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Abstract—Intelligent systems are increasingly able to offer real-time information relevant to a user’s manual control of an interactive

system, such as dynamic system control space constraints for animation control and driving. However, it is difficult to present this

information in a usable manner and other approaches which have employed haptic cues for manual control in “slow” systems often
lead to instabilities in highly dynamic tasks. We present a predictive haptic guidance method based on a look-ahead algorithm, along

with a user evaluation which compares it with other approaches (no guidance and a standard potential-field method) in a 1-DoF
steered path-following scenario. Look-ahead guidance outperformed the other methods in both quantitative performance and

subjective preference across a range of path complexity and visibility and a force analysis demonstrated that it applied smaller and
fewer forces to users. These results (which appear to derive from the predictive guidance’s supporting users in taking earlier and more

subtle corrective action) suggest the potential of predictive methods in aiding manual control of dynamic interactive tasks where
intelligent support is available.

Index Terms—Human factors, evaluation/methodology, haptic I/O, user-centered design.

!

1 INTRODUCTION

INTELLIGENT systems now appear in highly interactive
applications as diverse as automobile driving support,

surgical simulation for training, animation design aids, and
tools that teach skills based on physical gestures. A current
challenge for interface designers is to transfer relevant
information the “last 5 inches” from the computational
element to the user, in a digestible form. This might include
cues derived from an intelligent system’s knowledge of the
environment and/or from its assessment of the user’s
current, even momentary, capabilities, intentions, or needs.

Haptic force feedback can be utilized to this end. The
many possible approaches to devising intuitive haptic
control-sharing cues can be differentiated by the degree of
control retained by the user. At one extreme, the system
behaves autonomously, but allows the user limited inter-
vention when desired; at the other, the user is completely
responsible for interface control, but the intelligent system
offers supplementary force suggestions. The latter space is
most relevant to applications that require tightly coupled
user interaction with highly dynamic content. Likewise,
haptic cues offer a unique but risky opportunity, in that
guidance cues can be overlaid directly onto the physical
control channel or, alternatively, they may be supplied
through another channel—e.g., delivered as a tactile
stimulus to spatially separate site. The former potentially
affords very immediate and easily integrated feedback to
the user—but, if not well designed, it can also obscure the
user’s perception of the system, capture his attention, and
disrupt his intended control actions.

Our own initial efforts, as well as those of others have
led us to believe that, for overlaid haptic guidance to be
both usable and helpful, force cues must be introduced
gradually rather than abruptly, particularly for tightly
coupled, low-reaction-time applications, and oscillation-
prone structures must be avoided. In short, there is a need
for a guidance approach that will support transparent
communication between the user and the intelligent
system: It must offer motion suggestions without demand-
ing attention or cognitive effort, while still allowing the user
to maintain absolute control.

The objective of the work reported here is a better
understanding of the basis of successful haptic cuing of user
motions, with attention to both performance and user
preference. We focus on the question of how overlaid haptic
feedback can best be utilized to suggest, as opposed to dictate
dynamic actions derived from an intelligent system’s
information. Specifically, we describe a predictive haptic
guidance method devised as a response to our observation
of usability problems with other approaches and compare it
with a commonly used potential field/spring-like guidance
method and with a baseline “no guidance” condition in a
driving-type task.

In the remainder of this paper, we comment on related
work and how our approach has built upon it, then define
our new predictive method and the methods we compared
it with. We present and describe the objective and subjective
results of a user evaluation of these methods in a
representative dynamic user-control task, where subjects
use a 1-DoF haptic interface to navigate a vehicle along a
path. Finally, we conclude with a summary of insights into
overlaid haptic guidance.

2 RELATED WORK

Our review of past work in conjunction with our own initial
efforts suggests that, while effective in some situations, the
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potential field and related spring-damper methods used in
the majority of the previous work on haptic guidance can be
a source of usability problems, with a detrimental affect on
performance, in higher-bandwidth and more complex
control applications. Furthermore, usability issues (user
preferences as well as performance) have not been
considered nearly as carefully as algorithm development
has, with the exception of very simple tasks.

Historically, force feedback has long been used to help
users perform interactive tasks; for example, Adelstein and
Rosen designed a haptic joystick in the early 1990s to
support volitional movements in users with physiological
tremor through tuned dynamic coupling [1]. Shortly there-
after, Rosenberg defined “virtual fixtures” as forces super-
imposed on a rendered environment to help guide a user’s
motion [2]. Since then, haptic feedback has been used to
augment interaction in many tasks, including surgery, the
learning of physical gestures, driving, and animation.

2.1 Successes

In several cases, researchers have found clear performance
and usability benefits to overlaid haptic guidance. Teo et al.
used a 6-DoF haptic interface to teach Chinese handwriting
[3]. They virtually attached (damped spring) the interface’s
tip to either a recorded teacher’s trajectory (spatial-temporal
constraint) or to just the recorded path (spatial-only
constraint). They reported that spatial path constraints
without a temporal constraint were “agreeable to users” and
resulted in a performance increase, especially for beginners.

