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Discerning Affect from Touch and Gaze
During Interaction with a Robot Pet

Xi Laura Cang, Paul Bucci, Jussi Rantala, and Karon E. MacLean IEEE Senior Member

Abstract—Practical affect recognition needs to be efficient and unobtrusive in interactive contexts. One approach to a robust realtime
system is to sense and automatically integrate multiple nonverbal sources. We investigated how users’ touch, and secondarily gaze,
perform as affect-encoding modalities during physical interaction with a robot pet, in comparison to more-studied biometric channels.
To elicit authentically experienced emotions, participants recounted two intense memories of opposing polarity in Stressed-Relaxed
or Depressed-Excited conditions. We collected data (N=30) from a touch sensor embedded under robot fur (force magnitude and
location), a robot-adjacent gaze tracker (location), and biometric sensors (skin conductance, blood volume pulse, respiration rate).
Cross-validation of Random Forest classifiers achieved best-case accuracy for combined touch-with-gaze approaching that of
biometric results: where training and test sets include adjacent temporal windows, subject-dependent prediction was 94% accurate. In
contrast, subject-independent Leave-One-participant-Out predictions resulted in 30% accuracy (chance 25%). Performance was best
where participant information was available in both training and test sets. Addressing computational robustness for dynamic, adaptive

real-time interactions, we analyzed subsets of our multimodal feature set, varying sample rates and window sizes. We summarize
design directions based on these parameters for this touch-based, affective, and hard, realtime robot interaction application.

Index Terms—Affective touch, multimodal interaction, human-robot interaction, therapeutic robot, emotion classification.

1 INTRODUCTION

OCIAL interfaces such as robots, smart cars or game
S systems must facilitate complex and believable interac-
tions where programmed machines appear to respond to
human social cues [1]. Because people often prefer to inter-
act with machines as they do with other people [1], systems
may need to understand nonverbal emotional behaviours
mediated through naturally affective modalities like touch
or gaze. Affective, interactive therapies for anxiety man-
agement may use haptically available emotion indicators:
touchable robots (baby harp seal Paro [2], teddy-bear-like
Huggable [3]) map simple touch gestures to simple emo-
tions. Studies with the Haptic Creature, a zoomorphic robot
with an embedded touch sensor array [4], link a large and
varied set of touch gestures to nuanced emotion expression.

Machine recognition of human emotion presents
methodological challenges surrounding measurement in-
struments, study task framing, and computationally model-
ing emotions [5]. Training data behavior should reflect that
of an interaction “in the wild”, i.e., spontaneous emotion [6].
The emotion model should accurately describe that person’s
state. Furthermore, while people can be differentiated by
idiosyncrasies in their touch behaviors (a touch signature [7],
[8]), this also makes it difficult to generalize the connection
between emotions and associated touch behaviors: the ex-
tent to which individuals exhibit similar touch behaviours
during similarly labeled emotional states is unclear.

Here, we wish to enable machine recognition of human
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emotions for touch-centric social robots, with therapeutic
applications in mind. Touch interactions can affect emo-
tional state: the Haptic Creature’s motion lowered anxiety
in users who were stroking it on their laps [9], based on bio-
metric indicators. This suggests physiological benefits anal-
ogous to those conferred by animal-assisted therapy [10],
[11], [12], [13] — especially valuable where patients are
unable to engage with real animals. However, this requires
unobtrusive sensing, e.g., through already-occurring touch.

Gaze is another unobtrusive modality that could im-
prove recognition performance. Since the points where a
user’s gaze focuses on a computer display can indicate
feelings of curiosity or boredom [14], we posit that gaze as
an indicator of visual attention could help determine when
a user is focusing on the robot pet and thereby predict affect.
Specifically, we compare the combination of touch and gaze
to key biometric channels which have been well-researched
in association with various emotions [15], [16].

To investigate these ideas, we set touch as the primary
interaction modality in order to leverage the natural human
inclination to express emotional closeness with physical
contact. Gaze has also been shown to capture emotion
data [14], and both (touch and gaze data) can be collected
without the disruption of physiological sensors. Previous
work has shown that affect-related information can be
extracted from emotionally-directed touch gestures such
as Excited-stroking and Depressed-rubbing [17]. However,
identifying a gesture as ‘stroke’ vs. ‘rub’ is insufficient for
revealing the user’s emotional state while performing that
gesture [17]. Furthermore, these studies collected “intent”
data, where the emotions were acted out to a sensed robot,
but not necessarily experienced by a participant. We needed a
model built from data of participants who are truly experi-
encing the emotions being studied.
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1.1 Approach and Research Questions

The central purpose of this paper is to narrow the design
space of an emotionally interactive robot pet’s computa-
tional system for predicting an interacting user’s emotion:
touch-supportive sensing modalities that balance accuracy
with ease-of-use; a training procedure that generates truly
felt emotional sample data; and an appropriate classification
model for touch behaviour in a computationally restricted
environment.

To elicit naturally felt, spontaneous human emotion
(hard to do in a lab setting [6]), we asked participants
to interact with a robot while they relived a significant
emotional event, touching it without constraint during the
task. This approach departs from previous work [4], [17] that
attempts to direct touch behaviours and gestures, i.e., by
asking a participant to pat the robot as if they were scared.
Relived emotion or emotion recall is regarded as a way to
elicit true experiences of emotion [18], [19].

We are interested in touch and gaze as modalities that
support low-cost, low-intrusion sensing apparati and ex-
plore their viability in comparison to biometric data. To
that end, we compared affect measures derived from touch
interaction with a robot pet with the more studied but intru-
sive reference point of biometric indicators, and investigated
how recognition performance can be improved with gaze
data. Furthermore, analysis methods that originate from
social touch gesture classification are well documented [7],
[17], [20]. We calculate features from force magnitude and
touch location [7], [8], [20] as well as frequency [17] (re-
ferred to herein as pressure-location domain and frequency
domain respectively) for emotion classification in fouch. To
minimize overlap in label interpretation, we collected and
evaluated machine recognition of four emotions (stressed, ex-
cited, depressed, and relaxed) — quadrant extrema of Russell’s
dimensional affect model [21].

Choice of the Random Forest algorithm (RF) is motivated
by our need for a classification system that performs well
with social touch behaviour [7], [8], [17], [22], [23], [24] for
our interactive robot pet application. We want to explore
the feasibility of realtime emotion prediction from touch
interaction with a emotionally interactive robot pet, where
we anticipate being compute-restricted. Thus, we chose a
computationally simple model favouring flexibility to ac-
commodate quick training and customizable rebuilding.

We specified four main research questions for this study.

RQ1 Modality Effectiveness: How does touch or touch +
gaze compare with biometrics in classifying affect? What
minimal feature set optimizes performance accuracy?

Touch can be a natural avenue for communicating affect,
but to use it computationally, we must access the encoded
emotions and consider the relative performance of touch
alone and with multimodal support. Gaze, also known to
encode affective content [14], could supplement emotional
signals from touch. Multimodal datasets are likely to pro-
vide a more complete picture than touch alone, due to
asynchronous activation, or interaction information.

We expect classification accuracy to improve with increased
modality support. We thus ask whether the combination of
touch and gaze is a viable substitute for the more intrusive
sensing apparatus required of tracking biometric signals.

However, multimodality increases compute time and
phase delays, potentially undermining real-time feasibility.
To optimize tradeoffs, we analyze each feature in terms of
repeated occurrence in automatically-selected best-feature
subsets. Finally, we suggest an optimal touch-with-gaze
feature set, assessing both the pressure-location domain and
frequency domain, hypothesizing that classification accuracy is
best where features are present from both domains.

RQ2 Individuality: How important is system calibration
and knowledge of user in affect classification?

