
Real Time Platform Middleware for

Transparent Prototyping of Haptic Applications

George Pava & Karon E. MacLean

Dept. of Computer Science

University of British Columbia

Vancouver, B.C. Canada

E-mail: {pava, maclean}@cs.ubc.ca

Abstract

In this paper we present The RealTime Platform

Middleware (RTPM), an n architecture forsupporting the

development of complex, prototyping distributed realtime

collaborative Haptic Applications.multimodal I/O

projects.

Complex HapticMultimodal aApplications often

require a distributed implementation across multiple

computers in a network to fulfill meet the timedisparate

temporal and platform constraint for haptic rendering

and visualization processes.needs. RTPM

The Real Time Platform Middleware (RTPM) is a

Distributed Object Computing (DOC) middleware that

provides an extendable, device-independent, and

network-transparent interface to a collection set of user

I/O devices which. eases application integration across

different operating systems.

RTPM consists of a framework that usesbased on

Common Object Request Broker Architecture (CORBA)

and a custom Virtual Device abstraction. The Virtual

Devicethat is the component that is the front end for the

real device and exports its real devices’ functionality to

the userClient applicationsprocesses. The RTPM

framework It offers two mechanisms (Client/Server and

Consumer/Supplier) mechanism for communication

between between user components processesin a complex

Haptic Application.

This paper describes the architecture’s objectives and

implementation, provides examples of its use and

analyzes its performance in some typical haptic

application configurations.

RTPM reduces the programming effort necessary to

interface with I/O devices, and integrate with existing

systems and create scalable Haptic Applications.

Keywords:

MMultimodal applications, dDistributed sSystems,

architecture, rReal-tTime operating sSystem,

Architecture, CORBA, …

1. INTRODUCTION

The creation of a high-performance haptic application

poses special demands of software architectures and

operating systems. Haptics researchers developing new

prototypes often find themselves pushing the limits of

available operating systems and of fast, deterministic

network connectivity. The difficulties escalate for

applications which integrate multiple I/O modalities:

these generally require a variety of refresh rates and

consequently multiple threads or processes (if not

multiple platforms), which must synchronize timing and

share data, often among computers.

The needs for complex haptic applications – rarely all

well met by any one operating system – include:

• A relatively high and consistent haptic refresh rate

• Synchronization of a fast haptic process with slower

refresh cycles for other I/O modalities – usually

graphics or audio, but also reflecting diverse needs

such as motion capture, eye tracking and biometrics.

• Management of data shared among processes

• Interprocess communication, e.g. event notification

• Reliable inter-CPU communication

• Easy scalability when the application’s computational

needs exceed that of a single CPU

• Integration of legacy systems and specialized I/O

hardware, particularly when these are implemented on

different operating systems.

Traditionally, research developers of haptic applications

have produced custom, dedicated solutions, often with an

extensive investment of effort and yet a result that is

monolithic rather than modular, limited in scope, difficult

to extend and tied to a single platform. While some

specialized realtime operating systems are better suited to

certain haptic application needs, their very strength – the

low-level system control which is the key to, and the

price of realtime performance – as well as their relative

obscurity impede the integration of other application

aspects for which better support may exist in mainstream

operating systems.

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

1.1 Goals of This Project

Our group needed to create a modular, easily

extensible but high-performance platform that would

support quick prototyping of setups for a wide variety of

“fast” multimodal psychophysics experiments, and for

applications that exploit their results. Given the wide

variety of computer platforms used by our collaborators

and the range of I/O devices used, there was clearly no

single platform that would satisfy our needs.

We therefore explored the general concept of a fast

local area network (LAN) combined with a custom

middleware layer that allows modules resident on

multiple computers (of arbitrary operating system) to

communicate with one another as if they are on the same

computer. That is, we required that:

• A given pair of communicating modules could be

installed on the same computer or on two different

computers with no alteration in their structure,

communication parameters or data management; and

• The latency and throughput of inter-module

communication would meet specified levels (suitable

for haptic refresh rates, generally the most demanding)

when separated by a LAN.

These specifications together ensure superior flexibility as

to operating system and extensibility, while providing

support for data management, interprocess

communication and other typical realtime application

needs. Thus, processes with demanding real time needs

may be located on a CPU running a specialized real time

operating system (RTOS), yet be easily integrated with

processes already implemented on more common

systems. This solution is appropriate for the research

developer who is prototyping multimodal systems: the

number of units is low, while time and flexibility are

often of greater value than the setup’s component cost.

