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Abstract—In-body lived emotional experiences can be complex,
with time-varying and dissonant emotions evolving simultan-
eously; devices responding in real-time to estimate personal
human emotion should evolve accordingly. Models assuming
generalized emotions exist as discrete states fail to operationalize
valuable information inherent in the dynamic and individualistic
nature of human emotions. Our multi-resolution emotion self-
reporting procedure allows the construction of emotion labels
along the Stressed-Relaxed scale, differentiating not only what the
emotions are, but how they are transitioning – e.g., “hopeful but
getting stressed” vs. “hopeful and starting to relax”. We trained
participant-dependent hierarchical models of contextualized indi-
vidual experience to compare emotion classification by modality
(brain activity and keypress force from a physical keyboard), then
benchmarked classification performance at F1-scores=[0.44, 0.82]
(chance F1 = 0.22, σ = 0.01) and examined high-performing fea-
tures. Notably, when classifying emotion evolution in the context
of an experience that realistically varies in stress, pressure-based
features from keypress force proved to be the more informative
modality, and more convenient when considering intrusiveness
and ease of collection and processing. Finally, we present our
FEEL (Force, EEG and Emotion-Labelled) dataset, a collection of
brain activity and keypress force data, labelled with self-reported
emotion collected during tense videogame play (N=16) and open-
sourced for community exploration.

Index Terms—Affective Touch, Dynamic Emotion Classifica-
tion, Emotion Labelling Methods, Keypress Force, Brain Activity

I. INTRODUCTION

If emotionally reactive machines could interpret the trans-
itional nature or direction of their inherently emotional human
users, responses could be designed to be contextually appro-
priate. Due to variations in human emotion expression and
personal preferences of a desired response, such machines will
likely need to be customized and tuned to the individual. In
particular, a system must be able to recognize user-specific
emotion transition through some identifiable parameter, such
as intensity or polarity. For instance, when a custom emotion-
aware game system estimates a user’s “anxiety” levels as low,
it could ramp intensity up to a personal “frustration” threshold,
to avoid game burnout.

Natural (unmediated) interpersonal emotion communication
relies on many nonverbal cues: we interpret emotion expres-
sions from others through eye contact, vocal inflections, body
language and touch behaviour [1]. Using machines to recog-
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Figure 1: An emotion experience trajectory estimated by emotion
transition. We built models on two modalities: brain activity (EEG)
and keypress force (FSR), distinguishing intensifying(+), stable(0),

or resolving(-) stress, at 0.5s and 5s windows.

nize social touch unlocks the significant emotional content
encoded in physical contact [2]–[4].

To model spontaneously evolving emotion in the vicinity
of a participant-defined Stressed-Relaxed scale, we collected
participant biosignal data while they played Playdead’s In-
side [5], an emotionally evocative videogame. We followed
the multipass data labelling protocol described in [6], record-
ing brain activity using electroencephalography (EEG) and
keypress force via a Force Sensitive Resistor (FSR)-embedded
keyboard. Both have been shown to encode emotion [7]–
[9] and are reasonable to collect during videogame play.
While we considered other well-studied emotion-encoding
biosignals (namely electrodermal activity, pulse oximetry, and
electrocardiography), sensors that were worn on fingers or
otherwise generated electrical interference with the sensitive
EEG system proved unsuitable for this study.

In this paper, we present our FEEL dataset (collected under
a separately peer-reviewed protocol [6]) and use it to ask:
How well can we classify emotion transitions or directions
using keypress force vs. brain activity collected during
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an emotionally evocative video gameplay? Specifically,
we demonstrate a personalized-to-participant emotion inter-
pretation paradigm, then assess model performance, efficacy
and practicality of classifying emotions as they are in flux,
by comparing two distinct implicit and highly personalized
expressive modalities which play out at different timescales
(brain activity and keypress force). To further inform model
design, particularly with respect to modality-specific frequency
characteristics, we provide an evidence-based reference scale
for window size selection. We contribute:

1) The FEEL dataset, collected using a multipass labelling
protocol featuring co-designed scales for annotating emo-
tion self-report on keypress force and brain activity data.

2) An empirical demonstration of personalized emotion
transition classification that distinguishes between emo-
tion transition labels across a Stressed-Relaxed scale
(e.g., cautious +, 0, or - as “feeling cautious and getting
more stressed” vs. “cautious and stable” vs. “cautious but
relaxing” respectively).

