), with disliked music having a greater RMSD. This signifies that 

the UKF performs more poorly on music that is disliked by participants. A breakdown of mean 

RMSDs for each participant and ‘liked’ vs. ‘disliked’ music selections is shown in Table 3
8
. 

  

                                                 

 

8
 Table 3 does not display ‘Neutral’ rating trajectories as all of the familiar music selections were provided by the 

participant themselves which consisted only of music that was ‘liked’ or ‘disliked’ (See Section 4.3.5).   
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Table 3. Mean and std. dev. of root mean square deviations per participant, for music selections which are familiar to 

participants.  

 Participant 1 Participant 2 Participant 3 

Genre Soul/R&B Hip Hop Classical 

Mean RMSD (Std. Dev.) 0.303 (0.230) 

N=20 

0.355 (0.255) 

N=20 

0.276 (0.223) 

N=20 

Mean RMSD for ‘Liked’ Music (Std. 

Dev.) 

0.290 (0.263) 

N=10 

0.347 (0.275) 

N=10 

0.241 (0.205) 

N=10 

Mean RMSD for ‘Disliked’ Music (Std. 

Dev.) 

0.346 (0.203) 

N=10 

0.401 (0.238) 

N=10 

0.371 (0.249) 

N=10 

Visual Inspection 

From visual inspection of the 60 data sets which used music provided by participants themselves, 

we found that the generalized models were mediocre in performance; 34 (57%) of estimated 

rating trajectories would have correctly identified the participants’ reported ratings using the 

criteria described in Section 4.5.1. Table 4 shows the number of rating trajectories correctly 

tracked for each participant
9
.  

Table 4. Visual inspection results of estimated rating trajectories for each participant for music selections which were 

familiar to participants. 

 Participant 1 Participant 2 Participant 3 

Genre Soul/R&B Hip Hop Classical 

No. of ‘Liked’ Trajectories Tracked 

Correctly 

8/10 (80%) 6/10 (60%) 7/10 (70%) 

No. of ‘Disliked’ Trajectories Tracked 

Correctly 

4/10 (40%) 5/10 (50%) 4/10 (40%) 

Total No. of Trajectories Tracked Correctly 12/20 (60%) 11/20 (55%) 11/20 (55%) 

4.5.4 Unfamiliar Music Selection Testing 

In addition to estimating the participant rating of recognized music selections, we wanted to test 

the UKF within a context that was more representative of our use case - where the system may 

have to estimate rating for music selections which were not familiar to the user. To perform this 

test, we generated a system model using data collected from trials with familiar music selections 

for each participant. This model was then used by the UKF to estimate the rating for selections 

which were unfamiliar to the participant (as indicated by the participant in the post-trial 

questionnaire). 

                                                 

 

9
 Table 4 does not display ‘Neutral’ rating trajectories as all of the familiar music selections were provided by the 

participant themselves which consisted only of music that was ‘liked’ or ‘disliked’ (See Section 4.3.5).   
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RMSD Result 

RMSD results obtained from data where music selections were unfamiliar to participants showed 

that the generalized models derived from familiar music selection data provided only mediocre 

performance: the average RMSD across all participants was 0.296 (n=15, SD = 0.229). Again, 

this did not fall below our specified benchmark value of 0.20. Mean RMSDs for each participant 

and ‘liked’ vs. ‘disliked’ music selections is shown in Table 5. 

Table 5. Mean and std. dev. of root mean square deviations per participant, for music selections which are unfamiliar to 

participants.  

 Participant 1 Participant 2 Participant 3 

Mean RMSD (Std. Dev.) 0.211 (0.221) 

N=5 

0.445 (0.272) 

N=5 

0.233 (0.217) 

N=5 

Mean RMSD for ‘Liked’ Music N=0 0.689 

N=1 

0.327 

N=1 

Mean RMSD for ‘Neutral’ Music 0.0278 

N=2 

0.389 

N=2 

0.158 

N=2 

Mean RMSD for ‘Disliked’ Music 0.2043 

N=3 

0.381 

N=2 

0.524 

N=2 

Visual Inspection 

Visual inspection of the 15 data sets which used music which was unfamiliar to participants 

revealed that categorization abilities of the UKF is poor; only 5 (30%) of estimated rating 

trajectories would have correctly identified the participants’ reported ratings using the criteria 

described in Section 4.5.1. Table 6 shows the number of rating trajectories correctly tracked for 

each participant.  

Table 6. Visual inspection results of estimated rating trajectories for each participant for music selections which were 

familiar to participants. 

