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ABSTRACT
When multiple agents interact in order to perform a collabo-
rative task, conflicts will arise over access to shared resources
or when one agent’s ability to act relies on the actions of an-
other agent. In such cases, even perfectly cooperative agents
will encounter problems due to imperfect knowledge of each
other’s behavior, requiring them to communicate with each
other. The CHARM project seeks to develop robot assis-
tants which work alongside human workers in a manufac-
turing environment. Towards this goal, we have studied
nonverbal cues for timing coordination between human col-
laborators. We have modeled these cues for use with robots
and software systems and validated them through human-
robot interaction studies. This paper provides an overview
of these studies, as well as a high-level description of a sys-
tem currently under development which is intended to allow
a robot to model the time required for individual human
workers to complete the tasks to which they are assigned
and to adapt its timing and work pace to match that of its
human collaborators.

1. INTRODUCTION
When multiple agents collaborate to perform a task, tem-
poral and ordering conflicts arise. Coordination is required
in various scenarios: where agents must share a resource,
when physically embodied actors want to occupy the same
space, or when one agent’s tasking relies on the completion
of a task by another agent. The determination of an opti-
mal plan that coordinates the efforts of multiple agents is
part of an active area of computer science and operations
research known as planning and scheduling. The output of
planning software is a plan describing factors such as the
order in which tasks should be performed.

If a planner is able to plan the actions of every actor collab-
orating on a task, then it is able to resolve potential conflicts
by instructing their behavior, communicating to an actor to
cede right-of-way to another, or dictating that a task be com-
pleted by a certain time. Difficulties arise when the planner
is required to work with imperfect knowledge regarding the
behavior of agents that are not directly under its control.
This scenario has an analog in human behavior, since even
people who wish to fully cooperate on a task do not have
perfect insight into each other’s mental states. Humans uti-
lize a number of cues that communicate their intentions to
each other through implicit cues such as body language and
visual attention, and explicit cues such as vocalizations and
gesturing. In the Collaborative Human-Focused Assistive
Robotics for Manufacturing (CHARM1) project, we have
been studying the suitability of non-verbal cues for use by
robot assistants in manufacturing scenarios.

In this paper, we first overview a series of studies we have
conducted to explore the effectiveness and design of human-
inspired, non-verbal communicative cues (both robot-human
and human-robot in a variety of human-robot interaction
(HRI) structures). These studies demonstrate the potential
of non-verbal cues to communicate and coordinate task tim-
ing during paired collaborative tasks. We then present our
plans for a system that utilizes these communicative cues
to infer and adapt to the timing and task performance of
a human operator in a human-robot collaborative assembly
task context.

2. COMMUNICATIVE CUE STUDIES
Fluent timing and teamwork in human-robot collaborative
tasks requires an understanding of the turn-taking and task-
flow regulation cues used by humans and how these cues
can be applied to HRI. In a series of studies on turn-taking,
timing, and task flow we have observed human-human pairs
in collaborative tasks and have adapted our findings from
these observations to HRI. We focused on non-verbal cues

1CHARM is a collaboration between investigators at Uni-
versity of British Columbia, Université Laval, and McGill
University.



Figure 1: Communicating the timing of turn ex-
change using postural changes in a human-robot
task.

in consideration for industrial contexts where verbal com-
munication may be impractical or undesirable.

Our studies encompass a range of interaction structures. In
Sections 2.1 and 2.2, we summarize work on turn-taking and
task-flow control. These studies focus on tasks with struc-
tured turns where task control alternates between partners.
Section 2.3 describes studies with structured turns, but with
the human maintaining primary control of the task. Section
2.4 summarizes a co-manipulation task (handover) with si-
multaneous motion and shared task control. In Section 2.5,
we discuss an asynchronous collaborative task, where part-
ners share a workspace but have no structured turns. By in-
vestigating a wide range of interaction structures, we aim to
contribute to the foundational knowledge for general human-
robot turn-taking and temporal coordination.

2.1 Non-Verbal Cues for Turn-Taking
In collaborative tasks that include turn-taking, it is essential
for the involved agents to be able to communicate when a
turn is given or taken by another agent in the interaction.
In a study involving 18 participants, we observed and iden-
tified postural gestures during turn-taking interactions [1].
Participants, formed into 15 unique dyads, stood across a ta-
ble and collaborated to complete tangram puzzles without
verbal communication. We required that participants alter-
nate placing pieces into the puzzle solution and observed the
non-verbal cues they used to regulate turn-taking.

