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Abstract

In this paper we present The RealTime Platform 

Middleware (RTPM), an n architecture forsupporting the 

development of complex,  prototyping distributed realtime 

collaborative Haptic Applications.multimodal I/O 

projects. 

Complex HapticMultimodal aApplications often 

require a distributed implementation across multiple 

computers in a network to fulfill meet the timedisparate 

temporal and platform constraint for haptic rendering 

and visualization processes.needs. RTPM   

The Real Time Platform Middleware (RTPM) is  a 

Distributed Object Computing (DOC) middleware that  

provides an extendable, device-independent,  and 

network-transparent interface to a collection set of user 

I/O devices which. eases application integration across 

different operating systems.  

RTPM consists of a framework that usesbased on 

Common Object Request Broker Architecture (CORBA) 

and a custom Virtual Device abstraction.  The Virtual 

Devicethat is the component that is the front end for the 

real device and exports its real devices’ functionality to 

the userClient applicationsprocesses.   The RTPM 

framework It offers two mechanisms ( Client/Server and 

Consumer/Supplier) mechanism for communication 

between between user components processesin a complex 

Haptic Application. 

This paper describes the architecture’s objectives and 

implementation, provides examples of its use and 

analyzes its performance in some typical haptic 

application configurations. 

RTPM reduces the programming effort necessary to 

interface with I/O devices, and integrate with existing 

systems and create scalable Haptic Applications. 

Keywords:

MMultimodal applications, dDistributed sSystems, 

architecture, rReal-tTime operating sSystem, 

Architecture, CORBA, …

1. INTRODUCTION

The creation of a high-performance haptic application 

poses special demands of software architectures and 

operating systems. Haptics researchers developing new 

prototypes often find themselves pushing the limits of 

available operating systems and of fast, deterministic 

network connectivity. The difficulties escalate for 

applications which integrate multiple I/O modalities: 

these generally require a variety of refresh rates and 

consequently multiple threads or processes (if not 

multiple platforms), which must synchronize timing and 

share data, often among computers. 

The needs for complex haptic applications – rarely all

well met by any one operating system – include:  

• A relatively high and consistent haptic refresh rate 

• Synchronization of a fast haptic process with slower 

refresh cycles for other I/O modalities – usually 

graphics or audio, but also reflecting diverse needs 

such as motion capture, eye tracking and biometrics. 

• Management of data shared among processes 

• Interprocess communication, e.g. event notification 

• Reliable inter-CPU communication  

• Easy scalability when the application’s computational 

needs exceed that of a single CPU

• Integration of legacy systems and specialized I/O 

hardware, particularly when these are implemented on 

different operating systems. 

Traditionally, research developers of haptic applications 

have produced custom, dedicated solutions, often with an 

extensive investment of effort and yet a result that is 

monolithic rather than modular, limited in scope, difficult 

to extend and tied to a single platform. While some 

specialized realtime operating systems are better suited to 

certain haptic application needs, their very strength – the 

low-level system control which is the key to, and the 

price of realtime performance – as well as their relative 

obscurity impede the integration of other application 

aspects for which better support may exist in mainstream 

operating systems. 
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1.1 Goals of This Project

Our group needed to create a modular, easily 

extensible but high-performance platform that would 

support quick prototyping of setups for a wide variety of 

“fast” multimodal psychophysics experiments, and for 

applications that exploit their results. Given the wide 

variety of computer platforms used by our collaborators 

and the range of I/O devices used, there was clearly no 

single platform that would satisfy our needs.  

We therefore explored the general concept of a fast 

local area network (LAN) combined with a custom 

middleware layer that allows modules resident on 

multiple computers (of arbitrary operating system) to 

communicate with one another as if they are on the same 

computer. That is, we required that: 

• A given pair of communicating modules could be 

installed on the same computer or on two different 

computers with no alteration in their structure, 

communication parameters or data management; and  

• The latency and throughput of inter-module 

communication would meet specified levels (suitable 

for haptic refresh rates, generally the most demanding) 

when separated by a LAN.  

These specifications together ensure superior flexibility as 

to operating system and extensibility, while providing 

support for data management, interprocess 

communication and other typical realtime application 

needs. Thus, processes with demanding real time needs 

may be located on a CPU running a specialized real time 

operating system (RTOS), yet be easily integrated with 

processes already implemented on more common 

systems. This solution is appropriate for the research 

developer who is prototyping multimodal systems: the 

number of units is low, while time and flexibility are 

often of greater value than the setup’s component cost.  