1.2 Our Approach

We have developed the “Real Time Platform

Middleware” (RTPM), which augments a realtime

implementation of an existing middleware protocol -

CORBA, or “Common Object Request Broker

Architecture” [10] – with a family of custom elements

that tailor it to high-performance, multimodal application

needs. The CORBA specification allows applications to

interoperate relatively transparently over networks, and

because there are implementations (ORBs, [8]) for many

operating systems and languages, it is often said to

facilitate platform independence.

Our project uses a CORBA implementation which

began as the “Adaptive Communication Environment”

(ACE) framework [13], providing realtime wrappers for

network applications; was extended in the mid-90’s with

CORBA modules to become “The ACE ORB” (TAO)

[15]; and formed the prototype for CORBA’s recent

realtime extension (RT-CORBA, [6]). Its relevant aspects

are described in Section 2.4.

An example of RTPM’s basic system architecture is

illustrated in Figure 1. An arbitrary collection of soft-

and hard-realtime processes can run on the same or

different “nodes” connected over a Local Area Network.

These nodes may run any supported operating system –

e.g. Linux, Windows, MAC-OSX. RTPM manages inter-

process communication among nodes, such that running

two processes on the same vs. different nodes makes little

difference either code- or performance-wise. Finally,

RTPM provides data services from I/O devices connected

to any node: data from/to these devices is available to

processes on any other node.

RTPM thus creates a “transparent” approach in the

following senses:

• Location transparency: different modules (e.g. data

acquisition, model update, rendering) can run either on

the same machine or distributed in a LAN.

• I/O transparency: an application can access similar-

function I/O devices with radically different native

interfaces through a common interface.

• Language transparency: applications written in

different languages (e.g. Java or C++) can access I/O

devices through the same interface.

• Scaling transparency: either I/O devices or

computational modules can be added with minimal

effort. Integrating a new device means writing a

standardized interface module; application modules

need not change when relocated to a different machine.

1.3 Related Work

The temporal constraints imposed by the haptic

servo’s refresh rate and its synchronization with softer

Ω
DVD

Visualization

Graphic Process
Video Capturing

Haptic
Device

Haptic
Device

RTPM

OS

RTPM

OS

RTPM

Haptic
Processes

Graphic
Processes

I/O
Device I/O Ethernet

Figure1: Realtime Platform basic architecture

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

realtime processes has led to distribution solutions that

vary from single- or multithreaded, uni-process

architectures, to the use of dedicated interprocess

communication mechanisms available on specialized

platforms.

For example, Vahora et al. [16] solved the realtime

issues for virtual reality haptic applications by using

named pipes available on Windows NT for interprocess

communication. Other distributed haptic applications

have used proprietary communication infrastructure to

connect a haptic rendering with a graphic process, as

described by [2, 5, 11]. MacLean et al [4] described a

custom architecture appropriate for simple haptic

processes requiring tight integration with other distributed

I/O processes.

While often providing adequate performance, these

approaches were hard to create; and are hard to scale in

size and I/O capability and to port to other platforms.

While CORBA has been a potential solution to some

of these needs, early versions were unsuitable for

distributed realtime applications. However, the recent

(2002) introduction of the RT-CORBA specification [6]

and the TAO implementation of the Realtime Event

Service [7, 12], along with ever-faster computation, has in

just the last year given us an architecture model and

system components that make feasible the prototyping

toolkit for distributed multimodal systems described here.

1.4 Remainder of This Paper

In Section 2 we describe the main components of the

RTPM architecture and explain how it addresses key

haptic realtime design issues. In Sections 3-4 we present

two example implementations using RTPM and offer

guidelines for using RTPM; Section 5 offers performance

results for different platforms and configurations. We end

with our conclusions and future work.

2. ARCHITECTURE

Our combined goals of software reuse and the kind of

process and node distribution required for I/O and

processing by most haptic and multimodal applications

has led to a three-layer approach (Figure 2). The top layer

consists of Applications, and the bottom of Operating

System and Hardware. RTPM, the middle layer,

provides an environment for easy implementation and

integration of the other layers, and a run-time software

bus for communication between them.

2.1 Application Layer

The top layer contains the specific processes employed

by the application. Some of these modules carry out

application-specific tasks, but others may be reusable.