Our findings show that while some participants occasionally
used explicit hand gestures, participants generally signaled
the end of their turn by changing posture. Common pos-
tural signals included participants placing their hands down
at their sides, placing theie hands on the table, or stepping
back from the table. Often, we found that participants used
two of these cues in conjunction with each other. In this
study, with no structured timing of turns, results showed
that participants were able to effectively indicate the timing
of turn exchanges through changes in body posture. In on-
going work, we are studying if and how similar cues can be
used in human-robot interactions involving similar unstruc-
tured turn-taking tasks (Figure 1).

Figure 2: Common flow regulation gestures in a col-
laborative assembly task. Most gestures had multi-
ple meanings, depending on the task context. The
width of the line linking gesture and meaning indi-
cate the prevalence of that gesture-meaning pair in
our study.

2.2 Cues for Task Flow Regulation
We have found that people use different types of non-verbal
cues to regulate the flow of a task when a collaborative task
does not have a fixed pattern of turn-taking. In a study of 16
participants, pairs of participants worked together to com-
plete simple simulated assembly tasks, assembling stacks of
flat wooden geometric figures and placing them into pre-
assigned locations on a board. Participants were given dif-
ferent task roles and knowledge (e.g., only one participant
was allowed to fetch parts from the supply, only one partic-
ipant knew the assembly order, etc.). Timing of the turn-
taking interaction was unstructured and unplanned. In an
effort to focus communication through hand gestures, the
participants donned sunglasses and a face mask in order to
hide their eyes and mouths from view of their collaborating
partner.

We observed two modes of communication during the exper-
iment: part manipulation communication - which involved
conveying the placement and movement of parts; and flow
regulation communication - where gestures were aimed at di-
recting turn-taking, exchanges, and task flow. Our findings
on part manipulation communication, along with a human-
robot study, can be found in [6]; a brief summary of flow
regulation is reported in [5].

When regulating task flow, participants exhibited a strong
preference for gestures involving the head and face, despite
our efforts to prevent facial communication. For example,
participants nodded their heads to communicate that they
had completed the current task, or turned to look at their
partner in an attempt to establish eye contact to communi-
cate “your turn”. Figure 2 shows the most common gestures
used during the study and their associated meanings.

While gestures involving gaze and head orientation are more
difficult for a machine vision system to recognize, and im-
possible for non-anthropomorphic robots to execute, they
allow human operators to regulate task flow quickly and in-
tuitively, in most cases without taking their hands from their



Figure 3: The user taps and pushes the robot to
regulate turn-taking and task flow in a simulated
assembly task.

work. We are currently considering how these communica-
tion concepts could be adapted to a (headless) robot arm.

2.3 Turn-Taking and Task Flow Regulation us-

ing Touch
Direct physical commands issued by a user physically tap-
ping or pushing a robot are a fast and effective way of pro-
viding explicit timing cues to a robotic system. While our
current implementation of touch interaction is only one-way
(human-to-robot), it has the advantage of allowing users to
keep their attention, gaze and hands in the workspace at
all times. In time-sensitive tasks, humans can execute di-
rect physical commands quickly and robots can interpret the
commands without significant processing time. Our work on
direct physical control is currently in press [4].

We conducted a series of studies with 43 participants en-
gaging in simulated collaborative assembly tasks with ei-
ther a 7-DOF Barrett Whole Arm Manipulator (WAM) or a
small desktop Phantom Omni robot. Participants regulated
turn-taking and task advancement by tapping or pushing
the robot as shown in Figure 3.

Compared to traditional push-button controls used to in-
teract with robots, we found that direct physical interaction
improved users’ ability to control the flow of the human-
robot collaboration in most of the experimental tasks, re-
sulting in reduced task completion times, improved team-
work fluency (Figure 4), and a better overall user experience.
While human-robot touch interactions are not appropriate
for all tasks, we have found it to be a fast and intuitive com-
munication channel that can improve task flow and overall
performance in complex human-robot tasks.

2.4 Timing Cues from Gaze in Human-Robot

Handovers
Object handovers are an important and necessary building
block for physical human-robot collaborative interactions.
Much like many other types of interaction between humans

Figure 4: Direct Physical Control significantly im-
proves human-robot teamwork fluency in a turn-
taking task.

