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ABSTRACT 
Humans rely on categories to mentally organize and under-
stand sets of complex objects. One such set, haptic devices, 
has myriad technical attributes that affect user experience in 
complex ways. Seeking an effective navigation structure for a 
large online collection, we elicited expert mental categories 
for grounded force-feedback haptic devices: 18 experts (9 
device creators, 9 interaction designers) reviewed, grouped, 
and described 75 devices according to their similarity in a 
custom card-sorting study. From the resulting quantitative 
and qualitative data, we identify prominent patterns of tagging 
versus binning, and we report 6 uber-attributes that the experts 
used to group the devices, favoring affordances over device 
specifications. Finally, we derive 7 device categories and 9 
subcategories that reflect the imperfect yet semantic nature 
of the expert mental models. We visualize these device cat-
egories and similarities in the online haptic collection, and 
we offer insights for studying expert understanding of other 
human-centered technology. 
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Figure 1: Expert mental categories for haptic devices. To 
depict the device similarities, experts sometimes created non-
overlapping “bins” and sometimes “tagged” devices by copy-
ing them into multiple bins. We derived device uber-attributes, 
categories, and similarities from the responses of 18 experts. 

technical solutions with haptics. Selecting the right hardware 
is a particularly important design decision for these people. 

One effective way to understand and find the appropriate haptic 
hardware is by reviewing the literature and/or device collec-
tions for relevant attributes and examples. Haptics surveys and 
books define about 60 commonly reported device attributes 
that come primarily from engineering specifications. A re-
cently developed library, Haptipedia, provides an online cata-
logue of over 100 haptic devices painstakingly annotated with 
their attributes [33]. Users can browse the devices in different 
visualizations, see their detailed attribute specifications (e.g., 
degrees of freedom (DoF), peak force, actuator type(s), spatial 
resolution) and filter and/or compare them to select one for a 
particular project [33]. Both the haptics literature and Hap-
tipedia intentionally provide a detailed view of each device 
to ensure consistent reporting in the research community and 
enable precise filtering and search. 

INTRODUCTION 
The recent surging interest in virtual reality, physical comput-
ing, and robotics has enticed a large number of researchers and 
practitioners from diverse fields to create new experiences or 
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Given enough time, a practitioner with sufficiently broad and 
deep experience can distill important information from these 
detailed specifications. Small insights about haptic hardware 
gradually develop into a complex mental map of how different 
attributes interact and also how they relate to a device’s capa-
bilities and affordances. Experts know the influential devices 
in the field and can detect their common variations as well 
as uncommon devices with new features. After reviewing a 
device’s specifications, they can identify its key characteristics, 
evaluate its novelty, and place it in the right mental cluster(s) 
for later retrieval. 

While useful for characterizing an individual device, these 
specifications may not be an effective way to browse or search 
a large collection. Each attribute describes one detail that 
may or may not contribute greatly to the overall experience 
of a particular device. Together, these attributes form a high-
dimensional space that is not easy to visualize and takes time to 
search. Naturally, these challenges are amplified for those with 
less experience in the field. Such fine-grained detail may even 
obscure the overall capabilities of a device. For example, two 
similar devices might appear substantively different because 
they use electrical amplifiers with different maximum current 
output, an attribute that can easily be modified. 

The goal of this work was to capture expert mental models for 
a major type of haptic hardware technology, grounded force-
feedback (GFF) devices, in order to use the captured schemas 
to organize a large haptic collection such as Haptipedia. GFF 
haptic devices have a wide range of applications (e.g., educa-
tion, surgery, entertainment), profit from a thirty-year history 
of development with many variations, and are well-catalogued 
in Haptipedia, which includes more than 54 attribute values 
per device. To support a wide range of users, we sought a 
data-driven project-independent organization for GFF devices. 

To this end, we collected data around the following three 
questions: Q1. How do haptics experts perceive the similarity 
of GFF devices? Q2. What device attributes define GFF device 
categories? Q3. Do interaction designers (IxD) and device 
creators (DevD) categorize GFF devices differently? 

Specifically, we derived similarity and semantic categories for 
75 distinct GFF devices taken from Haptipedia by conduct-
ing a custom online card-sorting study. During the session, 
each of 18 experts (9 device creators and 9 interaction design-
ers) first rated their familiarity with the devices. They then 
reviewed, grouped, and labeled the devices according to per-
ceived similarity, and finally they described their groupings 
in an individual interview. To identify the aggregate device 
categories and similarities, we applied a clustering algorithm 
to the expert grouping data and complemented it with thematic 
analysis of the interview data. 

Our results highlight two distinct expert approaches for de-
scribing the device similarities, suggest that device affordances 
are not dictated by the common definitions of attributes, and 
present a set of aggregate GFF device categories. To depict 
the intricate device relationships, some experts focused on a 
small number of key (to them) attributes for each device and 
created primarily non-overlapping groups (i.e., binning), while 

others perceived many attributes for each device and copied 
them into multiple groups (i.e., tagging). Most used a mix of 
binning and tagging. Focusing on affordances, the experts pri-
marily used 6 high-level attributes (which we henceforth call 
uber-attributes), namely body-device interconnection, kine-
matic structure, motion range, versatility, unique engineering 
features, and complexity of building and using the device. 
Rather than following the literature’s strict attribute defini-
tions, the experts employed fuzzy interpretive definitions that 
consider the gestalt of the device’s form and function, as well 
as the interaction of multiple attributes. Our clustering results 
support these qualitative findings through 7 categories and 
9 subcategories that reflect the uber-attributes. We propose 
new visualizations for structuring GFF device collections with 
these semantic categories and similarities. 

