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Abstract

The bulk of current haptics human-factors research 
focuses on mapping basic human perceptual limits. 

However, many realistic applications demand a better 

understanding of how to construct more life-like but often 
less controllable experiment scenarios.  

In this paper, we study this problem in the context of 

advanced automobile interfaces. We employ a throttle 
pedal with programmable force feedback to indicate 

potentially undesirable situations in the external 

environment and to gently but steadily guide the driver 
away from them. We have found evidence that within this 

scenario, errors in such a warning signal can have a 

negative effect on the behavior of the driver within the 
conditions studied. 

These experiments required a complex protocol and 

necessarily permitted a variety of participant tactics. Post-
experiment analysis revealed that very subtle variations in 

participant instruction produced large differences in tactics 

and consequent experiment outcome.
Keywords: Haptic force feedback, warning signal, false 

negative, false positive, driving performance, experiment 

design, participant instructions. 

1. Introduction 

Perceptual experiments usually fall into one of two 

categories: those where participants are asked to react to 

stimuli in some direct quantitative manner and those where 

the requested response is intended to capture more subtly 

perceived attributes of the stimuli. In research focused on 

determining basic perceptual limits, the former category is 

more common. However, as we integrate haptic feedback 

into sophisticated real applications, we need to better 

understand how to conduct more life-like – and often less 

controllable – experimental scenarios.  

The latter type of experiment generally entails a realistic 

context and/or relatively complex tasks; and in the attempt 

to generate context, may invite involved or deliberately 

imprecise instructions.  In such a situation, how can we get 

the participants to focus on the desired aspects of the 

experiment without giving away critical experiment 

information?  How should we instruct participants so as to 

produce a desired performance tactic when tasks are 

complex and often cannot be clearly explained for 

experimental purposes?  Finally, how can we draw strong 

conclusions from performance and response data collected 

in a deliberately uncontrolled environment? 

In this paper, we examine these questions in the context 

of advanced automobile interfaces. Our paradigm employs 

programmable force feedback in the primary driving 

controls (here, the throttle pedal) to indicate potentially 

undesirable situations in the external environment and to 

gently but steadily guide the driver away from them.  

For our experiments we consider a scenario that 

presupposes the existence of “drive by wire” automotive 

throttle control systems, whereby a pedal position sensor 

and electronic signal replace the traditional all-mechanical 

linkage from pedal to engine control module. These 

systems have begun to appear in the last several years for 

their virtue of improving fuel efficiency and throttle 

response.  However, their existence incidentally affords a 

redefinition of how the primary controls feel to the driver 

and further allow the use of a newly-bidirectional channel 

to deliver new kinds of information in a new format. Given 

the critical nature of the driving task and in particular of the 

role played by the throttle and its feel, it is essential that 

such new interfaces be well designed.  The experiments 

described here address one aspect of this larger problem: 

driver behavior when information delivered through this 

new channel is not completely reliable. 

1.1. Remainder of This Paper 

We begin by describing previous work in the areas of 

haptic constraints, warning signal response and signal 

reliability and introduce the concept of an Active Pedal 

(AP) using a virtual model of a physical system.  The third 

section presents the implementation of a simple driving 

simulator used for our experiment.  The fourth section 

provides a detailed account of the experiment design and 

implementation.  Finally, we present the results obtained 

for three separate experiment series and discuss the subtle 

but forceful impact of instruction style on the outcome of 

this type of experiment.  
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2. Background

2.1. Haptic Constraints 

The concept of using programmed force feedback to 

subtly inform and/or modify user behavior in a realtime 

manipulation task is not new. Rosenberg first proposed 

using haptic virtual fixtures to constrain user motion 

through a space in ways analogous to the use of a ruler or 

compass in mechanical drafting [7]. More recently, others 

have employed dynamically and sometimes automatically 

generated fixtures in applications such as surgical 

teleoperation; for example Payandeh & Stanisic 

demonstrated improvement in terms of performance, 

workload and task training time [6], and Okamura’s group 

has been optimizing characteristics of the haptic signal 

itself [5]. Most relevantly, Steele & Gillespie looked at 

shared control of steering in a car where use of a haptic 

steering wheel improved tracking performance and reduced 

visual demand in a visual tracking task [9]. 