1.2 Our Approach 

We have developed the “Real Time Platform 

Middleware” (RTPM), which augments a realtime 

implementation of an existing middleware protocol - 

CORBA, or “Common Object Request Broker 

Architecture” [10] – with a family of custom elements 

that tailor it to high-performance, multimodal application 

needs. The CORBA specification allows applications to 

interoperate relatively transparently over networks, and 

because there are implementations (ORBs, [8]) for many 

operating systems and  languages, it is often said to 

facilitate platform independence.    

Our project uses a CORBA implementation which 

began as the “Adaptive Communication Environment” 

(ACE) framework [13], providing realtime wrappers for 

network applications; was extended in the mid-90’s with 

CORBA modules to become “The ACE ORB” (TAO)

[15]; and formed the prototype for CORBA’s recent 

realtime extension (RT-CORBA, [6]). Its relevant aspects 

are described in Section 2.4.  

An example of RTPM’s basic system architecture is 

illustrated in Figure 1.  An arbitrary collection of soft- 

and hard-realtime processes can run on the same or 

different “nodes” connected over a Local Area Network. 

These nodes may run any supported operating system – 

e.g. Linux, Windows, MAC-OSX. RTPM manages inter-

process communication among nodes, such that running 

two processes on the same vs. different nodes makes little 

difference either code- or performance-wise. Finally, 

RTPM provides data services from I/O devices connected 

to any node: data from/to these devices is available to 

processes on any other node. 

RTPM thus creates a “transparent” approach in the 

following senses:  

• Location transparency: different modules (e.g. data 

acquisition, model update, rendering) can run either on 

the same machine or distributed in a LAN.  

• I/O transparency: an application can access similar-

function I/O devices with radically different native 

interfaces through a common interface. 

• Language transparency: applications written in 

different languages (e.g. Java or C++) can access I/O 

devices through the same interface. 

• Scaling transparency: either I/O devices or 

computational modules can be added with minimal 

effort. Integrating a new device means writing a 

standardized interface module; application modules 

need not change when relocated to a different machine.

1.3 Related Work 

The temporal constraints imposed by the haptic 

servo’s refresh rate and its synchronization with softer 
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realtime processes has led to distribution solutions that 

vary from single- or multithreaded, uni-process 

architectures, to the use of dedicated interprocess 

communication mechanisms available on specialized 

platforms.   

For example, Vahora et al. [16] solved the realtime 

issues for virtual reality haptic applications by using 

named pipes available on Windows NT for interprocess 

communication.  Other distributed haptic applications 

have used proprietary communication infrastructure to 

connect a haptic rendering with a graphic process, as 

described by [2, 5, 11].  MacLean et al [4] described a 

custom architecture appropriate for simple haptic 

processes requiring tight integration with other distributed  

I/O processes.

While often providing adequate performance, these 

approaches were hard to create; and are hard to scale in 

size and I/O capability and to port to other platforms.  

While CORBA has been a potential solution to some 

of these needs, early versions were unsuitable for 

distributed realtime applications. However, the recent 

(2002) introduction of the RT-CORBA specification [6] 

and the TAO implementation of the Realtime Event 

Service [7, 12], along with ever-faster computation, has in 

just the last year given us an architecture model and 

system components that make feasible the prototyping 

toolkit for distributed multimodal systems described here. 

1.4 Remainder of This Paper 

In Section 2 we describe the main components of the 

RTPM architecture and explain how it addresses key 

haptic realtime design issues. In Sections 3-4 we present 

two example implementations using RTPM and offer 

guidelines for using RTPM; Section 5 offers performance 

results for different platforms and configurations. We end 

with our conclusions and future work.

2. ARCHITECTURE

Our combined goals of software reuse and the kind of 

process and node distribution required for I/O and 

processing by most haptic and multimodal applications 

has led to a three-layer approach (Figure 2). The top layer 

consists of Applications, and the bottom of Operating

System and Hardware. RTPM, the middle layer, 

provides an environment for easy implementation and 

integration of the other layers, and a run-time software 

bus for communication between them. 