Social touch gesture studies suggest that because individu-
als have distinctive ways of physical, expressive interaction
with objects, recognizing identity is realistic [7], [8]. Thus
a system that has learned a specific user’s behaviour may
be better at gesture recognition. Leveraging this result for
affect, we assess how well the system can distinguish Partic-
ipant — high performance suggests high individuality — then
perform Emotion classification across three different levels
of system knowledge of participant (hereby referred to as
participant knowledge) and discuss results. We expect that
recognition rates will increase with greater participant knowledge,
i.e., participant-labelled data where instances from the same
individual are in both training and test sets will yield
the highest classification accuracy (subject labels used as
a feature in subject-dependent classification); and lowest
accuracy will coincide with testing and training on different
individuals (subject-independent classification).

RQ3 Sample Density and Realtime Responsiveness: Is
classification during continuous sampling robust to in-
terruptions in signal, and to sample size variation?

Outside of polling rate, we define sample density across
two window dimensions: (1) size and (2) adjacency. We
investigate the accuracy trade-offs of various window sizes —
which represent the time intervals of continuously sampled
data. In the context of an interactive robot, longer windows
gives the system time to respond, employs less computation
resources and allows for the capture of “slow” behaviours.
But where the window is too long, we introduce inappropri-
ate response delays. For example, if our robot body is struck,
it needs to present a behaviour demonstrating an immediate
reaction. While shorter windows may help with the agility
needed for interactive scenarios, the higher throughput re-
quires more computational resources and may not recog-
nize the slower developing interactions. Window adjacency
refers to continuity of time series classification data. Since
adjacent windows share more characteristics than distant
samples (temporal dependence), we ask about the effect of
non-continuous or ‘gapped’ data collection under weak or
interrupted signal conditions. Removing adjacent instances
allows us to quantify any effect from a dropped or inter-
mittent signal as well as the likelihood of overfitting due
to recency-based similarities, particularly when using easy-
to-build classification models (like Random Forest) without
parameter tuning. Here, we leave time-series analysis for
future work and focus on the influence of sample density
on accuracy. In order to construct early specifications for
a touch-cognizant robot, we explore the trade-off between
computational load and classification robustness.

We examine the influence of window size and continuity
by aggregating data instances in four window sizes and
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comparing classification accuracy of the same data set. We
downsampled with “gap” by dropping 2s of data between
windows so adjacent windows are not evaluated) and with-
out gap data (adjacent windows are included in the training
and test sets). We posit that across both parameters, reducing
sample density reduces classification accuracy, anticipating the
worst performance for small windows with gapped data.

RQ4 Experimental Paradigm: How well does our protocol
corroborate existing relived emotion techniques to elicit
genuine emotion in a controlled laboratory setting?

For affective communicative systems to work under real
conditions, they must be trained on data from authentic
and spontaneous emotion. Consistently producing truly ex-
perienced emotions in an artificial setting (and valid training
data) is a fundamental challenge in emotion research [25].

We develop a means of implementing a touch variant of
relived emotion techniques described in [19], [25], [26] and
use self-report measures to explore how our experimental
controls influence the authenticity and intensity of the experi-
enced emotion generated within a controlled set-up.

1.2 Contributions

Through our research questions, we examine the design
space of an affect classification system for an emotionally-
interactive touch-centric robot. Specifically, we contribute:

1) A comparison of affect classification performance of touch
data, with and without gaze support, to biometrics
in experienced-emotion interactions; and a recommenda-
tion of data features from frequency and traditional
pressure-location domains in emotion classification.

2) An assessment of subject-independent vs. dependent
classification; and a proposal for building a custom person-
alized system at various levels of participant knowledge.

3) An analysis of data factors to balance classification ro-
bustness with computational effort and phase delay, for
real-time applications.

4) Through demonstration and evaluation of an ecolog-
ically valid elicitation technique (emotional recall) for
studies on machine touch recognition, we assess the
methods, models, and task framing required to increase confi-
dence in generating true experienced emotion in a lab setting.

In the following, we survey previous work, motivating
our emotion elicitation method and contextualizing affect
classification from each of touch, gaze, and biometrics; then
describe our experiment and analysis. We report results that
span all our data experiments to target the influence of: mul-
timodal data vs. touch alone, participant knowledge, sample
density, feature set; and assess emotional experience from
participant reports. We discuss our findings and ground
them in implications for relevant applications.

2 RELATED WORK

2.1 Targeted Emotion Set

Russell’s circumplex model plots affect on arousal (activa-
tion) and valence (pleasantness) axes [27]. While valuable in
its conciseness, the dimensional model requires we assume
(1) emotion labels will be interpreted consistently by every
participant at any time; and (2) the axes are truly orthogonal.

Consider the emotional context of approaching the axes
or origin when working with such a model: the state of (0,0),
presumably a state of full neutrality, may not be meaningful.
For example, independent movement, i.e., directly along
axes, implies increasing an emotion arousal without chang-
ing valence, which belies personal experience. As such,
many [28], [29], [30] opt to discretize the 2D space into a
grid and rotate it by 45°, such that experimental materials
and tasks are aligned with the diagonal axes, namely (high
arousal, high valence) <+ (low arousal, low valence) and
(high arousal, low valence) <+ (low arousal, high valence).

Relevant published studies are not consistent in emo-
tion labels chosen to cover the affective space, making
comparison between studies of even common modalities
problematic. Understandably, papers utilizing information
of gaze use attention-related emotion sets — e.g., Anxi-
ety, Boredom, Confusion, Curiosity, Excitement, Focus, Frus-
tration [31]; papers utilizing touch try to span the human
experience, namely Anger, Fear, Happiness, Sadness, Disgust,
Surprise, Embarrassment, Envy, Pride [32]. Yet another method
is to partition Russell’s affect grid as discrete labels: touch
emotion recognition has previously used nine labels!, while
biometric recognition has used four labels corresponding to
the quadrants of Russell’s grid: Stressed, Excited, Depressed,
Relaxed [15]. We have elected to use the same four named
emotions for consistency with other biometric classification
studies, enabling comparison with touch and gaze.

2.2 Elicitation of True Emotion

Our motivating applications center on a social robot that
must react to authentic human emotions as they occur
in lived experience. In the lab, one unsatisfying approach
is to ask participants to imagine and simulate a reaction:
(“Imagine feeling anger, then express it to our robot”). For
example, to collect the data used in [4] and [17], participants
were presented with a list of emotions that they acted out by
touching a robot, but this does not equate to experiencing
it. The difference between expressions of acted and expe-
rienced emotions can be significant and counter-intuitive:
e.g., truly experienced frustration is often accompanied by a
smile, but this is rarely the case for acted frustration [33].

Experienced-emotion studies are difficult to construct.
Entertainment media, e.g., emotionally evocative music
and/or video, has been employed in emotion elicitation [15];
however, it can be difficult to validate stimulus media.

Following the approach of [18], [19] who found that
relived or recalled emotion generated genuine spontaneous
reactions, we prompted participants with an emotion word
and asked them to recount the story of an intense experience
with modifications described in Methods.

2.3 Recognition Modalities

Touch: We can measure touch as force magnitude (pressure)
and location — dimensions used for gesture recognition as
well as for control directives using trackpads and touch
screens. Social touch gesture studies report prediction ac-
curacies ranging from 53% (chance 7%) [20] to 86% (chance

1. Emotions for classification by touch differentiates emotions in
the quadrant borders, namely: Distressed, Aroused, Excited, Miserable,
Neutral, Pleased, Depressed, Sleepy, Relaxed [17].
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11%) [7] depending on collection and classification methods
(Bayesian classifiers in the former and random forest in
the latter case), and like affect studies in general, have no
consistent standard. Still, these prediction rates on defined
gestural subsets suggest that social touch may be used as
directives in systems with embedded recognition systems.

Accurate emotion recognition is more difficult. Hu-
man recognition of human emotion through touch reaches
59% accuracy (chance 8%) [32]. Machine classification has
demonstrated 36~48% accuracy (chance 11%) [17] depend-
ing on inclusion of participant information. Both studies
utilized emotion intent, not experience.

