Pilot Testing a Robot for Reducing Pain in Hospitalized Preterm Infants

OTJR: Occupation, Participation and Health 2019, Vol. 39(2) 108–115 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1539449218825436 journals.sagepub.com/home/otj

Nicholas Williams¹, Karon MacLean¹, Ling Guan¹, Jean Paul Collet¹, and Liisa Holsti^{1,2,3}

Abstract

Optimizing neurodevelopment is a key goal of neonatal occupational therapy. In preterm infants, repeated procedural pain is associated with adverse effects on neurodevelopment long term. Calmer is a robot designed to reduce infant pain. The objective of this study was to examine the effects of Calmer on heart rate variability (HRV) during routine blood collection in preterm infants. In a randomized controlled pilot trial, 10 infants were assigned to either standard care (n = 5, facilitated tucking [FT]) or Calmer treatment (n = 5). HRV was recorded continuously and quantified using the area (power) of the spectrum in high and low frequency (HF: 0.15-0.40Hz/ms²; LF: 0.04-0.15 Hz/ms²) regions. Changes in HRV during three, 2-min phases (Baseline, Heel Poke, and Recovery) were compared between groups. Calmer infants had 90% greater parasympathetic activation ([PS] reduced stress) during Baseline, 82% greater PS activation during Poke, and 24% greater PS activation during Recovery than FT infants. Calmer reduced physiological preterm infant pain reactivity during blood collection.

Keywords

premature infant, occupational therapy, pain management, randomized controlled trial

Introduction

Defined as infants born at less than 37 weeks gestation, the latest estimate of the annual worldwide number of preterm infants born was approximately 15 million (Howson, Merialdi, Lawn, Requejo, & Say, 2009). The vast majority of these infants require admission to a neonatal intensive care unit (NICU) where they undergo many necessary painful or stressful care-related procedures, such as blood tests. In fact, during their time in the NICU, these infants are routinely exposed to five to 15 painful procedures (e.g., blood tests) each day particularly during the first weeks of life; exposure can be as high as 300 to 400 procedures over an admission (Roofthooft, Simons, Anand, Tibboel, & Van Dijk, 2014). Occupational therapists are concerned about the effects of neonatal pain because it is an independent risk factor for suboptimal brain development and occupational performance outcomes long term (Holsti, 2012). Specifically, repeated early pain exposure is associated with damaged brain microstructure and processing (Brummelte et al., 2012; Doesburg et al., 2013), with ongoing altered programming of stress-arousal systems (Grunau, Holsti, & Peters, 2006; Holsti, Weinberg, Whitfield, & Grunau, 2007), and with poorer motor and cognitive outcomes (Grunau et al., 2009; Zwicker et al., 2013).

For these infants, severe pain (e.g., surgery) is treated with pharmacological analgesics (Stevens, Gibbins, & Franck, 2000). However, these medications are not effective for treating pain associated with routine painful procedures (e.g., blood tests; Carbajal et al., 2005). Moreover, pharmacological agents have negative side effects and a lack of clarity exists about associations between early use and adverse long-term neurodevelopmental outcomes (Holsti, Zwicker, & Grunau, 2016; McPherson & Grunau, 2014).

Current best practice is to treat less severe neonatal pain with nonpharmacological or behavioral strategies, such as sucrose. However, concerns regarding the long-term use of sucrose have emerged (Holsti & Grunau, 2010; Trembley et al., 2017). Instead, sensory-based treatments related to human touch remain as well-tested viable alternatives, such as skin-to-skin holding or facilitated tucking (FT; Campbell-Yeo, Fernandes, & Johnston, 2011; Johnston et al., 2014).

Occupational therapists working in NICUs have specialized knowledge regarding accurate identification of neurodevelopmental signs of stress and stability (e.g., specific body movements, such as finger splay or bringing hands to mouth and/or changes in muscle tone; Holsti, & Grunau, 2007b). Signs such as these have been integrated into tools, which improve the assessment of pain in these high risk infants (Holsti & Grunau, 2007a, 2007b). Central to this study,

Corresponding Author:

¹The University of British Columbia, Vancouver, Canada ²BC Children's Hospital Research Institute, Vancouver, Canada ³BC Women's Hospital Research Institute, Vancouver, Canada

Liisa Holsti, BC Children's Hospital Research Institute, Clinical Support Building, V3-327, 950 West 28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4. Email: liisa.holsti@ubc.ca

occupational therapists also devise therapeutic interventions that are brain protective and that promote preterm infants' optimal social-emotional, physical, cognitive, and sensory development, including those which are founded on human touch, which can be used to manage neonatal pain (Holsti, Oberlander, & Brant, 2011; Vergara et al., 2006).