2.1 Application Layer 

The top layer contains the specific processes employed 

by the application.  Some of these modules carry out 

application-specific tasks, but others may be reusable.  

E.g, a haptic application might include modules that get 

device position, detect collisions, send force commands 

and log data; a graphic component application would 

make use of an analogous process set that are in the same 

layer, but might be located on a different node. There are 

reusable prototypes for all of these common tasks. Two 

specific application examples are described in Section 3. 

2.2 RTPM Layer 

Our Realtime Platform Middleware (RTPM) is an 

integrative framework that supports two complementary 

models of object-oriented communication and data 

sharing among the distinct sets of objects contained in the 

top and bottom layers: Client–Server or Consumer–

Supplier relationships. From the perspective of the 

programmer, there should thus be no difference between 

invoking an RTPM service, or calling into a static library 

– an illustration of RTPM’s location transparency.  

The main modules of the RTPM are as follows. Of 

these, the first three were created in the course of this 

project, and the fourth (H-Protocol) is a potential avenue 

for RTPM’s future expansion. 

• Generic Virtual Device (GVD):  provides a core set of 

commonly used interfaces for I/O devices used in 

multimodal applications. GVD represents an abstract 

I/O device that is referenced by the application layer in 

the same manner as a static library.  Operations 

invoked on the GVD by an application-layer call are 

redirected to the real device that actually carries out the 

command, within and across nodes. 

• Configuration Manager (CM):  Some device 

functions – e.g. I/O device operations such as serial 

communication parameters, analog calibration, etc – 

must be performed before the device is addressed or 

even during its operation.  CM provides a set of 

interfaces for configuration/calibration, either 

programmatically or through a client GUI application. 

• RT Data Access Layer (DA) and I/O Drivers: The 

I/O devices used in haptic/multimodal applications (e.g. 
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different haptic displays) use a disparate set of device 

drivers designed for different platforms and typically 

with nonstandard API’s. However, most of these low-

level drivers perform essentially the same functions: 

namely opening, closing and configuring the device, 

and reading/writing its data. DA provides a unified and 

extendable set of interfaces to this common 

functionality.  New devices are integrated by creating 

an interface module from an existing template. 

• H-Protocol: If CORBA communication timings must 

be improved in the future, H-protocol provides a path 

to architect our own alternative transport protocol using 

TAO’s open pluggable protocol framework [1], 

replacing the default Internet Inter-ORB protocol 

(IIOP) used for inter-orb communication.  Figure 2. 

depicts the standard protocol stack used by TAO:  

- GIOP: General Inter-ORB Protocol (for messaging)  

- IIOP: maps GIOP on to TCP/IP 

- TCP/IP:  transport and internet protocol 

• TAO ORB and RealTime CORBA extension: The 

TAO ORB delivers client requests to the server and 

returns responses to clients. TAO’s realtime ORB core 

uses a multithreaded, preemptive, priority-based 

connection and concurrency architecture, for efficient 

and predictable client server communication [6, 15].  

TAO’s implementation provides the following CORBA 

services:

• RealTime Event Service (RTES): defines an event 

data delivery model that decouples communication 

between suppliers and consumers of events [7, 12].  

• Naming Service (NS): registers RTPM server objects 

with names, and comprising the principle mechanism 

by which clients locate objects they intend to use [9]. 

2.3 Operating System and Hardware Layer 

The bottom layer consists of the various nodes’ 

operating systems, network and non-graphics I/O device 

hardware. Graphics I/O is still handled through platform-

specific non-RTPM routes to the OS layer. 

Because of the mediation provided by RTPM, most 

application-layer processes using RTPM require only re-

compilation to run on RT-CORBA-supported platforms, 

which at present are Linux (including some realtime 

variants), Windows, and MAC-OSX. When thus 

redistributed, a haptic device can connect to a PC-

Windows 2000 and communicate with a graphics process 

executed from an Apple-MAC-OSX. 

Any platform-dependent calls within the application 

layer – e.g. graphics methods available in Linux but not 

Windows – must obviously be ported. This can generally 

be avoided with the haptics components, since RTPM 

services its I/O and synchronization. 

2.4 CORBA Background 

Critical to understanding the architecture described 

here is a basic knowledge of CORBA and its realtime 

extension, RT-CORBA [14]. The latter defines several 

mechanisms to provide tight control over quality-of-

service characteristics such as jitter and latency.   

