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Abstract—Many emotion classification and prediction ap-
proaches focus on emotion state, defined as static and single-
valued. In contrast, our in-body experience is of sensations that
can quickly evolve, consistent with scientific evidence of physiolo-
gical regulation mechanisms. Can we reframe classification to
estimate dynamic emotion parameters at interactive rates?

For insight into dynamic emotion characteristics, we developed
a multipass labelling protocol to capture controlled yet genuine
emotion evolution elicited as 16 participants played a tense video
game. We analyze and align multiple self-report outputs, inspect
the signals for emotion dynamics, and consider label metaphors of
position and angle – “where I am” vs. “where I’m going”. Finally,
we reflect on the benefits and drawbacks of such a protocol for
developing models of fast-evolving emotion.

Index Terms—affective computing, emotion classification, emo-
tion labelling, emotion dynamics

I. INTRODUCTION

Whether building robots that detect anxiety through touch
interaction or video games that dynamically adjust level diffi-
culty to optimize player engagement, computational models of
authentically developing emotions are the foundation of tech-
nology. Challenges arise in developing these computational
models from true and spontaneously evolving emotions.

Emotion theorists have long observed time-varying dynam-
ics of emotion expression, attributing them to complex neuro-
logical and physiological regulation mechanisms [1], appraisal
effects [2], cognition and contextual factors [3], [4]. To sim-
plify in-lab research, computational emotion modelling often
relies on an “emotions-as-point” metaphor [5], [6], represented
as a dimensionless point in an emotion plane in which self-
reporting static emotion labels for classification involves easy-
to-read scales, often along dimensions of arousal, valence,
and dominance [7]. While these models are convenient, for
realtime use we need to recognize emotion evolution over time,
rather than distilling a lengthy event into a single label.
Going from theoretical to computable: Obtaining authentic
emotion data is a significant obstacle. Our memories and emo-
tional assessments are affected by time and reflection [2], [4];
how representative can a reporting scheme be of someone’s
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“reality”? Commonly used labels on the arousal-valence cir-
cumplex model [8] or PANAS [9] or SAM [10] (among others)
quickly become intractable for sampling at the rates in which
emotion can potentially evolve.
Emotion is personal: Independent of the measurement instru-
ment, self-report of emotion incites questions of generalizabil-
ity across the population. A researcher’s understanding of the
instrument scale may be very different from that of a parti-
cipant [5]; our comprehension of an emotional ‘landscape’ or
internalized emotion frames of reference are highly subjective,
influenced by life experiences and personal history [11]. We
presume that any set of ground-truth labels for self-reported
emotion are similarly personalized: i.e., the experience or scale
for anger for one person may not be recognizable for another.

We propose that evaluating emotion based on dynamic
qualities will advance the accuracy of machine recognition
of human emotion experiences. Better forecasting of a user’s
near-future emotional expression allows for system responses
that are temporally and situationally appropriate.

A. Approach

We assess the viability of building computational emotion
models based on dynamic conceptualizations of emotion
change to bolster our capacity to predict and respond to human
emotion based on observed behavior or self-reports. Multi-pass
labelling requires high investment in early model building,
which can pay off by highlighting how to optimize labeling in
later real-time use. As outlined in Figure 1, this paper evaluates
reporting consistency between passes of a data collection and
emotion labelling methodology, leaving model building and
classification performance for future work.

Specifically, we reflect on our multi-pass protocol which
(a) triangulates emotion self-reports with modality-agnostic
observable data; and (b) employs co-creation of personalized
calibrated emotion scales which form the frame of reference
for multi-pass self-reports, collected with minimal intrusion
on the primary emotion event. Using a joystick for spatiotem-
porally high-resolution post-hoc ratings, we can construct data
windows that are (c) versatile to accommodate a variety of
emotion metaphors at our choice of time scale.
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Figure 1: Roadmap for developing an emotion-prediction engine for an emotionally responsive application.

B. Research Questions

Two lines of inquiry guided our assessment of this approach
to operationalize real-time models for emotion forecasting.

