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Abstract— New developments, innovations, and 

advancements in robotic technology are paving the way for 

intelligent robots to enable, support, and enhance the 

capabilities of human workers in manufacturing environments. 

We envision future industrial robot assistants that support 

workers in their tasks, advancing manufacturing quality and 

processes and increasing productivity. However, this requires 

new channels of fine-grained, fast and reliable communication. 

In this research we examined the communication required for 

human-robot collaboration in a vehicle door assembly scenario.  

We identified potential communicative gestures applicable to 

this scenario, implemented these gestures on a Barrett 

WAMTM1 manipulator, and evaluated them in terms of human 

recognition rate and response time in a real-time interaction. 

Response time analysis reveals insights into the communicative 

structure of robot motions; namely, key short gesture segments 

include the bulk of the communicative information. These 

results will help us design more efficient and fluid task flow in 

human-robot interaction scenarios. 

 

I. INTRODUCTION 

Over the past thirty years, robotic technology has been 

integrated into the manufacturing industry to advance 

efficiency, reduce worker ergonomic stress and workload, 

and maintain safety in the workplace [1]. Today, most 

industrial robots that interact with workers are assistive or 

supportive devices that require frequent and low-level 

human attention and intervention. Such devices often require 

initial extensive training to operate, and the use of these 

devices could require the worker to focus their attention on 

controlling the device instead of completing the task at hand.  

However, as the manufacturing industry evolves, so too 

do demands for co-operative and collaborative robots that 

intuitively and effectively communicate with humans. 

Autonomous robots are used extensively in manufacturing, 

for activities such as painting, welding, lifting and 

inspection. However, these robots are completely isolated 

from humans by interlock barriers, carrying out fixed tasks 
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1 WAM™, Barrett Technologies, Cambridge, MA, USA. 

in highly structured and controlled environments. These 

industrial robots are programmed in advance by specialized 

workers using complex teach pendants. There is no ongoing 

direct interaction; current safety practices require extensive 

lockout procedures and complete shutdown prior to human 

contact
2
. As a result, little to no interaction is allowed 

between self-guided or programmed robots and human 

workers in current manufacturing systems. 

However, as researchers develop more adaptive and 

capable robot behaviours and systems, industrial robots will 

also benefit. These more communicative and collaborative 

robots are enabling a departure from separate interfaces and 

workflow, replacing them with more natural human-robot 

communication [2][3][4].  

We envision robotic assistants (RAs) in future 

manufacturing industries that can collaborate directly and 

physically with human co-workers in their assembly tasks, 

as part of the production team. Our immediate aim is to 

advance methods for interaction between RAs and human 

co-workers through developments in communication and 

task-flow control, centred on supporting workers performing 

complex manufacturing tasks.  

Industry is heavily dominated by single-arm robotic 

manipulators. Therefore, to bridge the gap between current 

systems and future robot embodiments, we focused on the 

development and evaluation of communicative robot 

gestures on single arm manipulators, such as the Barrett 

WAM
TM

 arm. In this paper, we analyze communicative 

gestures, modeled on human-human collaboration in a real-

time assembly scenario, in terms of recognition rate and 

human response time. This analysis enables us to i) identify 

a set of appropriate, task-based gestures understandable for 

humans when expressed by single arm robots, ii) evaluate 

these gestures for human recognition rate considering the 

effect of context and work flow in an assembly task, and 

more importantly iii) examine humans’ response time to 

specific gestures. The results of these analyses permit us to 

understand the communicative content of human-like 

gestures and design more efficient and fluid human-robot 

interactions to control task flow.  

Recently, researchers have studied human-like gestures in 

various contexts including: general human-like gestures 

within collaborative working processes [5][6][7], human-

robot turn taking [8], and human-like hesitation gestures 

[9][10]. However, the focus of these works is often on 

human recognition and perception and the experiments are 

mainly video-based surveys rather than real-time human 
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robot interaction (HRI). In this work, we measure humans’ 

response times to various task-base gestures in a real-time 

HRI and evaluate the results to understand the 

communicative and contextual content of gestural motions; 

i.e. segments of gesture motions that communicate essential 

information to a human partner. This analysis helps us 

understand the most critical elements of various gestures and 

design more fluid human-robot interactions.   Although 

achieved in the context of assembly tasks, we believe that 

our results are generally applicable to other gesture-based 

HRI tasks. 