Threads: RT-CORBA uses threads as a schedulable 

entity.  Generally, a thread represents a sequence of 

control flow within a single node.  Threads are part of an 

activity.  Activities are “scheduled” by coordinating their 

constituent threads. 

Threadpools: RT-CORBA defines the Threadpool 

abstraction to manage server-side execution threads.

Lanes: A threadpool may be created with a single 

default priority for all its threads, but RT-CORBA also 

supports multiple thread priorities within a single 

threadpool.  Threads within a threadpool with the same 

priority are grouped into “lanes”.  Each threadpool lane 

has it own configuration for static and dynamic threads.   

Priority scheme: RT-CORBA defines a universal, 

platform independent priority scheme called RealTime

CORBA Priority.  This is introduced to overcome the 

heterogeneity of different operating system priority 

schemes, and allows RT-CORBA client applications to 

make prioritized CORBA invocations in a consistent 

fashion between nodes with different priority schemes.   

GVD uses RT-CORBA’s “Client Propagated Priority” 

model: a client (e.g. a haptic process) sets an invocation’s 

RT-CORBA priority which is propagated to the server 

ORB, which in turn propagates it into its own native 

priority scheme.  Requests from non-RT-CORBA ORBs 

(i.e. ORB’s that do not propagate an RT-CORBA priority 

with the invocation) are handled at a priority specified by 

the server – in our case, GVD. 

Event Service:  CORBA’s Event Service provides 

support for decoupled communication between objects, 

allowing suppliers to send messages to one or more 

consumers with a single call. Suppliers need not be aware 

of any of the consumers of its messages; the Event 

Service mediates this communication and also shields 

suppliers from exceptions resulting from a consumer 

object being unreachable or poorly behaved.

TAO’s realtime version of the CORBA Event Service 

(RTES) [12] includes these features:

• Event filtering - consumer processes may register for 

event delivery based on event type or supplier id (e.g. 

events from a particular I/O device). The event 

channel filters events based on these registrations, to 

ensure efficient event delivery.

• Event correlation - consumers may register for event 

delivery based on conjunctive or disjunctive sets of 

events.  Conjunctive registrations cause the event 

channel to notify the consumer when all events in the 

set have arrived.  Disjunctive registrations cause the 
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event channel to notify the consumer when any event 

in the set has arrived. 

• Periodic event processing - consumers may register 

for suppliers, based on timed events.  RTES then 

generates “Timeout events” that can be integrated into 

the event filtering scheme. 

2.5 Alternative Application Models 

Applications making use of RTPM’s GVD can be based 

on two different models depending on their needs.  

Client-Server Model: synchronous communication 

for client applications with hard realtime requirements. A 

client – for example, a haptic, graphic or audio process – 

makes requests to the server (GVD) to execute certain 

operations (e.g. get position, set force, etc).  The client 

then blocks and waits for the reply; meanwhile, other 

clients can simultaneously access the same GVD. Priority 

of GVD access is mediated through RT-CORBA’s Client 

Propagated Priority Model, described above. 

Consumer-Supplier Model: asynchronous com-

munication for consumer applications with softer realtime 

requirements.  For processes that require neither high 

frequency updates nor tight integration with data-

generating objects (e.g. graphic display and data logging), 

this model can be more efficient through its support of 

broader data distribution.   

GVD’s Consumer-Supplier model is implemented with 

the RT-CORBA Event Service, described above, and 

utilizes RTES event filtering, event correlation and 

periodic event processing. 

2.6 Realtime Issues 

Failure to meet timing constraints directly impacts 

haptic rendering performance. With contemporary 

computers, meeting the requirements for average update 

rates is not usually the problem except for very complex 

models. These are generally accepted to be a haptic 

refresh of 0.5-1kHz, and a graphic refresh of 30-70 Hz.  

Instead, our most important real time characteristic is 

often predictability – i.e., the system must always satisfy 

specified timing boundaries.   

An OS attempts to maintain appropriate use of CPU 

resources through its scheduling strategy, scheduling 

threads by criteria such as priority and resource usage.  

Any scheduling strategy must trade off fairness for 

increased predictability and control by some threads. 

TAO allows applications to specify their own scheduling 

priorities and policies.   