3) Evidence that hierarchical classification of emotion evol-
ution along a Stressed-Relaxed dimension using touch
pressure features performs nearly twice as well as con-
tinuous brain activity.

II. BACKGROUND

Machine interpretation of spontaneous emotion requires
models built on ecologically valid emotion data. From choice
of expressive modality to data labelling, we ground our data
collection and modelling choices in existing literature.

Affect-Encoding Modalities: Although the biological mech-
anisms through which emotion modulates touch are still un-
clear [10], touch is a concrete, perceivable and expressive
act [11] and a promising modality for both inferring and in-
fluencing emotion experiences [12]. Relative to other channels
commonly used in emotion research – EEG, brain imaging,
heart-rate, facial configurations, body posture, speech [13],
[14] – touch can be easier to harness, less intrusive to collect,
and gives the participant more immediate agency in terms of
behaviour compared to biological signals.

Affective touch classification has largely been based on
observation and evaluation of toucher behaviour when they are
prompted to reflect on a past experience [15], or to act in an
emotional context [2]. While interpersonal touch pressure has
been shown to communicate currently felt affect [4], [15], in-
vestigating keypress force or pressure for evidence of emotion
“leakage” in the absence of communicative intent is relatively
new [8]. Using pressure-sensitive keyboards, emotion has been
classified using typing pressure with up to 93% correspond-
ence to self report (chance 17%) [9], with [8] finding a positive
correlation between stress and typing force. Now, we explore
how keypress force may communicate emotional transitions
between Stressed and Relaxed on pressure-sensitive keys.

Changes in electrical potential in brain activity or elec-
troencephalography (EEG) [16] for emotion classification is
dominated by Event-Related Potentials (ERPs). However, as
ERP time windows are typically constructed within 100-750ms
after an event [17], [18], the ERP fails to capture emotion

evolution, where change occurs over the course of minutes and
hours [19]. Recently, 2D differential entropy-based features
capturing spatial relationships and Convolutional Neural Net-
works (CNNs) can classify 1s data instances over emotional
experiences (positive, negative, neutral) lasting 4 minutes at
an accuracy of 97.10% (chance 33%) [20].

Here, we build on machine classification of emotion
transition using multiscale self-reports on brain activity and
keypress force during video gameplay – a dynamic emotion
experience.

Emotion Self-Report: Time-varying emotion expression can
be attributed to complex neurological and physiological regu-
lation mechanisms [21], appraisal effects [22], cognition and
contextual factors [23], [24]. To simplify in-lab research,
computational emotion modelling often relies on emotions
being represented as a point in an emotion plane along easy-
to-read scales with dimensions of arousal, valence, and/or
dominance [15], [25]. While these models are convenient, in
real use we need to address emotion evolution over time. How-
ever, commonly used labels on the arousal-valence circumplex
model [26], PANAS [27], or SAM [28] (among others) quickly
become intractable for sampling at the rate of change for
emotion (ranging from a few seconds to several hours [29]).

Emotion self-report with any measurement scheme raises
generalizability concerns. Our understandings of the instru-
ment scale are highly subjective [25], [30] and influenced by
life experiences and personal history [31]. Any set of ground-
truth labels for self-reported emotion are likely similarly
personalized: e.g., one person’s anger scale may be unrecog-
nizable by another, or even by themselves at another time. In
an evolving emotion experience, recognizing a particular user’s
near-future emotional expression can improve the temporal
and situational appropriateness of a machine response.

Emotion Modelling with Multiple Reporting Passes: With
time and reflection, emotional assessment of an experience
may be dramatically different from initial evocation [22], [24].
Emotions may be most intense while directly in an experi-
ence [19], [32], but articulation can only occur after some
time to assess and consider the appropriate language [33]. [34]
suggests the ideal window of time for emotion-naming may
be shortly after an experience, to give time for processing [32]
but before memory degrades [35].

Computational emotion models often rely on a single pass
of emotion that is self-reported [13], [14], [36] or observed and
labelled by judges. To our knowledge, our study is the first
to triangulate multiple self-report methods for more reliable
observation of emotion evolution.

We demonstrate the use of our FEEL dataset for exploring
classification models of incidental touch pressure as a modality
that captures implicit emotion expression, comparing perform-
ance to models of the more intrusive, but more studied, brain
activity signals.