These and other studies consistently document the 

potential for appropriately displayed haptic feedback to 

provide information that enhances performance and reduces 

user effort in demanding realtime tasks. However, we have 

yet to consider characteristics of the information used to 

generate the informative signals; in particular its reliability, 

and how this may play out in the ability of the user to 

utilize that information.  

2.2. Virtual Models of Physical Systems 

Haptically portrayed models of familiar physical 

systems can make a haptic aid more intuitive [8]. We 

hypothesize that use of this approach in a driving situation 

can influence driver behavior towards a more conservative 

driving pattern in a subtle and non-irritating way, and 

potentially without the driver’s explicit attention or 

awareness.  However, we do not know how a user might 

respond to a haptic signal based on a virtual physical model 

when the signal cannot be guaranteed to be reliable. 

2.3. Warning Signal Effect & Signal Reliability 

Tipper [11] found a classic and robust warning signal 

effect [1, 4] in response time when subjects were given a 

haptic warning (a buzz on the hand) 100-1000 msec before 

receiving a visual stimulus to which they were to respond 

by pushing a computer key: response time improved in 

proportion to the advance warning given.   Signal reliability 

has been shown to play a role in the way people process 

information contained within the signal [3, 10]. Based on 

this, Tipper proceeded to manipulate the reliability of the 

warning signal by corrupting it successively with 25% false 

negatives (“misses” or MI), 25% false positives (“false 

alarms” or FA) or a mix of these two types of errors. She 

found that the presence of FAs within a set of trials 

eliminated the warning signal improvement in response 

time even for those trials where the signal was present 

(“valid trials”); MI trials, on the other hand, had no such 

influence on the valid trials.  Mixed errors produced the 

same negative effect as purely FA errors.  

We argue that the reason for this “bleeding” of a 

deleterious effect on subject behavior when a warning 

signal is subject to false positives is due to the subject’s 

destroyed trust (whether conscious or not) in the reliability 

of the warning signal. This data suggests that false 

negatives do not similarly destroy trust. However, it was 

collected in a highly abstract context. 

2.4. Sensor Reliability and Potential Impact on 

User Trust 

It is generally very difficult to guarantee a technical 

system’s perfect performance. In our situation of an 

intelligent system that warns a user of a critical situation, 

imperfect performance might occur when the system finds a 

critical situation when one does not exist (FA’s), or fails to 

find one when it does exist (MI’s). Further, a class of 

“perceptual” errors can occur through no fault of the 

technology: if the system finds and signals a warning for 

any situation that truly exists but which the user never 

perceives, the user may erroneously believe that system has 

delivered a false positive. In terms of impact on the user’s 

trust of the system, this “perceptual” false alarm is 

indistinguishable from a “technical” false alarm. A user 

interface that takes input from sensors must therefore 

accommodate potential imperfections in the source input by 

understanding how the user will react to various amounts 

and types of sensor inconsistency or unreliability. 

3. Driving Simulator 

We wished to (a) establish whether use of a warning 

signal displayed as a haptic model of a familiar physical 

system can modify driving behavior in its perfect (reliable) 

form, and (b) explore how the same signal when unreliable 

might impact the driver’s ability or willingness to make 

Figure 1: Setup.   “Driver” at simulator with force 
feedback pedal. 
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effective use of this information. We therefore developed a 

graphically simple driving simulator that reproduced 

several key aspects of a complex driving environment. A 

visual tracking task was executed via a force feedback 

pedal that superimposed an Active Pedal representation on 

the usual pedal spring force (Figure 1). 

For this analysis, the physical system we modeled is that 

of a spring attached to the front of the car with a rest length 

equal to a nominal following gap behind the car ahead.   

When the driven car approaches the leading car, the driver 

feels the “compression” of this spring as an additional 

resistance through the throttle pedal: he must push a little 

harder to maintain the same gap. The smaller the gap 

between cars, the greater this extra push.  This is, of course, 

only one of the possibilities for augmenting the information 

presented by the driving interface. 

We implemented the simulator in Visual Basic on a 1 

GHz P3 Windows 2000 computer, with an 18” LCD 

monitor.  

3.1. Graphical Interface 

The graphical interface (Figure 2) portrayed two cars on 

a road.  The participant controlled the speed of the 

following car - which is stationary in the reference frame of 

the screen - using the pedal. The motion of the participant’s 

car was conveyed by the rate at which road posts move 

toward the bottom of the screen. The speed of the (upper) 

lead car and ultimately its distance from the bottom car 

varied according to a pseudo-randomized control algorithm 

outlined below.   