II. COMMUNICATION DESIGN APPROACH 

The manufacturing assembly environment imposes 

several challenges on HRI originating from the physical 

characteristics of the manufacturing environment and from 

the nature of the tasks involved in assembly. The 

environment imposes restrictions on which communication 

channels can be used. Assembly environments are often loud 

with noticeable variations in background noise - in some 

areas the use of earplugs is imposed - making auditory 

communication unreliable. When collaborating, workers are 

often observed to use hand signals to communicate 

information. This has led us to investigate gestural 

communication as a potential human-robot communication 

system appropriate to the industrial environment. 

In our envisioned collaborative environment, the human 

operator and the RA operate on the same assembly: the 

human completes task elements requiring high manual 

dexterity while the RA provides support, e.g. fetches parts, 

directs/reminds the human of specialized task variations for 

a particular car model, and checks the assembly for correct 

completion.  Focusing on task transition we i) propose a set 

of gestures, similar to those gestures that humans use to 

allow smooth flow of interaction in an assembly task, ii) 

determine the recognition rates and reliability of these 

gestures when expressed by single-arm industrial robots, iii) 

analyze humans’ response time to these gestures and, iv) 

investigate what features make a cue meaningful and 

communicative. 

III. STUDY DESIGN AND METHODOLOGY 

A. Research Questions and Hypotheses 

In the context of the gestural communication approach, 

described above, we need to identify and implement a set of 

gestures that can effectively communicate required 

information to the human partners, and design a more fluid 

interaction. For this purpose, we proposed the following 

research questions and corresponding hypotheses. 

R1) Would humans understand specific human-like gestures 

expressed by a single arm manipulator during an assembly 

task? 

R2) Would humans respond to these robotic gestures at the 

same rate during a real-time interaction with the robot, or is 

human response time different for each gesture, according to 

the structure of the gesture? 

 

Answers to the first research question help us design an 

interaction with reliable sets of communicative gestures, 

while the second question enables us to understand the 

communicative content of human-like gestures and design 

for an effective task flow control.  

Based on the research questions described above, we 

considered the following hypotheses:  
 

H1) Some human-like gestures, expressed by the robot arm, 

are more likely to be recognized and understood by humans 

than others. 

H2) Humans respond to human-like gestures expressed by 

the robot arm at different rates (faster/slower) according to 

the context and/or gesture types. 
 

B. Methodology 

Our approach for finding appropriate task-based gestures, 

implementing gestures on our robot arm, and designing the 

experiments is based on conventional user-centred design 

models commonly used in Human Computer Interaction 

(HCI) research [11] and maintains a human-centered focus 

at each stage of development.  We transition the study 

through three phases: (1) Human-to-Human Communicative 

Behaviours, (2) Behavioural Description, and (3) Human-

Robot Experiments. Our study focuses on a vehicle door 

assembly scenario in which participants place six different 

parts in appropriate locations and orientations on a car door. 

The three phases of our approach are discussed below. 

B1.  Observations from Human-to-Human Communicative 

Behaviours  

To identify gestures appropriate for the door assembly 

task, we designed a pilot study with three subjects in which 

the subjects were asked to direct a worker (the experimenter) 

in an assembly task using single-handed gestures. As shown 

in Figure 1, the assembly task includes six different car door 

parts located on one side, and a vehicle door located on the 

other side, with seven spots available for the door parts to be 

attached using Velcro™ strips.  

The subjects were instructed to direct the experimenter via 

gestures to place all six parts as they saw fit.  They were, 

however, explicitly asked to use only one hand. 

 
Figure 1. Assembly task designed for human-human study. 
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Among all gestures expressed by these subjects (15 in 

total), we selected nine essential gestures based on the 

following criteria: i) gestures were essential to task 

completion, and ii) gestures were repeatedly used by all 

three subjects.  The selected gestures are:  

a) gestures for directing the human movements (forward, 

backward, right and left), and 

  b) part related gestures; pick up, place, rotate, reposition, 

and swap, as shown in Figure 2.  

These gestures can be categorized based on the nature of 

the gestures into A) Human motion gestures, B) Part 

displacement gestures, and C) Part re-orientation gestures.  
 

B2. Gesture Implementation and Behavioural Description 

Gestures identified in Section III.B1 were implemented on 

a 7-Dof Barrett WAM
TM

 robot arm with its BarrettHand
TM

 

removed. We were interested in determining if gestures 

could be successfully generated without hand actuation, 

reducing the need for complex motion generation and 

control.  Instead, we used an un-actuated stuffed glove at the 

robot end-effector to provide anthropomorphic context and 

to make the end effector highly visible in video recordings. 

