
Introducing GaitLib:
A Library for Real-time Gait Analysis in Smartphones

Michael M.A. Wu
mike.wu@alumni.ubc.ca

Oliver S. Schneider
oschneid@cs.ubc.ca

Idin Karuei
idin@cs.ubc.ca

Larissa A. Leong
larissa.leong@alumni.ubc.ca

Karon E. MacLean
maclean@cs.ubc.ca

Department of Computer Science
University of British Columbia

Vancouver, Canada

ABSTRACT
Modern smartphones are pervasive, powerful, and richly en-
dowed with sensors. These have recently enabled smartphone
use for gait analysis, a powerful resource for many appli-
cations including biometric identification and context-aware
apps that motivate exercises. However, there is little support
for software R&D with mobile gait analysis beyond basic
sensing. Through a participatory design process, we devel-
oped GaitLib, a library for real-time gait analysis in smart-
phones. With on-board accelerometers and other sensors,
GaitLib supports both cadence estimation and gait classifi-
cation. The library is implemented on the Android platform,
using Weka as the classification engine while supporting cus-
tomizable gait analysis algorithms. An end user who partic-
ipated in the design team used successive versions of the li-
brary in a series of studies, providing design input which was
used to improve the library’s functionality and usability. This
library can support and stimulate future research in gait anal-
ysis and the development of innovative applications.

Author Keywords
open-source library; mobile; cadence; gait classification;
Android

INTRODUCTION
As smartphones become more powerful and well resourced,
they are increasingly present in our day-to-day life. This
pervasiveness means context-aware applications, such as rec-
ognizing attributes in the wearer’s gait, have great potential.
Gait analysis plays an important role in, for example, medi-
cal monitoring [2], user identification to improve security [4],
and exercise applications [3].

However, few mobile apps use gait information intelligently
beyond basic sensing. This is in part due to the absence of
any general gait analysis tools for developers, which makes
doing analysis of any sophistication very challenging. Con-
sequently, many applications of gait classification remain un-
explored, given the limited resources of most mobile app de-
velopment teams and academic researchers.

In this paper, we introduce GaitLib, an easy-to-use library
for real-time gait analysis on smartphones. GaitLib currently

Figure 1. GaitLib can be used in the implementation of smartphone
apps, smartwatch apps, Arduino programs, etc. Arrows indicate flow
of real-time cadence and gait data; wireless connections are shown with
dotted lines.

supports two challenges in gait analysis: cadence estima-
tion and gait classification. We provide a default algorithm
for each, but support easy addition of alternative algorithms.
This extensibility gives developers the flexibility to customize
the approach they take to responding intelligently to users’
gait. GaitLib is open-sourced and ready for development on
commercially-available Android devices.

GaitLib was inspired by the need of our own group to reuse
algorithms we developed for spatio-temporal guidance and
exergame support. It was developed in a participatory design
approach wherein architecture and development team mem-
bers (referred to here as Dev) supported another author (the
end-user member, or EU) who was extensively consulted on
the design. We strove to make GaitLib robust, easy-to-use
and extensible; using the library ourselves – a.k.a. “dogfood-
ing”, let us achieve this.

Prior to GaitLib, EU developed one of the default algorithms,
RRACE [8] for cadence detection, and then used RRACE in
subsequent experiments as a measurement for ground truth.
During these experiments, EU used an earlier version of
GaitLib to make his job easier and provided feedback to Dev.
Later, EU used an updated version of GaitLib to build a demo
for a conference. After the demo was built and piloted, a
member of Dev conducted an open-ended post interview to
get an idea of how well GaitLib worked for EU.

1



We will begin by discussing related studies that we consulted
during the design of GaitLib and the novelty of GaitLib over
similar systems. Then, we will detail our approach and de-
scribe the architecture of the library, followed by an overview
the functionalities and the customizable features. We will
conclude this paper with a discussion of the performance and
usability of the library and some of our planned future works.