E.g, a haptic application might include modules that get

device position, detect collisions, send force commands

and log data; a graphic component application would

make use of an analogous process set that are in the same

layer, but might be located on a different node. There are

reusable prototypes for all of these common tasks. Two

specific application examples are described in Section 3.

2.2 RTPM Layer

Our Realtime Platform Middleware (RTPM) is an

integrative framework that supports two complementary

models of object-oriented communication and data

sharing among the distinct sets of objects contained in the

top and bottom layers: Client–Server or Consumer–

Supplier relationships. From the perspective of the

programmer, there should thus be no difference between

invoking an RTPM service, or calling into a static library

– an illustration of RTPM’s location transparency.

The main modules of the RTPM are as follows. Of

these, the first three were created in the course of this

project, and the fourth (H-Protocol) is a potential avenue

for RTPM’s future expansion.

• Generic Virtual Device (GVD): provides a core set of

commonly used interfaces for I/O devices used in

multimodal applications. GVD represents an abstract

I/O device that is referenced by the application layer in

the same manner as a static library. Operations

invoked on the GVD by an application-layer call are

redirected to the real device that actually carries out the

command, within and across nodes.

• Configuration Manager (CM): Some device

functions – e.g. I/O device operations such as serial

communication parameters, analog calibration, etc –

must be performed before the device is addressed or

even during its operation. CM provides a set of

interfaces for configuration/calibration, either

programmatically or through a client GUI application.

• RT Data Access Layer (DA) and I/O Drivers: The

I/O devices used in haptic/multimodal applications (e.g.

Generic Virtual Device

OS (Linux, Solaris, Windows, MAC-OSX)

I/O
Drivers

Ethernet H/WI/O H/W

RT Data
Access H

-p
ro

to
c
o
l

Ethernet Driver

IP

TCP

IIOP

GIOP

ACE/TAO (ORB)

C
o
n

fig
u

ra
tio

n
M

a
n

a
g

e
r

R
T

 E
ve

n
t

S
e
rvic

e

N
a
m

in
g

S
e
rvic

e

A
C

E
/T

A
O

User
Proc.1

Server Supplier

R
T

P
M

A
p
p

s.
O

S
 &

 H
w

User
Proc.2

User
Proc.3

User
Proc.N

Figure 2: RTPM architecture overview

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

different haptic displays) use a disparate set of device

drivers designed for different platforms and typically

with nonstandard API’s. However, most of these low-

level drivers perform essentially the same functions:

namely opening, closing and configuring the device,

and reading/writing its data. DA provides a unified and

extendable set of interfaces to this common

functionality. New devices are integrated by creating

an interface module from an existing template.

• H-Protocol: If CORBA communication timings must

be improved in the future, H-protocol provides a path

to architect our own alternative transport protocol using

TAO’s open pluggable protocol framework [1],

replacing the default Internet Inter-ORB protocol

(IIOP) used for inter-orb communication. Figure 2.

depicts the standard protocol stack used by TAO:

- GIOP: General Inter-ORB Protocol (for messaging)

- IIOP: maps GIOP on to TCP/IP

- TCP/IP: transport and internet protocol

• TAO ORB and RealTime CORBA extension: The

TAO ORB delivers client requests to the server and

returns responses to clients. TAO’s realtime ORB core

uses a multithreaded, preemptive, priority-based

connection and concurrency architecture, for efficient

and predictable client server communication [6, 15].

TAO’s implementation provides the following CORBA

services:

• RealTime Event Service (RTES): defines an event

data delivery model that decouples communication

between suppliers and consumers of events [7, 12].

• Naming Service (NS): registers RTPM server objects

with names, and comprising the principle mechanism

by which clients locate objects they intend to use [9].

2.3 Operating System and Hardware Layer

The bottom layer consists of the various nodes’

operating systems, network and non-graphics I/O device

hardware. Graphics I/O is still handled through platform-

specific non-RTPM routes to the OS layer.

Because of the mediation provided by RTPM, most

application-layer processes using RTPM require only re-

compilation to run on RT-CORBA-supported platforms,

which at present are Linux (including some realtime

variants), Windows, and MAC-OSX. When thus

redistributed, a haptic device can connect to a PC-

Windows 2000 and communicate with a graphics process

executed from an Apple-MAC-OSX.