1. Do user-centered emotion reports add new informa-
tion? Nuances in users’ emotion language, manifesting as
apparent inconsistency, can interfere with emotion model
performance and validity [12]. We center users by including
(a) personally calibrated emotion scales where we create a
shared understanding of instruments and measures [5], and
(b) multiple labelling passes at different resolutions and ret-
rospective distance; then assess the information gained from
these elements. For example, do people rank common emotion
words similarly? In what ways does labelling data differ by
pass? What do we gain from quantifying the differences?

2. How might we incorporate the dynamic nature of
emotions into our computational models? Operationalizing
dynamic emotions requires models that represent the natural
evolution of an emotional experience.

We begin with the prevalent movement-based metaphor
of emotions-as-position (‘where I am’, an ordinal value on
an emotion scale), and propose another of emotions-as-angle
(‘where I’m going’, the direction and sharpness of change). We
add to these previously-proposed emotion dynamic measures
of inertia, instability, and variability [13], and compare the
properties of each with each other and in between-participant
variability for insights into how they might have value for
responsive computational models.

Through these investigations, we contribute:

• A multipass labelling protocol with insights into how to
employ triangulated emotion labels, including the role of
personalized emotion word calibration;

• Insights into the descriptive properties of various dynamic
emotion parameters, relating to their potential for use in
responsive computed models.

In the following, we root our protocol development in the
existing literature, describe the devices and instruments we
created to measure continuous dynamic emotion, outline the
data collection procedure, and evaluate the data according to
our questions. In discussing our findings, we consider where
these new model elements may provide the greatest value.

II. RELATED WORK

Protocols featuring internally consistent emotion metaphors,
measurement instruments, and elicitation procedures increase
the likelihood of representing true participant experiences [5].

A. Emotion Self-Report

Classifying emotion requires capturing and labelling emo-
tional experiences. Representation thus impacts how we ask
users to report their experience.

Russell’s circumplex model [8] is a commonly used instru-
ment depicted as a spatially continuous 2D space of arousal
and valence (plus dominance in 3D [14]). It underlies popular
labelling schemes, most involving a participant locating emo-
tion words on its axes; e.g., words associated with PANAS,
the Positive-Negative Affect Schedule [9].

The Self-Assessment Manikin (SAM [10]) makes this more
natural with Likert scale dimensions [15], [16].

Natural language reporting methods are used when experi-
ences (maybe a self-contained memory [17], or a touch [18])
are sufficiently brief, simple to fit a single label, and precede an
opportunity for the participant to report without experiential
interference. They become intractable for segments that are
longer than a few moments, span multiple emotions, and/or
require rapid computed response (before the segment ends).

Still with a dimensional representation, others have collec-
ted temporally continuous emotion ratings using a mouse- [19]
or a joystick [20], [21]. For hands-free activities, a joystick
allows for high temporal-resolution concurrent reporting, but
at the cost of emotional intrusiveness. Post-hoc ratings require
review of a recorded experience.

We drew on these approaches to design our own joystick-
based continuous emotion annotation system.

B. Characteristics of Emotion Dynamics

The methods above imply emotion as “state”. Even models
that feature sequences (i.e. Bayesian emotion models) denote
each stage as a single state [4], [22].

Regarding emotion instead as a process, as in appraisal
theory [2], may better reflect human experience; but this
perspective must be operationalized. One approach is to
calculate emotion dynamics, by quantifying progression in
three fluctuation parameters on one’s emotional movement:
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(1) inertia (the time it takes), (2) instability (by how much),
and (3) variability (the range of those changes), calculated as
autocorrelation, mean square of successive differences, and
within-subject variance respectively [13], [23]. Using these
summary metrics over a report time series, researchers have
evaluated emotional character arcs in movies [24], examined
the role of exercise in emotion regulation [25], and even
predicted mood disorders [23].

Can we use these markers at high resolution, to capture
transitions and support concurrent response or are other mo-
tion characteristics more appropriate? We investigate sourcing
labels from a report’s emotion dynamics.