Organizing other evolving human-centered hardware (e.g., 
robotic hands, 3D printers, virtual reality gear) poses similar 
challenges: a high-dimensional attribute space with a mix of 
engineering and interaction design perspectives that contribute 
to the overall device affordances. To inform future studies, we 
reflect on our methods and present guidelines for capturing the 
expert mental models of such technologies. Our contributions 
include: 
• Qualitative and quantitative synthesis of the expert mental 

organization for GFF haptic devices (Q1, Q2), linked to the 
expert’s device or interaction design background (Q3) 

• An interactive visualization of the GFF device categories 
and similarities (visualization of answers to Q1, Q2) 

• Insights on the study design and interface for capturing the 
expert mental models of other high-dimensional interactive 
technologies (generalizable methods) 

RELATED WORK 
Below, we present existing literature on haptic device cat-
egories and attributes, algorithmic and user-centered ap-
proaches to making sense of complex high-dimensional item 
sets, and related theories from the categorization literature. 

Conventions for Haptic Device Categories and Attributes 
Some haptics review papers and books suggest primary catego-
rizations for haptic hardware. One common scheme separates 
devices by the haptic sub-sense they target – kinesthetic versus 
tactile [14, 10, 11]. The literature further categorizes kines-
thetic or force-feedback technology into grounded devices that 
are attached to a stable surface and ungrounded devices that 
are held by or mounted to the human body (e.g., wearables, 
exoskeletons) [10, 22]. While reviews acknowledge the diver-
sity of GFF device designs, authors typically do not categorize 
them beyond this point [14, 10, 11, 22]. One reason for the 
lack of more finely grained device categories could be the mul-
tiplicity of expert opinions about the correct categorization. In 
this paper, we derive GFF categories based on an experiment 
with 18 experts from different backgrounds. 

In contrast to these minimal categorizations, the haptics lit-
erature and device collections mention a plethora of GFF at-
tributes, most of which focus on engineering specifications [12, 
32]. Haptipedia expands that convention by visualizing a 
taxonomy of both engineering and interaction attributes for 
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accessibility to experts of different communities [33]. How-
ever, Haptipedia does not prioritize specific attributes, so the 
resulting high-dimensional specification is time consuming 
to navigate. Our results identify attribute constellations (i.e., 
uber-attributes) that can define GFF similarity and categories. 

Methods for Finding Categories in High-Dimensional Data 
Previous studies propose a variety of algorithmic and user-
centered methods for finding perceptual and semantic cat-
egories and similarities of items. Existing algorithmic ap-
proaches typically demand a numerical representation of 
items. Popular algorithms such as principal component anal-
ysis (PCA), t-distributed stochastic neighbor embedding (t-
SNE), and multidimensional scaling (MDS) help define a 
low-dimensional representation of a high-dimensional data set 
of items [39, 24, 21]. Alternatively, clustering algorithms help 
identify distinct groups in a data set [19, 20]. The Haptipedia 
database is too small (about 100 devices), too varied (a mix 
of categorical and numerical attributes), and too sparse (many 
missing values) for these methods to be effective. In addition, 
Haptipedia’s attributes may not fully capture overall device 
affordances. 

Similarly, analysis of the citation patterns or publication text 
with natural language processing (NLP) techniques might de-
tect overall development trends but is not a reliable measure of 
device similarity [7, 38, 15]. A quick check of the device cita-
tions that are visualized in Haptipedia shows that the authors 
commonly cite unrelated influential devices and contrasting 
designs, and they sometimes fail to cite similar devices that 
were not known to them. An alternative approach for capturing 
item similarities is to rely on human judgment. 

The psychophysics and human-computer interaction (HCI) 
literature offer a variety of methods for estimating perceptual 
and semantic distances of items through user studies. The 
most common approach, pairwise comparison, is prone to 
noise from local judgments and does not scale to large item 
sets [36, 17]. In the spatial arrangement method (SpAM), 
participants place items on a 2D canvas according to their 
similarity [17, 8]. This method is faster and allows for global 
judgments but is cognitively demanding and error prone when 
the underlying dimensions of the data are higher than two. 
Finally, sorting methods are typically employed with both 
perceptual and simple cognitive items [31, 25, 29]. In open 
card sorting, the participants can create any number of groups 
and label them [31]. This method can accommodate a large 
set of items (≥ 30) at the cost of a less granular (i.e., binary) 
distance matrix. To improve matrix resolution for large sets, 
Ternes proposed and validated a method for creating random 
subsets of the stimuli and aggregating the results from differ-
ent participants into a distance matrix [35]. Our stimuli are 
complex devices that need to be reviewed to be understood. 
In contrast, these studies used perceptual (e.g., visual icons, 
vibration waveforms) or simple cognitive stimuli (e.g., web-
site menu items) that can be judged in a matter of seconds. 
Therefore, we combined and adapted the above methods. 

Categorization Literature and Methods 
The field of haptics has not yet settled on holistic mid-level 
models of device categories. While haptic technology has a 

three-plus decade history, the participation and influence of 
interaction designers is relatively new and poses a particularly 
stark contrast to the engineering view of devices. Most at-
tributes in Haptipedia are from engineering papers about the 
devices themselves [33]. These sources conform to academic 
genre conventions and are sufficient for populating an engi-
neering database. Although Haptipedia was designed to meet 
the needs of diverse viewpoints, we believe the centrality of 
engineering papers to its shaping biases the platform to an 
engineer’s granular mental model of haptic devices. 