III. DATASET DESCRIPTION

The FEEL collection protocol [6] was a significant invest-
ment requiring ∼400 researcher hours: each 2-hour session
required a team of 4 researchers, with 2 hrs of setup, calib-
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ration and breakdown time, plus earlier piloting. As a quality
assurance measure, we reviewed protocol adherence during
data collection and signal quality for all 23 participants. Given
our plans to publish this dataset, we used a very high standard
for data quality and consistency, setting aside a participant’s
entire record where at any point during the session there was
any suspicion of excessive noise in EEG data, equipment
malfunction, synchronization mishap or possible recording
errors. This left us with 16 publishable records (7 omitted
due to any combination of the above set of minor issues).

The FEEL dataset consists of comma separated value (.csv)
files organized by participant. Video data is excluded for
participant privacy. Analyses start with this 5.4GB dataset,
available at https://www.cs.ubc.ca/labs/spin/FEEL dataset [to
be posted upon acceptance].

Data Capture and Preparation: As part of recruitment,
participants completed a questionnaire adapted from the Trait
Meta Mood Scale (TMMS) [37]. Based on these results, we
invited only those scoring with high emotion clarity and low
emotion suppression based on their responses.

Of the N=16 participants, 8 are female and 8 male; 8
between 19-24 and the other 8 between 25-34 years of age.
All played videogames regularly from a few hours a month
up to 4 hours daily, nearly all of whom report 1-6+ hours per
week; none had played Inside. All were compensated $30 for
the 2-hr data collection session.

Data collection was conducted in four steps [6]:

1) Initial Gameplay generated streams of participant brain
activity (EEG) and keypress force from an FSR-
embedded keyboard timestamped from the first keystroke,
indicating the start of gameplay.

2) In Word Scale Calibration, participants placedpre-
selected emotion words relative to one another on a
Stressed-Relaxed emotion scale.

3) In the first self-report cycle (Calibrated Interview), parti-
cipants then reviewed and annotated the gameplay video
with their calibrated word sets.

4) Finally, in the second self-report cycle (Continuous An-
notation) they used a 1D joystick (position sampled at
256Hz) to annotate the video.

We timestamped data streams with corresponding frames
from the Initial Gameplay video, where participant gameplay
averaged 13:24 minutes (min 8:25, max 21:37, SD 3:53).

Brain Activity Data Stream (EEG): Participants were in-
structed to minimize conscious movement; researchers noted
sessions with excessive motion to check for unusable EEG
data (deciding to omit it if so).

We captured brain activity data using EGI’s EEG 400
system1, sampled at 1kHz, with a band pass filter of 1-50Hz
applied in post-processing. We followed standard practice in
removing high frequency jitter and 60Hz mains noise [38]
while retaining α, β, θ, and γ frequency bands (associ-
ated with emotion processing [39]). We did not downsample
because (a) we were able to efficiently capture important
dynamics using spectral-domain features and (b) we are still

exploring which frequency components are important.
We checked classification performance over a number of

data cleaning procedures using MNE-Python tools2, including
artifact removal and baseline correction by the entire gameplay
duration, and by adjacent windows. We also tried applying
Independent Component Analysis (ICA) to address eye blinks
and removing channel segments with exceptionally high noise
levels. These procedures yielded no significant classification
improvement or a marginal performance decline over 30 train-
ing and testing iterations. So, we report results and publish
the dataset with minimal pre-processing3, largely leaving EEG
“alone” as recommended by [40]. We used this data version
in the classification models reported in this paper.

Keypress Force Data Stream (KFP): We embedded force-
sensitive resistors (FSRs) on game-specific control keys (four
direction keys and ALT) on a standard keyboard. Force ranged
from 0 (no contact) to 1023 units (∼1kg)4. We downsampled
FSR data from 52Hz to match videogame framerate at 30Hz.

Timeline with Calibrated Words (TwCW): The Timeline
was created from collection sequence Steps 2 and 3.
Word Calibration: Following gameplay, players calibrated a
Stressed-Relaxed emotion scale, contextualizing scale-points
with memories of their recent gameplay experience and mark-
ing 13 pre-selected emotionally “Calibrated Words”: Cautious,
Satisfied, Hopeful, Frustrated, Anxious, Nervous, Threatened,
Resigned, Alert, Accomplished, Fearful, Dread, and Curious.
Participants were also allowed to write-in up to two additional
words. This individualized calibration step contextualizes how
each person perceives and uses these words with respect to the
Stressed/Relaxed dimension, improving participant-researcher
grounding on language usage [6], [25].
TwCW Construction: Players reviewed their gameplay video,
annotating (calibrated) emotion words at timepoints associated
with strong emotion. To construct the TwCW, we associated
each interview annotation with the calibration value for that
word, at the annotated gameplay timestamp.