Of the aforementioned strategies, skin-to-skin holding provides multiple benefits for improving outcomes related to growth and development along with those related to pain mitigation. Each component of skin-to-skin holding (e.g., touch, warmth, heart beat sounds, breathing motion) simultaneously activates multiple opioid and nonopioid pathways (Johnston, Fernades, & Cambell-Yeo, 2011; Johnston, Filion, Campbell-Yeo, 2008).

A second, human touch-based treatment used for pain mitigation in preterm infants is FT. FT is a holding strategy whereby a parent or other caregiver provides gentle but firm containment of an infant's limbs before, during, and after a painful procedure (Holsti, Backman, & Engel, 2013). It has been shown to reduce standardized pain indices by 20% to 30% during endotracheal suctioning (Ward-Larson, Horn, & Gosnell, 2004) and heel lance (e.g., Axelin, Salantera, & Lehtonen, 2006).

One of the ways in which skin-to-skin holding specifically is thought to be effective for pain reduction is that it activates the parasympathetic nervous system (PS), part of the autonomic nervous system (ANS). Measuring the PS system can be done through assessing cardiovascular reactivity to stressful events. Indeed, along with changes in behavioral indices, heart rate (HR) is the most easily accessed, valid, physiological index of preterm infant pain/stress responses (Waxman, Pillai Riddell, Tablon, Schmidt, & Pinhasov, 2016). However, the global measure of HR can be moderated by many factors, such as blood pressure and body temperature. Using the more sensitive indicator, heart rate variability (HRV), reveals components of the underlying central neurologic control system in response to painful/stressful stimuli (Stevens, Pillai Riddell, & Oberlander, 2007).

HRV is calculated by measuring multiple values of the interbeat interval (the interval between consecutive beats of an individual's heart) over a specific time period and applying a mathematical operation to these values. In particular, researchers have found, using frequency domain methods (e.g., Fast Fourier Transformation), that the power within frequency bands of the HRV can be used to determine stress. HRV may be measured in Hertz per milliseconds squared (Hz/ms²; for example, Oberlander & Saul, 2002).

HRV is regulated by both the sympathetic (SP: activating) and PS (stress-relieving) nervous systems. Healthy individuals have a balance between SP and PS systems and are able to have high variability between systems allowing adaptive flexibility to environmental stressors. Recent research shows that in particular PS activation is particularly important for health. For example, in adults, reduced PS activation (less ability to relieve stress) is associated with increased inflammation, cardiovascular disease, cancer and Type 2 diabetes (Borovikova et al., 2000; Huston & Tracey, 2011; Parrish et al., 2008).

For preterm infants, noting changes in HRV is becoming a standard clinical indicator of infection (Moorman et al., 2011; Snedec et al., 2013). With respect to the effects of human touch–based treatments on preterm infant HRV, massage has been shown to increase PS activity (Smith, Haley, Slater, & Moyer-Mileur, 2013; Smith, Lux, et al., 2013). Specifically related to our study, two reports show that skinto-skin holding during blood collection induces a more balanced and stable HRV response (Cong et al., 2012; Cong, Ludington-Hoe, McCain, & Fu, 2009).

Despite the many benefits of skin-to-skin holding, numerous barriers make the implementation of this strategy challenging. For example, parents are not always available (Frank & Spencer, 2003). Furthermore, because of regionalized neonatal intensive care, some preterm infants are cared for far from their homes, and often many infants are not medically stable enough to be held for long periods.