Feygin et al. used a Phantom1 to train users in an abstract
sensorimotor skill: tracing and then recalling the spatio-
temporal motion of a point on a complex 3D trajectory [5].
They utilized three presentation methods (haptic, visual,
and haptic+visual), with the haptic content produced in a
similar manner to Teo et al., and two recall methods: purely
kinesthetic versus kinesthetic plus visual guidance (no
guidance forces were presented). They conclude that haptic
guidance can benefit performance, especially when training
temporal aspects of a task, but their results also suggest a
potential interference when sensory modes are changed
between training and recall and they comment on the
danger of abruptly withdrawing haptic guidance when a
user has become dependent on it during training.

Haptic path guidance is used successfully in work by
Okamura et al., with the goal of providing assistance in
microsurgical applications [6], [7]. Theirmechanism guides a
user along a path by making movement parallel to the path
easier than in the perpendicular direction and has good
usabilityproperties inmicrosurgical tasks.However, because
it requires that the force display have at least asmanyDoFs as
does the constraint, it is inappropriate forprovidingguidance
in “underactuated” systems, which havemore DoFs than are
available or humanly manageable for control—e.g., animat-
ing an articulated figure or using a 1-DoF wheel to control
position in 2-DoF through control of heading.

Steele and Gillespie studied haptic guidance in the
shared control of a vehicle and its effect on visual and
cognitive load in an apparently low-bandwidth task [8].

They required users to follow a straight, obstacle-ridden
path while providing haptic feedback guiding the vehicle
toward the center of the path. Users were instructed to
avoid obstacles and stay on the center of the path; path and
obstacles were displayed in response to user demand.
Haptic guidance provided a significant decrease in both
visual demand and lateral deviation as compared to no
guidance. In a second experiment, subjects were addition-
ally subjected to cognitive load; uniform performance in the
load task suggested that the haptic guidance did not affect
subjects’ overall cognitive effort. Thus, for solely objective
measures of a very simple and probably low-bandwidth
path-following task, these experiments suggest that haptic
guidance helps users follow a path without impinging on
cognitive load.

All of the preceding examples focus on spatial move-
ments that are inherently slow. Additionally, the training
examples are repetitive and have a specific desired spatial
outcome as opposed to a set of possible trajectories that a
user must steer among. In these situations, a simple
damped-spring model seems to be beneficial.

Finally, Donald and Henle use haptic guidance to
interact with motion capture data of an articulated human
figure in real-time [9]. They created a bidirectional transfer
function between a 3-DoF haptic workspace and the 57-DoF
configuration of the motion capture data. The result is a
3-DoF “force river” along which the interface’s tip is drawn
with a virtual damped spring. By providing forces to the
end effector, a user can alter the configuration of the
articulated figure. The authors did not report any evalua-
tion of performance or usability. This work moves into the
realm of haptic interaction with complex (here, high-
dimensional) systems using an interesting bidirectional
guidance metaphor. This is one of the areas where we see
our guidance method ultimately offering a benefit, but it is
not the focus of the current work.

2.2 Lessons from Nonhaptic Guidance

Some important contributions to the body of real-time
guidance have occurred in contexts that are either non-
interactive (e.g., autonomous) or which employ other sensor
modalities for user feedback.

Rossetter et al. have extensively studied control of
vehicle steering aimed at autonomous applications [10],
[11], [12]. Their focus is on lane-keeping guidance using a
potential field method with a look-ahead predictor and the
safety and stability concerns of such a guidance method; it
includes an intricate vehicle model and a formal stability
analysis. This work is relevant here because it addresses
higher-bandwidth control issues, but it does not consider
user input. Rossetter does acknowledge that user interac-
tion with the guidance system is an important issue that
requires attention [12].

Reynolds presents a predictive guidance method for
autonomous vehicles that was the inspiration for our own
look-ahead guidance [13]. He used a simple linear predictor
based on the vehicle’s velocity to predict if the vehicle will
be on or off of the path in the future; if off, the vehicle’s
course is adjusted in an attempt to stay on the path. As a test
bed for his steering behaviors, Reynolds also developed a
software toolkit, OpenSteer [14], which we used as the basis
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1. The Phantom is a commercially available haptic interface with three
actuated and six sensed degrees of freedom (DoF) [4].



of our simulation software. His results suggest that, for an
autonomous system, this look-ahead approach improves
system performance for the same reasons that we hypothe-
size it will help people, when properly cued: The system
has more time to prepare for a control action and can adjust
its course smoothly and without unstable oscillations
triggered by overly abrupt commands.

Finally, Feng et al. developed a nonhaptic but visually
interactive path guidance system, also using a look-ahead
algorithm [15]. They use a more complex algorithm than
does Reynolds to predict the future vehicle position and
display it visually; however, they do not evaluate this aid’s
impact on user driving performance.

To summarize, none of these examples provide experi-
mental evidence of a look-ahead algorithm’s benefit, in any
modality, but they indicate its promise.