3.2. Workload Task: “Road Signs” 

People often perform more than one task while driving; 

adjusting the radio, talking on the phone and using 

navigation systems absorb driver attention. In order to test 

the pedal force feedback in a multitasking environment, we 

provided an additional workload task: shapes (Figure 3) 

appeared at random locations and time intervals on the road 

margins and slowly faded away.  Participants were asked to 

press the <ENTER> key when a particular shape (the 

triangle) was presented. 

The effort required for this task was adjusted during 

pilot experiments by varying the size, number, frequency 

and distinctiveness of shapes until pilot participants felt the 

workload task was “reasonably challenging” and we felt it 

was competing substantially for attention with their primary 

driving task. In these experiments, the workload task 

appeared about 2-16 times per minute 

3.3. Speed Control: FF Pedal and Brake 

The simulator included a force feedback pedal with a 

position sensor interfaced through an IO board for force 

display and throttle input; the participants also used the 

keyboard space bar as a “brake”. The pedal position input 

determined the acceleration of the participant-controlled car 

in the simulation. In the following, "lead" refers to leading 

vehicle, "car" refers to the participant’s vehicle, "TTC" is 

Time to Contact (time until a collision should current 

relative velocities be maintained) and "THW" is Time 

Headway between the two. We employ a desired THW of 2 

seconds, i.e. the car crosses a point on the road 2 seconds 

after the lead. Xcar, Xlead and Xrel refer to the position of 

the participant’s car, the lead car and the distance between 

them.  In a similar manner, Vcar, Vlead and Vrel refer to 

the cars’ velocity. 

rel lead carX X X= −   An increasing Xrel is good. 

rel lead carV V V= −   An increasing Vrel is good. 

rel

car

X
THW

V
=            rel

control

rel

X
TTC

V
=

−

2desiredTHW =  Desired THW. 

1 1

desired control

b
OutputForcetoPedal a C

THW THW TTC
= − +

The variables a and b are constants that define the 

displayed force profile given the distance between the cars 

and their velocity.  We used values that maintain the 

relation b=-a/15 based on simulated results. C is a constant 

gain used to keep the total pedal force within a comfortable 

and comparable to a mechanical pedal system range. 

3.4. Following-Car Dynamics 

The position of the throttle pedal is used to calculate the 

Figure 2: The main screen.  Participant controls the speed 
of the green car (bottom) using the FF pedal in tandem with 
a “brake”.

Figure 3: Workload shapes which appear at random 
locations on the “road” margins.  Their size relative to other 
graphical features can be seen in the previous figure. 
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“force” applied to the participant’s car; the car’s actual 

acceleration profile also depends on a wind and road-drag 

model component as well as on the vehicle’s mass and 

internal friction.  If the brake is not pressed: 

throttle drag

car

F F
Acceleration

M

−
=

where 

throttleF  = Force generated by motor = f(pedal 

position) 

dragF   = Drag force proportional to car’s speed 

carM  = Mass of car 

If
throttle dragF F< , the car gradually slows down. If the brake 

is pressed: 

brake

car

F
Acceleration

M

−=

where 
brakeF is a constant brake force. 

3.5. Lead-Car Dynamics 

In order to observe the participant’s response to Active 

Pedal activations in a finite amount of time, we needed the 

participant to interact with the AP fairly often. We aimed 

for 3 activations per minute as an acceptable facsimile of 

driving on a busy highway. This was achieved by 

adaptively adjusting the erraticity of the lead car velocity. 

Our algorithm randomly changed the lead car’s virtual 

accelerator pedal and brake positions, and its consequently 

computed velocity, at discrete, randomly determined 

intervals ranging from 5 to 18 seconds. At all other times, 

the lead car maintained a constant accelerator and brake 

setting. Erraticity could be set at four levels from “steady” 

to “abrupt”. The program evaluated the rate of Active Pedal 

activations every 30 seconds and adjusted erraticity level as 

needed.  

4. Experiment Design 

Experiment Units: All trials shared the same overall 

structure: the participant "drove" through 20 AP activations 

or “events”, where each event is delineated by an activation 

(triggered when THW dropped below 2 seconds). The trial 

ended after 20 activations with an approximate duration of 

6.7 minutes (3 events / minute). In post processing we 

segmented each trial into these 20 observations, and 

computed performance metrics independently on each 

segment. We used seven trial types representing 4 

variables: workload task (W) present / absent; Active Pedal 

(force feedback) present or absent (P); and False Alarms (F) 

and Misses (M) committed by the AP at various 

frequencies. Table 1 identifies 4-letter trial labels. 