RELATED WORK
The three main types of sensor technologies that have been
used in systems for gait analysis are cameras and machine
vision, floor sensors, and wearable sensors [4]. Methods in-
volving wearable sensors began by attaching multiple sen-
sors to specific parts of user’s body [1], and evolved to car-
rying a single three-axis accelerometer mounted on a cell
phone, where the accuracy of gait classification (processed
on a server) reached 80% [7]. Smartphone’s on-board ac-
celerometers have been shown to achieve accuracy compa-
rable to that of conventional standalone accelerometers [10].
Thus, smartphones equipped with accelerometers are suitable
for gait analysis.

Real-time on-device cadence estimation and gait classifica-
tion were shown to be feasible in several studies. Using a
single accelerometer mounted on the waist as the sensor, sev-
eral gait cycle parameters, including cadence, can be esti-
mated by an on-device PIC microcontroller in real time [13].
Gait classification was also achieved with high accuracy and
orientation-independence [14], which is an important factor
for making gait recognition on mobile phones practical.

The task of gait classification has been widely studied and
thoroughly reviewed within a structured framework [11].
Two groups have developed systems for activity and gait clas-
sification on mobile phones [5, 12]. They used algorithms
that allow the systems to build classifier models and perform
classification in real time on a smartphone. Unlike GaitLib,
theses systems are not development tools that software devel-
opers and researchers can readily use for their own projects.

APPROACH
Our approach centered around requirements gathering and it-
erative implementation of a tool to support EU, as a proxy for
uses in future research planned by our group and by collabo-
rators. EU was involved in the initial requirements gathering
and provided feedback in each development iteration.

Key Requirements Gathered and Addressed

Cadence Estimation
Cadence is the measure of one’s step rate, in steps per sec-
ond. This information can loosely categorize the user’s activ-
ity. GaitLib also takes into account the overall speed at which
the user is moving, and from cadence and speed, stride length
and distance can be determined.

Gait Classification
The goal of gait classification is to recognize the user’s cur-
rent gait and infer the current activity performed by the user.
This provides a more specific description about the user’s

state than cadence value. Given a list of gaits and a corre-
sponding classifier model, GaitLib performs classification on
the device and returns the result.

Filtering
In signal processing, filtering is a technique that modifies the
original signal to extract properties of the signal. GaitLib sup-
ports applying filters to the cadence values so that developers
can further fine-tune the result.

Real-time
GaitLib provides gait analysis at a real-time latency suitable
for interactive applications. Sensor data are continuously re-
ceived and cached, while calculations and analyses are per-
formed at a tunable sampling interval, generally around 1 sec-
ond.

Extensibility
Besides custom filters, GaitLib supports using alternative
classifier models for gait classification and different algo-
rithms for cadence estimation. Developers can build custom
models that are tailored to their specific needs while still us-
ing GaitLib’s framework and low-level sensor management.

Development Platform
For its flexibility with OS accesses and compatibility with
machine learning packages, we chose Android as the first
development platform on which to implement the library.
GaitLib interacts with Android to receive data from the sen-
sors and to read and write files in the device storage. The clas-
sification algorithms are provided by Weka for Android [9],
an adapted version of Weka 3: Data Mining Software [6].

Testing
GaitLib employs unit testing for internal functions. We built
an example application to test for interactive scenarios (e.g.,
receiving sensor data) and EU provided real-world testing.

LIBRARY ARCHITECTURE
In this section, we present the architecture of the system. The
overall structure of GaitLib is shown in Figure 2.

Primary Classes
The main class in GaitLib is GaitAnalysis. It han-
dles starting and stopping gait analysis, defining parameters,
directly accessing latest results of cadence estimation and
gait classification. It contains a CadenceDetector and
a GaitClassifier, which are responsible for estimating
cadence and classifying gait, respectively.

Extensibility
The CadenceDetector and GaitClassifier classes
are abstract. They contain all of the functions except those
that are specific to the algorithms. Beyond the two included
default implementations, additional custom algorithms can be
integrated by extending one of the abstract classes.

IFilter Interface
GaitLib supports filtering cadence values with an IFilter
interface, which can be added through GaitAnalysis.

2



Figure 2. Class diagram of GaitLib.

GaitLib contains a number of frequently-used filters, such as
mean filter and median filter. User can also define custom
filters by implementing the IFilter interface.