In categorization theory for resource description, specialists 
contrast structures of classification and categorization with the 
means by which such structures can be generated. Generally, 
a structure may either organize a universe of resources accord-
ing to numerous qualities that have been prioritized to give 
a full and orderly description of each item (appropriate to a 
context-independent view of a field), or it can assign items 
to categories based on particularly salient qualities (appropri-
ate to flexible and creative understandings) [18]. We refer to 
these two approaches as “tagging” and “binning”, respectively. 
Generation of such structures may rely primarily on either the 
literature or on user vocabulary [3, 26]. Ideally, generating 
categories and labels from the literature requires minimal inter-
pretation and produces a system that represents the resources 
consistent with the terms (and even the mental models) of 
their creators [1]. On the other hand, generating categories 
and labels from user vocabulary engages users who are not yet 
familiar with the resources and so are likely to describe them 
with less precision or jargon [2, 23]. 

One prominent critique of the user-centered approach is the 
impossibility of representing a generic user [9, 16]. As with 
any system, haptic device collections have pluralities of users 
with diverse vocabularies and mental models. To investigate 
the descriptive architecture of Haptipedia and improve its 
utility across user groups, we adopted methods to identify 
categories and labels from the mental models of relevant ex-
perts [4, 34], and we analyzed the divergence or convergence 
of these models across expert user groups. 

METHODS 
To empirically derive mental models of GFF devices, we 
selected 75 Haptipedia devices, divided them into random 
subsets, designed a custom card-sorting interface, and ran a 
two-hour-long online study session with 18 haptics experts 
that we recruited through email and snowball sampling. 

Curating the Device Set 
To reduce the duration and cognitive load of the experiment, 
we pruned the set of 105 GFF devices that were present in 
Haptipedia in April 2019 in the following ways: 1) When a 
device had several versions with minimal differences (e.g., the 
Stanford Haptic Paddle has five similar successors [30, 27]), 
we kept only the most representative and recognizable one 
(Hapkit 3.0 in this case). 2) For commercial devices that had 
multiple versions with different performance characteristics 
(e.g., Omega and Delta devices from Force Dimension Inc.), 
we kept only the simplest and the most complex devices in the 
set (Omega.3 and Delta.6 in this case). 3) We removed 7 more 
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(b) Our custom card-sorting interface allows the user to drag and drop device icons on a 2D 
(a) canvas, duplicate (red mark) and flag (yellow mark) the devices, and label them. The user The familiarity rating interface shows one de-

can see the device images and specifications in the gallery or list view or open a detailed vice per page, with a 5-point rating scale at the 
view with the device specifications. Hovering over a device on the canvas opens a pop-up top, plus the device images and specifications 
view with five key attributes that the user selected at the start of the grouping task. from Haptipedia. 

Figure 2: User interface for the study. 

devices with poor-quality or unclear images based on a pilot 
study, leaving a final set of 75. 

Estimating Device Subset Size 
Through internal pilot studies and discussions, we determined 
40 to be a reasonable trade-off between the number of de-
vices that an expert participant can review in one session and 
the number of participants needed to determine similarity be-
tween all possible pairs of the 75 devices in our set. We 
initially aimed to recruit six participants from each of our two 
target populations. Based on the responses from our snowball 
sampling, we increased this number by 50% to get additional 
coverage for more device pairs. With 18 participants in our 
study (9 device creators, 9 interaction designers), all the pair-
wise similarities are covered from 2 to 8 times. 

User Interface for the Study 
To gather detailed recordings from the remote experts, we 
developed two custom web interfaces for rating device famil-
iarity and sorting devices (Figure 2). 

Familiarity rating interface – The interface displays each 
device in a separate page that replicates the Haptipedia spec-
ification page. Specifically, the interface shows the device 
ID, name, release year, multiple images, a link to the corre-
sponding publication or datasheet, publication title and list 
of authors, and a table of device attribute values (Figure 2a). 
The user can rate each device on an integer scale from 1 (I am 
not familiar with this device at all) to 5 (I am a creator of this 
device or I have used this device extensively). The user can 
go back to change his or her previous ratings and is directed 
to the card-sorting interface after rating all 40 devices. 

Custom card-sorting interface – An initial pop-up window 
invites the user to choose up to five attributes from a list 
of 54 taken from Haptipedia; this selection can be revised 
throughout the study. A two-column interface then displays 
an empty white canvas on the left side where the user can drag 
and drop device icons (Figure 2b). Three tabs to the right show 
a gallery view with the device thumbnails and names, a list 
view showing the user-selected five attributes for all devices, 
and a detailed device view showing the same specifications 

as in the familiarity rating phase. All devices placed on the 
canvas can be rearranged, and their positions are automatically 
saved. Devices on the canvas can be bookmarked or duplicated 
via the right-click context menu. Hovering over a device icon 
reveals its name, its five attributes, and a larger image; the user 
can also add text labels to their groups. 