C. Labelling and Timing

Timing is key to regulation, reflection, reporting, and in-
event reactivity. Emotions evolve at multiple time scales; an
event may evoke a different emotion after cognitive reflection
on an in-time reaction [4]. The optimal timing for capturing a
self-report is complex. Too soon may curtail rich and valuable
reflection [2]; too late incurs memory decay [26]. Concurrent
emotion evaluation is typically impractical: probing for labels
is intrusive and distracting – naming a feeling is a form of
reflection and regulation [1], [27], [28].

To capture reflection and generate training data for future
responsive models, we collect reports in two passes and use
multi-timescale labelling – giving time for self-reflection, and
mitigating memory degradation with video reminders.

D. Emotion Elicitation

Where applications require in-time recognition of emotion,
data must represent realistic emotion expression [29], [30].
Relived or recalled emotion is one proxy [7], [31]. Participants
are prompted with an emotion word (the single label) and
asked to recount the story of a past intense experience.

While successful in eliciting authentic and wide-ranging
responses, this oversimplifies an episode to emotive ho-
mogeneity [7]. Furthermore, participant stories are hyper-
individualistic, not amenable to a search for commonalities.
Conversely, entertainment media can root participants in a
more uniform elicitation stimulus, with many validated video
and music clips used successfully for this purpose [27], [32].
Video games have shown promise in producing physiological
responses analogous to that of real life evocations [33].

Here, we use a horror video game to elicit emotion. This
genre has shown high user immersion and engagement, evok-
ing emotions from anxiety to happiness and contentment [34].

III. DATA COLLECTION PROTOCOL

Our priority was to obtain triangulating data views on the
emotional space of momentary transitional experiences. N =
16 individuals (8 reporting as male, 8 female; 19 to 34 years
of age, half under 25) participated. Each participant supplied
self-report data that demonstrates our protocol, by completing
four tasks as outlined in Figure 2 and detailed below.

Figure 2: Participant tasks and resulting data. At lower left is an EWC example: word stickers placed on a Relaxed-Stressed
scale, plus P09’s other annotations. The latter resulted from P09 later contextualizing their in-game experience.
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A. Participant Task 1: Primary Emotion Activity (PEA)
To demonstrate this protocol, we use video game play to

elicit authentic and spontaneous emotion. We chose Inside [35]
to stimulate anxiety without graphic violence and spark mo-
ments of accomplishment or satisfaction, all with easy-to-learn
keyboard controls. We selected participants for their affinity
for video games, excluding those with experience of Inside.

For reviewing the primary gameplay experience in later
passes, we videorecorded participants’ faces and game screen
(OBS1, 30fps). Gameplay averaged 13:24m (min 8:25, max
21:37, SD 3:88).

B. Participant Task 2: Emotion Word Calibration (EWC)
To contextualize individual interpretations in later steps,

participants rated up to 15 emotion words, two write-ins and
13 from the PANAS [9]: Cautious, Satisfied, Hopeful, Frus-
trated, Anxious, Nervous, Threatened, Resigned, Alert, Accom-
plished, Fearful, Dread, Curious. Figure 2, lower left shows
P09’s sample scale, ordering these words between Relaxed to
Stressed (chosen to represent diametrically opposing quadrants
from Russell’s circumplex of Arousal vs. Valence [8]).

We measured the distance from the Relaxed line to each
word’s placement, mapped it to a 20-point scale ([-10,10]), and
aligned the words and their scaled heights with the interview
(I) transcript via timestamps, to form a time-series of emotion
word (and synonym) height.

C. Participant and Researcher Task 3: Calibrated Interview
→ Timeline with Calibrated Words

In the first labelling pass, participant and researcher jointly
reviewed the gameplay video. The participant indicated emo-
tionally notable points while the researcher marked them on a
gameplay timeline. Because participants had previously under-
gone a word calibration, they were primed to consider how the
offered vocabulary were distributed across the emotion scale.