To address this gap, we invented a novel prototype medical device called Calmer (PCT Utility Patent Number: CA2015/051002) that simultaneously delivers fundamental components of skin-to-skin holding (touch, breathing motion, and sound), which activate parallel physiological pathways to reduce pain. Calmer has an artificial skinlike surface, vertical movement that mimics a breathing motion, and heart beat sounds. The breathing motion and heart sounds can be individually programmed to match those of each infant's caregivers' resting respiratory and HRs. A key benefit of the design is that Calmer's completely nonhumanoid appearance avoids staff and family perceptions that it is "replacing the parent"; instead, Calmer was meant to be used as a valuable adjunct to other types of care. Key components of the design included not only the pain mitigating factors, but also included considerations regarding the ergonomic effects on the caregivers of installing a robotic platform into an incubator-another area in which occupational therapists contribute (Suto et al. unpublished data).

As a first step in technology transfer, the aim of this pilot, randomized controlled study was to evaluate the initial efficacy of using Calmer for reducing pain-induced stress experienced by preterm infants undergoing a care-related procedure. Our hypothesis was that during acute pain (defined as a skinbreaking procedure-blood collection), infants on Calmer before, during, and immediately after the blood collection would have lower mean HRs, greater activation of PS modulation and greater overall HRV than infants who received our standard of care, FT, a human touch–based treatment.

Method

Patients

Infants were recruited by a NICU-trained research nurse; written informed consent was obtained from the mother or

other legal guardian according to the research protocol approved by the Clinical Research Ethics Board of the University of British Columbia and the Children's and Women's Health Centre of British Columbia Research Review Committee. All procedures followed were in accordance with the ethical standards of the University of British Columbia and consistent with the revised (2000) Helsinki Declaration. Appropriate informed consent procedures were used throughout the study and all participants' consenting parents/legal guardians were informed of the study's risks and benefits. Each family consenting understood that their infant's participation was voluntary, and parents/legal guardians were informed by consent that they and their infant's identity would not be disclosed. Appropriate handling of confidentiality and data security were maintained throughout and after the study as per ethics board rules.

Infants admitted to the BC Women's Hospital NICU with a gestation age (GA) between 27 weeks and 36 weeks and who were due to undergo a routine blood test (heel lance) required for clinical care were assigned randomly to either receive standard care, FT, or Calmer treatment. Infants with congenital anomalies, who were higher order multiple births (e.g., triplets), had a history of maternal abuse of controlled drugs and substances, had ongoing infection, or had undergone any type of surgery were excluded. In addition, infants who had received pharmacological analgesics or sedatives within 72 hr of the assessment or who had blood collection that occurred beyond the 36th completed week GA (36 weeks + 6 days) were excluded from the study.

Intervention Procedures

Both Groups (Baseline and Recovery Phases)

Infants in the Calmer group were transferred gently to the Calmer platform, which was stationary, and settled so that infants in both groups were left undisturbed in their cots for 40 min in prone position with rolls around the body to promote a flexed position and to ensure a stable Baseline phase. Infants were placed in prone so as to replicate the body position they would have had if they had been held in skin-to-skin contact with their mothers. For the Recovery phase, defined as after the last contact of the lab technician, the infants in the Calmer group continued to be exposed to the treatment for 10 min to ensure a stable recovery time was achieved. We recorded this length of time as a conservative approach as we have found in other studies that full behavioral and physiological recovery can take up to 5 min (Morison et al., 2003).

FT Group (Intervention Phase)

The use of FT and a soother is the standard of care for managing acute minor painful procedures in our NICU. Two minutes before the heel lance, the research nurse administered FT (as described in the "Introduction" section) and the soother. She continued to hold the infant until the blood collection was complete and the infant was in a stable state (up to a maximum of 10 min) and ensured that the soother was held in the infant's mouth so that continuous oral contact was maintained.

Calmer Group (Intervention Phase)

On the day of the study, the research nurse recorded from the infants' mother two, 1-min periods of heart and respiratory rates after the mother had sat and rested quietly for 15 min. The 1-min average of the two periods was used to program the Calmer. Then, 15 min before the first contact by the lab technician, the Calmer breathing and HR sounds were started. Two minutes before the blood collection, each infant was given a soother, which, as for the standard care group, was maintained in the mouth throughout the blood collection period by the research nurse. We chose 15 min of continuous exposure on Calmer before blood collection as this period is the minimum time parents would hold their infants were they provide skin-to-skin holding for pain management (Johnston et al., 2008).