RTPM addresses predictability through activity 

prioritization.  It is configured to use a FIFO (first-in-

first-out) scheduling policy.  That is, the highest priority 

thread runs until it either voluntarily yields control, or is 

preempted by a realtime thread with a higher priority.   

The application processes and their invocations on 

GVD can be configured to run at different priorities, so 

that the hard realtime system components will behave 

deterministically and critical tasks will receive high 

priority in their execution. RT-CORBA defines 32768 

priority levels, which are mapped transparently onto the 

native (OS- specific) priorities.  

It is important to understand that RT-CORBA relies on 

the underlying operating system for scheduling its tasks, 

and therefore the hard realtime characteristics can only be 

achieved if the OS can deliver this. Threads must take 

turns running on the CPU so that one thread doesn't 

prevent other threads from performing work. One of the 

OS scheduler's jobs is to assign units of CPU time 

(quantums) to threads. A quantum is short in duration, but 

threads receive quantums so frequently that the system 

appears to run smoothly, even when many threads are 

performing work.  One difference between the OSs we 

tested (Linux, Timesys and Windows 2000) is the length 

of a user thread's quantum.   On most x86 systems 

running Windows 2000 as well as standard Linux, a 

quantum is 10 milliseconds (ms); only the realtime Linux, 

Timesys, has a very short quantum of 20 microseconds 

(µsec).

3. EXAMPLE APPLICATIONS 

3.1 Haptic Servo Application

Our first example is a prototypical haptic control 

scenario, where a single haptic device is managed, 

controlled and visualized from two three other different 

devices managed and visualized by one node is controlled 

from a second nodes via RTPM. . The control data for 

this single-degree-freedom device consists of an encoder 

reading and a force commanIn the configurationd. 
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In the configuration of Figure 3, the haptic device is 

connected to node is a Windows 2000 machine, the motor 

control code is executed on a Linux CPU running Redhat 

Linux., and the visualization – motor positiona graphics 

process, is implemented on an Apple laptop running 

MAC-OSX. T.his degree of network distribution may be 

desirable if the task executing on one node is 

computationally intensive, or utilizes special platform 

strengths  This division is artificially made to demonstrate 

how we can divide a Haptic application into components 

that can be distributed across the network.  These 

components can run on different machines, and on 

different Operating Systems (Linux, Windows, 

MAC_OSX).. 

The motor control code (Linux node) is The Motor 

Control is a CClient for the GVD,  requesting the current 

motor encoder position and sending the force feedback 

command.  The haptic device itself is opened as a GVD 

Sserver object is and registered in the CORBA naming 

service (NS), soand thereafter

theany GVD clients can getrequest its referencesthe 

object’s data across the network.  The GVD also acts as a 

Supplier, sending every new position to the RTES, which 

resends it to the subscribed consumer processes.  RTES’ 

consumers can configure it for event filtering, event 

correlation or time-out events. In this example, the 

graphics process is a GVD Consumer, The Graphic 

Process is a Consumers for the GVD, receiving periodic 

event events that represent updates of the motor encoder 

position.  The Supplier component of the GVD sends 

every new position of the motor to the RTES, which will 

resend this data to the consumer Graphic Process.  RTES 

can be configured  

by its consumers (in our case the Graphic Process) for 

event filtering, event correlation or time-out events. 

The Data Access Layer in this first RTPM example 

application consists primarily ofis merely a wrapper for 

the haptic display’s original Immersion APIWindows 

driver. 

3.2 Haptic Control of Media Application 

We needed to interface a haptic interface to an existing 

Linux open-source video editing application (Kino [3]), 

and wanted to minimize modification of the third-party 

source code.

RTPM facilitated a minimally invasive integration of 

the two original applications, as well as their distribution 

on two nodes to optimize realtime performance and 

platform dependencies.The scope of this project is to 

create a haptic interface for a video editing application.  

For the video editing software we chose Kino open 

source video editing.  One possible solution was to extend 

Kino with a Haptic interface by integrating into Kino 

source code the actual functions for controlling the Media 

Controller device.  Any experimental haptic models 

would have been hard coded, embedded into Kino 

application.  However, this is not a scalable solution, as 

any new upgrade on Kino software would have made the 

reintegration of haptic modules very tedious.  