 Participant 1 Participant 2 Participant 3 

No. of ‘Liked’ Trajectories Tracked 

Correctly 

0/0 0/1 (0%) 0/1 (0%) 

No. of ‘Neutral’ Trajectories Tracked 

Correctly 

2/2 (100%) 0/2 (0%) 1/2 (50%) 

No. of ‘Disliked’ Trajectories Tracked 

Correctly 

0/3 (0%) 1/2 (50%) 1/2 (50%) 

Total No. of Trajectories Tracked Correctly 2/5 (40%) 1/5 (20%) 2/5 (40%) 
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4.5.5 Observed Behaviours 

During the experiment, we observed a wide range of physical reactions between and within 

participants during trials, particularly to trials with music selections which were reported as 

being disliked. In some trials, participants seemed visibly frustrated, manifested through 

expressions such as frowning, furrowing their brows, squirming etc. Other times, participants 

displayed no noticeable reaction to the music selection.  

4.6 Discussion and Lessons Learned  

Although this study was a preliminary one, we feel the results show clear indications that the 

UKF method implemented here does not perform well; namely, high RMSD values and large 

differences in trajectory paths between estimated and reported continuous ratings are observed 

when trying to track both familiar and unfamiliar music selections. There are many possible 

reasons to explain why our technique failed to estimate participant music preference correctly; 

such reasons may include: 

 the likelihood that there is a non-linear relation between music preference and 

physiological/musical features which cannot be accounted for adequately using a 

saturated least squares modeling technique;  

 the absence of a strong correlation between similar musical features and music preference 

– a user listening to a song with similar musical features as another song that is liked does 

not necessarily mean that the user will enjoy listening to it; 

 there being a psycho-physiological difference in the type of experience a user has 

between listening to music selections that are familiar and well-known to the user and 

those that are being encountered and explored for the first time (this explain the 

extremely poor performance of the UKF when trying to estimate participant ratings of 

unfamiliar songs). 

Despite the poor results obtained with using the UKF, we cannot claim that Kalman filtering 

would not be a suitable approach to estimating user preference of music - we have simply 

developed user models using one combination of input and output parameters. Using other 

measures derived from physiology and music structure or using non-linear modeling may offer 

better performance.  
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It is interesting to note that performance of the UKF is worse for music selections that are 

disliked. We believe this may be a direct result of what was observed behaviorally and through 

self-reports across participants in this pilot: music that is not appealing can cause a wide range of 

negative reactions varying in type of expression and scale. Negative emotions leading to 

someone disliking a music selection can arise from a number of psycho-physiological pathways; 

for example, a listener could detest a song because of its genre (i.e., structural characteristics of 

the music), or because it reminds him/her of an emotionally distressful event (e.g., a breakup). 

These two pathways could cause very different physiological reactions which the UKF may not 

do well in recognizing and handling.  

Although the use of the unscented Kalman filter yielded quantitative results which were below 

expectations, we feel that this pilot study was able to provide valuable insight as to how an 

affect-recognition system could/should behave, and the problems that will be faced when 

developing such a system.  

4.6.1 Limitations, Improvements and Future Considerations 

As this was primarily a pilot study, there is much work that could be done to further investigate 

and build upon the findings of this work.  

In terms of the study conducted, we recognize that a small participant group size was a limitation 

of this study. A larger pool of participants would have provided more conclusive evidence in 

determining effectiveness of the UKF method for affect recognition as implemented. 

Additionally, future studies could be performed which test in conditions outside a controlled, 

structured lab environment which is unable to reflect a more realistic listening scenario (e.g., 

busy café, on a bus, during a jog), identify differences in the effect of listening to new and 

unfamiliar music selections versus music selections which are recognized and familiar, and 

investigate the effects of a wider variation in music genre presented to participants. 

With regards to improving performance of the UKF, we propose that a more careful examination 

of physiological features should be conducted in determining which physiological measures are 

most indicative of music preference, and reducing the output matrix to only a few, key 

physiological signal measurements. In this experiment, we have used a ‘shotgun’ approach in 

determining which physiological measures to use, hoping to obtain a comprehensive model of 

the user’s physiological response to musical stimulation. In retrospect, a reduction in the number 
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of output states which would be monitored would greatly lessen the noise present in the system 

and could strengthen results in addition to simplifying computation of the UKF. Additionally, we 

have found it extremely difficult to use structural music features both in terms of the 

computational challenge of extracting this information from digital music files and using it to 

reliably predict user preference for the music. In particular, this pilot exercise has led us to 

discover that the correlation between music features and preference is not intuitive. Participant 

self-reports and quantitative musical data have indicated that there is a wide variety of genres and 

preferences to music – the user relationships with music seems to be highly complex and 

transcends simple, mathematical music features. Also, prior work on developing a correlation 

between music features and emotion is still largely theoretical rather than practical. Thus, we feel 

that it would be better to more formally examine the relationship between structural music 

features, user preference and physiological responses. It may very well be that these features 

need to be further refined and modulated in order to obtain a more direct path to automatically 

and non-intrusively determining user preference to music. 