Continuous Annotation Stream (CA): In the second game-
play review, the CA is generated from a non-biased joystick
(holds last position rather than returning to centre) tracing an
emotion time series, where the resulting curve is a proxy for
a participant’s true emotion trajectory between Relaxed and
Stressed over the timeline of the gameplay experience. Joystick
position readings were matched with video frame rate of 30Hz
to ensure alignment with video playback. We smoothed analog
jitter in the joystick data with a simple moving average filter,
then normalized range to [0:1].

1EGI EEG system details: https://www.egi.com/research-division/
eeg-systems/geodesic-eeg-systems. Model 400 features a 64-channel Routine
Hydrocel geodesic sensor net, proprietary NetStation data collection and
visualization software.

2MNE tutorials available at https://mne.tools/stable/index.html
3Included processing ensures labelling format consistency and time align-

ment across data streams. The FEEL dataset is published unfiltered with no
artifact, segment, nor baseline correction. Any processing prior to classifica-
tion is described in Section IV - Methods.

4As defined by the FSR specifications available commercially at https://
www.robotshop.com/en/force-sensing-resistor-fsr.html.
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Figure 1 highlights the data collected during the study:
player-specific gameplay streams (EEG and FSR), emotion
word calibrations, and the TwCW and CA – two time-series of
emotion self-report annotated on the same dimensional plane
of the Stressed-Relaxed scale over the gameplay timeline.

IV. METHODS

To demonstrate personalized emotion transition classifica-
tion using our FEEL dataset, we created participant-specific
hierarchical multi-label models to leverage several benefits, in
the context of multi-label classification tasks featuring multiple
label streams – here, emotion words and quantitative stress
measures. By incorporating a hierarchical structure into the
model, we capture the complex and dependent relationships
that may exist between labels, thereby improving classification
accuracy [41], [42]. This approach is also more flexible in
handling different types of label streams, and comprehensive
in its view of the individual’s emotional state in both brain
activity and keypress force.

cautious: 
Multiclass 
classi f ier

happy: 
Multiclass 
classi f ier

 ...
anxious: 

Multiclass 
classi f ier

Sensor  
data (EEG 
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Figure 2: Visual representation of our hierarchical approach. We
use a local multi-class classifier per parent node: first predicting the

Calibrated Word, then training models for each emotion word
subset, and outputting three possible directions relative to Stressed.

A. Data Instances: Labels and Window Lengths

We aligned FSR, EEG, and emotion self-report time series,
dividing streams into non-overlapping, equal-duration win-
dows. We analyzed window lengths of 0.5, 1, 2 and 5s, span-
ning ERP window range [17], [18] up to perceived emotion
duration of “a few seconds” [19], [43]; 1s and 2s windows
match other emotion-related classification studies [15], [44],
[45]. Results from intermediate lengths followed the trend set
by the extreme values, so we report only 0.5 and 5s for brevity.

A single data instance consists of features and labelled
emotion class calculated from data within one window. Across
all participant sessions, we collected an average (over all
participants) of 1435.13 data instances for 0.5s windows
(σ=405.51) and 142.63 instances for 5s windows (σ=40.75).

To implement hierarchical multi-label outputs, we used the
Python package HiClass [46] with algorithms implemented
in scikit-learn [47], XGBoost [48], and the Pytorch frame-
work [49]. In a 2-stage approach, we first trained participant-
specific multi-class models that output the emotion words from
the TwCW, then trained a classifier from the CA by each
Calibrated Word, outputting binned direction values (slope of
best-fit-line as in [6]).

The resulting label set across 16 participants consisted of
approximately 11 (µ = 10.94, σ = 1.91) distinct calibrated

emotion word labels, out of a possible 15 calibrated emotion
words (13 provided and 2 write-ins per participant, Table I).

For each word, there are three possibilities regarding trans-
ition direction; e.g., Nervous could be nervous+, nervous0,
and nervous-, representing being nervous but with intensifica-
tion along the Stressed scale, stable stress, and resolving stress
respectively. When looking at transition directions for each
word used by each participant, we found that all three possib-
ilities appear for most words, except in cases where an emotion
word is mentioned only once or twice (such that it could
not be associated with three distinct directions). Observed
distributions were [µ, σ]: [2.76, 0.53]5s and [2.96, 0.22]0.5s).