A Session consisted of a practice trial followed by five 

experiment trials; each of a different type. Every participant 

completed trial types 0000, W000, 0P00 and WP00 (WL 

and reliable AP present/absent) in random order, followed 

by one of type WPF0, WP0M or WPFM (either False 

Alarms, Misses or both plaguing the AP signal in the 

presence of the workload task). 

Training: All participants performed a practice trial where 

the different combinations of parameters that would be 

presented in the following 5 trials (AP+- and WL+-) were 

experienced.  However, False Alarms and Misses were not 

experienced, nor was their possibility mentioned. 

Participants: We used 36 participants in three runs of the 

experiment (12 per run).  The participants were between 

18-40 years of age, 14 female and 22 male, all with valid 

driver’s licenses and normal vision and motor capability. 

Instructions: For all three runs of the experiment, 

participants were told they were competing in a virtual 

“driving rally” with scoring on race time, safety errors and 

performance in the workload task.  In the first two runs, 

instructions were read from a script, by a different 

individual for each run. For the third run, instructions were 

conveyed by a video recording of an experimenter relating 

the same script.  At the time, we considered the instructions 

for all sessions and runs to be effectively identical.  

5. Analysis
Analysis was conducted via Matlab scripts and Visual 

Basic code created for data segmentation, computation of 

performance metrics, collation of segment results, statistical 

comparisons and graphical display. This section describes 

how several analysis issues were handled.

Data Segmentation: To delineate the 20 activation 

events in each session, we defined a segment to begin as the 

participant leaves the critical THW zone from the previous 

segment and continue through to the end of the next critical 

zone penetration.   

Performance Metrics: We used three performance 

metrics to examine the impact of warning signal reliability 

on driving behavior. These metrics were computed for 

every segment of every non-practice trial for each 

participant. For all three, more positive values indicate 

Table 1: Trial types 
Trial Description Label 

Work Load Active 

Pedal 

False 

Alarms 

Misses  

NO NO NO NO 0000 

YES NO NO NO W000 

NO YES NO NO 0P00 

YES YES NO NO WP00 

YES YES 25% NO WPF0 

YES YES NO 25% WP0M 

YES YES 12.5% 12.5% WPFM 
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worse performance (see Figure 4). 

 Pcrit (Critical Zone Penalty): weighted integral of time 

spent inside the critical region  (THW < its nominal 2-

second value) where the AP signal is activated. The closer 

the driver is to the lead car, the higher the penalty: 

1nLeaveZone

crit

k nEnterZone k

mP
THW=

= ,

where nEnterZone and nLeaveZone refer to the time steps 

during which the critical zone was entered and departed 

respectively. THWk is the Time-Headway at that time step; 

its inverse is larger when the driver is closer to the lead car. 

Brake: # of samples in the segment where the “brake” was 

pressed, multiplied times sample period. 

Crashes: # of crashes during a segment (THW = 0). 

Statistical Comparisons: To determine relative 

driving performance among the different experiment 

conditions, we compared distributions of segment 

performance metrics rather than trial and/or segment mean 

values. Mean values of metrics like amount of braking or 

number of crashes exhibit large variance by their nature, 

and even statistically significant differences may not be 

very meaningful. Distributions, on the other hand, retain 

information related to frequency and likelihood of these 

kinds of events occurring under the different conditions 

studied. 

A Kolmogorov-Smirnov (KS) test statistically 

evaluates the difference between data distributions. The 

response distributions include all observations of a 

particular metric for a given set of conditions: the KS test 

then provides the likelihood that two such distributions are 

different [2].  Specifically, KS uses as a test statistic the 

maximum difference over all x values of the cumulative 

distributions of the two data sets X1 and X2. Mathematically, 

this can be written as: 

 KS test statistic = max(|F1(x) – F2(x)|), 

where F1(x) is the proportion of X1 values <= x and F2(x) is 

the proportion of X2 values <= x.

It should be noted that the KS test does not distinguish 

between differences due to distribution means, shapes or 

variances; this is acceptable for our purposes since all of 

these are relevant, and in general the differences we found 

appeared due to a combination of these factors.  