As a result of conducting this pilot experiment, we have grasped that current results do not 

support estimation of user rating of music selection through Kalman filtering of physiological 

and music feature data as a viable approach. However, we cannot completely discount the notion 

that Kalman filtering can provide a reliable method to estimate user affect and preference: the list 

of variables which can be explored has not been exhausted. Alternatively, we propose that future 

work investigate other predictive modeling methods (i.e. neural networks) which can use 

physiological measurements to estimate user preferences in music – particularly those methods 

that allow the system to recognize, accommodate and learn from errors identified by the user. We 

foresee that modeling techniques which allow the user to provide corrective feedback to the 

model and have the system ‘learn from past mistakes’ could provide immense benefit in 

improving system rating accuracy.  
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5 Conclusions and Future Work 

In this work, we have proposed and demonstrated a novel, implicit human-computer interaction 

paradigm named the ‘Haptic-Affect Loop’ which includes a feedback mechanism utilizing the 

haptic channel. We attempt to demonstrate the feasibility of this implicitly-controlled interaction 

model which provides a possible solution for managing the interplay between primary and 

secondary tasks in various environments. The research documented in this thesis tries to validate 

the technological feasibility, utility and behavior of the Haptic-Affect Loop through two use 

cases: audio stream bookmarking and music-listening.  

5.1 Audio-Stream Bookmarking  

In our audio stream bookmarking use case, we have developed and validated our theory that a 

computer algorithm can, in real-time, detect features within an electrodermal measurement 

stream that correspond to ORs caused by external disruptive interruptions. We have exploited 

these findings with a system that provides OR-based auto-marking for a representative 

audiobook use case. We have found that with our algorithm, we can achieve a true-positive 

interruption detection sensitivity of 84%. We anticipate that the false-positive rate found in this 

use case may be addressable by dynamically tailoring the OR detection algorithm to individuals, 

through adjusting sensitivity, bookmarking delay and dead-zone period until another bookmark 

can be placed. Improvements to the present system’s usability in the field (e.g., further reducing 

noise in the GSR introduced by bodily movements) may be assisted by integrating contextual 

information such as accelerometer and location data from a worn or carried device.  

As a next step in this work, we have also examined the role of low-attention haptic feedback for 

this use case; this feedback provides users with a low-attention notification that the application 

has acted in response to changes in the user’s physiology. Two forms of feedback were tested 

through an experiment in which bookmark placement is simulated rather than automated, for 

purpose of experiment control: haptic notification of bookmark placement and haptic display of 

bookmarks during navigation. The work presented demonstrates the feasibility of using haptic 

feedback for this use case. We found that conditions providing haptic display of bookmarks 

during resumptive navigation significantly reduced navigation time and accuracy. Visual and 

haptic bookmark displays in resumptive navigation, alone and in combination, were all found to 

be faster than no bookmark display, although the combination of haptic and visual bookmark 
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displays provided the strongest statistical results. These findings confirm previous work 

regarding haptic augmentation of visual displays, and also show promising results regarding 

haptic-only interactions for simple eyes-free navigation tasks.  

5.2 Music Listening  

A more general technological validation test for affect estimation was assessed on a music-

listening use case in the form of a pilot study. From physiological and music feature data, we 

constructed a model intended to estimate a user’s rating of a music selections using an unscented 

Kalman filter. This attempt provided mediocre to poor results when rating estimates generated by 

the unscented Kalman filter were compared with user reported music rating data. We 

hypothesize that this poor performance can be attributed to confounding elements such as the 

wide range of non-linear physiological responses correlating to emotional reactions to music, and 

an absence of a strong correlation between structural features of music, which are utilized within 

the model, and music preference, which this modeling approach could not adequately account 

for. The exploration gave insight into possible explanations, and pointed towards other 

approaches which might be more successful. 

5.3 General Implications 

This work presented in this thesis provides a model for an implicit/low-attention audio stream 

bookmarking system and identifies potential challenges for applying it to other contexts and use 

cases. Through this research, we have developed a complete, functional instance of a HALO loop 

(for the audio stream bookmarking use case) which was able to provide valuable insight as to 

how the HALO behaves, and how users may expect it to behave. Additionally, through an initial 

attempt to algorithmically estimate affect (in the music-listening use case), we have identified 

several problems that will be faced when developing other systems which use implicitly-

communicative user-computer interactions.  

To our knowledge, the system we present here is the first implicit/low-attention interaction loop 

for human-device interaction using haptic feedback for closing of the loop. The work described 

in this thesis, although aimed towards use cases, represents a first step in a larger effort in which 

we aim to develop an implicit interaction loop driven by physiological parameters; we have 

simply used these use cases as a framework for development of HALO technologies. Thus, we 

feel that the application of this research can be readily applied to other contexts – e.g., athlete 
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training, vehicle operation, classroom learning, information retrieval, industrial processes and 

robotics.  

5.4 Future Work 

With respect to the audio stream bookmarking application, future work will include the 

examination of the usefulness of the system in a more realistic setting with the implementation of 

GSR detection to place bookmarks, implementing a fully closed-loop interaction system and 

studied with a larger cohort of users. Several hypotheses have arisen in the course of the research 

which invites further investigation, including the premise that with haptic notification of 

bookmark placement at interruption time, users are able to develop a spatial mental map of 

where both useful and non-useful bookmarks have been placed. Thus, when provided with a 

visual-spatial mapping of these bookmarks during resumptive navigation, they are able to use 

this mental model to achieve a performance benefit in terms of navigation speed and accuracy. 