2.3 Haptic Guidance for Fast, Complex Systems

While we are not aware of other efforts to overlay intelligent
cues on systems involving complex, underactuated, and/or
high bandwidth motion, some early forays by our group
illustrate some inherent challenges.

In an initial unpublished effort, we used force feedback
to display constraints on the steering angle of a vehicle as
computed by an intelligent system developed by Kalisiak
and van de Panne [16]. The most straightforward solution,
which generated forces that pushed the Phantom’s handle
away from the constraint, resulted in poor usability:
Oscillations were induced by the guidance forces when
the abrupt impulse applied to avoid one constraint would
launch the end effector toward the other constraint. This
situation was not improved by introducing the forces earlier
as a spring element attached to the wall and was mitigated
only slightly by light damping of the spring. Further
damping adversely affected the feel of the environment.
We also found that users tended to reflexively fight abrupt
guidance forces, reducing their effectiveness.

Conversely, users were able to substantially benefit from
a subsequent scheme which incorporated simple damped-
spring haptic feedback into a longitudinal high-speed
driving control (the accelerator pedal) to convey following
distance from a lead car [17]. We believe that this was in
part because the cue algorithm is based on more gradual,
sometimes even unnoticeable force introduction. Further,
because the constraint was unidirectional, it did not tend to
introduce oscillations.

These experiments tell us that, for sufficiently simple
problems (e.g., longitudinal vehicle control), a straightfor-
ward damped spring can be helpful—and is thus almost
certainly the preferred solution. But, when the context is
highly dynamic, has multiple constraints, and/or is under-
actuated, more sophisticated tools are needed.

3 GUIDANCE SYSTEM DESIGN

In this section, we describe our general design approach, and
the vehicle model used in guidance method development
and evaluation. We devised two guidance algorithms to be
compared in a user study with a control:

1. A potential field method (Section 3.3.2), to represent
state-of-the-art as cited in Section 2.

2. A new predictive method (Section 3.3.3) targeting
the problem of high-bandwidth usability by intro-
ducing guidance forces earlier and thus (we theo-
rized) more smoothly.

3.1 Approach to System Design and Choice of
Model

We needed a guidance system that would support
transparent, bidirectional communication between the user
and an intelligent system. Our premise was that the crafting
of user interactions with the guidance forces must be an
integral part of the design process.

Because our target was the basic usability challenges
inherent in providing haptic guidance for highly interactive
tasks, we chose a simple model and a 1-DoF controller
combined with a common, low-DoF, high-dynamic-range
control task of adjustable challenge: In a simple driving
scenario, a user attempts to keep a vehicle inside of a path.
This testbed avoided confounds between the guidance
algorithm and details of an elaborate system model or the
difficulty of learning a complex control. Further, steering
(1-DoF, underactuated) tasks comprise an important subset
of the possible space where we foresee predictive method
applicability. While further study will be required to
determine how insights gathered here will apply to high-
er-DoF systems, this seemed the best place to start.

3.2 Simulation Environment and Vehicle Model

Our experiment context required a simulator engine, a
graphic display of the vehicle and path, an implementation
of the guidance model, and low-level haptic interface
control. Our simulation, based on OpenSteer [14], updated
at 60 Hz and displayed an oblique, overhead view of the
vehicle and a one-unit-wide path (Fig. 1).

OpenSteer supports only autonomous steering beha-
viors, so we developed our own user-controllable vehicle
model (Fig. 2). The angle of the steering wheel, !, steers a
tricycle’s front wheel, !, by ! ¼ 0:7!. With the wheelbase, ‘,
this defines the vehicle turning radius, r:

r ¼
‘

tan ! : ! 6¼ 0
1 : ! ¼ 0:

!
ð1Þ
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Fig. 1. View provided by simulation software for high visibility condition
(viewed by subjects in color). The red triangle represents the vehicle; the
path is green.



Tobetter simulate anautomobile,we clamp the steeringangle
to ½%!max; !max&, where, for our experiments, !max ¼ 15'. We
found that this also helps prevent users from getting into
overly tight turns, with ensuing disorientation.

3.3 Haptic Guidance Methods

We implemented and compared three haptic guidance
conditions, described below: 1) a set of underlying orienting
forces common to all conditions, called “No Guidance”
(NG), 2) a Potential Field Guidance (PFG) method,
resembling those used by others, and 3) a predictive
Look-Ahead Guidance (LAG) method of our own design,
inspired by Reynold’s autonomous algorithm [13].

Both guidance methods described below compute a
desired heading change, ", given the vehicle’s current
orientation relative to the path ("pfg in Fig. 3 and "lag in
Fig. 4). A clamped, linear transfer function is used to map "
to a desired steering angle, !desired ((2), with "max ¼ 60'):

!desiredð"Þ ¼
%!max : " ( %"max
"

"max
!max : %"max < " < "max

!max : " ) "max;

8
<

: ð2Þ

where !desired is the setpoint for the haptic interface’s
PD controller (Section 3.4).