Gaze: Our eyes give affect cues discernible with eye track-
ing technology, making gaze behaviour an easily accessible
emotion-embedding modality to pair with touch without
hindering interaction. Like touch, gaze detection technology
collects eye behaviour at the focal location and does not re-
quire participants to wear sensors on their body. [34] studied
the effect of emotional auditory stimulation on pupil size
variations, finding that negative and positive stimulation
resulted in significantly larger pupil dilation than neutral
stimulation but did not differentiate stimulus valence. Other
factors, such as changes in luminance [35], can also affect
pupil dilation.

An alternative is to analyze where a person is looking.
[14] tracked students’ gaze when they interacted with a
graphical intelligent tutoring system; fixation and saccade
features revealed that curious and bored students looked
at different interface areas — e.g., engaged students looked
more at the table of contents. Overall, boredom and curiosity
could be predicted with 69% and 73% accuracy respectively.

We could not find literature on the use of human gaze
point in classifying emotions using the valence/arousal
model. Gaze point is related to boredom and curiosity, and
low arousal is correlated with decreased saccadic veloc-
ity [36], but can gaze express arousal change too? Does gaze
point move more during excitement? Compared to pupil
size variation measurements, gaze point can be measured
in a less controlled environment (lighting and luminance
impact data quality less) with relatively inexpensive track-
ing technology. Thus, we utilize the Cartesian coordinates
of user gaze point in our own classification analyses.

Biometrics: Blood volume pulse (BVP), skin conductivity
(SC) and respiratory rate (RR) have been widely used to con-
firm emotion detection in other modalities — facial expres-
sions [16], affective audio [15], [37], gaze behaviours [38],
and touch behaviours [9]. Heart rate variability has been
utilized in emotion classification [9], [39], [40].

Like others, we employed three basic signals (BVP, SC,
RR) to calculate a set of derived features based on heart rate
variability (HRV), breathing rate variability (BRV), or both,
such as heart beats per breath. This data is most appro-
priately compared with studies where emotion elicitation
is based on true experience and uses the same emotion
sets. For example, [15] uses validated music excerpts to
generate authentic responses crossing four musical emo-
tions (positive/high arousal, negative/high arousal, nega-
tive/low arousal, positive/low arousal), and reports affect
recognition rates between 70% and 95% (chance 25%), with
higher rates when participant knowledge is included.

3 METHODS

We asked participants to recall emotionally intense experi-
ences, while interacting with our static (non-mobile, unmov-
ing) robot pet as a tangible focus for emotional interaction.
We collected touch, gaze and biometric data; and emotion
self-reports before and after each emotion. Of 30 campus-
recruited participants (mean age 25.4 years, 0=5.4), 14 iden-
tified as female and 18 had corrected vision. Participants
were compensated $20 for a ~60 minute session.

In the following we detail data collection setup and pro-
cedure, and describe data pre-processing, feature extraction,
and analysis of the study’s independent parameters (window
size, inter-window gaps and participant knowledge).

3.1 Data Collection

To facilitate emotion elicitation during memory recall, we
prioritized participants’ comfort. We placed the gaze track-
ing system coincident with touch site, since the robot body
is the focal site for both modalities.

Configuration and Room: We conducted the experiment in
a sparsely furnished medium-sized office with a window
with a pleasant view. Participants sat, back to the door,
comfortably in a half-prone position on a couch, for comfort
and to reduce large-scale body movements (Figure 1). An
experimenter was in view of the participant except during
emotionally intense parts of the session, as described below.

We placed the gaze tracker (designed for mounting be-
neath a computer monitor) below an angled, monitor-sized
board on which we placed the robot, all in comfortable reach
of the participant. We fixed the robot position to prevent
it from being picked up or substantively moved around
to avoid interference with gaze tracking (Figure 1). By
coincidence, all participants were right-handed (though the
set up was designed to accommodate both right- and left-
hand dominance) and we omit a discussion on handedness.

Touch Sensor on a Passive Robot: Figure 1(a) shows the
robot’s and sensor’s construction. We used a custom flexible
touch sensing apparatus previously described in [8], which
has been validated as for the ability to capture social touch
gestures. Similarly to [7], [42], it can detect 5g~1kg of
weight with resolution of 10x10 inches at one taxel per
square inch?. As with [7], [17], we specified fingerpad-size
taxels (touch pixels): emotion tasks in touch generally incite
broad rather than precise movements [32]. While higher
resolution sensors are needed for precision tasks (e.g., for
touch screens, trackpads, or teleoperative mimicry [43]),
here we are concerned with cost, sensor flexibility and
computational efficiency.

Forming a 10-by-10 grid, this fabric-based device can
sense multiple simultaneous touches (multitouch), register-
ing varying pressures on each taxel scaled to 1024 levels and
polling at 54Hz. This resulted in 54 frames of 100 cells per
second, each reading a touch pressure value in [0-1023].

The “bot” was assembled in layers. The interior was a
compliant structure of flexible binder plastic, roughly the
size and weight of a football. The robot’s body and passive

2. Built from commercially available piezoresistive and conductive
fabric. Fabric is commercially available at www.eeonyx.com.
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Fig. 1: Study setup overview: robot description and participant experience. (a) The robot was constructed from pliant
plastic sheets actuated by a pulley, covered with a custom touch sensor, then jacketed in furry fabric to invite touch [41].
It was stationary during the study to eliminate reaction to robot motion. (b) A participant sits supported by pillows and
facing the gaze tracker, one hand on the sensor-clad, stationary robot, biometric sensors on chest (RR), thumb (BVP), and
index / ring fingers (SC) of resting hand. (c) A schematic of the study room, depicting camera locations relative to where

the participant sits by the robot platform.

feel were designed to invite touch as an ambiguous mam-
malian form that does not resemble any definitive animal in
order to remove behaviour expectation [41], [44]. Movement
was disabled here to reduce confounds from novelty effects,
sounds, or expectations. The touch sensor was wrapped
over the structure, affixed with velcro. Finally, the sensor
was covered with a uniformly-textured short, soft brown
minky fabric (such as that used in baby blankets; described
as “pleasant to touch...[and] reminded me of my chocolate lab’s
head” — P04). To minimize visual clutter, all sensors were
wired through the robot platform and gathered in a compact
tether for connection to a single laptop.

Gaze and Biometric Sensors: We sampled gaze behaviour
via a Tobii EyeX gaze tracker at 60Hz — as with our touch
data sampling (Figure 1). We gave no specific instructions
regarding gaze direction, but informed participants that
gaze data collection worked best when they were facing
forward and did not make large body movements.

We collected three biometric signals using the pre-
packaged Bio-Graph Infiniti Physiology Suite’, namely
blood volume pulse (BVP), skin conductivity (SC), and
respiratory rate (RR), all at 2048Hz. Following established
procedures [15], these were expanded to include features on
heart rate variability (HRV), breathing rate variability (BRV),
and cross-signal indicators such as heart beats per breath.

Participants wore a respiration band around their chest,
with the closest fit that did not impede breathing. Once the
participant was comfortably seated, we positioned the BVP
sensor at the thumbpad, then positioned the SC sensors on
the index and ring finger pads. Both BVP and SC sensors
were held in place by a small velcro band on the right hand
(not used for touching the robot).

3. System manufactured by Thought Technology Ltd. FlexComp oo
SA7550 Hardware Manual can be found through manufacturer website
at http:/ /bit.ly /29A5NIC.

Video Data: We video-recorded participants’ hands and face
to supplement missing gaze or touch data. For participant
privacy, no sound was recorded. The hand camera was
placed behind, and the face camera on the right of the
participant. Figure 1 shows placement of the gaze tracker.

Emotion Labels: Genuine emotion is taxing. To minimize
fatigue, we administered just two emotions per participant,
based on discussions with field experts, piloting and litera-
ture. The second emotion task was determined by the first;
participants experienced either Stressed - Relaxed OR De-
pressed - Excited, counterbalanced. The four named emotions
[Stressed, Relaxed, Depressed, Excited] comprised the emotion
label set and validated via self-report on intensity and
authenticity and coordinates on Russell’s affect grid [21].