From the Task 2 Interview transcript, we found syn-
onyms and root words using Python’s Natural Language
Toolkit [36]. We constructed the Timeline with Calibrated
Words (TwCW) by placing values where a root matched the
EWC, with each value a numerical distance from Relaxed. For
example, P09’s comment “The barking in the distance filled
me with anxiety” would map the calibrated point value of 14-
Anxious (synonym of Anxiety) on P09’s calibrated 20-pt scale
at the timestamp in the game where the dogs began barking.

Participant language included µ=37(σ=7) calibrated
word instances with annotation frequency µ=0.05(σ=0.015)
words/min; duration was roughly double gameplay.

D. Participant Task 4: Continuous Annotation (CA)
In the final pass, participants reviewed the PEA video

without pause. They used a custom joystick (holds position
rather than returning to center) to continuously trace a 1-
dimensional emotion rating between predefined extremes (in-
spired by [19]–[21]), here employing the previously calibrated

1Open source video recording and streaming. https://obsproject.com/

axis. The result is a continuous rating time-series (256Hz)
corresponding to the original gameplay, downsampled for
analysis to 30Hz to match the video framerate.

During annotation, smoothed joystick position is graphically
rendered as the height of a bar on the video screen, for
feedback on proximity to a more Relaxed (blue) or Stressed
(pink) emotional moment.

E. Task Order

Task order was carefully chosen to minimize influence
on emotion elicitation while increasing the likelihood that
participants would use a common set of emotion words to
describe their experience. During Step 3, the interview allowed
players to explicitly process their emotions out loud, guided
by researchers looking for notable emotional events – strong
emotions, startling or uncomfortable moments, odd behaviour
etc. Leaving the joystick evaluation as the final step lets
participants internalize and contextualize the emotion scale in
preparation for the continuous annotation.

IV. EXPLORING MULTI-PASS EMOTION SELF-REPORTS

Our present analytical goal is to explore the properties
of and relationships among the reports obtained with this
protocol, primarily by examining the degree and nature of
their [dis]similarity over a range of metrics, and probing for
physical intuition among them.

A. Commonality in Interpreting Emotion Words
To assess across-participant similarity of calibration ratings

(as a proxy for model generalizability), Figure 3 plots rating
variance for each of the calibrated words in order of decreas-
ing agreement (increasing variance).

For a quantitative view of cross-participant consistency, we
also conducted an intra-class correlation (ICC) (inter-rater
reliability test [37]). For the subset of emotion labels rated by
all participants (Anxious, Cautious, Frustrated and Satisfied),
we found ICC(2, k=16)=0.99, p ≪ 0.01 (α = 0.05, CI =
[0.97, 1.0]), based on mean rating over an absolute-agreement,
2-way random-effects model. ICC values > 0.9 indicate high
reliability [37], suggesting these ratings are overall highly
similar across-participant for this set of emotions. Indeed, the
four rated by all participants had an ICC(2, k=16) of 0.99.

Figure 3: Rating variance by calibration word, ordered by
number of participants who provided a rating for that word.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 17,2022 at 01:20:45 UTC from IEEE Xplore.  Restrictions apply. 



However, this agreement varies as set size increases, first
decreasing monotonically then dropping sharply at Satisfied -
Resigned to ICC(2, k = 4)=0.83. This may be partially due
to the relative sparseness of ratings.

Taken together, these results support that there are substant-
ive differences in how individuals interpret emotion words,
highlighting the importance of personalized models.

B. Self-Report Modality Consistency via Time Series

High similarity between self reports indicates consistency
and perhaps interchangeability of report modalities; differ-
ences might suggest invalidity of one or both, or that they
capture different information. Interpreting within-participant
TwCW and CA as time-series, we use standard time-series
analysis methods [38] (with appropriate condition verification
steps) to check for signal similarity – Pearson’s correlation –
and confirm that both data streams are appropriate responses
to a common stimulus – Granger’s Causality [39]).

Test Preparation: Using raw report data, we first confirmed
that both time-series were stationary with the Augmented
Dickey-Fuller (ADF) test (Bonferroni-Holm correction α =
0.05, pBH < 0.022), and that their statistical properties did
not change over time [40]. Prior to evaluating cross-correlation
between the two reports, we verified that each was not auto-
correlated to avoid artificially inflated correlations [41]). With
Python’s statsmodels [42], all peaks were at lag=0 for all
participants’ TwCW and CA auto-correlation plots (i.e., both
signals present low correlations at all lagged versions of itself).
We conclude that neither signal is self-similar.