Figure 2 exemplifies the hierarchical process with two
streams of self-reported emotion. Where window boundaries
do not coincide with a logged data point, we imputed with
the previous data point, turning our time-series into a higher-
resolution stepped signal. We resolved windows containing
multiple labels by using mode for the Calibrated Words and
the slope of the best fit line in the continuous annotation.

Table I: Full list of Calibrated Words used by at least one
Participant in their TwCW.

Calibrated
Word

Number of
Participants

Calibrated
Word

Number of
Participants

Anxious 15 Confused* 11
Frustrated 15 Curious 11
Dread 14 Resigned 10
Indifferent* 14 Threatened 8
Satisfied 14 Annoyance* 5
Hopeful 13 Resolve* 4
Accomplished 12 Excited* 3
Alert 12 Clueless* 1
Cautious 12 Triumph* 1

Participants used 11 of the 13 provided words (none spoke of
feeling Fearful nor Nervous during the interview stage so both are

omitted). Starred * words are participant-generated write-ins.

B. Force Sensitive Resistor (FSR) Data

FEEL’s keypress force (FSR) data exhibited an average
of <1 distinct keystrokes per window, contraindicating deep
learning models. We extracted features from keystroke activity,
frequency, and statistical analysis, generated data instances
aligned with brain activity (0.5s and 5s), and performed model
selection with classical machine learning models.

Data Preparation: To mitigate FSR signal noise while main-
taining the overall shape of a keystroke, we applied an
Exponentially Weighted Moving Average (EWMA) [50] with
smoothing factor α = 0.5. We aggregated game keypress
activity from the original game-control keys (denoted A0-A4
in the dataset) into two additional channels as ‘composite
keys’, computing over all keys the force sum (A5) and
maximum (A6), resulting in a total of 7 keypress channels.

Frequency and statistical features: Based on previous stud-
ies of emotion expression of social touch pressure [15], we
calculated a set of descriptive statistics for each window of
pressure data – minimum, maximum, variance, mean, area
under the curve, and sum of absolute differences. From the
same windows, we calculated the most prominent frequency

This article has been accepted for publication in IEEE Transactions on Haptics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TOH.2023.3308059

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of British Columbia Library. Downloaded on January 31,2024 at 20:25:00 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

(amplitude and frequency bin), amplitude variance, amplitude
mean, and peak count for frequency-domain features [15].

Keystroke features: Since participants activated keys based
on gameplay rather than typing, certain features of keystroke
dynamics – such as travel time between keys – are less relev-
ant here. We therefore calculated touch features highlighting
fluctuations in force and duration in both time and frequency
domains [15], [51]. We also borrowed parameters related to
the Attack Decay Sustain Release (ADSR) envelope [52],
commonly employed in synthesizers to describe piano key-
board output. For each keystroke in a window, we calculated:
keystroke duration (in ms), peak count, amplitude of maximum
peak, time from keystroke start to maximum peak, time from
maximum peak to key release, force variance, average force,
and area under the keypress curve. Parameters are aggregated
by taking the mean over each data window.

For the purposes of multi-modal window alignment and the
simulation of real-time application of emotion classification on
keypress force, we used uniform data windowing. However,
we note that distortion may occur where keystrokes cross
window boundaries.

C. EEG Data

We calculated Differential Entropy (DE) for the 5 frequency
bands demonstrating activity during emotion expression [20],
[53]: δ (1-4Hz), θ (4-7Hz), α (8-12Hz), β (12-30Hz) and
γ (30-50Hz). For each band, we calculated the difference
between channel pairs to create a 2D Asymmetrical Map
(AsMap) feature [20]. The resulting feature is an image with
size 64× 64 and a depth of 5 frequency bands.

D. Classification Model Implementation

To compare EEG- vs. FSR-based models classifying emo-
tion transition, we ran 30 iterations of 5-fold cross-validation
(training and validation sets randomized every iteration). Fig-
ure 3 summarizes the overall experimental pipeline.