Figure 5: Gaze in human-robot handovers. During
the handover, the robot either (a) remains looking
down, (b) looks at the intended handover location,
or (c) looks the receiver in the face. The position of
the light curtain is shown by the red line. Partic-
ipants completed handovers faster when the robot
shifted its gaze to the handover location (b).

and robots, the quality of a handover is highly sensitive to
timing. A successful, fluent handover requires that both
giver and receiver agree on when the receiver should grasp
the object, when each party has control of the object, and
when the handover is complete. Failure to communicate and
synchronize timings between giver and receiver is a frequent
cause of handover failure [10]. In a study being presented
at HRI 2014, we show that robot gaze using the head on
an anthropomorphic robot can be used to influence human
handover timing [9].

In our study, 96 nav̈e participants engaged in handovers
with a Willow Garage PR2 robot. We designed three gaze
patterns based on observations of human-human handovers.
In each trial, the robot started by looking at the object in
its hand, then shifted its gaze to one of the following loca-
tions: (a) no gaze, looking at the ground; (b) location gaze
(or shared attention gaze), looking at the intended handover
location; and (c) facial gaze, looking at the receiver’s face
(Figure 5). For each condition, we designed the gaze move-
ments (head movements) to signal handover location and
timing. Infrared sensors arrayed as a light curtain detected
when a participant initiated a handover, while sensors in the
robot hand and wrist detected when the human grasped the
object and when the handover was complete.



We found that the robot’s gaze influenced the timing of the
human participant’s reaching behavior. When the robot di-
rected its gaze at the handover location, participants initi-
ated their reach sooner and completed the handover faster.
We hypothesize that the direction of the gaze communicated
the intended handover location, and that the timing of the
gaze and hand motions communicated the intended han-
dover timing. Furthermore, we suspect that the gaze pro-
vided a social cue focusing the participant’s attention on to
the handover location. Our results show that robot gaze can
be used to improve timing and fluency in handovers, and
suggest that gaze may be used to control timing in other
physical human-robot interaction.

2.5 Resolving Resource Conflicts using Hesi-

tation
Resource conflicts are common in asynchronous collabora-
tive work, arising when two parties simultaneously reach to
the same location. Human-human pairs resolve these con-
flicts non-verbally using hesitation gestures, halting hand
motions that communicate an awareness of the conflict and
can be used to yield right-of-way. In fast-paced human-robot
tasks, hesitation gestures could be used as a subtle, intuitive
means of negotiating access to shared resources and resolv-
ing problems in reach timing. Our work on human and robot
hesitation gestures is reported in [7, 8].

In a human-human study, a pair of male undergraduate stu-
dents were instrumented with a pair of two inertial sensors
attached to each of their right arms. Seated across from
each other at a small table, they were instructed to perform
a simple task which required access to a shared resource,
touching a sponge placed in the middle of the table when
prompted by audible tones through a pair of headphones
that each was wearing. Based on recordings of their arm
motion during this study, we designed a robot hesitation
motion trajectory, Figure 6.

For an initial experiment, we recorded videos of a researcher
and a 6-DOF CRS A460 robot engaging in a collabora-
tive reach-and-retract task with occasional resource con-
flicts. The robot responded to conflicts (potential collisions)
with (a) blind motion, i.e., collision, (b) a ‘robotic’ trape-
zoidal collision avoidance trajectory, or (c) our designed
human-like hesitation gesture for collision avoidance. In a
video survey of 58 participants, we found that the designed
robot hesitation gesture successfully communicated a state
of hesitation and yielding and improved the perceived an-
thropomorphism of the robot compared to the ‘robotic’ tra-
jectory.

In a second study testing the same three responses to re-
source conflicts, 24 participants engaged in a fast-paced reach-
and-retract task with a 7-DOF Barrett WAM. Both human
and robot asynchronously reached for a shared container of
parts, resulting in occasional simultaneous reaches. As be-
fore, the designed robot hesitation trajectory successfully
communicated hesitation and yielding, but the results were
unclear on how hesitation affected the users’ perception of
the robot or task completion timing.

Our initial results show users understand these robotic hesi-
tation gestures, but more work is required before hesitation

Figure 6: Human-like hesitation gesture trajectory
in position (top) and acceleration (bottom). Ratios
between time and acceleration parameters (ti : ai)
define the gesture. These ratios are taken from ob-
servations of human hesitations. This trajectory
successfully communicates hesitation and yielding
behavior to human partners.

can be used to regulate timing and resources access in col-
laborative tasks. Between humans, hesitation is a two-way
communication channel, with partners engaging in a short
gestural negotiation to resolve conflicts. In ongoing work, we
are investigating bidirectional human-robot hesitation nego-
tiations as well as studying other variations on the hesitation
gesture.