Any platform-dependent calls within the application

layer – e.g. graphics methods available in Linux but not

Windows – must obviously be ported. This can generally

be avoided with the haptics components, since RTPM

services its I/O and synchronization.

2.4 CORBA Background

Critical to understanding the architecture described

here is a basic knowledge of CORBA and its realtime

extension, RT-CORBA [14]. The latter defines several

mechanisms to provide tight control over quality-of-

service characteristics such as jitter and latency.

Threads: RT-CORBA uses threads as a schedulable

entity. Generally, a thread represents a sequence of

control flow within a single node. Threads are part of an

activity. Activities are “scheduled” by coordinating their

constituent threads.

Threadpools: RT-CORBA defines the Threadpool

abstraction to manage server-side execution threads.

Lanes: A threadpool may be created with a single

default priority for all its threads, but RT-CORBA also

supports multiple thread priorities within a single

threadpool. Threads within a threadpool with the same

priority are grouped into “lanes”. Each threadpool lane

has it own configuration for static and dynamic threads.

Priority scheme: RT-CORBA defines a universal,

platform independent priority scheme called RealTime

CORBA Priority. This is introduced to overcome the

heterogeneity of different operating system priority

schemes, and allows RT-CORBA client applications to

make prioritized CORBA invocations in a consistent

fashion between nodes with different priority schemes.

GVD uses RT-CORBA’s “Client Propagated Priority”

model: a client (e.g. a haptic process) sets an invocation’s

RT-CORBA priority which is propagated to the server

ORB, which in turn propagates it into its own native

priority scheme. Requests from non-RT-CORBA ORBs

(i.e. ORB’s that do not propagate an RT-CORBA priority

with the invocation) are handled at a priority specified by

the server – in our case, GVD.

Event Service: CORBA’s Event Service provides

support for decoupled communication between objects,

allowing suppliers to send messages to one or more

consumers with a single call. Suppliers need not be aware

of any of the consumers of its messages; the Event

Service mediates this communication and also shields

suppliers from exceptions resulting from a consumer

object being unreachable or poorly behaved.

TAO’s realtime version of the CORBA Event Service

(RTES) [12] includes these features:

• Event filtering - consumer processes may register for

event delivery based on event type or supplier id (e.g.

events from a particular I/O device). The event

channel filters events based on these registrations, to

ensure efficient event delivery.

• Event correlation - consumers may register for event

delivery based on conjunctive or disjunctive sets of

events. Conjunctive registrations cause the event

channel to notify the consumer when all events in the

set have arrived. Disjunctive registrations cause the

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

event channel to notify the consumer when any event

in the set has arrived.

• Periodic event processing - consumers may register

for suppliers, based on timed events. RTES then

generates “Timeout events” that can be integrated into

the event filtering scheme.

2.5 Alternative Application Models

Applications making use of RTPM’s GVD can be based

on two different models depending on their needs.

Client-Server Model: synchronous communication

for client applications with hard realtime requirements. A

client – for example, a haptic, graphic or audio process –

makes requests to the server (GVD) to execute certain

operations (e.g. get position, set force, etc). The client

then blocks and waits for the reply; meanwhile, other

clients can simultaneously access the same GVD. Priority

of GVD access is mediated through RT-CORBA’s Client

Propagated Priority Model, described above.

Consumer-Supplier Model: asynchronous com-

munication for consumer applications with softer realtime

requirements. For processes that require neither high

frequency updates nor tight integration with data-

generating objects (e.g. graphic display and data logging),

this model can be more efficient through its support of

broader data distribution.

GVD’s Consumer-Supplier model is implemented with

the RT-CORBA Event Service, described above, and

utilizes RTES event filtering, event correlation and

periodic event processing.

2.6 Realtime Issues

Failure to meet timing constraints directly impacts

haptic rendering performance. With contemporary

computers, meeting the requirements for average update

rates is not usually the problem except for very complex

models. These are generally accepted to be a haptic

refresh of 0.5-1kHz, and a graphic refresh of 30-70 Hz.

Instead, our most important real time characteristic is

often predictability – i.e., the system must always satisfy

specified timing boundaries.

An OS attempts to maintain appropriate use of CPU

resources through its scheduling strategy, scheduling

threads by criteria such as priority and resource usage.

Any scheduling strategy must trade off fairness for

increased predictability and control by some threads.