3.3.1 Baseline Forces

We implemented two baseline forces that are always
present, a centering force and viscous damping. The
centering force attempts to maintain a zero steering angle
via a virtual spring, recreating the force that is felt on the
steering wheel of a real car at speed when its tires tend to
point straight ahead. We found that, when people inter-
acted with a prototype lacking this, regardless of guidance
method, they often became disoriented in tight turns. The
viscous damping force was added to stabilize the centering
force in nongrasped conditions. We used values ofK ¼ 10:0
and B ¼ 3:0 and centering force output was clipped to
*0:25 out of a total command range of *1:0.

3.3.2 Potential Field Guidance (PFG)

Based on its use in previous work, we considered potential
field and spring-damper guidance methods to be the
de facto standard and, therefore, a necessary component

of a comparative evaluation. Whereas others have used
higher-DoF Cartesian displays, our version of a PFGmethod
was influenced by our 1-DoF controller; this issue is
discussed in Section 6.2.

As shown in Fig. 3, we apply a force proportional to the
distance d between the vehicle’s center (O) and the point on
the path closest to the vehicle (Opath). This is accomplished
by generating a desired heading change "pfg (and, thence, a
desired knob angle from (2)) via (3) and (4):

"rawðdÞ ¼
d
# "max : 0 ( d < #
"max : d ) #;

!
ð3Þ

"pfgðd;$Þ ¼
$
j$j"rawðdÞ : "rawðdÞ < j$j
$ : "rawðdÞ ) j$j;

!
ð4Þ

where # is the distance from the path at which the maximum
guidance force is applied and "raw is the desired heading
offset based only on the distance from the path. It is possible
for the raw desired heading offset to steer behind the line
straight back to thepath and, thus,we limit"raw by the angle$
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Fig. 2. Schematic of vehicle dynamics: the shaded area represents the
vehicle. Tires are shown here for clarity, but are not rendered during the
simulation. ! is the current vehicle steering angle.

Fig. 3. Components of the potential field guidance method. " is the

desired vehicle heading.

Fig. 4. Components of the look-ahead guidance method. " is the desired

vehicle heading.



(the angle between the current heading and the shortest line
to the path) in (4). The sign of $ indicates which side of the
path the vehicle is on and is used to set steering direction.

# is the only tunable parameter for the PFG algorithm
and was explored over a large range in pilot studies before
being set to the level which gave best overall performance
(# ¼ 1 unit, as is the path width). In addition, the values of
the PD controller (Section 3.4) impacted PFG performance
(high proportional gains caused oscillation, while low gains
left the constraint too soft). However, the same PD gains
gave the best performance for both methods.

3.3.3 Look-Ahead Guidance (LAG)

We developed our predictive algorithm to avoid the strong
and sudden guidance forces produced by reactive guidance
methods such as PFG. With LAG, we first estimate the
vehicle’s position, P , t seconds into the future by P ¼ vt,
where v is the vehicle’s current velocity.

When this predicted point is outside of the path, we
display a guidance force based on the desired vehicle
heading change. "lag is the angle between the current
vehicle heading and the line from the vehicle to the “target”
T , the point on the path closest to P (Fig. 4): "lag ¼ ffPOT .

LAG’s corrective forces tend to increase gently as a
corner or obstacle is approached because, by responding to
the predictive guidance with earlier corrective actions, the
user is typically able to maintain the distance between P
and T at a small value. He would generally first experience
a gradually escalating guidance force, rather than “bump
into” a constraint. We anticipate that this property will be
of the greatest value for curves approached at relatively
high speed—a situation not well addressed by other
guidance methods.

3.4 Haptic Interface and Low-Level Control

Our haptic interface consisted of a 20 W Maxon motor and
4,000 cpr encoder, with a 9 cm beveled acrylic knob
mounted directly on its shaft (Fig. 5). It was connected via
a custom amplifier and PCI interface board to a Windows
2000 PC with a 2 GHz Pentium 4 Xeon processor (faster
than required) and 512 MB RAM.

Low-level control was accomplished by a PD controller
in a high priority thread running at 1,000 Hz, minimizing
the difference between the actual and desired knob
positions. To smooth the difference signal’s derivative

(used by the PD’s derivative term), we used an adaptive
windowing technique [18]. We found that gains of
KP ¼ 3:0, KD ¼ 0:2 resulted in good performance for both
methods.

The physical characteristics of our control knob afforded
a somewhat different interaction style than does a full-sized
steering wheel. Interaction with the knob is performed with
one arm and primarily involves wrist and finger motions,
with some small elbow rotations. A steering wheel is
typically controlled with shoulder and elbow rotations from
both arms. An advantage of a full-sized steering wheel is
that small movements of the wheel engage similar motor
units as do those of large wheel movements. In contrast, the
typical five-fingered grasp of our device facilitated small
knob movements and large movements involved signifi-
cantly different motor units. Since we were not aiming for
face validity with respect to driving, it was acceptable that
our control knob elicited different motor patterns than a
steering wheel, but, as will be discussed later, it did have
ambiguous benefits in terms of task transfer.