For gestures in which human subjects used articulation of 

the fingers, such as pointing or indicating rotation, we used 

the entire hand with all fingers opened as shown in Figure 3. 

A recursive trial and error method was used in order to 

produce and improve the gestures as follows. First, the robot 

arm was manually moved to mimic a specific human gesture 

and then the trajectories were recorded, played back, and 

adjusted until the gestures became visually similar to those 

of the humans. Next, the selected trajectories were shown to 

the three subjects as well as a subject matter expert from our 

industrial collaborator, and they were asked to provide 

feedback on gesture improvement. We repeated this trial and 

error process twice and applied the feedback regarding the 

gestures, considering hardware limitations. These gestures 

are shown in Figure 3. One subject suggested that actuated 

fingers could improve the gestures. However, we observed 

that all subjects appeared able to understand the gestures 

made without finger motion, and thus elected to continue our 

study using the passive glove appendage. 
 

B3. HRI Experiment Design  

After producing trajectories for each gesture using the 

approach discussed above, we adapted these gestures for 

different parts and car door locations.  These gestures were 

used to direct subjects in a real-time human-robot interaction 

experiment to measure human recognition rates and response 

times in an interactive task context. 
 

 Experimental Setup and Sensory Measurements 

As shown in Figure 4, the experimental setup for our HRI 

study comprised six different parts located on a table on one 

side, a vehicle door on the other side, and a 7-DoF Barrett 

WAM robot arm located in front of the subject. Twelve 

QRD1114
3
 reflective optical sensors were installed on the 

parts table and the car door for part tracking. 

Two Xsens
TM4

 3D real-time motion trackers, one attached 

to the robot arm and the other attached to the human’s body 

(orange boxes in Figure 4), were used to detect the time 

between robot gesture onset and human movement - 

designated gesture response time (TR). 

 
3 http://www.solarbotics.net/library/datasheets/QRD1114.pdf 
4 Xsens Technologies B.V., An  Enschede, Netherlands. 

 

 
Figure 2. Task-based gestures found in human-human pilots – “Move Forward” (a), “Move Left” [and Right] (b), “Move Backward” (c), “Pick up” 

(d), “Place” (e), “Reorient” (f), “Reposition” (g), and “Swap” (h).  
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 The Xsens sensors capture 3-D linear accelerations. We 

compared the magnitude of the acceleration to a threshold, 

equal to 10% of the maximum acceleration measured signal 

(from the robot arm and each individual subject), to detect 

the motion start times and thus measure TR.   

An example of this procedure is shown in Figure 5 for the 

“Move Left” gesture. Explicit rules for the experiment 

restricted subjects from making random movements; 

however, we video recorded all sessions and evaluated the 

response times to handle cases where multiple movements or 

no movements were apparent in the Xsens data. Subjects 

were instructed as follows: 

1- Stay at your current position and do not move unless 

instructed by the robot (by expressing communicative 

gestures). 

2- Start doing your task as soon as you know what the robot 

is telling you; you don’t need to wait for the robot to stop 

moving. 

3- You can only make one motion at a time. You can only 

hold one part at a time. 

These rules were imposed in order to i) limit human 

motions to the task-related motions, and ii) detect the exact 

moment when humans understand and respond to each robot 

gesture. Signals from all sensors were synchronized in real 

time on a Windows machine using Quanser QuaRC™
5
  and 

MATLAB Simulink™ with 100 Hz sampling rate.  The 

Barrett WAM arm was operated by an external Linux 

machine running Xenomai
6
 and the btclient

7
 library. 

 
5 Quanser Inc., Markham, Ontario, Canada. 
6 www.xenomai.org/ 
7 Barrett’s robot control client software. 

HRI Experimental Task and Procedure 

In  total, 12 participants (3 female, average age 23.9) 

volunteered for the study. Prior to interacting with the robot, 

the subjects were asked to fill out a questionnaire regarding 

their demographic information (e.g., age, gender, etc.), as 

well as their familiarity in interacting with robots (average 

reported familiarity with robots was 1.8 out of 5). 

Participants had no previous experience with robotic 

gestures. Although our participants had no experience with 

industrial assembly technology, we expect that our results 

can be generalized to assembly workers, as our study 

focused on gestural interaction and not on the details of the 

assembly task.    

Real-time human-robot interaction task 

The subjects’ primary task was to place parts onto a car 

door while the robotic arm used communicative gestures to 

give instructions and directions. This task had two steps.  