Procedure: Table 1 summarizes our study procedure, in
which neutral steps delineated experiment steps. Emotion
tasks were counterbalanced across participants.

Introduction and Calibration: To reduce novelty effects, we
introduced the robot, invited touch exploration, described
the robot including its sensing abilities, and explained that
its movement was disabled. We then calibrated all sensors.

Neutralization and Self-report: For each stage, we first
presented an emotionally neutralizing reading task, wherein
the participant read aloud from a short report from a
technology magazine for ~5 minutes. We instructed the
participant to read each word, told them that no questions
would be asked of the readings, and encouraged them to let
go of residual emotions from their day.

We then asked the participant to report their current
emotional state. Before each emotion self-report, an exper-
imenter explained or reminded the participant of concepts
of arousal and valence, answered questions about reporting
emotional state, and showed them how to indicate their
current emotional state on a form displaying Russell’s [27]
2D affect grid varying in arousal and valence [25]. This
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TABLE 1: Experimental procedure and data acquisition.

TABLE 2: Summary of features extracted from touch, gaze,
and select biometric signals.

Step Description (duration) Data or Output
(1) Tntro Describe study tasks informed consent FEATURE SIGNAL #
calibrate sensors verify data quality TOUCH (54Hz)
Read neutral text (5 min) biometrics distribution: max, min, ] ]
(2) Neutral 1~ Self-report emotional state mean, var, total var, AUC Xcentroid, Ycentroid, frame pressure 21
(Area Under Curve)

Calibrate gaze/touch sensor

calibration logs

(3) Emotion 1

Recall memory
(u = 4.23 min, o = 3.09)

biometrics, gaze, touch

Self-report

emotional state +
authenticity rating

Read neutral text (5 min)

biometrics

(4) Neutral 2

Self-report

emotional state

frequency: peak count,
fundamental frequency,
amplitude max, mean,
var & total var

GAZE (60Hz)
distribution: max, min,
mean, var, total var, AUC

Xcentroid, Ycentroid, frame pressure, pressure
of centroid cell + 8 nearest neighbours (9 vals)

X, Y, saccade length, velocity, fixation duration 25

Calibrate gaze/touch sensor

calibration logs

(5) Emotion 2

Recall memory
(1 = 4.23 min, o = 3.09)

biometrics, gaze, touch

emotional state +

Self-report authenticity rating

Interview
Self-report

qualitative data
emotional state

(6) Debrief
& Interview

self-report was repeated before and after each neutralizing
and emotion task. For emotion tasks, participants were also
asked to rate how strongly or authentically they experienced
the emotion, compared to the original incident.

Reliving Emotion Task: We next asked the participant
to recall an emotionally intense memory pertaining to an
assigned emotion word {Stressed, Excited, Relaxed, or De-
pressed} as they interacted with the robot. To elicit strongly
emotion-influenced touching, we invited them to relive the
emotion as intensely as possible while keeping their non-
instrumented hand on the robot. We explained that audio
recording was disabled in the video camera and we could
not hear them speak from outside the room. They received
no other touch instruction or reminder. After we left the
room, they described their memory with its associated feel-
ings to the robot in any language, at a volume of their choos-
ing. The participant indicated task completion by pulling a
signal rope. Data was collected for a single recalled memory
(duration =4.23 min, 0=3.09 min).

When the rope was pulled, the experimenter returned
and administered the self-report grid, then repeated the
steps for the second set of neutralization and emotion tasks.

Debrief and Interview: We conducted a short debriefing
interview to learn of any unexpected eventuality during
their experience, and ensure that participants were comfort-
able, emotionally stable, and departing in an emotional state
no worse than when they arrived. We provided university
counselling contacts after we found in piloting that partici-
pants could become distraught during this protocol.

3.2 Features, Pre-Processing, Extraction & Analysis

We recorded touch, gaze, and biometric data for affect
classification features (see Table 2 for a full list). Here, we
describe the feature extraction process.

Distribution statistics: We included conventional touch
statistics [7], [8], [17]: min, max, mean, median, variance,
total variance, area under the curve (AUC) for location
X- and Y-centroid and touch pressure. Touch pressure is
computed by frame: pressure values per capture of the

total samples, on/off-robot, off-on robot ratio,
rate within platform range, saccade count, sac- 9
cade rate, fixation count, fixation-saccade ratio

sample counts

frequency: peak count,
fundamental frequency,
amplitude max, mean,
var & total var

BIOMETRICS (2048Hz)

X, Y 12

Blood Volume Pulse (BVP): amplitude, high fre-
quency power (FP), low FP, very low FP, heart 228
rate, inter-beat interval, peak amplitude
Skin Conductance (SC): mean, epoch mean 228
Respiration pattern: abdominal amplitude, respi-

. 228
ratory rate, period

summary statistics:
mean, median, variance

Thought Technology’s commercially available calculations were used for
biometric feature extraction: http://www.thoughttechnology.com

10x10 sensor. For the centroid, we found the cell containing
the coordinates of the touch-pressure centre of mass (X-
centroid, Y-centroid); i.e., the weighted average of all taxels
in a frame based on their row and column locations, or (X,
Y) coordinates respectively. Gaze focal location (x,y) and
biometric channels of blood volume pulse (heart rate), skin
conductance, and respiration rate were similarly calculated.

Frequency statistics: Based on prior indications of promise
[17], we extracted frequency-domain features to assess how
well they encode emotion content. We calculated six fre-
quency statistics for 12 touch signals and the same six for
two gaze signals. We directly calculated frequency-domain
touch and gaze features, and used Thought Technology’s
pre-packaged signals*for biometrics.

3.2.1 Feature Extraction

We calculated distribution and frequency statistics for touch
and gaze. For biometric features, we relied on prepackaged
calculations but also computed simple statistics (mean, me-
dian, variance) for insight into distribution characteristics.
Table 2 summarizes the full feature set.

Touch features: We reprised known procedures for social
touch recognition by constructing three parameters [7], [8]:
touch pressure (sum of pressure readings from taxels in
frame); and column and row centroids (weighted measure of
row, column centres of mass based on frame taxel pressure,
or X-centroid and Y-centroid respectively). We computed 7
statistics per pressure parameter, for 21 features.

For frequency-based features of emotive touch, we per-
formed a Fast Fourier Transform (FFT) of the three frame-
level pressure and the centroid coordinates (x,y) described
above; and then calculated 6 frequency statistics for each
as well as the pressure readings from the centroid cell and
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its eight nearest neighbors [17], comprising 72 more touch
features in the frequency-domain.

Gaze features: From the gaze data, we collected raw (X,
Y)-coordinates of focal points from the Tobii eye tracker
and calculated 34 features: distribution statistics for each of
{focal coordinate pair (X-, Y-location), saccade length, veloc-
ity, fixation duration} as well as 9 summary features of gaze
presence and location including saccade and fixation ra-
tios. We used Salvucci’s I-VT algorithm [45] to differentiate
between fixations and saccades. Gaze samples with point-
to-point velocities <30°/s were classified as fixations and
those with velocities >=30°/s as saccades. We calculated 6
frequency statistics for gaze data on the 2D focal location,
generating 12 frequency-domain gaze features.

Biometric features: We computed mean, median, and vari-
ance across all signals provided from the Thought Technol-
ogy physiology suite, including both base signals (BVP, SC,
RR), and channels dependent on the original signals (HR,
HRYV, IB], etc.), for a total of 228 features across 76 channels.

3.2.2 Data Instances / Partitioning on Independent Factors

Each data instance is comprised of a list of touch, gaze, and
biometric features computed across a single time window.
We omitted windows that provided insufficient samples
for FFT (<10) for any modality’ — generally due to gaze
data loss when gaze was outside of the tracked area. We
partitioned our data and analyzed how key computational
factors influence classification accuracy: window size (data
density), inter-window gaps (continuity), and participant
knowledge (content) (Table 3).