TAO allows applications to specify their own scheduling

priorities and policies.

RTPM addresses predictability through activity

prioritization. It is configured to use a FIFO (first-in-

first-out) scheduling policy. That is, the highest priority

thread runs until it either voluntarily yields control, or is

preempted by a realtime thread with a higher priority.

The application processes and their invocations on

GVD can be configured to run at different priorities, so

that the hard realtime system components will behave

deterministically and critical tasks will receive high

priority in their execution. RT-CORBA defines 32768

priority levels, which are mapped transparently onto the

native (OS- specific) priorities.

It is important to understand that RT-CORBA relies on

the underlying operating system for scheduling its tasks,

and therefore the hard realtime characteristics can only be

achieved if the OS can deliver this. Threads must take

turns running on the CPU so that one thread doesn't

prevent other threads from performing work. One of the

OS scheduler's jobs is to assign units of CPU time

(quantums) to threads. A quantum is short in duration, but

threads receive quantums so frequently that the system

appears to run smoothly, even when many threads are

performing work. One difference between the OSs we

tested (Linux, Timesys and Windows 2000) is the length

of a user thread's quantum. On most x86 systems

running Windows 2000 as well as standard Linux, a

quantum is 10 milliseconds (ms); only the realtime Linux,

Timesys, has a very short quantum of 20 microseconds

(µsec).

3. EXAMPLE APPLICATIONS

3.1 Haptic Servo Application

Our first example is a prototypical haptic control

scenario, where a single haptic device is managed,

controlled and visualized from two three other different

devices managed and visualized by one node is controlled

from a second nodes via RTPM. . The control data for

this single-degree-freedom device consists of an encoder

reading and a force commanIn the configurationd.

ACE/TAO

RT Data Access

Windows 2000

GVD

Linux

RTPM
Haptic Driver

Haptic
Device

S
e

rv
e

r

S
u

p
p
lie

r

R
T

E
S

N
S

Ethernet H/WI/O H/W

Motor Control

Graphic
ProcessDev.

Position
Calc.
Force

MAC-OSX

RTPM

RTPM

Figure 3: Haptic servo application

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

In the configuration of Figure 3, the haptic device is

connected to node is a Windows 2000 machine, the motor

control code is executed on a Linux CPU running Redhat

Linux., and the visualization – motor positiona graphics

process, is implemented on an Apple laptop running

MAC-OSX. T.his degree of network distribution may be

desirable if the task executing on one node is

computationally intensive, or utilizes special platform

strengths This division is artificially made to demonstrate

how we can divide a Haptic application into components

that can be distributed across the network. These

components can run on different machines, and on

different Operating Systems (Linux, Windows,

MAC_OSX)..

The motor control code (Linux node) is The Motor

Control is a CClient for the GVD, requesting the current

motor encoder position and sending the force feedback

command. The haptic device itself is opened as a GVD

Sserver object is and registered in the CORBA naming

service (NS), soand thereafter

theany GVD clients can getrequest its referencesthe

object’s data across the network. The GVD also acts as a

Supplier, sending every new position to the RTES, which

resends it to the subscribed consumer processes. RTES’

consumers can configure it for event filtering, event

correlation or time-out events. In this example, the

graphics process is a GVD Consumer, The Graphic

Process is a Consumers for the GVD, receiving periodic

event events that represent updates of the motor encoder

position. The Supplier component of the GVD sends

every new position of the motor to the RTES, which will

resend this data to the consumer Graphic Process. RTES

can be configured

by its consumers (in our case the Graphic Process) for

event filtering, event correlation or time-out events.

The Data Access Layer in this first RTPM example

application consists primarily ofis merely a wrapper for

the haptic display’s original Immersion APIWindows

driver.

3.2 Haptic Control of Media Application

We needed to interface a haptic interface to an existing

Linux open-source video editing application (Kino [3]),

and wanted to minimize modification of the third-party

source code.

RTPM facilitated a minimally invasive integration of

the two original applications, as well as their distribution

on two nodes to optimize realtime performance and

platform dependencies.The scope of this project is to

create a haptic interface for a video editing application.

For the video editing software we chose Kino open

source video editing. One possible solution was to extend

Kino with a Haptic interface by integrating into Kino

source code the actual functions for controlling the Media

Controller device. Any experimental haptic models

would have been hard coded, embedded into Kino

application. However, this is not a scalable solution, as

any new upgrade on Kino software would have made the

reintegration of haptic modules very tedious.