4 EVALUATION

4.1 Objectives and Approach

We sought an indication of the effectiveness and accept-
ability of a predictive haptic guidance method (as repre-
sented by LAG) relative to other methods currently in use
and to no guidance at all, in the performance of high-
bandwidth or complex tasks. To this end, we hypothesized
that LAG would have measurable performance benefits
over both NG and PFG, particularly in the more difficult
versions of the tasks considered here, and that users would
subjectively prefer LAG.

We tested these hypotheses using an MSE performance
metric and a repeated-measures three-factor ANOVA,
alongside a subjective evaluation. We designed our experi-
ment for 18 subjects and, to minimize subject fatigue,
restricted experiment duration to one hour.

4.2 Design

4.2.1 Experiment Task

Subjects steered along a path from beginning to end while
attempting to keep the vehicle within the extent of the path
(primary directive) and close to the center of the path
(secondary directive). To retain experiment control over
task difficulty, velocity was fixed to a level that resulted in
good performance for “easy” factor settings during pilots,
while still begin challenging for “hard” factor settings
(v ¼ 5:0 units/sec and lookahead interval t ¼ 1:0 sec).
These criteria were chosen to exercise our hypothesis that
LAG will outperform potential force methods principally
for higher bandwidth or more complex tasks, i.e., it was less
critical to consider slower velocities.

The basic task was repeated under different combina-
tions of the experiment factors. The task was purposely
designed to be similar to driving in an attempt to minimize
the learning curve for interaction with our system; driving
is not its only potential target application.
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Fig. 5. The haptic interface knob, motor, encoder, and stand.



4.2.2 Independent Variables and Levels

In addition to guidance method, candidates for our
evaluation included vehicle velocity, look-ahead time, path
width, visibility level, viewpoint, path complexity, and
look-ahead predictor algorithm. Experiment duration lim-
ited us to two. We chose path complexity and level of visibility
on the premise that they would contribute the most broadly
applicable insights into the benefits and appropriate use of
the guidance methods: Some methods are likely to be more
or less helpful for challenging steering situations and,
because LAG is a predictive method, we speculated that its
strength might be in low visibility conditions.

Note that a range of subjective velocities (also likely to
influence the moment-to-moment performance of either
guidance method) are represented by the variation in path
complexity and visibility: “fast” for driving on a straight
road is different than for a curvy road in high fog
conditions. Modulating too many sources of task difficulty
would have made it hard to interpret results and we felt it
less productive to study lower velocities based on past
evidence that PFG performance there is adequate (e.g., [7]).

The levels per condition were likewise constrained by
experiment duration to 2-3 per factor, including three
difficulty levels for guidance method (NG, LAG, and PFG),
and three path difficulty levels chosen based on the number
and radii of corners (curve, bump, and zigzag, shown in
Fig. 6). Finally, we used two visibility levels: High allowed
viewing of the full extent of the path (Fig. 1), whereas low
introduced a fog which restricted visibility to about three
units (squares) ahead of the vehicle.

4.2.3 Repetition, Blocking, Randomization, and
Learning

Five repetitions (of 18 factor combinations) were enough to
address the individual variability observed in pilots. To
ensure that subjects could become familiar with each
guidance method, we blocked trials by guidance method
while continuing to vary path complexity and visibility
(which seemed both less subject to such a concern and more
likely to occur variably in a realistic context).

The experiment task was chosen to minimize learning
required, but we still anticipated that some would occur.
We addressed this by two means, illustrated in Fig. 7. The

subject began the session with a Familiarization Phase,
repeating an 18-factor block (all factor combinations) until
attaining sufficient skill to continue to a Learning Phase,
followed by the final Test Phase. Both consisted of three
blocks of 30 trials each such that each phase covered all
three guidance methods. Test Phase blocks were used in our
analysis; both phases were used to verify that learning had
indeed stabilized. Block presentation order was counter-
balanced across subjects.

4.3 Metrics

4.3.1 Objective Performance Metric

We measured inverse path following performance for each
trial by integrating the Mean Square Error (MSE) of the
deviation of the vehicle from the center of the path, as
sampled at 60 Hz:

MSE ¼
PN%1

n¼0 jOn %Opathn j
2

N
; ð5Þ

where On is the location of the vehicle at time n and Opathn is
the point on the centerline of the path closest to point On at
time n.

For simplicity and clarity, we chose to use a single
reasonable “all-around” quantitative performance metric
rather than either a multivariate analysis or multiple single-
metric analyses of several metrics. For both of the latter, the
metrics’ relative strengths and biases can be unclear and
interpretation unwieldy. We considered many other re-
jected candidates, including trial duration, mean error,
trajectory length, smoothness, shape, and frequency of
leaving path. Each metric has its own drawback, often a
result of subject strategy: For example, both trial duration
and trajectory length reward taking a straight line from start
to finish. Leaving the path early in a trial and staying
outside for the duration of the trial results in a low path-
leaving frequency, but not in good path following. The
shape and smoothness of a trajectory do not capture a
consistent offset from the path center. Neither ME nor MSE
is susceptible to shortcuts or constant offsets. Of these, we
chose MSE because it heavily penalizes large path depar-
tures, which seemed to better capture the notion of good
path following.