Window Size: Impact of window size on classification is
crucial for compute-constrained real-time gesture classifi-
cation. 2s windows (54Hz, or 108 frames) have been used
to capture touch gestures [7]; however, human hands and
fingers can move at ~100-200ms [46], [47].

We therefore partitioned data in 2s non-overlapping
windows and extracted features for training and test in-
stances. Each data instance has features extracted from a
2s window to build a classification model. This partitioning
and feature calculation were performed on the same data at
other window lengths, resulting in four distinct sets of data
instances at [0.2s, 0.5s, 1s, and 2s] windows.

Inter-Window Gaps: Even though our Random Forest clas-
sification model treats instances without temporal depen-
dence, we consider that temporally-neighbouring instances
can be exceedingly similar, particularly in the smallest win-
dows. We investigate whether, and by how much, recency
effects influence accuracy rates by adding 2s gaps between
instances thereby eliminating adjacent instances. We com-
pare classification performance of the data with and without
this artificial gapping (gapped vs un-gapped data.)
Participant Knowledge: We report accuracy for emotion
classification across three levels of the classifier’s knowledge
of the participant in increasing information order:
1) No participant knowledge — subject-independent classifi-
cation simulates the task where an interactive system’s

5. On average, usable data instances dropped by 36% with shorter
data windows being more affected.

TABLE 3: A motivating overview of analysis factors.

WINDOW SIZE: [0.2s, 0.5s, 1s, 2s]

Description Data was all sampled to 54Hz. Window size is the length
of time over which a feature is calculated. e.g., a
two-second window has 108 samples.

Implication With a static sample speed, shorter windows simulate a
system with faster update cycles, resulting in less
information per window, but faster system response.

Question  How do accuracy rates change with different sample sizes?
INTER-WINDOW GAPS: [Without gaps, With 2s gaps]

Description With no gap, all windows are calculated contiguously,
ie., every window is directly adjacent to the one previous.
With gap, after every window is calculated, two seconds of
data is discarded.

Implication Social touch gestures take a little under a second to
make [7] so a 2s gap increases the likelihood that each

window captures different gestures.

Question How robust is the system to data loss?

PARTICIPANT KNOWLEDGE: [Explicit, Implicit, None]

Description The system may select participant labels if included in the
training data. We have three levels of participant
knowledge: participant labels included, participant labels
excluded (both subject dependent), all participant data
excluded (subject independent).

Implication When labelled, the system can tell whose emotions it is
attempting to predict. When unlabelled, the system still
has knowledge of the participant’s behaviour, but cannot
determine from whom. The most challenging case: testing

on a participant’s data without her training samples.

Question How much does a priori identification of an individual

influence classification accuracy?

emotion model cannot be trained on all possible users.
E.g., a robot in a museum or institutional context must
be modelled on a training set that could not include all
possible users, who are not known ahead of time.

2) Implicit participant knowledge — this subject dependent
system simulates a classification task where the inter-
active system’s emotion model has been trained on all
expected users before classification but not explicitly
informed which data is associated with the current user.
We imagine a system that lives in a limited private
domain, where all users have completed a calibration
period, informing the model’s training set.

3) Explicit participant knowledge — the training set in-
cludes participant labels as a feature (subject-dependent
where instances are attributable by subject). This sys-
tem knows whose emotions it is attempting to classify
and loads a personalized emotion model for each user.

We also ran participant classification to determine not
only how well these feature sets can determine what interac-
tion was performed, but also who performed it.

3.2.3 Classification

Here we summarize the classification tasks: predicting emo-
tion and person experiencing the emotion while experi-
menting with data instances comprised of our statistical
features and varying window size, inter-window gaps, and
participant knowledge. For literature comparison, we report
classification accuracy as the ratio of correctly classified
instances over all instances as well as multi-class weighted
F1-scores based on the instance count of each class.

We used Weka, an open-source machine learning plat-
form [48], for k-fold cross-validation (CV) using a Random
Forest (RF) classifier — so chosen for its known efficacy
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for touch recognition [7], [22] and low training and com-
putational threshold — to assess classification accuracy on
both pressure-location and frequency domain features. We
chose a relatively moderate value of k = 20 for our CV, to
support comparison with other studies which have shown
this method to be effective in touch classification [7], [8],
[17], [20]. We included subject-dependent tests for models
trained on all participants as there is no restriction on whose
data instances are included as training or test data, so long
as the same data instance is not in both.

Subject-independent Emotion Classification: For subject-
independent analysis (no participant knowledge), we use
two types of Leave-One-participant-Out (LOpO) classifica-
tion: (1) one participant’s data is left out and the training
set includes all other participants (LOpO-All) (i.e., training
N = 30—1) and (2) one participant’s data is left out and the
training set includes all other participants who performed the
same emotion tasks (LOpO-Half) (i.e., training N ~ 15 — 1°).

LOpO-ALL simulates a system that has no knowledge
of a new user and has been trained on all emotional touch
behaviours (chance ~ 25%). LOpO-HALF simulates a sys-
tem that has no knowledge of a new user and has been
trained only on the 50% subset of behaviours this user will
be performing (chance ~ 50%).

Subject-dependent Classification: Given the highly indi-
vidual nature of the touch behaviours we observed, it is
possible to expect LOpO classification to perform at or near
chance. We also performed CV for conditions classifying:
1) Participant: represents a system trying to identify who is
performing the interaction.
2) Emotions given explicit participant knowledge: participant
labels are included as a feature;
3) Emotion given implicit participant knowledge: participant
labels are omitted.

4 RESULTS

Consistently with past studies on biometric-based emotion
classification [15], our biometric data alone gave accuracy
rates from ~90% to near 100% (Table 4).

This section describes our results from running classi-
fication using our full feature set on emotional touch and
gaze behaviour across a number of experimental conditions
(compared to that of biometrics alone) (Table 4). We also
look at subject-independent tests of emotion classification
which also employed the maximal combination of modal-
ities (touch + gaze + biometrics) (Table 5). Fl-scores and
accuracy differ by less than 0.03 (3%), with most within 0.001
(0.1%) difference. Since they follow the same patterns by
condition, we discuss them in terms of accuracy outcomes
for comparability to other multiclass affective classification
literature [15], [17], [32], [49], [50].

4.1 Subject-Independent Emotion Classification

Subject-independent classification, LOpO-ALL (chance ~
25%) was run as a single RF trained on all emotions while

6. Test sets are comprised of data instances from participants who
performed Stressed and Relaxed (Nsg = 16) or ones who performed
Excited and Depressed (Ngp = 14)

TABLE 4: Weighted F1-scores from 20-fold cross validation
varying factors of Gap(+/-), Participant Labels(+/-), and
Window Sizes (0.2s, 0.5s, 1s, 2s) on touch T, gaze GG, and
biometric B features, classifying emotion (26% < chance <
50%). Classification accuracy is within 0.003 from these
values. Weighted F1-scores that are from 0.01 to 0.03 below
classification accuracy are indicated with *.

Participant Labels- Participant Labels+
Win T G TG B T G TG B
0.2s 666 412* 704 997 | 871 744 884 1
Gap + 055 693  448* 735 9% | 881 773 897 1
1s 719 489 759 996 | 886 .781 909  .999
2s 566 465 597 892 | 793 651 765 942
02s 754  475* 822 1 923 788 944 1
Gap- 05s 761 .505* .823 1 921 803 939 1
1s 768 530 821 1 921 811 937 1
2s 761 569 815 999 | 918 813 931 1

TABLE 5: Overall classification performance across all test
conditions and modality combinations by accuracy and
weighted Fl-scores.

TEST DESCRIPTION CHANCE ACC F1
IA?EO_ Predict one of four emotions 25.0% 34.5% 0.318
IIjIOAII)g_ Predict one of two emotions 50.0% 58.0% 0.574

LOpO-HALF was built on two RFs trained independently
for excited-depressed and stressed-relaxed respectively. For each
LOpO level, classification was performed at each window
size and gap condition.