Phase 1, Gesture introduction: Each subject was familiarized 

 

Figure 3. Gestures implemented on the Barrett WAM arm –  “Move Forward” (a), “Move Left” [and Right] (b), “Move Backward” (c), “Pick up” (d), 

“Place” (e), “Reorient” (f), “Reposition” (g), and “Swap” (h). 

 

Figure 4. Experimental setup for human-robot interaction study. 
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with the task through a real-time scenario during which all 

nine gestures were used in the same order. This introduction 

was used to evaluate human recognition rates for all gestures 

in the same ordered task context, as well as introducing 

subjects to the gestures for the next phase of the task. If the 

participants responded with an incorrect action or did not 

understand the meaning of a gesture, the experimenter 

described the meaning of the gesture and corrected any 

errors.  

Phase 2, Gesture utilization: the experimenter ran a set of 

scripted real-time tasks, randomly utilizing all nine gestures, 

five times each. It was expected that after the introductory 

task, subjects would be able to identify each gesture. We 

measured human response times to all gestures during the 

experiment.  In scenarios where a subject was too close to 

the robot or to one of the sides of the work area, 

incompatible gestures were not shown for safety reasons and 

context compatibility, resulting in some gestures being 

presented only four times. 

Posthoc Survey Questionnaire 

After the two phases of the real-time HRI task, one 

instance of each gesture was replayed on the robot, and the 

subjects were asked to answer the following questions: 1) 

“What did you think the robot was trying to indicate”; if the 

subjects misunderstood a gesture during the introductory 

scenario, they were asked to provide us with what they 

originally thought it meant, and 2) “How easy was it for you 

to understand the robot (on a scale from 1(easy) to 5 

(difficult))”. Subjects were also asked to provide suggestions 

on how to improve the gestures and describe any confusion 

they may have experienced. 

IV. EXPERIMENTAL RESULTS 

A. Results from Statistical Analysis 

A1. Recognition rates and difficulty levels 
Figure 7 shows recognition rates for each gesture in the 

introductory task. Gestures that required fingers for pointing, 

i.e. “Part Pick up”, “Place Part”, “Reposition” and “Swap”, 

are well understood by the subjects even though no finger 

actuation was used. However, the “Re-orient” gesture was 

understood in only 25% of cases. “Move Right” and “Move 

Left” are symmetric gestures but had different recognition 

rates. We surmise that the difference in initial recognition 

rates between these two identical gestures is due, in part, to 

the gesture presentation order (“Move Right” appeared 

before “Move Left” in the introductory section). The scope 

of this confounding factor is limited to only the recognition 

rates of these two symmetric gestures. In addition, the task 

itself and context are contributory; the “Move Right” gesture 

was either not understood at all or completely understood; in 

the latter case, participants moved towards the parts table 

and waited for the robot to show them the right part.   

A few subjects, however, interpreted the “Move Left” 

gesture as “Part Placement” on a space on the door close to 

the robot arm; this confusion could be due to the relative 

location of the robot and the car door in the work space. In 

general, the participants’ gesture difficulty ratings (Figure 6) 

were consistent with gesture recognition rates (Figure 7), 

with high recognition rates corresponding to low average 

difficulty ratings. A repeated measures ANOVA shows that 

at least two of the gestures are different in terms of difficulty 

level (p<0.001). Pairwise comparisons between different 

categories of gestures shown in Figure 8 (A: Human motion 

gestures, B: Part displacement gestures, and C: Part re-

orientation gestures), reveal that part displacement gestures 

(B) are recognized significantly easier than human motion 

(A) and part reorientation (C) gestures (p<0.05). However, 

the `difference between recognition rates for A and C 

gestures is not statistically significant
8
. 

A2. Response Time Measurements 

In this section, we report on the relationship between the 

response times to specific gestures and gesture motion 

segments, revealing the communicative content that helps 

 
8 Statistical significances of all pairs were tested using a Wilcoxon signed 
rank test as well as a t-test paired sample test. 

Figure 5.  Response time (TR) detection based on the robot and human 

movements – example for the “Move Left” gesture. 
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humans understand, recall, and respond to each gesture.  In 

particular we investigated which segments of a gesture have 

the greatest communicative content.  We measured response 

times of all subjects to different gestures, randomized 

through the second phase of the real-time interaction 

scenario after the initial introductory task
9
, as discussed in 

Section III-B3. This extensive response time study, which 

consists of more than 500 response times in total, revealed 

that humans respond to different gestures at different rates 

depending on i) gesture type, and ii) context. 