Participant blocking: Because we observed substantial 

between-participant variation and we were most interested 

in the effect on individuals of varying experimental 

conditions, we blocked on participants by computing the 

mean of all observations in a given metric for each 

participant and then removing that mean from the 

participant observations before comparison. (This meant 

that negative values were possible for the metrics). 

Four Tests: We performed four different statistical 

comparisons on the described performance metrics, each 

based on a KS test between two distributions. In order to 

utilize a 2-distribution test to compare 3 distributions, we 

therefore had to carry out three pair-wise comparisons. 

1. Effect of Reliable AP and of Workload 
 Does AP feedback help when reliable? What effect does 

our workload model have? To measure the effect of AP, 

trial were lumped as (0000+W000) and (0P00+WP00), then 

compared in a 2-way test.  For workload, the same trials 

were lumped as (0000+0P00) and (W000+WP00). Each test

utilized 36 participants x 4 trials x 20 segments = 2880 

observations. 

2. No AP vs. Reliable AP vs. 25% Misses AP  
What is the impact of Misses on performance? This 3-way 

test compared trial types W000, WP00 and WP0M for the 

12 participants who performed WP0M (4 from each 

experiment run). Each of the three component 2-way tests 

utilized 12 x 2 trials x 20 = 480 observations; 12x3x20=720 

observations in all were involved in the three comparisons.

3.  No AP vs. Reliable AP vs. 25% False Alarms AP 
What is the impact of False Alarms? This 3-way test also 

utilized 720 observations and compared trial types W000, 

WP00 and WPF0 for a second subset of 12 participants.

4. No AP vs. Reliable AP vs. 12.5% M + 12.5% F 
What is the impact of mixed False Alarms and Misses? 

This 3-way test also utilized 720 observations, and 

compared trial types W000, WP00 and WPFM for the final 

subset of 12 participants. 

6. Results
In Figure 4, we see the baseline effects of the reliable 

AP signal (top half), and of workload (bottom). The Active 

Pedal signal (as implemented in our simulator) reduced the 

magnitude of all selected metrics, proving to be a 

significant aid over the no-AP case. However, our 

mechanism for imposing workload demonstrated mixed 

results, hurting performance for one of the metrics 

(braking), less significantly improving performance for 

another (Pcrit) and having no significant effect on the third 

metric (Crashes) within the conditions studied.  

Using a similar convention, Figure 5 shows the results 

of the 3-way KS comparisons (composed of three 2-way 

tests) of the trials that used no AP signal, a reliable AP 

signal, or a particular type of unreliable signal.  In the top 

graph in Figure 5, the signal for this twelve-participant 

subset was corrupted by Misses.  The Brake and Crash 

metrics do not show a significant alteration in driving 

behavior when a reliable AP signal was employed (No AP 

vs. Rel AP).  However, Pcrit shows a significant increase in 

time spent in the critical zone for reliable-AP trials (large 

positive blue bar), countering the 36-participant result 

shown in Figure 4 (negative blue bar), and the two other 

12-participant results for this comparison for False Alarms 

and Mixed Error participant subsets below. In the 

comparison of reliable with Miss-prone AP trials (Rel AP 

vs. Misses), Pcrit and Brakes indicate that for these 12 

Proceedings of the 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04) 

0-7695-2112-6/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 04,2023 at 20:59:23 UTC from IEEE Xplore.  Restrictions apply. 



participants, driving style was more extreme when the 

warning signal was reliable than when it was subject to 

misses.  The final row in this graph (No AP vs. Misses) is 

consistent with the first two for its only significant metric 

(Brakes): a miss-prone signal is better than none. 

Proceeding in this manner through the remaining two 

graphs of Figure 5, we see in summary that a reliable AP 

signal usually results in a performance improvement over 

no AP signal (Pcrit for the first group is the only exception), 

and that this result is often significant. False Alarms results 

in a performance most similar to that of no signal at all, i.e. 

the presence of false alarms appears to “wipe out” the 

benefits of the reliable signal for our specific setup and 

experiment design (Brakes metric). The presence of Mixed 

Errors results in a behavior intermediate between a reliable 

signal and none, for all metrics. The twelve FA participants 

seem to have been less reactive than the other 24, showing 

little diversity in performance for any metric except Brake 

(which followed the results of Mixed Errors). 