Procedure 
During a two-hour study session, the expert participants re-
sponded to background questions, rated their familiarity with 
40 GFF devices, grouped these devices based on similarity, 
and described their groupings in a follow-up interview. All 
sessions were conducted over Skype and were audio and video-
recorded with participant consent. These steps are detailed 
below and depicted in Figure 3. 
1) Background interview (15 minutes) – After explaining 
the study goal, we asked the expert about their years of expe-
rience, previous projects with GFF devices, and other haptic 
technologies they may have used. If needed, we asked them to 
self-identify as a device creator or interaction designer. 
2) Familiarity rating (20-30 minutes) – Next, we sent them 
a link to the familiarity rating interface and asked them to 
share their screen and review the rating scale and the attribute 
specifications for each device. After we answered questions, 
they rated their familiarity with 40 devices in a random order. 
3) Card sorting with duplication (40-50 minutes) – To in-
troduce this task, the experimenter shared their screen and 
used a dummy set of five devices to demonstrate the interface 
features and grouping task. Specifically, we showed how one 
could choose five attributes in the initial pop-up view and ex-
plained the gallery, list, and detailed device views. We also 
demonstrated the duplication, flagging, and labeling function-
alities. The experts were allowed to use any number of groups 
and to have single-item and/or “do not know” groups. 
4) Interview about the groups (25-30 minutes) – At the end, 
we invited the expert to describe each group and their grouping 
criteria. In addition, we asked if all the devices fully belonged 
to their groups, if the spatial layout of the devices between and 
within the groups was meaningful, which of the Haptipedia 
specifications were useful for the grouping, how satisfied they 
were with their groups, and how their groups might change 



CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Page 5

Figure 3: Overview of the data collected during our study as 
well as our analytical procedures and results. 

in a future session. Finally, we asked them if and how the 
experiment format and interface limited them in depicting the 
device relationships they wanted to portray. 

ANALYSIS 
We analyzed different portions of the collected data using 
quantitative and qualitative methods. 

Quantitative Analysis of Familiarity Ratings and Groups 
Averaging familiarity ratings – We calculated the median, 
mean, and standard deviation of the device familiarity rat-
ings for each expert and for the entire participant pool as an 
indication of their confidence in the groups they created. 

Creating a device distance matrix from the grouping data 
– To obtain one best-fit categorization for all 75 GFF devices, 
we aggregated data from all of the experts into one 75-by-
75 device distance matrix and analyzed it with a hierarchical 
clustering algorithm. We built the matrix by creating CSV 
files that included all the groups created by each expert and 
the device IDs assigned to each group. Specifically, when an 
expert had a hierarchical structure in their groups, we included 
separate groups for each level of the hierarchy in the CSV file 
and duplicated the device ID for each leaf node in all its parent 
groups. Also, we created a separate group for each of the 
devices in the “no group”, “do not know”, “miscellaneous”, or 
similarly labeled groups to reflect a lack of similarity among 
these devices. Next, we calculated a device distance matrix 
for each expert using the formula presented in [29], summed 
the matrices for all the experts, and normalized the resulting 
matrix according to the number of observations per matrix 
cell. Finally, we applied hierarchical clustering to this distance 
matrix to obtain one categorization for all 75 devices. 

Qualitative Analysis of Interviews and Group Labels 
Thematic analysis of interviews – We used thematic analysis 
to identify meaningful patterns and themes in the participant 

descriptions of the device categories [6, 5]. One of the au-
thors watched and transcribed all of the interviews, iteratively 
applied descriptive codes to the data (open coding, focused 
coding), wrote memos for connecting the codes and describ-
ing the data, and discussed the results with the team, which 
in turn led to merging some of the codes and creating new 
ones in the next round. We converged on themes around the 
expert perception of GFF similarities, the uber-attributes and 
their descriptions, and differences among device creators and 
interaction designers in grouping and describing the devices. 

Aggregating group labels – To supplement the results from 
our cluster and interview analyses, we aggregated the expert 
labels in two ways. First, we labeled the categories from 
our clustering analysis by compiling the most frequent labels 
for the devices in that group (Figure 4). Second, we com-
piled all the expert labels for each uber-attribute to identify 
all the instances of an attribute (e.g., foot is an instance of the 
body-device interconnection) and their frequencies (see label 
frequencies and average percentages of groups in Table 2). 

RESULTS 
The 18 participants (4 female: 3 IxD, 1 DevD) were haptics 
specialists who had done at least one significant project (e.g., 
a Ph.D. thesis) with GFF devices. We did not require them 
to be previously familiar with all the devices but expected a 
deep understanding of GFF device attributes and performance 
so they could use the Haptipedia specifications to evaluate 
devices they had not previously seen or tested. Recruits in-
cluded haptics industry practitioners (N = 2, average 9.5 years 
of experience), senior Ph.D. students (N = 3, avg. 4.5 years), 
postdocs (N = 5 , avg. 7.5 years), and faculty members (N = 8, 
avg. 18.5 years). They participated from the 9 following coun-
tries: Canada, France, Germany, Italy, South Korea, Spain, 
Turkey, the UK, and the USA. While some experts had worked 
on various aspects of a GFF device, half described their fo-
cus to be on building, modifying, or otherwise engineering 
GFF devices, while the other half primarily used existing GFF 
devices for perception studies and/or interaction design. 

The distribution of the familiarity ratings peaked around the 
three inner statements of the rating scale with an overall me-
dian of 2 (“I am not familiar with this device, but I can guess 
some of its properties.”). The five statements on the scale (Fig-
ure 2) received 99, 752, 366, 392, and 130 votes respectively. 
These ratings suggest that the experts could guess or identify 
the attributes of most presented devices to perform the group-
ing task. The “do not know” group allowed in the card-sorting 
interface helped remove potential noise from a lack of prior 
familiarity. Below, we present the expert perception of the 
device similarities, the uber-attributes and GFF categories, and 
similarities and differences between the device creators and 
interaction designers in defining the device relationships. 