3. NEXT: ADAPTING TO HUMAN TIMING

CUES
Traditional factory automation robots do not interact with
humans during their operation and, rather, operate in carefully-
controlled and designed environments. Alternatively, the
CHARM project addresses the development of robot assis-
tants that work alongside human workers. These assistive
robots are intended to work collaboratively with humans,
as opposed to performing tasks entirely autonomously (as
in the case of a traditional factory automation) or fully un-
der the control of the human operator (as in the case of a
tool). We aim to develop human-robot interactions that are
natural for workers who may not be experts in robotics.
Such interactions should be fluid and timely, minimizing
the time that the worker spends on instructing the robot,
and maximizing the time spent performing assembly tasks.
This means having the robot perform its tasks at the right
time with respect to the human collaborator; not making the
worker wait by being too late, and not getting in the way
by being too early. Furthermore the robot should correctly
respond to the worker’s cues to speed up, slow down, or get
out of the way, and adapt to both changing user preferences
and differences between workers.



To this end, we intend to attach inferred timings to a model
of a collaborative assembly task performed by a human worker
and a robotic assistant. These timings will be based on real-
world performance of the task by both the human worker
and the robotic assistant, and inferred online during opera-
tion by monitoring task performance. The system will learn
the pace at which the human worker performs their portions
of a collaborative assembly task, computing timing statis-
tics through repeated iterations of the task. In addition,
the worker will be able to provide input to the robot re-
garding their preferences, (e.g. please speed up/slow down)
using communicative cues, such as those outlined in Section
2. Through the use of such modeling and cues, we intend to
design a system that adapts to the pace of the workers with
which it interacts, allowing it to behave less like a tool and
more like a collaborative member of a human-robot team.

3.1 Design Goals
By using existing planning software and modeling techniques,
we hope to minimize the amount of effort placed on in-
frastructure, and instead focus on the HRI aspects of this
project. Preliminarily, we plan to monitor the worker’s
progress on the collaborative task through implicit cues such
as the tool they are using, the pose of the tool with respect
to the assembly, and their position in the workspace. We
plan to integrate our work on nonverbal communicative cues
into the system, allowing the robot to perform actions such
as hesitation when unexpected resource conflicts arise. Ex-
plicit feedback will be provided to the system through both
non-contact gestures such as waving the robot in to request
that it speed up, as well as contact gestures such as pulling
and pushing on the robot in order to instruct it.

Once timings have been incorporated into our model, we
will be able to use the model to optimize a number of tim-
ing related criteria. For instance, the same model should be
useful for optimizing not only the overall time it takes to
complete the assembly task, but also to minimize idle time
and maximize concurrent productive work. An ideal plan
should minimize annoyances such as interruptions, and allow
efficiently respond to error conditions. These metrics may
come into conflict, so trade-offs and overall user satisfac-
tion will be evaluated through the use of a post-interaction
survey in order to guide our design.

3.2 High-Level Design
Enabling a robot to perform a collaborative assembly task
with a human worker is partially facilitated by the existence
of precise instructions for manufacturing assembly. These
instructions can be rewritten in a high-level planning lan-
guage (such as PDDL [3] or STRIPS [2]), which represent
problems and tasks as a set of actions that can be taken by
the robot. Each action has a list of pre-conditions that must
be met in order before the action taken (e.g., there must be
a bolt on the work piece before the robot can attempt to
fasten it) and post-conditions that result from taking this
action (e.g. fastening the bolt mates two separate parts).
Internally, planners chain these actions together to link a
starting state to a goal state. In our system, where the
planner will be run in iterative cycles, the starting state for
each cycle will be derived from sensor data, whereas the goal
state will be the completed assembly task. Many planning

languages are able to account for factors such as the ex-
pected time for completion of an action, allowing planners
to optimize resource allocation and the amount of time to
accomplish a task. These abilities will allow us to attach
estimates of task times based on real-world performance to
each action, in turn allowing us to optimize the timing of
events in the human-robot interaction. Once implemented
on the robot, the same planning language can be used to
model both the expected behavior of the human collabora-
tor and the actions to be taken by the robot.