Within the music-listening scenario, we hope to explore other machine learning approaches aside 

from Kalman filtering to improve estimation performance (e.g., particle filtering, neural 

networks, etc.). In relation to this, future work can be directed towards modeling techniques 

which can learn from mistakes, allowing corrective input from the user to improve the model. 

This form of user correction may have immense benefit for HALO in general, reducing the 

occurrence of errors over time. 

Finally, we hope to generalize the application of the HALO interaction paradigm, extending it 

beyond media playback applications. To further test and validate this model, we hope to apply 

the implicit closed-loop dynamics of HALO to other use cases such as streaming media, 

classroom learning, video gaming, internet browsing, and vehicle operation.  
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Appendix A – Physiologically-Triggered Bookmarking Experiment 

Materials 

A1 Participant Consent Form 
 

                  THE UNIVERSITY OF BRITISH COLUMBIA 

Department of Computer Science 

2366 Main Mall 

Vancouver, B.C.  Canada  V6T 1Z4 

tel:   (604) 822-3061 

fax:  (604) 822-4231 

(RESEARCHER’S COPY CONSENT FORM) 

Project Title: PHLo: Physiological Haptic Loop 

 (UBC Ethics #B01-0470) 

Principal Investigator: Associate Professor K. MacLean 

Co-investigators: Prof. E. Croft, Assoc. Prof. J. McGrenere 
 

The purpose of this study is to examine the role of that some of your physiological responses 

can play in controlling a computer application’s behavior; and of the ability of haptic (touch 

sense) feedback to reveal to you how the application’s behavior is changing as a result.  You will 

be asked to wear external (i.e., non-invasive) sensors that collect some basic physiological 

information such as the heart rate, respiration rate, some muscle activity, and perspiration. We 

will also display simple haptic signals to you, e.g. vibrations on your hand or arm. Please tell the 

experimenter if you find the sensors or haptic display uncomfortable, and adjustments will be 

made. For some parts of the experiment, you will be asked to listen to a taped lecture or 

audiobook.  You will be asked to answer questions in a questionnaire and an interview as part of 

the experiment. This session will be videotaped. The contents of these videotapes will be used 

for analysis purposes. No parts of the videotapes will be publically presented without your 

further consent. You have the option not to be videotaped.  No compensation will be provided 

for participation in this experiment. 

If you are unsure about any instructions, do not hesitate to ask. 

 

TIME COMMITMENT: ½ -1 hour session 

CONFIDENTIALITY: Your results will be confidential:  you will not be identified by 

name in any study reports. Test results will be stored in a secure 

Computer Science account accessible only to the experimenters. 
 

You understand that the experimenters will ANSWER ANY QUESTIONS you have about 

the instructions or the procedures of this study. After participating, the experimenter will answer 

any other questions you have about this study. 

Your participation in this study is entirely voluntary and you may refuse to participate or 

withdraw from the study at any time without jeopardy. Your signature below indicates that you 
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have received a copy of this consent form for your own records, and consent to participate in this 

study. 

 If you have any concerns about your treatment or rights as a research subject, you may 

contact the Research Subject Info Line in the UBC Office of Research Services at 604-822-8598. 

 

You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of 

the consent form: 

 

NAME     DATE    

(please print) 

 

SIGNATURE _____________________________  
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A2 Pre-Experiment Questionnaire 

This questionnaire was provided to participants to fill out prior to running Experiments 1-3.  

Please fill out the questionnaire below regarding the experiment. 

The comment sections are optional. 

 

1) What is your age? _____ 
 

2) What is your gender? _____ 
 

3) What is your dominant hand (circle one)?   Right / Left / Ambidextrous (Both Hands) 
 

4) Have you been diagnosed with any attention disorders or equivalent (e.g., Obsessive 

compulsive or attention deficient disorders)?   Yes / No 
 

5) If you answered yes to question 4, which disorder? Are you currently taking medication for 

this? _______________________________________________________________ 
 

6) How often do you listen to audiobooks or podcasts (circle one)? 
Almost Everyday / Once Every 2-3 Days / Once a Week / Once a Month or Less / Never 

 

7) How hard do you think it is to concentrate on audio books? 
Not at all        Sometimes            Very Hard 

1   2   3   4   5 

 

8) How frequently do you feel distracted by disruptions in the external environment? 
Not at all        Sometimes            Very Hard 

1   2   3   4   5 

 
9) Are you comfortable with an experiment patting or tapping your shoulders, upper arms or 

upper back (circle one)?  Yes / No 
 

10) Are you comfortable with having non-invasive contact sensors being placed on your fingers 

(circle one)? Yes / No 
 
11) Do you have any experiment with wearing sensors on your body before?  Yes / No  
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A3 Experiment 2 and 3 Experimenter Instructions  

Set-up Procedure: 
 

Set up video behind where the human subjects will be sitting. 