FSR: We performed grid search cross-validation (CV) (k = 5)
to select the best-fit model by participant among seven ma-
chine learning models. Due to the sparseness of the FSR
data (low sampling rate with some keys pressed in only a
few brief instances), we elect to compare performance across
Extra Trees, Random Forest, AdaBoost, Gradient Boosting,
XGBoost, Logistic Regression, and SVM [47], [48], [54],
options that are more amenable to the size and scale of this
data than deep learning models. Given the high dimensionality
of our feature set (d = 82 features per participant), we selected
features by employing a zero variance threshold to remove all
constant-valued features and use recursive feature elimination
(RFECV) [55] with CV (k = 5). We report mean test scores
over the 16 participants after 30 trials using the best-fit model
for each, with a 70/30 training-test split ratio.

EEG: We used a CNN model with a 2D feature set to take
advantage of the automated learning demonstrated by deep-
learning models. In the interests of balancing model com-
plexity with overfit risk [56], we implemented the structure
proposed by Ahmed et al. (2022) [20] – a 2-layer CNN
using 3x3 kernels and 2 Max Pooling layers – for affect

classification, adjusting the input size to 5×64×64 to account
for the size of our features. We created train and test sets using
a 50/50 split ratio. Figure 4 summarizes the CNN architecture.

We performed grid search CV (k = 5) on the train set to
tune the number of epochs (5, 10, 20), the batch size (128, 256,
512) and the learning rate (10−3, 10−4, 10−5) to select the best
participant-specific hyperparameters for our model. Larger
epoch sizes (≥ 100) were omitted from the search space since
similar training performances were observed, while being
resource intensive. Once we obtained the parameters that
maximized the macro-hierarchical F1-scores [46], we trained
the participant-specific model 30 times on the full training set,
each time using the unseen test set to calculate performance
metrics. We report mean test scores from the 30 runs.

Figure 4: Structure of the EEG CNN model for classification
where each convolution layer uses a 3× 3 kernel (of depth 32 and
16 respectively) followed by a ReLU activation function. The inputs

to the model are the 5× 64× 64 AsMap features [20], while the
output is the class output (N = 3).

V. CLASSIFICATION PERFORMANCE BY MODALITY

We analyzed macro hierarchical F1-scores [46] by model
and window size (Table II) finding that classification perform-
ance monotonically increases with window size. For brevity,
we report in depth on 0.5s and 5s windows. With two modal-
ities and two window sizes, our data does not pass Levene’s
test for equality of variances (F(3,1916)=51.0, p < 0.001),
so we report results using a two-way aligned rank transform
analysis of variance (ART ANOVA), implemented with R’s
ARTool [57]. All reported effects are statistically significant
at p ≤ 0.001. The main effects of affective modality (M) and
window size (W), and interaction effect (W/M) yield F ratios
of FM (1, 1916) = 5283.98 (η2p = 0.733), FW (1, 1916) = 56.88
(η2p = 0.028), and FW/M (1, 1916) = 285.26 (η2p = 0.130).

Table II: Hierarchical classification scores for each (W)indow /
(M)odality where the best combination is 5s-FSR. All W/M models

exceed chance by ∼2-4x.

W/M F1-Score Precision Recall

5s EEG 0.415 ± 0.110 0.415 ± 0.109 0.422 ± 0.123
0.5s EEG 0.494 ± 0.070 0.544 ± 0.118 0.469 ± 0.090
0.5s FSR 0.686 ± 0.039 0.681 ± 0.036 0.682 ± 0.037
5s FSR 0.823 ± 0.012 0.827 ± 0.013 0.825 ± 0.013

0.5s chance 0.215 ± 0.010 0.215 ± 0.010 0.215 ± 0.010
5s chance 0.216 ± 0.009 0.216 ± 0.009 0.216 ± 0.009

Scores are calculated over 480 hierarchical metrics (16 participants
× 30 trials, average macro hierarchical F1 taken over all classes).

We ran post-hoc tests using a Holm correction to further
investigate the individual mean differences in Table II (sig-
nificance at pHolm ≤ 0.001 unless indicated). Results show
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Figure 3: Pipeline for model selection and evaluation. We performed grid search CV (k = 5) on the training set to tune hyperparameters
and select best-fit models for FSR data. The models were then evaluated on an unseen test set to calculate performance metrics. We

repeated this process 30 times per participant, and report mean test scores across the 30 runs and 16 participants.

that (1) mean F1-score was significantly greater for FSR-
based models than EEG-based models; (2) mean F1-score
increased with window size, with 5s windows performing
strongest across modalities; and (3) FSR at 5s windows
performed best overall. Additionally, we found that the chosen
CNN parameters for batch size and epochs tend to differ by
participant, while the learning rate remained stable. For 0.5s,
the optimal parameters by participant were seen for batch
sizes of µ=160.0, σ=96.0 and training epochs of µ=13.8,
σ=6.5; for 5s, µ=248.0, σ=139.0 batch size and µ=11.6,
σ=6.1 epochs. In all cases, loss curves stabilize by 15 epochs,
suggesting diminishing returns in classification performance
with additional training epochs.