The only modification made to Kino was addition of a In

our solution architecture we made use of the RTPM for

Kino and Media Controller interface. A modified GVD

component has been added to Kino application to provide

a both Server and/ Supplier functionality, thus allowing

Kino to communicate through GVD (Figure 4).

y; through this components we export the required

Kino functions with a minimum intrusion into Kino’s

architecture.

For the Media Controllerhaptic device interface we

used athe same similar setup as described in the previous

example:, a GVD that shields hides the details of the

actual device.

The Master Controller (MC) application-layer process,

which coordinates the interaction between Kino and the

haptic display, has two roles:

(a) The Haptic Control subcomponent is a Client for the

haptic GVD, performing the same haptic control function

as in the previous example.

(a) The Kino Control subcomponent is a Client for

Kino’s is the new component where we will integrate the

haptic models for our experiments and….???KM???….

MC is a Client and a Consumer for both Kino and the

GVD. The Haptic Control (HC) subcomponent interacts

with GVD for Media Controller position reading and

force feedback transmission. Kino Control (KC)

ACE/TAO

RT Data Access

Linux

GVD

Linux

RTPM
Immersion Driver

Immersion
Device

S
e

rve
r

S
u
p
p

lie
r

R
T

E
S

N
S

Ethernet H/WI/O H/W

Motor Control

Graphic
ProcessDev.

Position
Calc.
Force

Linux

RTPM

RTPM

Figure 1: Haptic servo application

ACE/TAO

RT Data Access

Linux

GVD

Linux

RTPM
Haptic Driver

Haptic
Device

S
e

rv
e

r

S
u

p
p
lie

r

R
T

E
S

N
S

Ethernet H/WI/O H/W

Master Control

Linux

RTPM

RTPM

Haptic
Control

Kino
Control

Kino

“GVD”

Server Supplier

Figure 44: Haptic control of media application

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

subcomponent interacts with Kino Application for video

editing controlGVD server, and via this route can send

commands such as (setting video play rate

(b) this is the focus of our haptic model experiments.

The overall performance achieved in this case is

perceptually adequate: video motion commands generated

by the haptic display are displayed graphically without

perceptual delay.

4. USING RTPM

RTPM is designed for ease of integration of client

applications. The following describes in more detail how

this is done at the Application and OS layer levels.

4.1 Application Layer

The simple client program example in Figure 5

illustrates how to open a haptic device, set the priority of

its servo thread, read a position and return a force

feedback command.

This program first constructs a GVD client object

(vd1) as a wrapper for the remote haptic device. Any

invocations on this object will be applied transparently to

the real device. It then instantiates a consumer object

(consumer1) to receive device state updates.

Once the haptic device has been opened, the vd1

object is used to get the current device position and send a

force command in a Client/Server relation. In this

example, we run getPositionX() at a higher priority than

getPositionY() merely to demonstrate changing the

priority level on the server side.

The consumer1 object is for use by other processes

that need to access this device’s input and/or output

asynchronously, i.e. in a Consumer/Supplier relationship

– e.g. for graphic or auditory display. Here, we simply

print out the haptic device’s position information.

4.2 OS & Hardware Layer

Connecting an RTPM application to the OS layer and

launching it is likewise straightforward. If the new

application can make use of existing GVD operations and

I/O device interfaces, then we simply start a script that

starts first the Naming Service, then the Realtime Event

Service and finally the GVD Server / Supplier.

If the application requires new GVD functionality,

then GVD’s interface definition language (IDL) file must

be modified by creating the new operations or modifying

existing ones. GVD’s two main components, Server and

the Supplier, must then be updated to reflect the new or

modified parameters or operations.

5. PERFORMANCE

In order to verify that RTPM was meeting our

performance specifications for typical haptic and

multimodal applications, we conducted some benchmark

tests based on distributed control of a haptic device

through a one- or two-node configuration, comparing

several different node platforms. We were particularly

concerned with the latency and jitter in communications

among the different components.

In these tests, we employed a data structure of six

doubles (48 bytes) as our “payload” for transfer between

the distributed components in a single refresh cycle. All

tests were run on either one or two identical machines: a

single-CPU 2.5 GHz Intel Pentium IV system configured

with 512 Mb of RAM and a 256Kb cache. The two

machines were connected via standard 100BASE-T

ethernet on our department local area network, carrying a

normal network traffic load.