Our MSE metric is not perfect: Computed from the path
center, it does not account for the path width and does not
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Fig. 6. Examples of the three path complexities used in the evaluation

(from left to right: bump, curve, and zigzag).

Fig. 7. An example protocol for an experiment session: The actual
ordering of blocks was counterbalanced by subject. Each block (NG,
LAG, or PFG) contained 3, 2, 5 ¼ 30 trials.



heavily penalize minor corner-cutting. The secondary task
of following the center of the path as closely as possible was
designed to indirectly address this. It also can have a
strategic influence: Subjects are likely to spatially shorten
their focus of attention when required to increase the
precision of their control, in turn limiting their perception of
upcoming path features. However, the centerline require-
ment is just one of several precision-related components of
control difficulty [19]; others are vehicle speed and path
width. This shortcoming therefore seemed minor.

4.3.2 Subjective Measures

We measured user’s reactions to the guidance methods via
two mechanisms. After each block, we asked subjects about
their experiences with the trials in that block, specifically
perceived degree of vehicle control, helpfulness of the
provided guidance, and the pleasurability of the haptic
feedback, using a 5-point Likert scale. At the end of the
session in a debriefing interview, we asked which of the last
three blocks the subject liked the best and if they felt that
their performance was improved by the guidance method
in any of those blocks.

4.4 Procedure

The one-hour experiment sessions were conducted in an
experimentation room with controlled acoustics and light-
ing. During trials, the full system state, including the
position of the vehicle and distance from the path, was
sampled and recorded at 60 Hz. Subjects were instructed to
grasp the knob in a manner most natural to them.

5 RESULTS

5.1 Subjects

Eighteeen subjects completed the experiment. All were
university students aged 19-33, 12 male and six female.
Seventeen held a driving license; eight stated they drove
daily or weekly and nine infrequently. Fifteen reported
previous experience with a haptic interface and, of these,
five said their haptic experience was advanced. Upon initial
analysis, it was clear that one subject did not follow the
instructions; rejection of his data left 17 in our final analysis.

Fig. 8 illustrates the range of path following performance
exhibited throughout the experiment.

Learning effects visualized in Fig. 9 suggest that
performance has stabilized in the final three blocks used
for analysis.

5.2 Results of Quantitative Performance Analysis

We used R [20] to perform a 3, 3, 2 within-subject,
repeated measures ANOVA with one restriction on rando-
mization (blocks) and 18 data points per subject. Each data
point is the mean of five repetitions. All main effects were
significant (Guidance Method at F2;32 ¼ 4:860; p ¼ 0:014,
Path at F2;32¼8:984; p¼0:001, and Visibility at F1;16¼4:887,
p ¼ 0:042). None of the tested interactions were significant.

We performed post-hoc, pairwise comparisons between
the factor levels (using the Holm adjustment for multiple
comparisons), which show a significant difference between
LAG and both PFG (p ¼ 0:012) and NG (p ¼ 0:004), but not
between PFG and NG. Likewise, there is a significant
difference between Low and both Medium (p ¼ 0:018) and
High (p ¼ 0:010) path complexity, but not between Medium
and High. Fig. 10 shows the mean MSE values for each
main effect. LAG guidance, Low path complexity, and High
visibility resulted in the lowest average errors for the three
conditions.

5.3 Comparison of Forces Generated by Each
Method

To gain insight into both the quantitative performance and
subjective response results, we examined the forces
delivered to the user for each guidance method. The most
useful and objective view is presented in Fig. 11, which
displays these forces as histograms. Key observations are
that 1) NG forces tend to peg at the 0.25 cut-off, implying
heavy use of the centering force when it is the only
guidance (this peak appears, diminished, for LAG as well);
2) LAG forces, summed, are no larger than NG (baseline
forces only), whereas average PFG per-trial force is
approximately double; and 3) LAG forces tend to be small,
whereas PFG forces are distributed across the available
range up to saturation. That is, under PFG, users experience
more large-magnitude corrective guidance forces than
under LAG.

Frequency power spectrums for both supplied force and
knob position indicated similar frequency distributions for
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Fig. 8. Trajectories with the worst (top) and best (bottom) MSE scores.

Fig. 9. Boxplot of performance across all subjects in order of block
performance, showing stabilization of learning by Block 3 (end of the
Learning Phase).



NG, PFG, and LAG (rolloff around 0.5 Hz); however, for all
levels of path difficulty and particularly for force, PFG
spectrums contained substantially more power than the
others. This is consistent with the generally higher degree of
PFG force application, and suggests that PFG users
experience more variation in force levels as well as the
generally more widespread and higher-magnitude applica-
tion of force shown in Fig. 11.