Q1. How do haptics experts perceive the similarity of 
grounded force-feedback devices? 
The next three paragraphs describe how the experts depicted 
device similarities using the card-sorting interface, and the fol-
lowing two paragraphs provide evidence that these depictions 
adequately reflected their perception of the GFF devices. 
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Table 1: The experts varied in their approach for grouping 
devices and linking the groups. Overall, the taggers used 
more device copies and had fewer leftover devices, which 
we estimated as a sum of the number of items that were in 
single-item, miscellaneous, or “do not know” groups. 

Grouping Linking 
Leftovers Expert Approach Groups Copies 

DevD1 Tagging Hierarchy 28 0 
DevD2 Tagging Proximity 17 1 
DevD3 Tagging None 18 7 
DevD4 Binning Hierarchy 5 7 
DevD5 Tagging Proximity 11 2 
DevD6 Binning Hierarchy 2 2 
DevD7 Binning Proximity 0 0 
DevD8 Mix Proximity 5 3 
DevD9 Binning Proximity 1 7 

IxD1 Mix Proximity 12 5 
IxD2 Mix Proximity 8 7 
IxD3 Tagging Prox., Hier. 27 3 
IxD4 Binning Proximity 4 8 
IxD5 Binning Proximity 3 6 
IxD6 Mix None 6 4 
IxD7 Binning Hierarchy 2 13 
IxD8 Mix Prox., Hier. 5 4 
IxD9 Mix Proximity 8 3 

Grouping similar devices – The experts varied along a spec-
trum of using a tagging or a binning approach for grouping the 
devices. The taggers perceived many attributes for a device 
and included the device in many overlapping groups. “This 
one has aspects of a lot of different kinds of my groupings here... it has high 
DoF, some kind of cable actuation, some kind of a serial linkage... so maybe 
I put this one in a bunch of different categories (DevD2).” The tagging 
approach is similar to a specification table (e.g., Haptipedia) 
where a device is described by all the attributes of interest. At 
the other end of the spectrum, the binners perceived a primary 
home category for each device. DevD7 placed each device 
in only one group; in response to experimenter inquiry, this 
expert acknowledged this choice, saying “Maybe I could have 
paid attention more to the secondary or third properties that are in common 
with the other groups (DevD7).” DevD9 described little overlap as 
a sign for a good categorization. The majority of experts fell 
somewhere along the spectrum but were typically closer to 
the binning approach. The taggers used duplication more fre-
quently than the binners (Table 1). We identified the approach 
for each expert based on their verbal descriptions and later 
cross-checked it with their number of duplicated devices. 

Leftover devices – The experts described some devices as 
“leftovers” or “loners” and had difficulty grouping them. In 
some cases, the device was one of a kind. “As you know we 
have many, many haptic devices. Most of them have some unique features, 
and some of them are very unique to that device only... only one or two... 
such devices are not easy to classify or group (IxD4).” In other cases, 
the expert had difficulty telling whether the device was truly 
unique or just hard to understand. To handle leftovers, some 
experts created a “do not know” group or a “miscellaneous” or 
“loose group” that could vanish in a future grouping: “This is 
misc... it’s got levitation, it’s got handheld, I don’t know... I don’t know how to 
group this so I just put them all together (IxD5).” Finally, some created 
a single-item group for each unknown device. We compiled 
all the devices in the “do not know”, “loose”, and single-item 
groups as leftovers. Overall, the average number of leftover 

devices seems to be higher for the binners compared to the 
taggers (2.6 for taggers and 7.2 for binners, Table 1). 

Linking similar groups – While two experts randomly placed 
the groups, the others used proximity or a hierarchy to relate 
similar groups (Table 1). All the experts perceived a relation-
ship between at least two of their groups; the groups either 
had similar characteristics (e.g., joysticks and mice) or used 
the same grouping criteria (e.g., serial and parallel devices). 
However, the experts varied in whether and how they tried to 
depict this relationship among the groups. At one extreme, the 
groups were randomly placed on the canvas (DevD3, IxD6). 
Other experts created a hierarchy of groups. “I divided the devices 
into 3d space, 2d space, 1d space ... and inside the groups I again divided 
the groupings into two different groups, one that has a big space... and the 
one that has very small environment (DevD1).”. The majority were 
in-between; they placed similar groups close to each other 
on the canvas and verbally described the boundaries of the 
related groups. We did not find a direct relationship between 
the tagging versus binning approaches and the use of space to 
show group relationships, i.e., both taggers and binners were 
likely to use a random layout, proximity, or a hierarchy. 

Robustness of the groups – At the end of the task, the major-
ity (16 of 18) were satisfied with their groups and anticipated 
creating similar groups if repeating the task with the same or 
a different device subset. The other two were taggers. They 
described their groups as a starting point and imagined redoing 
the task to identify other, more interesting, device attributes. 

Impact of the card-sorting interface – The experts found the 
grouping interface effective for depicting device similarities 
and suggested additional features for facilitating the task. At 
the end of the session, we asked them if there was any device 
relationship they could not depict with the interface. 14 of 
18 experts found the 2D canvas and duplication adequate: “I 
don’t feel constrained for grouping the devices with this way because you can 
do more groups and duplicate... then it’s like 3, 4 dimensions you can use 
(DevD5).” When we asked them about the possible use of a third 
dimension or grouping physical devices in the real world, they 
responded that they might use the additional dimension for 
spacing out the unrelated groups but did not find it necessary. 
The other four experts requested a mechanism for linking 
the groups by drawing lines between or boundaries around 
the related groups (DevD4, DevD9, IxD3, IxD8). Furthermore, 
one tagger, IxD3, wanted support for tracking the device copies 
to make sure that the group assignments were complete. 