Unsurprisingly, Crashes shows the least consistent results 

among the three metrics. It represents the most extreme 

error, and the one most likely to be influenced by variations 

in the participant’s accustomed driving style and the current 

driving mindset. 

7. Impact of Instructions 

Considering the complex nature of the experiment and 

some initial non-intuitive observations, we were prompted 

to examine our data in greater detail.  A close examination 

of the individual results revealed that each participant’s 

overall driving behavior correlated with that of others in the 

same run.  

Figure 6 shows the average values obtained for the 

Critical Zone Penalty (Pcrit) for the 3 separate runs of the 

Figure 4: KS results for Test 1 show the effect of reliable AP 
and of workload for the three metrics (all 36 participants). 
Data from the same 2880 observations have been 
compared after lumping by presence/absence of AP signal 
(top) or workload task (bottom). The P-value indicates the 
statistical significance of the noted difference according to 
the KS test, whenever P≤0.050. The x-value is the 
dimensionless KS test statistic, i.e. the maximum difference 
between the two cumulative distribution functions.  The x-
direction of the arrows indicates whether the change in the 
performance metric denotes an increment or decrement in 
the related metric. For these metrics, a more negative 
value indicates a more conservative driving pattern.

Figure 5: KS results are compared two at a time for (in each 
of the three graphs) three cases: No AP signal, a reliable 
AP signal, and an unreliable AP signal corrupted by one of 
three categories of errors (Tests 2-4). The KS test P-value 
is noted when significant, and the x-value is the 
dimensionless KS test statistic.   
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experiment (12 participants each; and each run included 

participants tested with all types of signal error). 

Here we can see that for all 3 runs, the presence of an 

Active Pedal improves performance overall (by reducing 

the average Pcrit).  Also evident from this figure is the 

difference in overall magnitude for the 3 separate runs of 

the experiment, regardless of AP signal presence or 

absence.   

The only variable we have been able to identify that 

could explain this phenomenon is the delivery of participant 

instructions for each run. A different experimenter 

administered each of the first two runs of the experiment, 

reading the same script; becoming suspicious, we instructed 

3rd-run participants with the aid of a video recording, using 

the voice of a third experimenter. We conjecture that 

intonation, expression and verbal emphasis might have 

varied enough between the different experimenters to 

encourage different degrees of driving conservatism among 

each set of participants. 

8. Discussion

In summary, we can observe that for this simulator and the 

tested combinations of experiment conditions:  

(i) AP forces (always vs. never present) had a 

significant impact on all of the three metrics considered 

(p=0.014, 0.000, 0.018 respectively; 36 participants and 

2880 observations). This is a strong result. Our workload 

task, on the other hand, did not appear to have a consistent 

effect on these metrics for the conditions tested.  Further 

work will investigate the effect of workload more directly. 

(ii) The improvements observed when using a reliable 

AP are lost when the signal is plagued with False Alarms 

(25%) in this particular experimental context.  Performance 

with FA's is never significantly different from that with no
signal (e.g. a Drive-By-Wire system with no additional 

force feedback). However, this pattern of degradation is 

significant only for the Brake metric for this participant 

subset. Mixed errors (FA+Misses), produced behavior 

similar to that of just FA's, for those results that are 

significant, although with a smaller magnitude. This effect 

of false alarms suggests that this type of error may 

undermine the improvements gained with the uncorrupted 

AP and are consistent with those found by Tipper [11], but 

to our knowledge this is the first time they have been 

documented in a semi-realistic driving context (i.e. 

continuous task subject to additional workload tasks).   

(iii) Within the conditions studied, the presence of 25% 

Misses significantly improves performance over the cases 

of both a reliable and an absent AP signal, for some metrics 

(in Figure 5, compare the Rel AP vs. Error AP for Misses 

relative to those for FA and Mixed errors; the pattern is 

markedly different). This is perhaps the most surprising 

result among Tests 2-4.

Why might the presence of missed events (Misses) in 

the warning signal improve performance over the case of a 

perfectly reliable AP signal – under these conditions and 

measured by these metrics? It is believed that a warning 

signal of any type places individuals in a state of 

heightened alert and thus decreases reaction times [1]. 

However, it may also be the case that when individuals 

come to fully trust a warning signal, they may not feel the 

need to attend so closely to the task, particularly when a 

second task is competing for that attention – and this may 

result in decreased performance, despite the warning signal. 