5.4 Results of Subjective Response Analysis

We measured subjects’ feelings about their interaction with
the system after each block and when debriefing. Postblock
questions were:

Q1. Did you feel any force feedback? (Yes/No).
Q2. What level of control did you feel you had over the

vehicle? 1-5 (No Control-Complete Control). If the
subject reported feeling force feedback:

Q3. How helpful did you find the force feedback? 1-5
(Very Unhelpful-Very Helpful).

Q4. How much did you like the force feedback? 1-5
(Strongly Dislike-Strongly Like).

Table 1 and Figs. 12, 13, and 14 show the results of
questions Q1-Q4. Debriefing question Q5, “Which block did
you like the most?” generated responses of NG (1), PFG (3),
and LAG (13).

In summary, the postblock subjective results suggest that

LAG made subjects feel more in control of the vehicle and

was perceived as more helpful and was better liked than the

other guidance methods. When given the opportunity to

express an overall preference, 13/17 subjects chose the

block with LAG.

6 DISCUSSION

We begin our discussion with an observation on experi-

ment validity. The significance of path type and visibility

confirmed that these supporting experiment manipulations

were, in general, effective in exercising a range of responses

to the guidance methods. The lack of a significant

difference between the Medium and High path complexity

levels suggests we could have been more extreme in terms

of task challenge.
The results reported here are with respect to our

experiment task and interface, the other “difficulty” factors

employed, and to the MSE performance metric; however,

these were selected to fairly represent the general task class

(high bandwidth and/or complexity) where we believe

predictive methods are most likely to have relevance. With

value in this domain demonstrated, we can proceed to

wider validation.

6.1 Quantitative Performance of Look-Ahead
Guidance

The guidance method main effect and related post-hoc tests

indicate that Look-Ahead Guidance exhibits significant

performance benefits compared to both the baseline NG

and the “standard” PFG, with a mean path deviation score

of about half that of the other methods (Fig. 10). PFG did not

significantly improve performance relative to NG.
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Fig. 10. Mean MSE for all combinations of independent variables (lower
scores are better). Each bar represents 85 trials (five repetitions ,
17 subjects). The horizontal solid and dashed lines represent overall
mean and standard error of the mean, respectively, for that guidance
method.

Fig. 11. Average absolute force values delivered to the user for each
guidance method. Each subplot represents histogrammed forces
(recorded at 60 Hz) for 510 trials (5 x 17 x 6 pathtype/visibility
combinations); each element is divided by 510. M and SD are the mean
and standard deviation of forces for that method, and Sum is the total of
forces delivered, divided by (60s%1 , 510 trials). Note that trial duration
also affects Sum.

TABLE 1
Response to Q1: Force Feedback Felt

Fig. 12. Responses to Q2: felt in control, for each guidance method.

1 = No Control, 5 = Complete Control.



6.1.1 Source of Performance Benefit
The force results of Fig. 11 and reported frequency analysis
support our reasoning that a predictive method should
generate smoother, lower magnitude, and generally less
force. LAG warns users of impending problems and allows
them to alter their course before PFG would indicate the
same problem and we posit that this avoids the abrupt,
oscillation-inducing forces that are problematic with PFG-
style methods. Furthermore, while it may be possible to
tune the PFG method to avoid generating abrupt forces
(e.g., by reducing the position controller’s gain), these forces
still come too late to be of use.

6.1.2 Scope of Benefit across Task Difficulty

LAG did not prove especially useful for more complex paths
compared to less complex paths: The improvement over
other methods is relatively consistent across path types. We
also hypothesized that LAG might offer more than the other
methods in low-visibility conditions because the system can
“see” further than the user. Fig. 10 shows that LAG does
indeed perform much more consistently across visibility
conditions than did the other methods: Low-visibility
performance is brought up to the level of LAG high-
visibility performance.

Thus, these results suggest that the LAG performance
benefit applies across a range of path complexities and
visibility levels.

6.2 Implementation of Guidance Methods
There are many possible approaches to designing both
potential field and predictive guidance algorithms and
optimality is difficult to guarantee. The versions used here
were the best of many we tried during an extensive
prototyping process. We were specifically interested in
underactuated tasks because of their potential efficiency,
but they are less straightforward to implement. Ours is
intended as a 1-DoF analog of the 2-DoF path-tracing
potential field method (Section 3.3.2), but it is atypical in
using a desired steering angle, similarly to LAG (Section 3.3),
and is thusmore accurately a spring-dampermethod.We feel
that this implementation nevertheless captures the spirit of
potential field methods used elsewhere.

6.3 Performance Metric

For our MSE performance metric to function, we had to
require subjects both to stay inside the path and, secondarily,

to follow its centerline. It is possible that demanding fine
control (by giving the centerline directive) may have
contributed to LAG’s observed consistent performance
benefit: If it caused subjects to focus their attention closer
in on the path than they otherwise would have, these
subjects might also have been delayed in incorporating
upcoming path features into their own path following
strategy. These individuals would likely find more benefit
in the predictive component of LAG. If accurate, this
observation would support a premise that LAG is good for
tasks requiring fine control, which is simply a different
form of workload than the one we set out to control by
varying path complexity and visibility.