VI. FSR FEATURE ANALYSIS

For insight on how features inform classification, we ran
RFECV on the feature set of both FSR models (0.5s and 5s
windows), and grouped selected features by type – pressure-
based (direct measures of keypress force), time-based (meas-
ures of duration), and frequency-based (FFT-based features).
We analyzed model performance using F1-score for feature
group. Figure 5 summarizes the top performing feature groups.

Our data for both models (0.5s and 5s) again does not pass
Levene’s test for equality of variances (F0.5s(2,39356)=831.74,
p0.5s < 0.001; F5s(2,39356)=906.32, p5s < 0.001) with three
feature groups, so we report F1-scores after two one-way ART
ANOVA for each window size. Main effects of both tests are
statistically significant at p ≤ 0.001 significance, yielding F
ratios of F0.5s(2, 39356) = 1049.3 (η2p = 0.051) and F5s(2,
39356) = 761.97 (η2p = 0.037), respectively.

To investigate individual mean differences, we ran post-hoc
tests using a Holm correction significance at pHolm < 0.001
unless otherwise indicated. The mean F1-score was signific-
antly greater for models that rely on pressure-based features,
for both window sizes, followed by time-based features.

VII. DISCUSSION AND FUTURE WORK

Here, we reflect on our research question, and how our
findings can inform the use of touch pressure data in mod-
elling dynamic emotions and contribute to the development of
emotionally responsive devices.

Window 
0.5s 5s

Keystroke pressure on RIGHT key (auc, max peak, mean, variance) 52.17% 67.43%
Pressure stats on A6 (auc, max, mean, min, sum squared diffs, var) 51.80% 65.15%
Pressure stats on A5 (auc, max, mean, min, sum squared diffs, var) 51.32% 63.72%
Keystroke duration on RIGHT key (attack, duration, peak count, release) 50.89% 61.85%

40.00% 70.00%
Avg. F1-Score

Figure 5: Relative feature performance by window size. Darker
cells indicate frequent selection of better-performing features. The

RIGHT directional key is used to advance the character – and game
storyline – through the side-scrolling game. A5 corresponds to the
sum of the pressure across all keys, while A6 corresponds to the

max force over all keys.

A. Real-Time Predictors of Dynamic Emotion

Longer Time Windows Favour Keypress Force: For person-
alized classification models of evolving Stress built on parti-
cipants screened for high emotion clarity, FSR models perform
better than those built on continuous EEG for both window
sizes we analyzed. Individualistic emotion evolution inherent
in real life events, particularly when reflecting or reacting to
memory retrieval, may require more than 0.5s [29], [58]. We
posit that longer windows will better capture lower-frequency
information and thus benefit manual keyboard interactions for
models of keypress force, but may blur the picture of higher-
frequency brain activity features [38], [44].

Manual touch pressure encodes valuable emotion content:
Our feature extraction techniques were informed by analyses
of a variety of affective touch interactions: keystroke dynamics
in typing behaviour [9], pressure and location features from
social touch [15], and ADSR features from sounds produced
from a music keyboard [52]. Feature evaluation reveals that
of the 20 most important features from all three domains,
16 are pressure- or force-related. Increases in typing force
were previously known to correlate with higher stress exper-
iences [8], and machine-mediated social touch [51] has been
differentiated by variations in pressure. Now, we have evidence
that Stressed-scale emotion expression can also be captured
implicitly through keypress force using an easily modified
videogame keyboard. We continue to investigate other con-
texts and emotion scales where we subconsciously express
emotion via touch pressure, leaving dimensional examination
of dynamic emotion evolution and touch pattern correlates to
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future work. In the meantime, we posit that the information
available by tracking pressure in devices where interactions
feature manual affective touch outweigh the cost of adding
this functionality.