The TwCW and CA self-reports are sampled at different
times and resolutions (0.05Hz and 30Hz respectively). We
downsampled the CA series rather than interpolate the sparse
TwCW, to minimize bias.

Pearson’s Correlation for signal similarity:3 P01, P02, P08,
and P14 had moderate correlation coefficients for the two
emotion self-reports (CA and TwCW) at ρ > 0.3 (pBH <
0.05). However, in general there was no significant correlation
between the report streams: p-values exceed the threshold after
a Bonferroni-Holm’s adjustment to α = 0.003. We infer that
individuals’ self-reports differed in the metrics we observed.

Granger Causality Test for source plausibility: Although
Granger cannot confirm direct causality between different
variables [43] (i.e., it does not claim TwCW causes the CA
values), we employ the test to evaluate whether time-series
for CA could forecast TwCW and vice versa. We employed a
Bonferroni-Holm correction (αBH = 0.05/N , N = number of
participants). We found significance for 15 of 16 participants
(pBH < 0.048), suggesting that one label stream could be used
to forecast the other for all except P02. This implies the data
streams are appropriate as responses to the same stimulus.

2For all except P01 (TwCW): pBH = 0.07, ADF test statistic = −2.671
3Pearson’s correlation results at α = 0.05: P01 (ρ = 0.38, pBH = 0.142),

P02 (ρ = 0.38, pBH = 0.235), P08 (ρ = 0.43, pBH = 0.235), P14
(ρ = 0.37, pBH = 0.245)

C. Comparing Motion Characteristics of Emotion Dynamics

We next examined how various parameters computed on
these time series might reveal differing insights. In this scope
we included: signal Position (the prevalent standard, and
following an “emotion-as-state” metaphor); Angle (drawing
on an alternative metaphor for emotion as directional and
changing); and [13]’s three emotion dynamic parameters of
Inertia, Instability and Variability. Our investigation included
comparing these time series (original and computed) through
summary statistics and histograms, all by participant.

Data Preparation: We further analyzed each participant’s
Continuous Annotation4data by first partitioning the continu-
ous self-report data into 500ms windows (window count
µ=1587.75, σ=462.50 by participant). Where window bound-
aries do not coincide with a logged data point, we imputed
with the previous data point, turning our time-series into a
higher-resolution but stepped signal.

We computed Position labels from windows by mean value;
and Angle labels as the rate-of-change per minute from a least
squares linear fit, in the form of an angle θ ∈ [−π/2, π/2].
Using R’s psych package [45], we calculated Inertia (autocor-
relation coefficient), Instability (Root Mean Square of Success-
ive Differences (RMSSD)) and Variability (Standard Deviation
(SD)) by window for each participant [13].

Comparing Summary Statistics and Histograms by Para-
meter: Figure 4a shows signal statistics for each participant
and parameter. The means for all five measures track closely
across participants. However, spread differs: Inertia is rel-
atively tight and symmetric, Variability is broad and highly
asymmetric, Instability in between.

In an alternative view, Figure 4b shows the same parameters
and signals, but now as histogram distributions. Data for these
four participants are reasonably representative.

Comparing these two representations of the same underlying
data is insightful. For example, while in Figure 4a Position
is clearly less stationary than Angle, 4b indicates the form
that this takes (broader spread, spikiness). And while the
dominating feature of the other three ED’s boxplots is the
uniformity of means across participants, histograms reveal
their internal parameters as starkly different: Inertia is broad
and high-valued, the others low-valued with very long tails.

No insight was gained from visual analysis of spectral qual-
ities (from a Fast Fourier Transform) of all five parameters.

Which is Best? The preceding section’s results demonstrate
that the relatively high resolution of the CA report (30Hz
raw, parameters computed at 2Hz) affords computation of
a variety of descriptive parameters. Getting to the root of
what the differences in label representation mean will require
approaches assisted by synchronized physiological data views.