Some participants fit the model well, most performed at
chance, and, interestingly, a few consistently contradicted
the generalized model. For all LOpO levels, window sizes,
and gap conditions, accuracy was very near chance (Table 5,
LOpO-ALL and LOpO-HALF).

4.2 Participant Classification

Previous results have demonstrated that participants have
a touch signature: ways or styles of touching which can
be sufficiently idiosyncratic to identify the toucher [7], [8].
Individual touch behaviours were both internally consistent
and externally unique.

To see if this was true of our data, we performed 20-fold
CV on the full set of data instances, to predict subject label
(who performed the gesture) on touch instances, resulting
in a classification accuracy of 78%, where chance is 1/30
or 3.33%. High accuracy rates on participant prediction
confirms that individual differences are indeed highly ex-
pressed in this type of behavioural data.

4.3 Subject-Dependent Emotion Classification

With participant classification (Section 4.2), we looked for
touch behaviour high in both individual differences and
consistency. With emotion classification we seek common-
alities in touch behaviours across individuals, under given
emotional conditions. We expect one of the following to be
true: (a) participants feeling the same emotions touch the
robot similarly, s.t. we can differentiate solely on emotion
condition; (b) given knowledge of a participant, we can
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Fig. 2: Emotion classification accuracy rates from 20 fold
cross-validation by modality (Touch + Gaze, Touch only,
and Gaze only), window size (0.2s, 0.5s, 1s, 2s), as weighted
averages from Table 4. Comparisons are also made between
having participant labels included (b) & (d) vs excluded (a)
& (c), and where 2s gaps are imposed to simulate data loss
(@) & (b) vs no gaps (c) & (d). Including biometric data
consistently achieves 90-100% accuracy across windows,
labels, and gaps (accuracy dips only under the sparsest data
conditions: gapped-2s window cases, regardless of whether
subject labels are present).

differentiate between two emotion tasks; or (c) some com-
bination where a system does not explicitly know who a
participant is, but can differentiate given a touch signature
characteristic of a specific participant.

(A) is unsupported based on our LOpO results where
named emotions are recognized at near chance. We focus
this section on the feasibility of personalized models of
emotional touch: the consequences of (b) and (c); the effect of
noisy or inconsistent data to simulate real-world operation;
and finally, how the relative contribution of touch and gaze
compare with respect to classification accuracy.

We review classification performance with respect to
data factors described in Table 3.

4.3.1 Accuracy by Emotion

We break down the average accuracy rates for emotion clas-
sification and compare how the classification task affected
performance for each emotion (see Fig 3).

Unsurprisingly, subject-dependent CV performs signifi-
cantly better than subject-independent LOpO; notably, how-
ever, Excited behaviours can be classified at roughly similar
rates. There are a few contributing factors to be considered:
(1) Excited behaviours were of consistently high arousal with
quick motions; while Stressed was also high arousal, partic-
ipants often associated it with fighting Depressed feelings.
(2) Participants provided longer samples of Depressed and
Excited expressions, which led to more data instances when
cut into equal-length windows (see Table 6 in Appendix).

4.3.2 Window size and Gapping

Comparing classification accuracy by window size, we see
that overall, increasing window size improves performance.

We imposed data gaps to simulate real-world loss, re-
ducing temporal inter-dependency. Where data was uninter-

SUBJECT DEPENDENT PTPT LABELS OUT SUBJECT DEPENDENT PTPT LABELS IN

excited depressed stressed relaxed <-— classified as excited depressed stressed relaxed <— classified as

2189 271 121 0.47 excited 3042 196  0.01  0.01 exclted
4.70 2541 111 0.37 depressed 2713887 001 0.00 depressed
197 193 1463 0.84 stressed 0.04 0.02 1843 0.86 stressed
1.46 114 120 12.86 relaxed 0.04 0.01 122" 1540 relaxed

(a) (b}

SUBJECT INDEPENDENT on 2 RF SUBJECT INDEPENDENT on 1 RF

excited depressed siressed relaxed <--— classified as excited depressed stressed relaxed <— classified as

2230 10.08 excited 2041 616 396  1.86 excited
15.01 16.57 depressad 1122 10.46 6.80  3.00 depressed
13.00 B.36 stressed 6.80 B.05 302 150 stressed
1058  B.10 relaxed 483 922 218 063 relaxed
LOpO-HALF LOpO-ALL
{c) (d)

Fig. 3: Comparing how each classification task performed
by emotion using touch and gaze features. For subject
independent analysis (c) we trained 2 RFs-trained on Ex-
cited-Depressed and Stressed-Relaxed separately (no between-
set classification — blank entry for Depressed-Stressed). In
contrast, a single RF was trained on all 4 emotions in (d).

rupted (Figure 2c,d), classification rates are relatively stable
regardless of window size.

While introducing gaps (data discontinuity) causes ex-
pected dips in performance, larger window sizes suffer dis-
proportionately. Closer inspection reveals that this accuracy
drop-off coincides with a decrease of training instances —
most severely at 2s, where data instance count drops from
7435 instances down to 676, an over 90% data loss.

4.3.3 Participant knowledge

Where participant labels are known (Figure 2b,d), clas-
sification accuracy improves over cases with no partici-
pant knowledge (a,c). This effect is seen consistently across
modalities with jumps as high as 10-20% for touch- and
gaze-only, respectively.

4.3.4 Comparing modalities

We refer to Table 4 to assess how touch (T), gaze (G), touch +
gaze (TG), and biometrics (B) compare in subject-dependent
emotion classification performance (20-fold CV).

Taking modalities alone, we see that gaze performs com-
paratively lower than touch. When participant labels are
available (Figure 2b,d), classification on both single modal-
ities improve. However, combining touch and gaze further
increases accuracy. Particularly under the best condition of
maximal information ((d) — with participant labels, no gaps),
touch and gaze together can approach that of biometrics per-
formance (97-100%) — in line with previous work showing
high classification performance on physiological data [15].

4.4 Feature Set Analysis

To understand feature contribution, we ran Weka’s Best First
Attribute Evaluator [51] on the Touch and Gaze feature set.
This tool iteratively selects the best feature subset for each
classification trial in 20-fold CV, producing a list of features
and the frequency with which they are selected.

Figure 4 breaks down each parameter by modality and
relative selection count as a heat map, where each cell repre-
sents the number of features of a statistical type selected at
each iteration. Higher saturation indicates a higher number
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Fig. 4: Feature selection count by statistic as ranked by
Weka'’s Best First Attribute Evaluator. Selection % represents
how often the feature is selected for use in 100 iterations of
20-fold CV. The dark box for Touch Distribution-Location
x Median indicates that this feature is selected 100% of the
time; white boxes indicate features that were never selected.

of times selected at this percentage. For example, Median-
Touch Location was selected in every CV ftrial.

The most selected features were the 11 calculated medi-
ans of touch location, chosen 100% of the time during 20-
fold CV. Overall, when using Classic Touch Location data,
we recommend calculating Median, Min, AUC, Mean, Max
features; in contrast, when using Classic Touch Pressure data,
Total Variance is not chosen at all and may be left out.

4.5 Reports of Experienced Emotion

Participants reported their current emotional state with
Russell’s 2D affect grid [21] during two neutralization tasks
and following two emotion tasks. After completion of all
emotion tasks, we interviewed our participants on their
experience; highlights are covered in this section.

Self-reported emotion movement: In Figure 5, there is
variation where we expected participants to report emotion
movement towards the quadrant extremes. In decreasing
order: Excited (all 14 participants reported moving towards
the quadrant extrema); Stressed (13/15); Depressed (6/15);
and Relaxed (2/16). In paired t-tests, we found significant
differences in self-reports between neutral and emotion
tasks for each of Stressed, Depressed and Excited in both
arousal and valence (p < 0.05).