Given these results, we consider the groupings as a proxy for 
the experts’ mental models in the following analysis. 

Q2. What device attributes define GFF device categories? 
We present 6 uber-attributes from a thematic analysis of the in-
terviews, and 7 device categories from a quantitative clustering 
analysis of the expert groupings (Figure 3). While the cate-
gories are derived independently from the uber-attributes, they 
reflect combinations of the uber-attributes that are meaningful 
and present in GFF devices to date. 

Six uber-attributes and their fuzzy definitions – Our anal-
ysis of the verbal descriptions and group labels indicate that 
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Table 2: Frequently used device attributes for the groupings (i.e., uber-attributes). The left column shows each uber-attribute, its 
instances (in the square brackets) and its “fuzzy” description and links to the device affordances. The right column shows the 
relevant group labels that were used by more than one expert and the label frequencies (in parentheses). 

Uber-Attributes and Descriptions Associated Group Labels 

1. Body-device interconnection [Foot, fingers, pinch-grasp, power-grasp, joystick, pen or stylus,
mouse]: describes the activated muscles and the range of motion afforded by the device. The experts 
commonly separated interfaces for the foot and those that sense and actuate individual fingers. The hand-held 
devices were categorized according to the grip posture and end-effector. Specifically, handles that require 
power-grasp and arm movement were separated from those with a pen or stylus, which offers more movement 
flexibility for the wrist. Joysticks and mice were described to have a small workspace for the wrist and 
friction feedback, respectively. 
Average percentage of groups: 29%, Number of experts: 16/18, Haptipedia attributes: Body part (5) 

finger feedback (13), foot 
feedback (10), stylus or pen 
(9), joystick (6), tactile feed-
back(6), power-grasp (5), 
pinch-grasp (3), mouse (3), 
tool-mediated (2), paddle (2) 

2. Kinematic structure [serial, parallel, wire] [Pantograph, Phantom, Delta, SPIDAR]: uses labels 
from the robotics literature to describe the configuration of the mechanical links, but the grouping was 
based on overall device affordances. The devices were sometimes grouped around the prototypical devices 
in that category such as the Pantograph [13]. The kinematic structure directly impacts the motion range, 
performance, and the complexity of building and programming the device. 
Average percentage of groups: 25%, Number of experts: 13/18, Haptipedia attributes: Type of links 
(3), Device structure (3) 

parallel devices (11), serial 
devices (10), cable-driven de-
vices (6), pantographs (4), x-
y(-z) table (4), delta (2) 

3. Motion range [1D or 1DoF, 2D or planar, 3D, 6DoF+] [small workspace, large workspace]: is a 2d or planar (13), 1 dof 
mix of degrees of freedom and workspace. One-DoF devices were often separated due to their simplicity of (7), 6+ dof (5), 3d (5), 3 
building/using and different design goals (e.g., demonstrating a new actuator). Planar and 3D devices were dof (4), large workspace (4), 
grouped around their translational motion and could have more than 2 or 3 DoF. Some experts used overall small workspace (3), transla-
complexity to separate out the devices with 6+ DoF and/or the ones with very small or large workspace. tional/rotational (2), 1d (3), 
Average percentage of groups: 22%, Number of experts: 13/18, Haptipedia attributes: Translational rotation (2), low dof (2) 
Workspace (12), Actuated DoF (10), User-reachable DoF (9), Sensed DoF (5), Rotational Workspace (4) 

4. Versatility [Specialized tool or application, generic, commercial]: defines the extent to which a device 
can be used for multiple purposes and is widely available to experts. Specialized devices are designed to 
simulate a tool (e.g., an endoscope) or satisfy the requirements of an application (e.g., education), and they 
can have properties that are unusual or undesirable for a typical haptic device (e.g., being flexible or low 
fidelity). Commercial devices are the most available and are commonly used for a variety of projects. 
Average percentage of groups: 14%, Number of experts: 13/18, Haptipedia attributes: Anticipated 
applications (5), Device type (3) 

specialized tools or applica-
tions (7), education (5), surgi-
cal (4), general (3), medical 
(3), entertainment (3), reha-
bilitation (2), commercial (2) 

5. Unique features [Magnetic levitation, brakes, steering-wheel, admittance-type]: captures rare magnetic levitation devices 
engineering features of a device. Magnetic levitation devices were commonly separated due to their (8), brakes (2), admittance 
different operating principles. Few GFF devices use brakes instead of motors, a steering wheel for guiding type (2), 
user movements (i.e., co-bots), or are admittance type (i.e., measure force and output position). 
Average percentage of groups: 7%, Number of experts: 10/18, Haptipedia attributes: Force or torque 
(6), Actuator types (5) 

6. Complexity of building and using: was a meta-attribute that guided the expert decisions. The expert 
grouping according to motion range, kinematic structure, and unique features reflected the complexity of 
building and using the device and its potential for being commercialized. Only one expert explicitly grouped 
the devices according to their complexity. 
Average percentage of groups: 2%, Number of experts: 3/18, Haptipedia attributes: -

ease of use/complexity (1) 

experts agreed on what device attributes were important (Ta-
ble 2), but did not follow strict attribute definitions to group 
devices. Instead, they used interpretation and a “fuzzy” defini-
tion to capture device gestalt. 