Set up laptop with the customized MP3 player (with the Free Chapter 1+2 mp3 file open) and 

speaker on. 

- to open the playlist of MPC: ctrl+7 

Experimenters will sit behind the camera and the subject. 

 

Instructions to the Subject: 
0.0 Put the GSR sensor on the subject's non-dominant hand, and tell the person to not play 

around with it. 

0.1 Ask the person whether the subject is familiar with the kind of mp3 player, and have him/her 

get used to the player if needed. Play an mp3 file other than Free for this optional session. 

0.2 Instruct the person that he/she will be told when to start playing the mp3 player 

0.3 Instruct the person to pay close attention to the audiobook and aim to understand it fully. 

0.4 Tell the person that we will be asking him/her some content related questions. 

0.5 Instruct the person to NEVER pause or stop the audiobook, but to always use rewind button 

if they lost track of content etc. (or with the customized mp3 player, we the person won't be able 

to do this) 

0.6 Tell the person that he/she will be asked to review the video with the experimenters after the 

session to go over some of the highlights. 

 

Experiment Procedure: 
1. Start videotaping, have a sheet of paper to signal start of global timer on the experimenter 

computer. 

2. Start temporary timer and wait 1 minute. 

 

3. Bookmark (BM1) Ask the subject to start playing the mp3 file. Note the global time. 

4. Throughout the experiment always jot down the global timestamp whenever the person 

rewinds the MP3. 

5. Let the subject listen to the audio book for 2 minutes as baseline - just for the person to be 

engaged in the content of the book. 

4. Ask the person the following questions: 

 

4.1 (BM2) Short conversation "What is your name again?" 

*** If the subject pauses, then instruct the person not to pause, let him/her listen wherever again 

and start over. 

*** Back up question for when this happens: "Do you have any classes today?" 

4.1.1 Give about 1 minute after the person starts listening to the book again. 

 

4.2 (BM3) Medium conversation "Hi (subject name), What are you up to this weekend?" 

4.2.1 Give about 1 minute after the person starts listening to the book again. 

 

4.3 (BM4) Short conversation "What time does the laptop say?" 

4.3.1 Give about 1 minute after the person starts listening to the book again. 
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4.4 (BM5) Long conversation "(subject name), where are you from?" "What program are you 

in?" "How old are you?" "Do you like XX?" "What projects are you working on?" 

4.4.1 Give about 1 minute after the person starts listening to the book again. 

 

4.5 (BM6) Long conversation "(subject name), how is giving out something for free related to 

Jello?" "What was the problem of selling Jello?" 

4.5.1 Give about 1 minute after the person starts listening to the book again. 

 

4.6 (BM7) Medium conversation "Is there a particular part that you liked more than others?" 

4.6.1 Give about 1 minute after the person starts listening to the book again. 

 

5. Stop recording, and ask the subject to stop the player. 

6. Stop recording the GSR. 

 

7. Using the global timestamps of mp3 rewind actions observed throughout the experiment, 

replay the video at these timestamps and ask the following questions: 

 

7.0 Did you find the content interesting? 

7.1 Why did you have to scroll back?  

7.2 Did you lose the content of the audiobook because of an interruption (or something else)? 

7.3 Why did you scroll back to the particular place?  

7.4 Were you mostly on par in re-starting the mp3 audio to the last point where you were 

concentrating on the content? If not, describe why. 
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A4 Post-Experiment Questionnaire and Semi-structured Interview Questions 

Overall about the experiment: 

 1. Overall, I felt relaxed during the experiment. 

     Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

 2. Overall, I was definitely interrupted during the experiment. 

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

 3. Overall, the interruption(s) was annoying. 

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

 4. Overall, it was hard to be relaxed right after the interruption. 

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree  

 5. Overall, I was mind wandering intensively and not concentrating on listening to the 

audiobook. 

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

 6. Overall, the audiobook was engaging. 

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

 7. How uncomfortable the sensors were in this experiment? 

    Not at All                     Somewhat Uncomfortable                 Very Uncomfortable 

Comments: ____________________________________________________________ 

Interruption: Knocking 

8. I was interrupted while the interruption occurred.     Yes / No     Comment: __________ 

9. It was hard to refocus on the audiobook right after the interruption.  

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

10. If given the opportunity, I would have liked to have been able to rewind to place in the 

audiobook where the interruption had occurred.      

   Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

11. I tend to move my body (or either legs, head, arms, fingers, etc) right after this type of 

interruption.  Yes / No / Can’t Remember 

Comments:                                                                    
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Interruption: Tapping on the shoulder 

12. I was interrupted while the interruption occurred.     Yes / No     Comment: __________ 

13. It was hard to refocus on the audiobook right after the interruption.  

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

14. If given the opportunity, I would have liked to have been able to rewind to place in the 

audiobook where the interruption had occurred.      

   Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

15. I tend to move my body (or either legs, head, arms, fingers, etc) right after this type of 

interruption.  Yes / No / Can’t Remember 

Comments:                                                                    

 

Interruption: Oral Instruction from the Experimenter 

16. I was interrupted while the interruption occurred.     Yes / No     Comment: __________ 

17. It was hard to refocus on the audiobook right after the interruption.  

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

18. If given the opportunity, I would have liked to have been able to rewind to place in the 

audiobook where the interruption had occurred.      

   Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

19. I tend to move my body (or either legs, head, arms, fingers, etc) right after this type of 

interruption.  Yes / No / Can’t Remember 

Comments:                                                                    

 

Interruption: Cell Phone Ringing 

8. I was interrupted while the interruption occurred.     Yes / No     Comment: __________ 

9. It was hard to refocus on the audiobook right after the interruption.  

    Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 
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10. If given the opportunity, I would have liked to have been able to rewind to place in the 

audiobook where the interruption had occurred.      

   Strongly Disagree          Disagree          Neutral          Agree          Strongly Agree 

11. I tend to move my body (or either legs, head, arms, fingers, etc) right after this type of 

interruption.  Yes / No / Can’t Remember 

Comments:                                                                    

Semi Structured Interview Questions 

 
1. How realistic/relevant do you think these interruptions are compared to those in your daily 

life? 
2. In your daily life how are you being interrupted most? How is it different than listening to 

audiobook?  

3. How did you shift your focus back to the audiobook? What was the hard thing about it?   
4. Would you find it useful if the system bookmarked the time where you were interrupted when 

you listen to an audiobook? Why?  
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Appendix B - Haptic Feedback during Bookmarking Experiment 

Materials 

B1 Participant Consent Form 

                   THE UNIVERSITY OF BRITISH COLUMBIA     

Department of Computer Science 

2366 Main Mall 

Vancouver, B.C.  Canada  V6T 1Z4 

tel:   (604) 822-3061 

fax:  (604) 822-4231 

(RESEARCHER’S COPY CONSENT FORM) 

Project Title: Physiologically-Based Bookmarking 

 (UBC Ethics #B01-0470) 

Principal Investigator: Associate Professor K. MacLean 

Co-investigators: Prof. E. Croft, Assoc. Prof. J. McGrenere 

Student Investigators: Matthew Pan 
 

The purpose of this study is to examine the role that some of your physiological responses 

can play in controlling a computer application’s behavior; and of the ability of haptic (touch 

sense) feedback to reveal to you how the application’s behavior is changing as a result.  You will 

be asked to wear external (i.e., non-invasive) sensors that collect some basic physiological 

information such as the heart rate, respiration rate, some muscle activity, and perspiration. We 

will also display simple haptic signals to you, e.g. vibrations on your hand or arm. Please tell the 

experimenter if you find the sensors or haptic display uncomfortable, and adjustments will be 

made. For some parts of the experiment, you will be asked to listen to a taped lecture or 

audiobook.  You will be asked to answer questions in a questionnaire and an interview as part of 

the experiment. This session will be videotaped. The contents of these videotapes will be used 

for analysis purposes. No parts of the videotapes will be publically presented without your 

further consent. You have the option not to be videotaped.  No compensation will be provided 

for participation in this experiment. 

If you are unsure about any instructions, do not hesitate to ask. 
 

TIME COMMITMENT: 1½-2 hour session 

CONFIDENTIALITY: Your results will be confidential:  you will not be identified by 

name in any study reports. Test results will be stored in a secure 

Mechanical Engineering account accessible only to the 

experimenters. 
 

You understand that the experimenters will ANSWER ANY QUESTIONS you have about 

the instructions or the procedures of this study. After participating, the experimenter will answer 

any other questions you have about this study. 
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Your participation in this study is entirely voluntary and you may refuse to participate or 

withdraw from the study at any time without jeopardy. Your signature below indicates that you 

have received a copy of this consent form for your own records, and consent to participate in this 

study. 

 If you have any concerns about your treatment or rights as a research subject, you may 

contact the Research Subject Info Line in the UBC Office of Research Services at 604-822-8598. 

 

You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of 

the consent form: 
 

NAME     DATE    

(please print) 

 

SIGNATURE _____________________________ 
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B2 Participant Instructions 

Thank you for participating in this study.   

In this experiment, we are looking at trying out a new device interaction for audiobook and 

podcast listening. 

We have developed an algorithm which uses the galvanic skin response (a measurement of the 

electrical conductance of the skin) to detect when you’ve been interrupted.  With this algorithm, 

we’ve developed a method of automatically placing ‘bookmarks’ in media streams at points 

where you’ve been interrupted.   The main goal of this experiment is to determine the best way to 

present these bookmarks to the user.   

Instructions 

During this experiment, you will be asked to listen to two podcasts.  Please pay very close 

attention to these podcasts as you will be tested on their content.  At several points during the 

experiment, you will be interrupted by the experiment to answer some questions that he will have 

for you.  Answering these questions will be your top priority, which means you will have to 

divert your attention away from the audiobook.  DO NOT STOP OR PAUSE THE 

AUDIOBOOK.  You’ll have to let it keep on playing as you’re speaking with the experimenter.  