Paired t-tests showed no significant difference (p > 0.05)
in neutralization tasks, nor order effect in emotion tasks.

Figure 5 plots each participant’s emotion trajectory
across the 2D affect grid for each relived emotion instance,
from starting state to recall conclusion. Both high arousal
emotions (Excited, Stressed) were consistent with expecta-
tions where participants reported a shift in emotion toward
the grid corner of the target emotion word.

Authenticity: Each participant self-reported how authen-
tically they experienced the target affect in each emotion

Rest— Stressed [ ™ 7
Auth:7.50 (1.68)

Rest - Excited
Auth: 8.00 (1.41)

Arousal
Arousal

Valence

Valence o<
T T T T T T T T T T
4 -2 0 2 4 4 2 0 2 4
| 1 1 | 1 | | | 1 1

Rest->Depressed | ~ | Rest-> Relaxed
Auth: 8.29 (1.38) Auth: 7.50 (1.51)

Fig. 5: Changes in individual’s self-report of emotion after
Neutralization (start) and Emotion tasks (finish); N=14 for
Stressed & Relaxed and N=16 for Depressed & Excited. Over-
all, we see a move from the origin to the representative
quadrant. Stressed and Excited show the strongest overall
change along both Arousal and Valence axes. Relaxed shows
the least change with disconnected points referring to “no
change” from neutral state.

task. On a scale of 1-10 with 1 being completely contrived or
artificial and 10 being completely authentic as in the original
experience, participants rated authenticity highly (between
7.5 < p < 8.29) with Relaxed and Stressed tied, and then
Excited and Depressed in increasing order.

Added insight from interviews: For some, immediacy or
recency of recalled events helped to highlight emotions. This
experiment was run around final-exam and holiday reunion
time. Both are cited as reasons for ease of recall.

“I'm leaving to see my family for the first time in
three years, I can’t stop being Excited.” — P09
“Excited was easy — the situation was more recent
and was more important [than my Depressed mem-
ory].” — P22

“I have a lot of school assignments right now and I
kind of toggled between many memories [Stressed].
It was hard to pick one to feel but I think that might
have added to the feeling.” — P21

“[W]hen I was doing Stressed, I felt like I wanted to
punch something it was so gut-wrenching.” — P29

The low arousal emotions, Relaxed and Depressed, moved as
expected in valence but not arousal, which remained overall
at its neutral “resting” position. In the case of Relaxed, this
might be explained by perceived similarity between this
emotion task and the ‘resting’ start condition.

“Relaxed was easy to express because it’s pleasant
and I want to feel it and also, I'm sitting on a couch
which helps.” — P27; similar reports by P02, P18

For these two emotions, some participants reported that the
emotion Depressed was linked to Stressed in their memories
(e.g., feeling stress about exams was also depressing), which
may explain some of the unexpected movement in arousal
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for Depressed. Four participants also reported feelings so
strong that their Depressed memory evoked active tears,
while others indicated that these feelings were somewhat
mitigated by the experience of stroking a soft body.
“My [Depressed] memory was very clear and I was
able to recall a lot of details. It really helped to
be touching a soft thing and felt like it was taking
some of my sadness.” — P26, also P15, P24
Another possibility for both of these emotion targets is that
participants were simply unable to turn down their arousal
state to this degree during the short time of the session.

5 DISCUSSION

We summarize result highlights before contextualizing them
in our research questions:
¢ Using both touch and gaze improved accuracy rates
over touch alone.
¢ Increasing window size had little effect on accuracy.
e Adding data blackouts or gaps did not noticeably
decrease classification accuracy except for 2s windows.
¢ Due to individual differences in touch behaviour, it is
necessary to include participants in the training set for
potentially usable recognition:

1) Classification accuracy for whom (participant per-
formed a data instance was comparable to that of
WHAT (emotion), implying that individual differ-
ences can be captured;

2) Both LOpO-ALL and LOpO-HALF analyses per-
formed at or near chance;

3) Including participant information in the training set
improved accuracy rates, but participant labeling is
not necessary for recognition.

5.1 RAQ1: Ability of Touch and Gaze to Predict Emotion

As anticipated, accuracy of distinguishing between emo-
tions based on a full suite of biometric signals ap-
proached 100% in the best-case model (Figure 2a) trained
on participant-labeled data (Table 4, column B). When full-
suite biometric signals can be effectively employed, they
will give the best result. Even partial biometric sources —
e.g., heart rate variability (BVP) alone — do well relative
to each of the less intrusive modalities. We can expect
improvement in the wearability or embeddability of some
biometric channels, so this result is important to note.

Of modalities not requiring sensors to be worn (touch,
gaze), touch reaches 92% accuracy’, improved with gaze
to 94%; however, performance worsens in more adverse
conditions. This level of classification accuracy may be ad-
equate for many applications, e.g., when the goal is simply
to establish large-scale movement between quadrants.

Classification accuracy favours pressure-location distri-
bution features: At 54Hz, touch distribution features of
pressure and location were most frequently selected for
emotion-classification performance (Figure 4).

Touch frequency-domain features have been used suc-
cessfully [17]; the contrast may be our relatively low sample

7. While classifiers differentiated four emotions, each participant
performed only two. Chance is thus more like 50% when participant
labels are known.

rate coupled with short windows (0.2-2s vs 8s in [17]).
Further, emotion classification using gaze data appears to
consistently benefit from inclusion of features calculated
on Fourier transforms of gaze position. Since frequency-
domain features are relatively compute-intensive (realtime
FFT vs. pre-processable pressure-location set), it may be
reasonable to reduce the feature set to touch distribution
features where efficiency is a priority.

5.2 RQ2: Individuality

Recognition rates increase with greater participant knowl-
edge: LOpO results near chance (for both iterations—ALL
and HALF) imply low generalizability of a model to other
individuals” emotional behaviour.

Participant knowledge matters, but not labels — We propose a
touch-centric robot that exploits individual differences and,
instead of an out-of-the-box general training model, builds
personalized models of a short list of users. Having partici-
pant knowledge is important for classification; all expected
users of a single robot should be included in a model’s train-
ing pool. However, including participant labels adds only
minor benefit (Table 4 with labels vs. without) when training
data already includes the test participant. This may be due
to the relatively high participant classification rate (Table 4;
chance 3.3%) wherein participant-specific behaviours may
influence classification such that even though participants
are unlabelled, the system is able to guess. When high
accuracy is needed, a priori user identification (participant-
labelled data) may be a helpful refinement.

Excited is most recognizable emotion — Based on confusion
matrices describing per emotion performance (Figure 3),
Excited may be most generally recognizable. The emotion
self-report (Figure 5) shows that Excited was experienced
consistently (all participants reported the expected emotion
direction). Similar emotional experiences may translate to
common touch and gaze expressions in these high-arousal,
high-valence emotion spaces.

5.3 RQ3: Sample Density for Realtime Responsiveness

Larger windows and including gapped data reduces clas-
sification accuracy: With post-hoc classifications, increasing
window sizes and eliminating data segments (discontinu-
ities with gapping) reduces data instance count. We discuss
the effects from conditions where greatest data instance
count are in no gap-0.2s window conditions and least with
2s gap-2s windows, with respect to real-time classification.
Size — From Figure 2, increasing window size from 0.2s to
2s results in marginal improvement of classification under
no-gap conditions. In this case, increasing system response
rate (by using 0.2s windows rather than 2s of data) may be
favourable as little accuracy loss is experienced.

Continuity — Gapping data does indeed drop accuracy by
10%in T, G, and T'G (Table 4). We considered the possibility
that the performance decrease is related to low data instance
count, but even when removing that confound and com-
paring equal instance intervals of gapped vs. non-gapped
signals 8 we found that each single modality’s performance

8. Addition of gaps between 2s windows reduces the data set in-
stance count by over 90% (7435 to 676 instances).
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on adjacent data streams (non-gapped) resulted in higher
accuracy rates than that of gapped data’.