For example, the experts used the robotic terms for device 
kinematic structure (e.g., serial, parallel), but found the strict 
mechanical definition inadequate. “I classify them from the point of 
view of the end-effector... not from the kinematic point of view... because from 
the kinematic point of view there are many devices [such] as this Phantom 
[device name] with this parallelogram here but it is mainly a serial device... 
from the user point of view (DevD5).” As another example, the expert 
definition for planar and 3D devices did not have a one-to-one 
link to the device degrees of freedom (DoF). “They [planar de-
vices] allow the user to move just on the plane on the translational space... 
in some case [the designers] can add some other DoF [which] can be gen-

erally a torque [rotation] on the axis normal to the plane or even the small 
translational DoF normally to the plane (DevD6).” 

Finally, experts wondered about grouping devices that modi-
fied another well-known device. “The Reading [device ID] device 
is really... they took two Phantoms [a commercial device] that are not fin-
ger devices and put them together to make a grasping device... In my mind, 
I’m looking at this and say OK, the interface which is being actuated was 
used in this finger capacity but at the end of the day the actual underlying 
device behind it is more general (DevD4).” Some included this item in 
two groups according to affordances of base and modification; 
others treated the modified device as a whole. Table 2 summa-
rizes the most frequent uber-attributes along with their “fuzzy” 
definitions, associated labels, and placement frequency. 

Aggregate categories for the GFF devices – Our clustering 
analysis resulted in 7 categories and 9 subcategories for the 75 
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Figure 4: The seven (including 1 ‘miscellaneous’) GFF categories that we derived for the 75 devices using a clustering analysis. 
We defined the category labels using the most frequent labels for the devices in each category. We calculated the mean similarity 
for each category by averaging the similarity between all the device pairs in the category. The devices with an average similarity 
of ≤0.3 with the other devices in their category are separated as Ungrouped or Miscellaneous (category 7). The colored squares 
show the distance matrix for the category. Dark colors indicate high device similarity. 

GFF devices (Figure 4). As described above, we derived these 
categories by applying hierarchical clustering to the aggregate 
distance matrix from all the experts. To determine the appro-
priate number of clusters, we examined the clusters generated 
by cutting the hierarchy at each level and compared them with 
the uber-attributes reported above. Our proposed categories 
(Figure 4) reflect the uber-attributes and are consistent with 
the number of groups created by the experts (median = 14). 
We labeled each category based on the most frequent labels 
that the experts assigned to the devices in that category. 

Our clustering analysis captures the binning model used by the 
majority of the experts, yet it does not fully capture the taggers’ 
views. To assess the fitness of our approach, we also examined 
the parts of the device distance matrix that are not explained by 
our proposed categories. Figure 5 shows the residual distance 
matrix that was constructed by subtracting the distance matrix 
for the proposed categories from the distance matrix built from 
the expert groupings. The annotations provide examples of the 
unexplained similarities and show that these residual values 
are also useful. In the next section, we propose interactive 
visualizations around these GFF categories and similarities. 

Q3. Do interaction designers and device creators catego-
rize GFF devices differently? 
To address this question, we separately analyzed the groupings 
created by the device creators and the interaction designers. 

Similarities – The dichotomy of device creators and interac-
tion designers could not fully predict the groups created by the 
experts. For example, some interaction designers mainly cate-
gorized devices by their kinematic structure (IxD1, IxD8), and 
some device creators mainly used interaction features (DevD1, 
DevD6). Furthermore, the average number of groups created 
according to each of the 6 uber-attributes was similar between 
the device creators and the interaction designers. 

Differences – Overall, the device creators noted more individ-
ual features than the interaction designers. Due to the long 
engineering history of GFF devices, we anticipated that the 
device creators would have higher agreement with each other 
compared to the interaction designers. Surprisingly, the dis-
tance matrix for the device creators was notably less coherent 
than the one for the interaction designers. In Figure 6, the blue 
cells that denote similar devices are spread all over the device 
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Figure 5: The residual distance matrix depicts device similar-
ities that are not explained by our proposed categories. We 
mark sample areas where the residual values are ≥0.4 for a 
group of devices to show that these residuals are not noise. 
Only half of the symmetric matrix is displayed. In the other 
half, we show the miniaturized distance matrix for the 18 ex-
perts and the distance matrix from our proposed categories. 
The residual distance matrix is the result of subtracting these 
two matrices. All the matrices use the same sorting to place 
similar devices close to each other for clustering. 

creators’ matrix. One can note that the majority of the taggers 
were among the device creators (Table 1), i.e., they perceived 
many attributes for the devices, whereas the majority of the 
interaction designers considered the overall characteristics of 
the device. “It [the categorization] was less about the properties and more 
about the gestalt of what the device was (IxD8).” 

These results suggest that while the 6 uber-attributes were 
similarly important for both groups, the device creators tended 
to have a more nuanced view of the GFF similarities. Our 
analysis did not suggest any differences among the experts 
according to their years of experience. 

INTERACTIVE VISUALIZATION OF THE RESULTS 
We designed new visualizations to demonstrate how the expert-
sourced categories and similarities can support browsing of a 
large collection like Haptipedia (Figure 7). To develop these 
visualizations, we created alternative prototypes and followed 
the literature guidelines [28]. 

A structure for the gallery view – At the start of this study, 
the Haptipedia homepage displayed all device thumbnails in 
a uniform grid ordered alphabetically or by release year. We 
suggest a new gallery structure based on the expert-sourced 
categories from Figure 4 (Figure 7a). In the new gallery view, 
users can change the thumbnail size dynamically or switch 
back to the original grid layout. 

Distance (b) (a) Distance matrix for interac-matrix for device 
tion designers creators 

Figure 6: The distance matrix for interaction designers has a 
more coherent similarity pattern. 