The only modification made to Kino was addition of a In 

our solution architecture we made use of the RTPM for 

Kino and Media Controller interface.  A modified GVD 

component has been added to Kino application to provide 

a both Server and/ Supplier functionality, thus allowing 

Kino to communicate through GVD (Figure 4).  

y; through this components we export the required 

Kino functions with a minimum intrusion into Kino’s 

architecture.

For the Media Controllerhaptic device interface we 

used athe same similar setup as described in the previous 

example:, a GVD that shields hides the details of the 

actual device.   

The Master Controller (MC) application-layer process, 

which coordinates the interaction between Kino and the 

haptic display, has two roles: 

(a) The Haptic Control subcomponent is a Client for the 

haptic GVD, performing the same haptic control function 

as in the previous example. 

(a) The Kino Control subcomponent is a Client for 

Kino’s is the new component where we will integrate the 

haptic models for our experiments and….???KM???…. 

MC is a Client and a Consumer for both Kino and the 

GVD.  The Haptic Control (HC) subcomponent interacts 

with GVD for Media Controller position reading and 

force feedback transmission.  Kino Control (KC) 
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subcomponent interacts with Kino Application for video 

editing controlGVD server, and via this route can send 

commands such as  (setting video play rate 

(b) this is the focus of our haptic model experiments. 

The overall performance achieved in this case is 

perceptually adequate: video motion commands generated 

by the haptic display are displayed graphically without 

perceptual delay. 

4. USING RTPM 

RTPM is designed for ease of integration of client 

applications. The following describes in more detail how 

this is done at the Application and OS layer levels. 

4.1 Application Layer 

The simple client program example in Figure 5 

illustrates how to open a haptic device, set the priority of 

its servo thread, read a position and return a force 

feedback command. 

This program first constructs a GVD client object 

(vd1) as a wrapper for the remote haptic device. Any 

invocations on this object will be applied transparently to 

the real device. It then instantiates a consumer object 

(consumer1) to receive device state updates.

Once the haptic device has been opened, the vd1

object is used to get the current device position and send a 

force command in a Client/Server relation. In this 

example, we run getPositionX() at a higher priority than 

getPositionY() merely to demonstrate changing the 

priority level on the server side. 

The consumer1 object is for use by other processes 

that need to access this device’s input and/or output 

asynchronously, i.e. in a Consumer/Supplier relationship  

– e.g. for graphic or auditory display. Here, we simply 

print out the haptic device’s position information. 

4.2 OS & Hardware Layer 

Connecting an RTPM application to the OS layer and 

launching it is likewise straightforward. If the new 

application can make use of existing GVD operations and 

I/O device interfaces, then we simply start a script that 

starts first the Naming Service, then the Realtime Event 

Service and finally the GVD Server / Supplier.  

If the application requires new GVD functionality, 

then GVD’s interface definition language (IDL) file must 

be modified by creating the new operations or modifying 

existing ones. GVD’s two main components, Server and 

the Supplier, must then be updated to reflect the new or 

modified parameters or operations. 

5. PERFORMANCE

In order to verify that RTPM was meeting our 

performance specifications for typical haptic and 

multimodal applications, we conducted some benchmark 

tests based on distributed control of a haptic device 

through a one- or two-node configuration, comparing 

several different node platforms.  We were particularly 

concerned with the latency and jitter in communications 

among the different components.   

In these tests, we employed a data structure of six 

doubles (48 bytes) as our “payload” for transfer between 

the distributed components in a single refresh cycle. All 

tests were run on either one or two identical machines: a 

single-CPU 2.5 GHz Intel Pentium IV system configured 

with 512 Mb of RAM and a 256Kb cache.  The two 

machines were connected via standard 100BASE-T 

ethernet on our department local area network, carrying a 

normal network traffic load. 

In a single test run of the Client/Server model, a client 

thread issues 1000 calls at the fastest possible rate; we 

then record the round-trip delay experienced by the client 

from the time it sends a given request to the time it 

receives the response from the server thread (1000 

values).  Figures 6-7 present these results as latency 

distributions with summary statistics.  Figure 6 shows the 

Client/Server results for a single machine running 

Timesys, Linux or Windows 2000. Inter-process 

communication is performed via the network loop 

interface because the client and the server process run on 

the same machine.  