Knowledge regarding the environment, the human operator,
and the current state of the task will be obtained through
the use of state-of-the-art modeling and sensing software de-
veloped by collaborators at our partner institutions on the
CHARM project. In the current implementation of our en-
vironment awareness system, point cloud data is sampled
through a set of four Microsoft Kinect 3D sensors and pro-
cessed to produce a world model representation. The robot
uses this representation to identify and reason about opera-
tors and objects in its environment. A skeleton tracker, de-
veloped by Andrew Phan at McGill University, will be used
to track the body pose of the human collaborator, allowing
us to interpret gestures and make inferences about the task
state based on the worker’s motion and posture. Information
from this skeleton tracker will be complimented by object
tracking and workspace occupancy data, provided by sys-
tems developed by Denis Ouellet and Dominique Beaulieu,
respectively at Université Laval. Both of these systems will
provide inputs to the Situational Awareness Database (SADB),
developed by Olivier St-Martin Cormier at McGill Univer-
sity. The SADB is used to provide an overview of the current
world state, as estimated from data provided by the various
inputs to the system including sensors, a model of task in-
structions, and prior performance fed back from previous
iterations of the task activity.

By integrating data from the SADB, our system will be able
to reason about the current world state as it relates to its
assigned assembly task. This will allow the robot to track
the human’s progress on the task, reason about the human’s
actions, and act appropriately based on the planner’s out-
put.

3.3 Evaluation Plan
To evaluate the system, we plan to exercise a two-phase
evaluation.

3.3.1 Experimental Evaluation
The first phase is a user study at the CARIS Laboratory at
UBC. Participants will be recruited from the body of college
students, and the task will be a highly repetitive simulated
assembly designed to quickly and thoroughly evaluate the
system.

Participants will take part in a bolt insertion task similar
to that discussed in Section 2.3 of this paper. They will
be instructed to insert bolts into wooden blocks in a pre-
designated pattern, with a 7-DOF Barrett WAM following
from behind to ‘secure’ the bolts that they have inserted
into the wooden blocks (gestured by lowering the robot’s
end-effector over the top of the bolt). The timings will be
designed to insure that slow behavior on the part of the



robot will protract the amount of time required to perform
the task, whereas fast timing (e.g., moving into position to
perform the next part of the task too early) will cause the
robot to either collide with the human participant (at a slow,
safe speed) or to obstruct the participants task area or path
of their arm motion. Participants will repetitively perform
this bolt-assembly task until the system’s model of the speed
with which they perform the task converges with the partic-
ipant’s.

Users will be presented with a post-interaction survey in
order to help to evaluate their experience using the system.

3.3.2 Practical Validation
Annually, the collaborators on the CHARM project (UBC,
Université Laval, McGill University) meet at Laval for an
integrated demonstration of the technologies developed over
the previous year. Among the researchers involved in the
CHARM project, three Subject Matter Experts (SMEs) will
be invited to provide input regarding the real-world viability
of the system.

In this study, the SMEs will perform a car door assembly
task, inserting components into a car door in an assembly
area wherein a robot will assist them with this task. A cus-
tom robot consisting of a robotic arm mounted on a mobile
gantry platform assists in this task simply by presenting the
next part to be inserted into the door to the operator, af-
ter having selected it from a variety of possible components
on a shelf. As this experimental task takes longer to per-
form than the bolt insertion task and can only be performed
on-site at the Université Laval (due to unique hardware re-
quirements demanded by the experiment), we will rely on
operator interviews and commentary rather than computed
statistics to gain additional insights into the performance of
the system.

4. EXPECTED CONTRIBUTIONS
The CHARM project has made significant contributions to
HRI through the use of implicit and explicit nonverbal cues
communication between humans and robot assistants. This
has been accomplished in part by modeling these cues as
used by humans in human-human interactions, and adapt-
ing them for use with robots.

In this work, we will perform a similar modeling process on-
line, by modeling and adapting to the performance of work-
ers collaborating with the robot in a collaborative assembly
task. Though this work is still in the planning stages, we
expect for the system to be able to adapt to the preferred
timing and work pace of individual workers, providing an
experience that is suitable for both novices, who may work
more slowly and require more help, and advanced users, who
may work very quickly, not wanting to wait for the robot to
catch up. Constructing the system in this way will allow us
to perform detailed analyses of task timing and performance
by collecting statistics regarding individual portions of the
task and building models of worker performance. Rather
than attempting to learn an optimal behavior, we will at-
tempt to model task performance, using this as a means
to plan optimal behavior. We hope that this will allow us
to performed detailed HRI studies regarding how a robot

can adapt its timing and behavior to the work patterns of a
human collaborator.
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