4Tests for equivalence between the two sets of self-report (CA and TwCW)
across each of the three emotion dynamics parameters (two 1-tailed paired
samples t-tests [44] per dynamic measure) were inconclusive (p > 0.5,
t(15) ≪ 0.001, d ≪ 0.001). Subsequent emotion dynamics explorations
were done on the higher resolution CA data.
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(a) Boxplots of emotion dynamics of Continuous Annotation
(Task 4) data, by Participant (N = 16). Position

(M = 0.5465, SD = 0.2221), Angle (0.0049, 0.7127), Inertia
(0.7666, 0.1215), Instability (0.1316, 0.1086) and Variability

(1.2165, 2.4079).

(b) Representative subset of label distributions:
emotions-as-position (average position; purple),

emotions-as-angle (angle; blue), Inertia (magenta), Instability
(green), Variability (red). Note that longer gameplay results in

more samples.

Figure 4: Comparison of summary statistics and histograms by emotion parameter.

V. DISCUSSION

Compared to past studies of dynamic changes in behaviour
or mood [13], our video game task is short and densely re-
ported. With its data we reflect on our questions and protocol,
highlighting implications for high-resolution real-time models.

A. Multi-Pass and Personalized Emotion Reporting

To estimate emotion evolution by-the-second, we can select
a single dimensional emotion scale and collect self-reports (as
in our CA data). How does adding scale calibration and a
review/interview phase enrich this report stream?

Personalized scales clarify what may be generalizable,
as well as improving personal models’ accuracy: Asking
participants to project a set of emotions onto a specified emo-
tion axis grounds the ratings in an individualized experience
between the Stressed-Relaxed extremes. Plotting the ratings
across commonly used words (as in Figure 3), we see that
words with low rating variation – Satisfied and Anxious –
may be useful as emotion reference frames. In contrast, high
variance words like Hopeful or Accomplished may be less
useful for labelling without additional interpretation.

Multipass reporting increases label versatility: A continu-
ous annotation of emotion communicates a highly personal
experience at a resolution that is otherwise difficult to solicit.
As a continuous quantitative signal, we can model emotion as a
regression for high-resolution forecasting or elect to discretize
(or bin values) for categorical classification. Additionally, we
can compose an entirely new time-series by incorporating our
personalized scale into an interview as a lower resolution sig-
nal where continuous annotation is impractical or unnecessary.

Disagreement may indicate synergy, not conflict: Data from
our two passes (annotation and interview) are not correlated

enough to be interchangeable, yet causality results indicate
they are highly related. Perhaps each has its own authenticity
and value, which could be optimized in protocol refinement,
then extracted and integrated. Further work is needed to
identify the different perspective that each brings.

B. Incorporating Dynamics into Emotion Models

Reading signal characteristics (like autocorrelation, mean
successive differences, variance) as measures of emotion in-
ertia, instability and variability connects them to lived exper-
ience. What can they mean for intuitive predictive models?

Momentary emotion dynamics as characteristic, not label:
Inertia, instability, and variability can help elucidate “slow
emotion” in mood disorders [23], but lose meaning in rapid-
response timescales, and thus as emotion labels. Reframed as
informative signal statistics, they yield hints such as emotion
variability’s larger spread suggesting extra sensitivity (Fig-
ure. 4a) which could inform model development, e.g., by
identifying archetypal behaviours for improved model selec-
tion.

An abundance of metaphors to fit the need: The metaphor of
“emotion-as-position” does not capture “fast” emotion dynam-
ics. For example, Angle, which captures relative differences
in emotional intensity, has a natural physical meaning of
directionality – where I’m going, not where I am. We have
seen that Inertia and Instability respectively lend insight into
responsiveness of emotion to stimuli, and emotive range.

Context may dictate choice of label metaphor. To identify if
someone is Excited, we may choose a position representation;
to catch getting Sadder, angle may work best. A position
metaphor is more versatile; angle can be estimated from a set
of points but the reverse requires additional information.
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C. Protocol Reflections

At high temporal resolution, reporting can be intrusive and
tedious. We reflect on our multipass labelling procedure for
tradeoffs and consider possible improvements.