In Figure 7-a), the Client and Server processes are 

running on different machines; thus comparison with 

Figure 6 reveals the delay introduced by the network. 
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min / max / avg = 57 / 126 / 58 usec min / max / avg = 75 / 1261 / 83 usec min / max / avg = 112 / 251 / 116 usec

int main( )
{
  GVDClient            vd1( ) ;             // GVD Client
  GVDConsumer     consumer1( );   // GVD Consumer

  DimX    posX, forceX;
  DimY    posY;

  vd1.openDevice(devA);    //start device "devA"
  while (1)
    {
     vd1.setPriority (3);
     posX = vd1.getPositionX(devA) ;
     vd1.setPriority (1);
     posY = vd1.getPositionY(devA);
     forceX = calculate_force( posX, posY);
     vd1.setForceX(forceX, devA);
     ....
    }
  vd1.closeDevice(devA);  //stop device
  ....
}

// Override the push() operation for GVDConsumer
void GVDConsumer::push(const RtecEventComm::EventSet& events)
{
  ...
  // Loop through the events
  for ( i = 0; i < events.length (); i++)
  {
    if (events[i].data.any_value >>= positionX)
      cout <<"New position = "<< positionX << endl;
  }
}

Figure 55: Using RTPM
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The comparable test for the Consumer-Supplier 

communication is presented in Figure 7-b), c).  In these 

tests, the Supplier process generates 1000 events (calls) 

with 1 ms interval between them, and pushes the events to 

the Event Channel process. EC resends these events to 

the appropriate Consumer process. The event packet 

contains the time-stamp plus some overhead (source ID, 

type, etc.), in total ~30 bytes.  The Consumer compares 

the timestamp of the event with the time at arrival and 

calculates the transmission delay. Both Consumer and 

Supplier processes run on the same node (to allow us to 

compare the time to the necessary accuracy), but the 

Event Channel process runs on the second node in order 

to model the delay introduced by the network. 

The average single-node latency for Client-Server 

communication is similar on all platforms, with the best 

result given by Timesys where 91% of the calls were 58 

µsec long.  For the non-realtime platforms W2K offers a 

better distribution but Linux has a better average timing; 

99.8% of these results were within the 1KHz specification 

for haptic processes. The network introduces an extra 

delay of about 110µsec when Client-Server processes 

running on Timesys are distributed. Similar values result 

for other OS combinations, with a worst case of 200µsec.

Dual-node tests for the Consumer-Supplier 

communication demonstrate this delay as well as a much 

wider distribution that is introduced by the third process, 

the Event Channel.  

It is important to note that these tests focus on the 

delay introduced by the CORBA communication layer in 

our haptic applications, using common operating systems 

and network setups. There are many other important 

aspects to determining overall realtime performance; for 

example, the time quantum required for thread switching 

plays a much greater role when multiple threads are 

contending for CPU services – unlike the situation here. 

The overall round-trip system response time will also be 

influenced by the delays generated by other RTPM 

components (DA, CM and I/O drivers) and their 

synchronization, and by application processes 

6. CONCLUSIONS & FUTURE WORK 

The timing results from our experiments demonstrate 

the feasibility of using a distributed object computing 

architecture for multimodal applications: complex 

applications can be decomposed and run as separate 

processes and distributed across a network with an 

acceptable impact on performance, for a scalable and 

maintainable system.  The Client-Server architecture, 

gives the best timing results when running on a realtime 

OS, and is the model of choice for haptic rendering 

processes that require fast updates.  The Consumer-

Supplier architecture is more suitable for the 

decomposition of the slower processes that require an 

asynchronous type of communication, such us graphic 

updates and data logging. 

We ran most of our tests on Linux and Windows 

platforms, which are not realtime operating systems. 

Predictably, our best single-node results are for the one 

realtime OS tested. However, all provide adequate 

performance for distributed haptic applications, and 

system performance can be improved by choosing the 

Client-Server architecture for the time critical path, 

creating an isolated network of nodes running realtime 

operating systems. 

We plan to further extend RTPM by adding new 

components such as CORBA’s Audio/Video Service 

(AVS) and Trading Service (TS).  AVS is important for 

audio/video data exchange, and TS for client queries of 

existing, active GVD functions.  We will be extending the 

Configuration Manager and the Data Access Layer to 

accommodate interfaces and control for more haptic 

devices.  Finally, for collaborative haptic applications 

over the Internet and for some graphic processes 

implementations, we will add Java language support by 

integrating the Java (J2EE) ORB with RTPM. 
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