In a different manner, our MSE metric tends to heavily
weight large departures from the path: For example, a
“bump” counts more than an oscillation. For some
purposes, this might be undesirable and a different metric
would be more appropriate. In our case, we find that the
MSE metric gives one of many possible views on
performance effects of the methods. A multivariate ap-
proach might supply a more general view, but will need to
be weighted appropriately for the given task.

6.4 Subjective Performance of the Guidance
Methods

Our subjective evaluationmethods sufficiently addressed the
issues in which we were interested, providing consistent
results for perceived level of control and the preferred
guidance method. There seemed to be no discrepancy
between perceived helpfulness and aesthetic preference.
Look-Ahead Guidance gave subjects a better sense of control
over the vehicle compared to the other guidancemethods, an
important characteristic for usability and acceptance. When
subjects reported feeling force feedback,LAGwas reported to
be more helpful and better liked than the other methods;
13/17subjects reportedpreferring theblock corresponding to
LAG during the debriefing interview.

Reasons given for this preference were consistent. In
interviews, we heard that some subjects preferred LAG
because they could tell that it was improving their ability to
follow the path; others reported that LAG felt the most
natural. Some found PFG overwhelming at times.
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Fig. 13. Responses to Q3: force feedback helpful, for each guidance
method; asked only of those who answered “Yes” to Q1 (3/15/17
respondents, respectively). 1 = Very Unhelpful, 5 = Very Helpful.

Fig. 14. Response to Q4: liked force feedback, for each guidance
method; asked only of those who answered “Yes” to Q1. 1 = Strongly
Dislike, 5 = Strongly Like.



6.5 Learnability and Task Transfer from Real World

We purposely made the experiment task similar to driving
in an attempt to minimize learning. However, key differ-
ences between our setup and real driving (most notably,
knob size and deliberate control over vehicle velocity) may
have impacted task transfer and, hence, increased learning
times and/or individual variability.

The size and shape of our interface’s knob led some users
to “scroll” by releasing it and repositioning the fingers.
When released, the centering force sometimes made it move
in a counterproductive direction; in a real steering wheel, a
user would counter this with a two-handed grasp. It was
actually possible to steer the knob without releasing, but a
few subjects did not identify this without input from the
experimenter.

Learning had settled by the end of the learning period, so
we do not view data instability as a serious concern with
respect to our result validity; likewise, any extraneous
variability thus induced is unlikely to be systematic and did
not prevent significant results. Thus, using a more
ecologically valid driving setup in terms of knob size and
velocity control would probably not have changed the
evaluation’s outcome.

6.6 Observations on When Haptic Guidance Is
Useful

We observed that, when users were able to follow the path
closely, the guidance force feedback was helpful; but, once
they made significant deviations from the path and became
lost, the guidance feedback was less useful and may actually
havemade the problemworse.We hypothesize that, once off
the path, the user’s objectives are no longer predictable by the
system and, thus, the system does not display forces that
correspond to the direction he wants to go.

This illustrates a need for an intelligent system to be able
to assess the user’s goals, e.g., his recovery strategy, and
also to quantify the certainty it has about user goals.
Likewise, the system must have a given level of certainty
about the task constraints or other cues in order to evaluate
whether its computed guidance forces will correspond to
the user goals.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a haptic Look-Ahead Guidance method
designed to test the hypothesis that predictive algorithms
may solve problems with other guidance mechanisms
currently in use, in haptically communicating stable, help-
ful motion cues.

For a simple but challenging steered path-following
scenario, we found that LAG performed significantly better
than either No-Guidance and the standard Potential Field
Guidance, in terms of an MSE trajectory-following metric.
Force analysis shows that LAG-produced forces were
smaller and fewer than PFG, bearing out our premise that
a predictive guidance method could be both more effective
and more subtle by providing force cues early and helping
users to react before errors build up. In terms of usability
and probably for the same reasons, subjects overall
preferred LAG: They felt more in control and found the
force feedback more helpful and likeable.

We believe that the advantages of predictive guidance
will particularly apply to highly dynamic tasks such as
those made possible through intelligent-system support of
animation control or driving and represented by our
evaluation context. The results reported here suggest that
LAG benefits may apply across a broader range of task
dynamics than we had expected.

In future work, we plan to further explore this notion
with a more extensive study of tasks that require a range of
dynamic responsiveness, as well as an examination of
guidance method success as a function of parameters such
as look-ahead time and distance and, in tasks like the one
used here, velocity and path curvature. We anticipate that,
while LAG will be of the greatest benefit at a higher speed/
trajectory frequency ratio, with an adjustable look-ahead
time it should deliver consistent performance across a range
of velocities. Haptic guidance cues need to be compared
directly with visual guidance in order to both generalize on
its strength and address a potential confound between force
feedback and guidance, although we expect such a study to
have a large task-type dependency. Finally, we would like
to consider different kinds of predictors applied to tasks of
higher dimensionality and to learn if LAG methods will be
beneficial in low or nonvision tasks through their potential
to “see” for the user.
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