Based on initial observations, we segmented gesture 

motions into acceleration ramps demarcated by acceleration 

extrema, which we call pauses in this paper. Each pause 

represents a trajectory point with minimum velocity.  Figure 

9 shows an example of gesture segmentation for the “Move 

Left” gesture. In order to find whether a particular pause or 

segment of a motion included the most communicative part 

of a gesture, we studied the distribution of response times 

with respect to the gesture pauses over the period of each 

gesture. 

Figure 10 shows the distribution of the response times for 

all participants. As can be observed from this figure, 

response times are mostly distributed around one or two 

consecutive pauses of each gesture. For some gestures, such 

as the “Move Backward” gesture, the first pause of the 

gesture (Figure 3-c1) is of most importance, and response 

times of all subjects are mainly distributed around this 

 
9 Three scenarios were observed in which subjects did not remember the 

meaning of a gesture during Phase 2 of the real-time task; these cases were 
removed from the response time analysis. 

pause. This demonstrates that participants were able to 

remember and recognize this gesture from its first few 

segments. Once humans recognize a gesture, they respond to 

it after about 300 msec, average human reaction time to an 

expected stimulus [12]. This clear relation, however, is not 

observed for some other gestures including the “Move 

Forward” and “Re-orient” gestures. Our findings suggest 

that some gestures, such as the “Move Backward” gesture, 

are more discriminable by their initial segments. Future 

work will focus on discriminability analysis, similar to [13], 

to optimize differentiability between the desired cues, and to 

provide a set of distinct, recognizable gestures.  

Analysis of response times revealed that most of the 

subjects tend to “follow” robot movements; meaning that 

they respond to a gesture when the robot arm is moving in 

the direction which is the objective of robot command.  For 

instance, participants typically responded to the “Move 

Backward”, “Move Left”, and “Move Right” gestures when 

the robot arm was moving towards the same direction, that 

is, during the second segment of these gestures. 

Therefore, our analysis shows that specific segments of a 

gesture include most communicative information about that 

gesture, and thus, are essential while the remainder of the 
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Figure 10.  Scatter plot and Gaussian distribution of response times 

to all gestures with respect to the motion segments and pauses. 

Vertical lines indicate pauses in the gesture trajectories. Response 

times for different subject are represented by different shapes.  
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motion could be truncated, if necessary, to allow the robot to 

move on to its next action and reduce execution time, 

improving task effectiveness [14]. This knowledge of critical 

and less important gesture elements can help us design for 

better task flow and smoother interaction in the future, 

although the effects of gesture truncation on recognition 

rates and operator training will require additional study.  

B. Results from Interviews and Observations 

Interviews with participants elicited important 

information regarding different gesture types. As reported by 

Ende et al. [6], context and task flow are important factors 

that affect gesture recognition by humans. Two of the 

participants were not able to understand the “Part 

Placement” gesture during the post-hoc survey, when the 

gesture was presented out of context, although they 

recognized and responded to it correctly during the real-time 

introductory assembly task. The analysis of response time 

also confirms this finding: although “Move Left” and “Move 

Right” are symmetric gestures, the response times of humans 

are different for these two gestures. The assembly was 

taking place on the left side and hence the “Move Left” 

gesture was, sometimes, misinterpreted as part-related 

gestures. 

From our observational evidence we also noted that 

people tend to follow robot movements; this is supported by 

findings from our analysis of response times, as described 

previously. Although we explicitly asked the subjects not to 

move unless instructed by the robot, most of the participants 

moved back to the start point located in front of the robot 

and assumed a neutral pose after finishing their task. In other 

words, subjects may have interpreted the robot’s movement 

to the neutral pose as a motivation for moving back to the 

start point themselves.  Also, the angle at which a specific 

gesture is viewed is important. Two of the participants 

explicitly mentioned that they might have recognized a 

gesture if they had seen it from a different point of view.  

Another important finding of the study was that, although 

people tend to use fingers in part displacement cues, they 

could understand corresponding robot gestures with no 

finger actuation, e.g. when robot points to an object with the 

entire hand.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper we studied the effect of human-like gestures 

in a real-time vehicle assembly scenario and investigated 

human recognition rates and response times.  

Task-based human-like gestures were implemented on a 

single-arm robotic assistant. Given an assembly scenario, 

our study shows that humans can recognize and understand 

part displacement gestures more easily compared to human 

motion gestures and part re-orientation gestures. Analysis of 

human response times to various gestures revealed that 

specific segments of a gesture motion include the greatest 

communicative content. People are able to interpret gestures 

from these critical segments alone, without waiting for the 

gesture to be completed. Future work will use this 

information in order to design for enhanced task flow.  
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