Sensor Data Processing
The SignalListener in GaitLib is used to re-
ceive data from the device’s accelerometer, gyroscope,
and location services. Based on the window size,
SignalListener caches recent sensor readings, and then
CadenceDetector and GaitClassifier can retrieve
the values as input to their algorithms.

Logging Component
Relevant classes implements the ILoggable interface to
facilitate logging of the raw sensor data and the results of
cadence estimation and gait classification. The logs are ex-
ported as CSV files to the device storage by the logger.

EXAMPLE APPLICATION
In this section, we describe the workflow of setting up an ap-
plication that uses GaitLib. Suppose Jim wants to create an
application that represents the user’s gait by playing a differ-
ent sound clip for each identified gait at the frequency deter-
mined by user’s cadence.

In a service of the Android app, Jim creates a
GaitAnalysis object. Then, he registers its
SignalListener with Android’s sensor manager.
Next, he defines the actions to take on the cadence and gait

Figure 3. Left: the example app showing the current cadence and gait.
Right: a demo app sending cadence via network with parameter control.

values received through a listener; in this case, he sends the
values to another service that plays the sound clips and he
displays the values on the screen (Figure 3). Finally, he starts
gait analysis by calling the method in GaitAnalysis.

By defining other actions on the cadence and gait values re-
ceived from GaitLib, developers can create applications that
send the real-time information to external devices or use the
information within the app (Figure 1).

CUSTOMIZABLE FEATURES
To personalize the gait classification, or to classify using an
alternative set of features, developers can build custom clas-
sifier models to replace the default model. First, use the com-
panion GaitLogger app to record user’s gait for different ac-
tivities, then generate the features to be used for classification.
Finally, train the model in Weka and load it onto the device.
Figure 4 overviews this workflow.

In addition to a custom classifier model, to use an alternative
feature set for classification, developers need to implement
the algorithms for feature extraction and classification in a
concrete GaitClassifier. Similarly, developers can im-
plement additional concrete CadenceDetector to replace
the default cadence estimation algorithm.

PERFORMANCE AND USABILITY
Performance: The default algorithms’ performance was eval-
uated in [8, 11], and generally found to be competitive with
the reported state of the art. We informally tested the power
consumption of the example application, which uses these
two algorithms, on three Galaxy Nexus devices and observed
that the app consumed 45% more power than idling.

Usability: Beyond addressing all raised concerns, we eval-
uated GaitLib’s usability through a post interview with our
end-user team member (EU).

Figure 4. Workflow of training alternative classifier model.

3



EU used the library in two projects. In the first, he modified
the example app to record cadence data for two related exper-
iments, tweaked the window size, double checked the sam-
pling rate, and modified the UI to keep track of the last 10
cadence values (for visibility and verification). He described
that it only took “a day or half a day” to become familiar
with the library. EU used 4 phones for additional accuracy.
He reported the problems he encountered, including several
crashes, to the development team. In retrospect, most of his
effort was spent managing and analyzing the collected data,
not setting up the application. EU said that without the li-
brary, he wouldn’t have been able to run the experiments as
he did, because the library let him make his own app without
implementing the algorithm from scratch.

In his second project, EU used an updated version of GaitLib
to create a demo for his work. He encountered none of the
issues he had encountered before. Although we haven’t con-
firmed the reasons for the earlier crashing on his app, we ex-
pect it is related to the operating system attempting to reduce
power consumption when the screen is off.

CONCLUSION AND FUTURE WORK
In this paper, we presented GaitLib, a library for real-time
mobile gait analysis on the Android platform. It supports de-
tecting cadence and classifying gait continuously in real time,
and it is extensible to incorporate alternative algorithms and
different classifier choices. We developed the library through
a participatory design approach, in which an author, primarily
an end user, provided input in the design and gave feedback
as he used the library in two occasions. Overall, it is an easy-
to-use tool for developers to apply in many application areas,
such as apps that motivate exercise and ones that communi-
cate user’s context to external devices.