In a single test run of the Client/Server model, a client

thread issues 1000 calls at the fastest possible rate; we

then record the round-trip delay experienced by the client

from the time it sends a given request to the time it

receives the response from the server thread (1000

values). Figures 6-7 present these results as latency

distributions with summary statistics. Figure 6 shows the

Client/Server results for a single machine running

Timesys, Linux or Windows 2000. Inter-process

communication is performed via the network loop

interface because the client and the server process run on

the same machine.

In Figure 7-a), the Client and Server processes are

running on different machines; thus comparison with

Figure 6 reveals the delay introduced by the network.

Client-Server

Timesys Linux

400

600

800

1000

u
tio

n
 (

1
0
0
0

c
a
lls

)

Client-Server

Window s 2000

Client-Server

Linux

b)a) c)

avg calls / sec = 17172 avg calls / sec = 11968 avg calls / sec = 8613

min / max / avg = 57 / 126 / 58 usec min / max / avg = 75 / 1261 / 83 usec min / max / avg = 112 / 251 / 116 usec

int main()
{
 GVDClient vd1() ; // GVD Client
 GVDConsumer consumer1(); // GVD Consumer

 DimX posX, forceX;
 DimY posY;

 vd1.openDevice(devA); //start device "devA"
 while (1)
 {
 vd1.setPriority (3);
 posX = vd1.getPositionX(devA) ;
 vd1.setPriority (1);
 posY = vd1.getPositionY(devA);
 forceX = calculate_force(posX, posY);
 vd1.setForceX(forceX, devA);

 }
 vd1.closeDevice(devA); //stop device

}

// Override the push() operation for GVDConsumer
void GVDConsumer::push(const RtecEventComm::EventSet& events)
{
 ...
 // Loop through the events
 for (i = 0; i < events.length (); i++)
 {
 if (events[i].data.any_value >>= positionX)
 cout <<"New position = "<< positionX << endl;
 }
}

Figure 55: Using RTPM

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

The comparable test for the Consumer-Supplier

communication is presented in Figure 7-b), c). In these

tests, the Supplier process generates 1000 events (calls)

with 1 ms interval between them, and pushes the events to

the Event Channel process. EC resends these events to

the appropriate Consumer process. The event packet

contains the time-stamp plus some overhead (source ID,

type, etc.), in total ~30 bytes. The Consumer compares

the timestamp of the event with the time at arrival and

calculates the transmission delay. Both Consumer and

Supplier processes run on the same node (to allow us to

compare the time to the necessary accuracy), but the

Event Channel process runs on the second node in order

to model the delay introduced by the network.

The average single-node latency for Client-Server

communication is similar on all platforms, with the best

result given by Timesys where 91% of the calls were 58

µsec long. For the non-realtime platforms W2K offers a

better distribution but Linux has a better average timing;

99.8% of these results were within the 1KHz specification

for haptic processes. The network introduces an extra

delay of about 110µsec when Client-Server processes

running on Timesys are distributed. Similar values result

for other OS combinations, with a worst case of 200µsec.

Dual-node tests for the Consumer-Supplier

communication demonstrate this delay as well as a much

wider distribution that is introduced by the third process,

the Event Channel.

It is important to note that these tests focus on the

delay introduced by the CORBA communication layer in

our haptic applications, using common operating systems

and network setups. There are many other important

aspects to determining overall realtime performance; for

example, the time quantum required for thread switching

plays a much greater role when multiple threads are

contending for CPU services – unlike the situation here.

The overall round-trip system response time will also be

influenced by the delays generated by other RTPM

components (DA, CM and I/O drivers) and their

synchronization, and by application processes

6. CONCLUSIONS & FUTURE WORK

The timing results from our experiments demonstrate

the feasibility of using a distributed object computing

architecture for multimodal applications: complex

applications can be decomposed and run as separate

processes and distributed across a network with an

acceptable impact on performance, for a scalable and

maintainable system. The Client-Server architecture,

gives the best timing results when running on a realtime

OS, and is the model of choice for haptic rendering

processes that require fast updates. The Consumer-

Supplier architecture is more suitable for the

decomposition of the slower processes that require an

asynchronous type of communication, such us graphic

updates and data logging.

We ran most of our tests on Linux and Windows

platforms, which are not realtime operating systems.