Don’t worry, you’ll get to scroll back to listen to any content you might have missed right 

afterwards.  To help you navigate through the podcast after attending to an interruption, we will 

be providing automatically generated bookmarks based on your Galvanic skin response.  These 

bookmarks will be presented in two forms: Visually (indicated on the screen by a green line and 

a black diamond icon denoting where the bookmark is in the audiobook) and haptically (felt as a 

buzz through a wrist mounted vibro-tactile motor).   

Four conditions will be tested in this experiment (order will be randomized):  

 One where visual bookmarks are present  

 One where haptic bookmarks are present 

 One where both bookmark displays are present; and, 

 One where no bookmarks are displayed 

Please note: because the bookmarking algorithm utilizes a physiological signal, there are chances 

where false positive bookmarks may be generated before or after a correctly-placed bookmark.    
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Thus, in the case where you do not recognize content at one of the later bookmarks, try scrolling 

to an earlier bookmark and see if that’s the place where you left off.   

Visual Bookmark Display 

The visual display, as you will see, is quite Spartan.  The most important feature will be the 

scrollbar which indicates the position and duration of the currently playing audiobook.  As 

mentioned earlier, lines and black diamond icons indicating bookmarks will be overlaid on this 

scrollbar to show you where bookmarks have been placed.  When you reach a bookmark while 

navigating through the podcast after an interruption, the black icon will turn green.   

Wrist-Watch Device 

You will be asked to wear a wrist watch device which has three main components: 

 A black button which can be double-tapped to play/pause the audiobook 

o The black button should NEVER be pressed unless the experimenter asks you to 

at the beginning and end of the experiment.  

 A soft potentiometer used for navigating through the audiobook 

o Run your finger along the potentiometer clockwise to scroll forward in the 

podcast 

o Run  your finger along the potentiometer counter-clockwise to scroll backwards in 

the podcast 

o For best performance, try to keep your finger within the white area and run your 

finger along the circular track in one smooth motion (as opposed to jerky 

fragmented motions) 

 A vibrotactile device to let you know where a bookmark has been placed during 

navigation 

Questions 

As mentioned previously, answering any experimenter questions is top priority.  The podcast will 

still be playing, which means you may have to remove your headset to answer questions.  You 

will be told when you can start listening to the podcast, at which point you can re-don the headset 

and begin scrolling through the audiobook to acquire the place where you last left off.  If you’re 

uncomfortable answering any of the questions, mention this to the experimenter.  You can even 

lie in your responses – we’re just using conversation to ensure distraction away from the 

audiobook.   
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Notes 

 You will be video recorded during this session.   

 Sometimes the audiobook will skip and jump randomly.  This is caused by noisy 

measurements from the potentiometer.  Just continue listening if this occurs. 

 Bookmarks are placed 10 seconds prior to an interruption in the podcast.   

 You will get a break in between the two podcasts presented.  

 Compare this experience to listening to audiobooks or podcasts over your own device 

(Mp3 player, iPhone, iPod etc.). Please offer the experimenter some feedback based on 

this comparison.   
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B3 Post-Experiment Questionnaire 

Podcast Content  

Did you find the content engaging?  Yes No 

1) How many years has it been since Dave last been to the dentist?  

A. 10 days 

B. 10 weeks 

C. 10 months 

D. 10 years 

2) What is the name of the dentist? 

A. Dr. O’Hagan 

B. Dr. Tom 

C. Dr. McDougall 

D. Dr. Tong 

E. Dr. Legg 

3) What is the name of the painkilling drug used to relieve the dentist’s back? 

A. Morphine 

B. Xylocaine 

C. Levorphanol 

D. Wintergreen 

E. Lidocaine 

4) How does the drug work? 

A. It changes the electrolyte balance of the nerve 

B. It changes the ability of the nerve to transmit pain 

C. It is a general anesthetic changing inhibit excitatory functions of the nervous 

system 

D. Both A and B. 

E. None of the above.  

5) What type of school was Sam entering? 

A. Preparatory School 

B. Elementary School 

C. Middle School 

D. High School 

6) Which sports did Sam try out in prior to Field Hockey? 

A. Soccer 

B. Ice Hockey 

C. Bowling 

D. Curling 

E. All of the above. 

7) Name as many members of Sam’s field hockey team as possible. 

 

_______________________________________________________________________  
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Audio Media Streams 

Do you listen to audiobooks, podcasts or audio lectures on a regular basis? 

Yes No  How often (circle)?  Daily      Weekly       Monthly 

If you answered yes, what device(s) do you use to listen to these media streams.  Be as specific 

as possible (e.g., Computer, MP3 Player, Tablet, Specialized Audiobook Software)? 

______________________________________________________________________________ 

Interruptions 

Can you remember the content in the audiobook presented right before you were interrupted?   

Yes No Comments: ________________________________________________________ 

Bookmarks 

Did you find that the bookmarks helped you locate where you left off after being interrupted? 