GaitLib, along with user guides and example applications, is
open-sourced and publicly available1. Future work includes
testing GaitLib on a variety of Android devices with differ-
ent sensor specifications to ensure consistency and robust-
ness. The classifier model training process could be further
simplified, e.g., adding support for training simple classifier
models on the device. A built-in user profile management
could be beneficial as, for example, the average stride length
of a person can be used in estimation of speed when GPS is
unavailable. Platform support could be expanded to iOS and
Windows Phone for app developers to provide seamless ex-
perience of their products across different devices.

ACKNOWLEDGEMENTS
This work was funded in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

1https://github.com/m-wu/gaitlib

REFERENCES
1. Bao, L., and Intille, S. Activity Recognition from

User-Annotated Acceleration Data. In Pervasive
Computing, A. Ferscha and F. Mattern, Eds. Springer
Berlin / Heidelberg, 2004, 1–17.

2. Begg, R. K., Palaniswami, M., Owen, B., and Member,
S. Support vector machines for automated gait
classification. IEEE transactions on bio-medical
engineering 52, 5 (May 2005), 828–38.

3. Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami,
D., Froehlich, J., LeGrand, L., Libby, R., Mosher, K.,
and Landay, J. A. Flowers or a robot army? In Proc.
UbiComp ’08, ACM Press (Sept. 2008), 54.

4. Derawi, M. O., Nickel, C., Bours, P., and Busch, C.
Unobtrusive User-Authentication on Mobile Phones
Using Biometric Gait Recognition. In IIH-MSP 2010,
IEEE (Oct. 2010), 306–311.

5. Frank, J., Mannor, S., and Precup, D. Activity
recognition with mobile phones. In Machine Learning
and Knowledge Discovery in Databases. Springer Berlin
/ Heidelberg, 2011, 630–633.

6. Hall, M., National, H., Frank, E., Holmes, G.,
Pfahringer, B., Reutemann, P., and Witten, I. H. The
WEKA data mining software: an update. SIGKDD
Explorations 11, 1 (2009), 10–18.

7. Iso, T., and Yamazaki, K. Gait analyzer based on a cell
phone with a single three-axis accelerometer. In Proc.
MobileHCI ’06, ACM Press (2006), 141.

8. Karuei, I., Schneider, O. S., Stern, B., Chuang, M., and
MacLean, K. E. Rrace: Robust realtime algorithm for
cadence estimation. Pervasive and Mobile Computing
(2013).

9. Marsan, R. J. Weka for Android, 2011.
https://github.com/rjmarsan/Weka-for-Android.

10. Nishiguchi, S., Yamada, M., Nagai, K., Mori, S.,
Kajiwara, Y., Sonoda, T., Yoshimura, K., Yoshitomi, H.,
Ito, H., Okamoto, K., et al. Reliability and validity of
gait analysis by android-based smartphone.
Telemedicine and e-Health 18, 4 (2012), 292–296.

11. Schneider, O. S., MacLean, K. E., Altun, K., Karuei, I.,
and Wu, M. Real-time gait classification for persuasive
smartphone apps: structuring the literature and pushing
the limits. In Proc. IUI 2013, ACM (2013), 161–172.

12. Siirtola, P., and Röning, J. Recognizing human activities
user-independently on smartphones based on
accelerometer data. International Journal of Interactive
Multimedia & Artificial Intelligence 1, 5 (2012).

13. Yang, C.-C., Hsu, Y.-L., Shih, K.-S., and Lu, J.-M.
Real-time gait cycle parameter recognition using a
wearable accelerometry system. Sensors (Basel,
Switzerland) 11, 8 (Jan. 2011), 7314–26.

14. Yang, J. Toward physical activity diary: motion
recognition using simple acceleration features with
mobile phones. In Proc. IMCE’09 (2009), 1–9.

4

https://github.com/m-wu/gaitlib
https://github.com/rjmarsan/Weka-for-Android

	Introduction
	Related Work
	Approach
	Key Requirements Gathered and Addressed
	Cadence Estimation
	Gait Classification
	Filtering
	Real-time
	Extensibility

	Development Platform
	Testing

	Library Architecture
	Primary Classes
	Extensibility
	IFilter Interface
	Sensor Data Processing
	Logging Component

	Example Application
	Customizable Features
	Performance and Usability
	Conclusion and Future Work
	Acknowledgements
	REFERENCES 