Interestingly, for most window sizes (0.2s, 0.5s, and 1s
— where gapped and ungapped instance counts are on the
same order of magnitude) results suggest data loss should
not be devastating to real-time emotion classification of
touch, even when the gap (2s) is 10x that of the collected
instance (0.2s). Given a relatively predictable signal inter-
ruption pattern, we can select a window size range knowing
that even if a signal is lost for up to 10x that of the collected
window, classification accuracy may still be tolerable.

This performance differential exposes a role of signal
continuity in these channels” expression of human behavior
and emotion reaction: a possible explanation is that emotion
expression evolves in even short timeframes. While larger,
adjacent windows may marginally improve classification
accuracies for short (single-window) snapshots, they may
introduce error for longer interactions. Periodic system re-
training may help to build a more robust user model.
Since this may interfere with actual system use, re-training
could be suggested as participant behaviour changes and
participant classification accuracy drops — an indication of
significant behavioural departure from the current model.

5.4 RQ4: Experimental Methodology

We chose an experimental approach based on the use case
of a robot pet. Several elements were nonstandard: emo-
tion elicitation method, choice of emotions investigated,
study framing (including how existing emotion models may
influence the emotion task: a participant interacting with
an unresponsive furry object), and analysis aspects. With
results in hand, we critique these innovations.

Emotion elicitation: While the technique of memory re-
telling was validated by literature [19], [25], we elicited
stronger emotional reactions than we expected. In some
cases, this could be due to participants playing a ‘good-
subject role’, trying to please experimenters [52] and ar-
tificially inflating the perceived efficacy of this protocol.
However, we anticipate some degree of this characteristic in
any laboratory study. Furthermore, we noted some strong
physical and embodied emotional reactions (such as gen-
uine tears) that suggests this method could still be a valuable
tool, particularly in a laboratory setting where people may
otherwise find it hard to act naturally. We plan to employ
variations in our own future studies.

Emotion set: We reported both high and low classification
accuracy rates, but nevertheless question whether accu-
racy is an indicator of a successful emotion model, even
when corroborated by Fl-scores. There is certainly value
in accuracy metrics, but underlying assumptions of both
dimensional and discrete emotion models present known
problems for classification. Specifically, discrete systems
based on dimensional models suffer from a problem of dis-
tinguishability in which semantically dissimilar emotional
labels are placed in the same bins [53].

Study and Emotion Task Framing: We assumed that par-
ticipants express a roughly steady state emotion, felt across

9.2s windows / unlabelled participants generated for T: 90.4%
(adjacent) vs. 56.7% (gapped); T'G: improved to 78.8% vs. 47.5%.

the entire memory recall. However, it is possible that strong
emotions may be felt only for an instant before autonomic
emotion regulation or coping mechanisms take over [54].
The horizon over which we sample a participant’s emotional
state, and the assumption of immediacy impact decisions
an interactive system should implement. Our discrete clas-
sification system can identify differences in minute-long
interactions, but cannot estimate an emotional inflection
point (i.e., transition from one emotion to another). A truly
interactive system would need to react to the change in an
emotional state and adapt over many samples.

Furthermore, in natural emotional exchanges, interac-
tions with pets or friends allow for error correction: an
initial misjudgement can be corrected with further con-
text. An adaptive rather than prescriptive model might go
further towards develop a meaningful relationship over a
direct and immediate call-and-response instructing inter-
action [55]. Using touch data in context with gaze and
biometric analysis lays the groundwork for extending haptic
human-robot interactions from instructional directives to
meaningful conversational relationships.

5.5

From our findings, we consider next steps in designing the
classification system for our social touch-centric robot.

Out of the three nonverbal modalities we studied, touch
may be most relevant for applications such as social robot
therapy. Our findings indicate that for a previously known
uset, distinguishing between a few emotional states is feasible
for touch-alone. This provides intriguing opportunities for
development of therapeutic robots that could run human-
affect recognition and respond by adjusting their behavior.

While gaze and biometrics improved classification, their
use in practical scenarios remains challenging. For robust
detection of gaze, the user must always face the robot at
a certain angle or wear a calibrated head-mounted gaze
tracker. Including biometrics is even more restrictive as
participants must don a series of body-hugging sensors,
then remain emotionless during periods of neutral user cal-
ibration before departures from neutrality (emotion) can be
detected in signals such as heart rate and skin conductance.
Embedding biometric sensors into the robot system may
be possible but still poses some difficulty: touch interac-
tion with the robot typically consists of momentary touch
contact that may be too short and infrequent for measuring
biometric signals. However, these sensory systems can be
integrated in situations with careful sensor placement for
gaze attention and training data collection sessions.

To be used effectively in therapy, an expert such as
a therapist would need to introduce the robot and guide
potential users in providing training data for recognition
of emotions via touch. As participant-knowledge appears
to be a key component to increasing emotion classification
performance, we can conceive of a system training proce-
dure that extends beyond simply including participant info.
The robot could be personalized to first recognize and then
work from a custom user profile where accuracy is crucial.
Although this implies a setup cost for use, potential benefits
in environments where real animals cannot be used (such as
some hospital environments) may compensate.

Implications for Social Robot Applications
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6 CONCLUSIONS

We presented affect classification results from emotionally
influenced touch and gaze behaviours, verified against
better-understood biometric data. Participants recalled in-
tense emotional memories spanning Russell’s 2D arousal-
valence affect space, namely Depressed, Excited, Stressed, and
Relaxed. We collected data across the three modalities via
a custom fabric touch sensor embedded in a small furry
stationary robot; a gaze tracker; and a biometric suite in-
cluding skin conductance, respiratory rate and heartrate
variability. Our data is both quantitative (sensor capture
during interaction, and self-ratings of emotion genuineness
and intensity) and qualitative (post-experience interviews).

For models trained with test participant data using
pressure-location features, the overall emotion recognition
rate was roughly 83% for touch, 87% for touch + gaze,
and 99% for touch + gaze + biometrics. Performance drops
steeply when test participants were left out of the train-
ing model, resulting in 31%, 31%, and 29%, approaching
chance (25%). We tried increasing the feature set by incor-
porating frequency features for touch and gaze modalities.
This resulted in emotion recognition rates of 79% for touch
frequency features, 85% for frequency and pressure-location
touch features, and 85% for touch frequency, touch pressure-
location, and gaze frequency features combined. LOpO per-
formed similarly poorly at 30%, 32%, and 35% respectively.

We summarize findings that will inform our next stage of
design for robots capable of real-time emotion classification:

1. Emotional behaviour encoded in touch and gaze inter-
action may be sufficient. While including biometric data
greatly improves accuracy, current technology requires they
be worn, resulting in a more restrained experience. Setup
interferes with natural emotional expression and sensors
affixed to the hand and body can feel restrictive.

2. An individualized training or calibration phase is
crucial for a personalized prediction system. Increasing
participant information greatly improves the classification
model’s prediction accuracy. While this stage likely requires
guidance from an expert or therapist, the training invest-
ment facilitates the learning of user-specific characteristics
and develops a more robust user behaviour model, thereby
allowing for a personalized and productive experience.

3. Sampling density and feature count may be reduced to
improve computation load. During real-use, the speed of
classification and reaction is a serious concern. Lossless con-
tinuous capture is ideal, however, in real-time we may find
that packets must be dropped from slow or problematic data
captures. We experimented with introducing gaps in data
for this reason, and our findings indicate that interruptions
in data collection at up to 2s intervals may be tolerable.

4. Limitations of commonly used emotion models should
inform future research in this field. Although we achieved
possibly usable classification rates, reflections from the field
suggest that existing affect models have clear limitations
that must be addressed [5]. People do not experience emo-
tions in isolation nor discretely; emotional experiences fol-
low a trajectory with distinctive peaks and valleys. Future
detection systems must model the rise and resolution of
an experience. While this study used a stationary robot,

a deployed interactive system must acknowledge that its
response has influence over user emotional reaction, neces-
sitating dynamic adjustments to behaviour modelling.
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