Yes No Comments: ________________________________________________________ 

Did you understand how to use bookmarks displayed on-screen? 

Yes No Comments: ________________________________________________________ 

Haptic Notification 

How disruptive was the vibration used to notify if and when a bookmark has been placed? 

 
What level of perceived usefulness do you see in using vibrations to notify you of if and when 

bookmarks have been placed. 

Do you have any comments on how the vibration used to notify if and when bookmarks have 

been placed can be improved or changed? 

_____________________________________________________________________________ 

______________________________________________________________________________ 
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Haptic Bookmark Display 

How annoying are the vibrations used to notify you of where bookmarks were placed? 

 
Judge the level of perceived usefulness of using vibration to notify where bookmarks have been 

placed.  

 
Do you have any comments on how the vibration used to notify where bookmarks have been 

placed can be improved or changed? 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Circular Scrolling 

Judge the intuitiveness of using the circular scroll device to navigate through the audio stream.  

 

Judge the usefulness of using the circular scroll device to navigate through the audio stream.  

 
Do you have any comments on how the scroll device that is used to notify navigate through the 

audio stream or how it could be improved or changed? 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

Overall System 

Of all the bookmark display conditions presented to you, which condition do you prefer the 

most? 

No Haptics 

No Visual  

No Haptics 

With Visual 

With Haptics 

No Visual 

With Haptics 

With Visual 

Can you explain why? 

______________________________________________________________________________ 
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Can you imagine yourself ever using an automatic bookmarking system with haptic notification 

and navigation for media streams? Why? 

______________________________________________________________________________

______________________________________________________________________________ 

 

Additional Comments 

______________________________________________________________________________ 

______________________________________________________________________________ 
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Appendix C – Affect Estimation during Music Listening Experiment 

Materials 

C1 Participant’s Consent Form 

  

CONSENT FORM 

Department of Computer Science 

2366 Main Mall 

Vancouver, B.C.  Canada  V6T 1Z4 

tel:   (604) 822-3061 

fax:  (604) 822-4231 

Project Title: Physiological Responses to Music 

(UBC Ethics # H10-00783) 

 

Principal Investigators:  

Prof. Karon MacLean, Department of Computer Science 

Prof. Joanna McGrenere, Department of Computer Science 

Prof. Elizabeth Croft, Department of Mechanical Engineering 

Student Investigators:   

Matthew Pan, Department of Mechanical Engineering 

The purpose of this experiment is to examine a user’s physiological and affective responses 

to music.  Data collected in this experiment will be used to develop novel interaction techniques 

for portable audio players using haptic signals and human affect models. 

In this experiment, you will be asked to provide ten (10) lyric-less songs that you enjoy 

listening to and examples of music genres you do not enjoy.  A selection of musical clips will be 

played back in one-minute segments.  During each segment, you will be asked to continuously 

rate how much you like or dislike the piece. A short survey will be conducted at the end of each 

song segment. You will be asked to wear external (i.e. non-invasive) sensors that collect some 

basic physiological information such as heart rate, respiration rate, some muscle activity, and 

perspiration.  Please tell the experimenter if you find the sensors uncomfortable and adjustments 

will be made. Data will be collected by video and/or audio recordings, and by questionnaires and 

surveys. We will contact you for further permission before making any use of recordings of your 

participation in presentation of our results. 

REIMBURSEMENT: NONE 

TIME COMMITMENT: 2  Hours 

CONFIDENTIALITY: You will not be identified by name in any study reports. Data 

gathered in the sessions will be stored in a secure Computer 

Science account accessible only to the experimenters.  

You understand that the experimenter will ANSWER ANY QUESTIONS you have about the 

instructions or the procedures of these sessions. After participating, the experimenter will answer 

any questions you have about the sessions. 

Your participation in these sessions is entirely voluntary and you may refuse to participate or 

withdraw at any time without jeopardy. Your signature below indicates that you have received a 

copy of this consent form for your own records, and consent to participate in these sessions. 
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 If you have any concerns about your treatment or rights as a research subject, you may 

contact the Research Subject Info Line in the UBC Office of Research Services at 604-822-8598. 

 
 

You hereby CONSENT to participate in this study and acknowledge RECEIPT of the consent 

form: 

NAME     DATE    

SIGNATURE    

  



120 

C2 Post-Trial Questionnaire 

 

Did you recognize the song that was playing?  YES NO 

Overall, on a scale of 1 (not at all) to 10 (absolutely loved it), how much did you enjoy listening 

to the song? 

 

Would you have changed the song if you had the choice?  YES NO 

Did you experience ‘chills’ while listening to the song?  YES  NO 

If so, approximately at which point in the song did you experience the ‘chills’?   

 

Do you feel you had emotional or cognitive associations with the song (e.g. every time you’re 

listening to this song, you remember a particularly memorable event)?   YES NO 

If so, could you describe this association (only if you’re comfortable doing so)? 

______________________________________________________________________________

_____________________________________________________________________________ 