High-resolution labelling does not have to be intrusive.
Since emotion reporting happens before and after elicitation,
this labelling protocol accommodates any combination of sens-
ing modalities. The emotion experience can unfold naturally,
since labelling is done in review.

High time-resolution may be best for short time-scales.
Continuous annotation is great for tracking emotion evolution
during a 20-min video game session but onerous for pro-
longed review; and this protocol’s overhead is unsuitable for
occasional low-effort check-ins. Multiple passes are ideal for
tasks that promote dynamic emotional experiences over a short
time, and where reflection and review-dependent labelling are
valuable: e.g., therapeutic activities, recalling a memory, play-
ing a game, interacting with an agent. Simultaneous emotion
rating may be possible while watching a video or listening to
music: joystick annotation during the elicitation, so long as
the elicitation activity is hands-free.

Ordered tasks cannot be counterbalanced. We carefully

selected the order of tasks to prioritize emotion reflection
and recall. The tradeoff for lightening the mental effort and
reducing time investment for multipass labelling means that
we cannot counterbalance order for the Calibration (Step 2),
Timeline with Calibrated Words (Step 3), and Continuous
Annotation (Step 4). We are unable to evaluate generalizability
of the labelling passes in other protocol orderings.

D. Future Directions

This paper is an initial exploration into the labelling pro-
cedure for dynamic emotion modelling. We highlight where
future directions are highly promising.

Parameters computed on high-resolution data are differ-
ent. What does this mean? To get behind different character-
istics in computable descriptive parameters, one approach is to
compare with other high-resolution data streams such as EEG
and facial encoding. We plan to do this by focusing analysis
on particular events (e.g., timeline regions stimuli known to
trigger reactions in all – a scary spot in the game), and see
how these parameters look across multiple participants when
calibrated in a variety of ways.

At what time scale does calibration change? We calibrated
our scales prior to the emotion elicitation task. Could engaging
in a highly emotionally charged activity influence the rating
scale upon reflection? In future iterations of this protocol, we
envision performing calibration tasks both at the beginning
and end of the self-report labelling allowing us to investigate
how calibration may drift within and between sessions.

How must models of dynamic emotion evolve? Longitudinal
studies will reveal how to create personalized models that
evolve with the individual. Mood, life and situational context
influence perception of emotional events [46] but also change

dramatically over time: we wonder how repeat data collection
over the course of months impacts emotion models.

How to capture a range of emotion experiences? We se-
lected a single-dimensional scale to simplify annotation; real-
life events may trigger far more complex emotion landscapes
where emotions are in conflict simultaneously (e.g., feeling
excited and sad about graduation). How can we make it more
intuitive to document multiple simultaneous scales?

Choose or Fuse: Is report divergence an opportunity?
Diverse self-reports may capture perspectives that are au-

thentic in different ways. We have inspected characteristics of
emotion self-report in the time- and frequency- domains.

Based on analysis insights, we might choose one approach,
for its sensitivity or practicality. Or, we might fuse them,
e.g., using discrepant moments as a spotlight on emotional
conflict or low-confidence labels. We plan to develop concrete
choose-fuse strategies based on focused attribute study, which
also lessen intrusion on emotion experience.

VI. CONCLUSION

We proposed a multipass data collection protocol to develop
emotion models for real-time responsiveness in emotionally
dynamic experiences. The protocol entails four sequential
participant tasks: (1) emotion elicitation; (2) personal emotion
calibration; and during video review, a (3) detailed interview
and (4) continuous annotation of the emotion task. Using 16
participants’ data, we determine that this multi-pass labeling
implementation adds versatility to collection options, provides
personalized and triangulated insight into nuanced meanings,
and offers new options for signal selection or integration. We
show how emotion dynamics measures and metaphors can
add value, in particular emotions-as-positions or -as-angles;
and propose promising next steps.