Predictably, our best single-node results are for the one

realtime OS tested. However, all provide adequate

performance for distributed haptic applications, and

system performance can be improved by choosing the

Client-Server architecture for the time critical path,

creating an isolated network of nodes running realtime

operating systems.

We plan to further extend RTPM by adding new

components such as CORBA’s Audio/Video Service

(AVS) and Trading Service (TS). AVS is important for

audio/video data exchange, and TS for client queries of

existing, active GVD functions. We will be extending the

Configuration Manager and the Data Access Layer to

accommodate interfaces and control for more haptic

devices. Finally, for collaborative haptic applications

over the Internet and for some graphic processes

implementations, we will add Java language support by

integrating the Java (J2EE) ORB with RTPM.

7. REFERENCES

[1] Arulanthu, A. B., O'Ryan, C., Schmidt, D. C., M.Kircher,

and Parsons, J., “The design and Performance of a

Pluggable Protocols Framework for Real-time Distributed

Object Computing Middleware,” in Proc. of IFIP/ACM,

Middleware 2000, 2000.

[2] Jordan, J., Mortensen, J., Oliveira, M., and Slater, M.,

“Collaboration in a Mediated Haptic Environment,” in

Proc. of PRESENCE 2002: the 5th Ann. Int'l Workshop on

Presence, University Fernando Pessoa, 2002.

[3] Kino, DV editor for GNU/Linux, 2003.

http://kino.schirmacher.de/article/static/2.

[4] MacLean, K. E. a. S., S. S, “An Architecture for Haptic

Control of Media,” Proc. of the 8th Ann. Symp. on Haptic

Interfaces for Virtual Environment and Teleoperator

Systems, ASME / IMECE, Nashville, DSC-5B-3, 1999.

[5] McLaughlin, M. L. et al., “Performance and co-presence in

heterogeneous haptic collaboration,” in Proc. of the 11th

Ann. Symp. on Haptic Interfaces for Virtual Environments

and Teleop. Systems, IEEE-VR2003, Los Angeles, 2003.

[6] Object Management Group, “Real-Time CORBA

Specification, V 1.1,” August 2002.

ftp://ftp.omg.org/pub/docs/formal/02-08-02.pdf.

[7] Object Management Group, “Event Service Specification,”

2001. ftp://ftp.omg.org/pub/docs/formal/01-03-01.pdf.

[8] Object Management Group, “Common Object Request

Broker Architecture: Core Specification,” 2002.

ftp://ftp.omg.org/pub/docs/formal/02-12-02.pdf.

[9] Object Management Grp, “Naming Service Specification,”

2002. ftp://ftp.omg.org/pub/docs/formal/02-09-02.pdf.

[10] Object Management Group, “CORBA® BASICS,” 2003.

http://www.omg.org/gettingstarted/corbafaq.htm.

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

[11] Oliveira, M. et al., “The Pitfalls in System Design for

Distributed Virtual Environments: A Case Study,” in Proc.

of the Int'l Workshop on Immersive Telepresence (ITP

2002), Juan Les Pins, France, 2002.

[12] O'Ryan, C., Schmidt, D., and J.Noseworthy, “Patterns and

Performance of a CORBA Event Service for Large-scale

Distributed Interactive Simulations,” International Journal

of Computer Systems Science and Engineering, 2001.

[13] Schmidt, D. C., “An Architectural Overview of the ACE

Framework: A Case-study of Successful Cross-platform

Systems Software Reuse,” USENIX Login Magazine:

Special Issue on Tools, 1998.

[14] Schmidt, D. C. and Kuhns, F., “An Overview of the Real-

time CORBA Specification,” IEEE Computer: Special

Issue on Object-Oriented Real-time Distributed

Computing, 2000.

[15] Schmidt, D. C., Levine, D., and Mungee, S., “The Design

of the TAO Real-Time Object Request Broker,” Computer

Communications Special Issue on Building Quality of

Service into Distributed Systems, vol. 21:4, 1998.

[16] Vahora, F., Temkin, B., Krummel, T. M., and Gorman, P.

J., “Development of Real -Time Virtual Reality Haptic

Application: Real-Time Issues,” in Proc. of 12th IEEE

Symposium on Computer-Based Medical Systems - CBMS

1999, pp. 290-295, 1999.

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04)

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:57:44 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