Conversely, we theorize that our participants seem to make 

good use of a signal that is always trustworthy when it does 

trigger, but cannot be depended on to trigger for every valid 

target, without abdicating responsibility for finding those 

other events. This result may not appear in the case of false 

positive signals because the user may then feel that the 

signal is never trustworthy. If so, determination of the 

cognitive or perceptual level at which this distinction is 

made will require further investigation.  

(iv) There is a noticeable difference in participant 

behavior (and thus performance according to our measures) 

for the 3 separate runs of the experiment. This can be 

clearly seen in Figure 6, where there is an evident 

difference between the overall values for the Pcrit metric for 

the three separate runs of the experiment. The same trend 

was observed in the two other metrics (not shown due to 

length restrictions).   

We theorize that these differences are a result of 

variation in the participants’ understanding of their assigned 

task. The three experiment runs were administered by 

different individuals. A careful postmortem suggested that 

these individuals inadvertently placed a subtly different 

emphasis on differ rent aspects of the instructions for each 

Effect of Reliable AP for 3 Experiment Runs
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Figure 6: Average values for Pcrit metric for the 3 experiment 
runs (12 participants each) after grouping by 
presence/absence of the AP signal. Data from all reliable 
trials (0000+W000 vs. 0P00+WP00) are compared. A more 
negative value indicates improved performance. Reliable 
AP always improves performance over no AP, but overall 
performance varies substantially between the three runs.  
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run, thus creating three different driving mindsets that could 

explain the evidence seen in Figure 6: Slow/Calm 
(Experiment 3), Fast/Aggressive (Experiment 2) and 

Somewhere In Between (Experiment 1). 

The instructions were designed to situate the 

participants in a “drive conservatively but quickly” 

mindset. This gave the participant the responsibility of 

enacting a compromise between two often-conflicting 

goals, as most of us do in real-life driving on a daily basis. 

However, a simulator is not a real car and brings no real 

consequences to aggressive driving. If the experimenter 

read the instructions with a greater emphasis on 

“conservative” as opposed to “quickly”, the participant’s 

behavior might be different for that particular run of the 

experiment. This is what seems to have occurred. 

9. Conclusions
The experiment described here confirms previous 

evidence of a deleterious effect of interspersed false 

positives (in contrast to the neutral effect of false negatives) 

on the ability to use a binary haptic warning signal.  This 

work extends these findings to a substantially more 

sophisticated scenario involving a semi-realistic driving 

simulation with a pedal-controlled tracking task in the 

presence of additional workload, with intuitively generated 

continuous force feedback delivered through the pedal, and 

for a set of metrics which evaluate “conservative driving”. 

This experiment has also introduced new possibilities 

regarding the potentially positive performance impact of 

interspersed false negatives in a warning signal for our 

specific context. 

We conclude that participant instruction can strongly 

influence their attitude when immersed in complex 

scenarios such as the Active Pedal driving simulator. A 

post-experiment analysis of the results leads us to conclude 

that our instructions inadvertently created 3 different kinds 

of driver mindsets (Slow, Moderate, Fast).  Specifically, we 

believe that the three experimenters tended to encourage the 

participants to drive more or less aggressively through both 

vocal emphasis in reading written instructions, and ad-hoc 

clarifications.  The level of impact of Active Pedal force 

feedback (AP) varies given these different driver mindsets.  

At least within the conditions studied, the AP seems to have 

a stronger influence in moderating driving behavior for 

people who are driving aggressively.  

In general, the strong sensitivity of this type of highly 

contextualized, stakes-based experiment to experimenter-

influenced participant strategy underscores the need for 

care in experiment design and protocol as well as careful 

analysis of results to better understand the gathered data.  

As implemented by us, the presence / absence of a 

workload task made no measurable difference in the impact 

of AP on driving performance. Possible causes for this are: 

a) Our WL task was not hard enough to impact on the 

"automaticity" of the driver's mental state. 

b) The principal response to the WL task was to drive less 

aggressively in general, a condition in which the AP had 

less effect. Thus WL (in this case) may have changed 

participant behavior, but independently of the AP.

We emphasize that the conclusions presented here apply 

only to our proposed haptic feedback model (Active Pedal) 

and the additional information it might provide to the driver 

and not to the general Drive-By Wire case. 

In future work, we plan to further investigate the 

subtleties of warning signal reliability for complex 

scenarios such of that described here, and to innovate on 

mechanisms for reliable experimentation in these situations.
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