ETHICAL IMPACT STATEMENT

We have proposed a novel multipass protocol for capturing
and modeling high-resolution emotion experience at real-time
scales. It is a personalization technique intended to benefit end-
users: an automatable model evolution based on user input.
While there is always potential for mal-use, this is mitigated
by fundamental grounding in the individual rather than a
generalized understanding of many. The investing user is the
only beneficiary of model improvement; their data is of low
value to others and less likely to invite exploitation.

ACKNOWLEDGMENTS

We thank Dr Rebecca Todd and Dr James Kryklywy for
the valuable insight into the neuropsychological effects of
emotion evaluation that informed the design of this protocol.
Many people have invested time and effort into this project:
Kevin Chow, Tyler Malloy, Devyani McLaren, Andrew Moore,
Drishtti Rawat, Zefan Sramek, Sherry Yuan, and Hafsa Zahid.
This work has benefited significantly from their involvement.
This work was funded in part by Natural Sciences and Engin-
eering Research Council of Canada (NSERC) and conducted
under UBC Ethics #H15-02611.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 17,2022 at 01:20:45 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] J. J. Gross, “Antecedent-and response-focused emotion regulation: di-
vergent consequences for experience, expression, and physiology.” Per-
sonality & Social Psychology, vol. 74, no. 1, p. 224, 1998.

[2] A. Moors, P. C. Ellsworth, K. R. Scherer, and N. H. Frijda, “Appraisal
theories of emotion: State of the art and future development,” Emotion
Review, vol. 5, no. 2, pp. 119–124, 2013.

[3] B. Mesquita, L. F. Barrett, and E. R. Smith, The mind in context.
Guilford Press, 2010.

[4] A. Ortony, G. L. Clore, and A. Collins, The cognitive structure of
emotions. Cambridge university press, 1990.

[5] P. Bucci, X. Cang, H. Mah, L. Rodgers, and K. E. MacLean, “Real
emotions don’t stand still: Toward ecologically viable representation of
affective interaction,” in Int’l Conf on Affective Computing & Intelligent
Interaction (ACII), 2019, pp. 1–7.

[6] P. Kuppens and P. Verduyn, “Emotion dynamics,” Current Opinion in
Psychology, vol. 17, pp. 22–26, 2017.

[7] X. L. Cang, P. Bucci, J. Rantala, and K. Maclean, “Discerning affect
from touch and gaze during interaction with a robot pet,” Trans on
Affective Computing, no. 01, pp. 1–1, 2021.

[8] J. A. Russell, “A circumplex model of affect.” Personality & Social
Psychology, vol. 39, no. 6, p. 1161, 1980.

[9] D. Watson, L. A. Clark, and A. Tellegen, “Development and validation
of brief measures of positive and negative affect: the panas scales.”
Personality & Social Psychology, vol. 54, no. 6, p. 1063, 1988.

[10] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-assessment
manikin and the semantic differential,” Behavior Therapy & Experi-
mental Psychiatry, vol. 25, no. 1, pp. 49–59, 1994.

[11] L. F. Barrett, B. Mesquita, K. N. Ochsner, and J. J. Gross, “The
experience of emotion,” Annu. Rev. Psychol., vol. 58, pp. 373–403, 2007.

[12] M. F. Jung, “Affective grounding in human-robot interaction,” in Int’l
Conf on Human-Robot Interaction (HRI). IEEE, 2017, pp. 263–273.

[13] M. Houben, W. Van Den Noortgate, and P. Kuppens, “The relation
between short-term emotion dynamics and psychological well-being: A
meta-analysis.” Psychological bulletin, vol. 141, no. 4, p. 901, 2015.

[14] I. Bakker, T. Van der Voordt, P. Vink, and J. De Boon, “Pleasure,
arousal, dominance: Mehrabian and russell revisited,” Current Psycho-
logy, vol. 33, no. 3, pp. 405–421, 2014.

[15] T. Xie, M. Cao, and Z. Pan, “Applying self-assessment manikin (sam)
to evaluate the affective arousal effects of vr games,” in Proc in Int’l
Conf on Image & Graphics Processing, 2020, pp. 134–138.
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