The case for emotion transitions – timing matters: When
modelling human emotions, we may consider how the emotion
space changes over time: when we feel sad, it may be easier
to get angry than calm, despite these emotions being separated
by comparable Euclidean distances on the Affect Grid [26].
An emotion experience can feel more like a trajectory over a
constantly changing landscape than a point [25]. After study-
ing the evolution of stress, we infer that predicting direction
of an emotion trajectory may be particularly important when
delivering interventions for emotion regulation. For example,
strategies may differ for the onset of anger vs. after rage has
cooled [32].

B. Building Effective Models for Dynamic Emotion Prediction

Potential confounds: First, we point out that there are a
number of potentially confounding factors, including (but not
limited to): participant interest in, and proclivity for, this
video game genre; fluctuations in skin conductivity; extraneous
motion; and cognition in action planning; personal experi-
ences of Stress-Relative emotions; individual differences in
the ability to express, appraise, and resolve emotions. We
minimized these limitations through participant screening, per-
sonalized word calibration, multipass data labelling for richer
experience capture, and individualized emotion classification
models. However, they may still have influenced the reported
classification performance.

Modality capture: The collection of this dataset was time-
intensive and effortful, in large part due to setup and calibra-
tion of the EEG data collection system. Given EEG signal
sensitivity to surrounding conditions as well as collection
effort and intrusiveness, the comparable-to-better classification
performance of FSR signals for emotions adjacent to the
Stressed-Relaxed scale means that under certain conditions –
e.g., slower evolution as for Stress, emotion reflection tasks
requiring appraisal or memory retrieval [58], low compute
and/or time resources, or prioritization of personalized over
general models – we are hereby able to recommend reliance
on, or the addition of, keypress force or other manual touch
data for emotion interaction.

Labelling effort: Collecting multipass emotion self-reports
affords rich triangulation of a numerical emotion rating onto
personalized emotion scales. But it also incurs a time cost:
altogether, personalized calibration, emotion elicitation, inter-
view, and continuous annotation take 3 to 4 times as long as the
emotion elicitation task alone. Where tasks run long, multipass
reviewing procedures require careful consideration to ensure
annotation can occur contemporaneously without interfering
with the natural evolution of the emotional experience.

Emotion elicitation and affect scale: Calibrating how users
placed emotion words on a Relaxed-Stressed scale allowed us
to simultaneously pool data and personalize models. While
participants had personalized understandings of the measure-

ment scale, they all engaged in the same emotion elicitation
experience (a horror video game). For personalized models to
work “in the wild”, they must be built on participant-defined
emotion experiences that evolve longitudinally and spontan-
eously. Human emotional experience is ever-evolving; so also
must be the calibrated scales, training data, and accompanying
models across multiple named emotions and touch interaction
patterns. Future work examines how longitudinal calibration
can trace evolution of emotion models over multiple data
collection sessions.

Context Matters in Personalized Emotion Models: A de-
ployed model could face a wide range of priorities. Natural-
ness of a responsive agent may value minimal latency over
accuracy. In other situations, some scenarios may be more
important to capture accurately (‘something’s wrong’) than
others (‘everything’s fine’). Machine learning accuracy metrics
are useful for comparing performance, but for contextually
effective machine responses, new metrics may be necessary to
reflect the nuances of the overall experience.

VIII. CONCLUSION

We present the FEEL dataset, the first of its kind: affective
multimodal data (brain activity and keypress force estimated
by EEG and FSR) collected during an emotional videogame
experience and labelled using a multipass emotion self-report
described by [6] – resulting in multi-timescale, and personally
calibrated emotion labels rooted on the Stressed-Relaxed scale.
This paper describes the dataset and the specifics of its
collection, and demonstrates participant-dependent machine
learning classification performance differentiating emotions in
transition – e.g., whether one’s stress is growing or resolving,
benchmarked here at F1 = 0.82 at the best case (chance
F1 = 0.22, σ = 0.01). We invite the community to explore
other computational strategies and advance the exploration into
dynamic emotion classification.

Comparing classification performance over factors of win-
dow size, feature set, and modality, we find that, overall:

1) Window sizes influence recognition behaviour for both
brain activity and touch pressure, the choice of which
depends on intended observation (longer windows are
better able to capture slower changes but shorter windows
can capture high frequency activity)

2) Feature evaluation of the FSR feature set reveals that
pressure features used in machine-mediated social touch
rank highest in terms of selection frequency.

From these findings, we propose that emotion interaction
systems should (1) consider window size in labelling; and (2)
improve emotion recognition opportunities by incorporating
pressure sensors where manual human touch is enacted.
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