Arc diagram – We additionally visualize the device similari-
ties in an interactive arc diagram [37]. An arc connects two 
devices if their similarity is above a user-adjustable threshold 
(0.7 by default) on a scale from 0 to 1. The user can hover 
over a node to highlight its connections and load additional 
device information (Figure 7b). 

Device recommendations – On Haptipedia, the device detail 
page displays all the specifications, figures, videos, and CAD 
files for a device. We extended this page to recommend the 
three most similar devices (≥ 0.7 similarity) according to the 
device distance matrix obtained in our study. 

Device tags – For the detail page of each device, we compiled 
a list of tags from the experts’ group labels. We show the most 
common tags to help the user detect important affordances of 
a device before checking its detailed specifications. 

DISCUSSION 
We discuss how our results contribute to the haptics literature 
and present guidelines for capturing the expert mental models 
of other complex interactive technologies. 

Reflections on Haptic Categories 
Nature of the categories – The expert descriptions are holis-
tic rather than precise. In our study, the experts often used 
abstraction and interpretation to categorize the devices based 
on their gestalt characteristics and affordances. Three of the 
uber-attributes in our results (body-device interconnection, mo-
tion range, and kinematic structure) are presented in existing 
haptics books and surveys among many other attributes [14, 
11]. However, their definitions differ from our results. For 
example, the literature defines motion range of a device ac-
cording to its degrees of freedom (DoF) and workspace size. 
In contrast, in our results the motion range refers to the overall 
movement constraints of a device (e.g., 1D, 2D, 3D) which 
does not have a 1-to-1 mapping to the DoF values, e.g., a de-
vice with three translational DoFs is considered planar by an 
expert if the range of motion in the third dimension is small. 

Use cases – We anticipate three uses for expert categories: 

1) Efficient navigation: Experience designers could skim the 
GFF categories to decide whether their project requirements 
(e.g., 3D space, large motion) are supported by existing de-
vices. They can quickly identify the most relevant category 
and narrow down their search to a fraction of the devices in a 
large collection such as Haptipedia. 
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(a) The restructured gallery view organizes devices into the identified categories. 
Note that this screenshot shows only a subset of the categories. 

(b) The arc diagram connects the device pairs that have a 
similarity value above a user-defined threshold. The devices 
are sorted according to the GFF categories. Hovering over a 
mark highlights the connections for the corresponding device. 

Figure 7: The gallery view and arc diagram that we created visualize the GFF device categories and similarities from the study. 

2) Identifying a gap: Device creators can see the distribution 
of the devices in the categories and identify areas with little 
work in the literature. 

3) Teaching haptics: Educators can use the categories and the 
uber-attributes to highlight prominent features of previously 
developed GFF devices. 

Growing the collection – To add a new device, an expert 
can determine the primary and secondary categories for a 
new device and/or select the most similar devices from the 
collection. As more devices are added, we can re-evaluate the 
fit of the proposed categories. Rather than a rigid prescription, 
we anticipate the GFF categories to be a living system that 
is revised and extended based on future inventions and input 
from a larger group of experts. 

Insights for Capturing an Expert Mental Model 
Thinking more broadly, we conjecture that other interactive 
technologies (e.g., wearables, robots, 3D printers, virtual re-
ality) with high-dimensional specifications, rapid innovation, 
and contributions from multiple communities of practice can 
benefit from capturing expert mental models. To inform future 
studies, we reflect on our methods. 

Process – The familiarity ratings and the device subsets greatly 
increased the feasibility of the study. The familiarity rating 
task served as an effective warm-up for the grouping task, 
reduced its cognitive load, and contributed to the quality of 
the results. The size of the device subsets allowed everyone to 
complete the study within the two-hour time limit. 

Card-sorting interface – The flexibility of our custom card-
sorting interface allowed us to observe differences in how the 
experts used duplication (tagging vs. binning), the 2D space 
(proximity vs. hierarchy), and the labels. They found the 
interface adequate for grouping the devices but wanted more 
support for linking their groups (e.g., by drawing lines and/or 
circles) and tracking the device copies. During the sorting task, 
they mainly relied on the device images and rarely checked the 
specifications in detail. Thus, we suggest that future studies 

focus on compiling a comprehensive set of examples with 
effective media and publications, using pilot studies to test the 
necessity of any further information. 

Analysis – Dividing the items into random subsets was an ef-
fective strategy for aggregate analysis but complicated analysis 
of the individual devices. While the expert groups and criteria 
were preserved at an aggregate level (i.e., the clustering results 
are consistent with the uber-attributes from the thematic data), 
the device subsets led to higher variation at lower levels of the 
clustering hierarchy (e.g., “specialized tools or applications” 
group, Figure 4). Furthermore, the differences in the device 
subsets across the experts made it challenging to analyze the 
leftover devices, as we were unsure whether a device would 
still be difficult to group if it was part of a different subset. An 
open question for future work is how to devise the subsets to 
mitigate these problems. 

CONCLUSION 
We present the expert mental organization for GFF haptic 
devices based on a custom card-sorting study with 18 experts. 
The resulting device categories and similarities contribute a 
descriptive layer that goes beyond attributes and specifications 
to be more holistic and interpretive. Our visualizations propose 
a new structure for large haptic device collections, and our 
guidelines can inform future studies in haptics and other HCI 
subfields. Finding good descriptions for existing technologies 
is the first step toward innovating new solutions and evaluating 
them. While our work focuses on describing the GFF design 
space as is, the descriptions can highlight areas with little work 
and therefore indirectly help researchers invent new solutions. 
Breaking out from existing ideas ultimately requires more than 
good descriptions and is a fruitful area for future work. 
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