Randomization

Subject allocation was based on a sequence of computergenerated random numbers. Twins were randomized as individuals. Access to the randomization list was through a web-based system (REDCap) that enabled online interactive checking of the inclusion/exclusion criteria before authorizing random allocation. The trial coordinator initiated the randomization process and received the information regarding group allocation that guided the intervention. To avoid randomizing infants who did not go on to have blood collected, infants were allocated to treatment groups as close to the intervention as possible to still allow taking of physiological measures from each infant's parent.

Outcome Measure

HRV was recorded continuously beginning 5 min before (Baseline), throughout (Poke), and 10 min after (Recovery) blood collection. HR was recorded from a single lead surface ECG (lead II; Biopac, CA) and digitally sampled at 1000Hz/s. The single lead was attached to the three ECG patches already in place on the infant as per our NICU nursing protocol; two of the ECG patches were on the front aspect of both sides of each infant's chest and one on the abdomen. The ECG signal could then be diverted from the infants' bedside monitor to a research ECG monitor on the research study cart at the bedside. Custom physiologic signal processing software (MindWare, the United States) was used to analyze 2-min of stable periods of data. A stable period of data was defined as one having minimal variation in mean and variance of the data (Oberlander & Saul, 2002). Stable data were

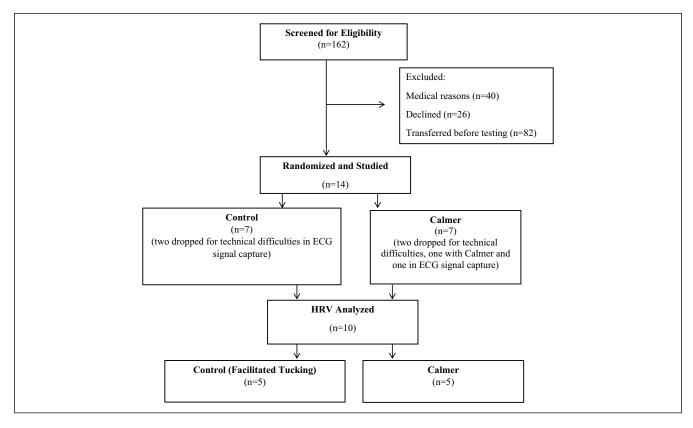


Figure 1. Patient Flow Diagram. Note. ECG = electrocardiography; HRV = heart rate variability.

picked as close as possible to the following phase markers, which were time stamped on the recording with an electronic foot pedal: 2 min just before the first contact of the lab technician (Baseline), 2 min immediately after the skin break of the heel lance/squeeze (Lance), and 2 min at the beginning of the Recovery phase. Power spectra was calculated for each study phase. HRV was quantified using the area (power) of the spectrum in high frequency (HF = 0.15 Hz/ms^2 -0.80 Hz/ ms^{2}) regions. HF power represents the PS activity; decreased HF is a sign of stress and increased HF power is a sign of stress recovery, or calmness and is mediated through vagal nerve activity (Oberlander & Saul, 2002). Low frequency power (LF = 0.04 Hz/ms^2 - 0.15 Hz/ms^2 regions) represents both PS and sympathetic activity combined (Oberlander & Saul, 2002). Changes in HRV power across the three procedure phases were compared between groups. The results were evaluated by team members who are expert in HRV analyses, but who were not involved in either the recruitment, randomization, or data collection and who were blind to study group characteristics (JPC, LG).

Demographics

Chart reviews were conducted by the NICU research nurse to collect maternal demographic and clinical information regarding the infant from birth to day of testing including the following: birth weight, GA at birth, numbers and types of invasive skin breaking procedures, maternal education (in years), time of last feeding just before blood collection. These data were used for descriptive purposes.

Data Analysis

Descriptive analyses for calculating medians and interquartile ranges (IQRs) for the demographic variables and for the HRV responses were completed using Microsoft Excel, 2011. IQR is a measure of variability, based on dividing a data set into quartiles.

Results

Fourteen infants were randomized for the pilot study. Of these, data from four infants were not included in the analyses because of either technical issues with Calmer (the platform stopped running [one infant]) or with the HRV recordings (three infants) leaving 10 infants; five into each the Calmer and FT groups (Figure 1).

The median (IQR) GA and birth weight of the infants in the FT group was 28.1 (27.2-28.9) weeks and 1,235 (1,194-1,390) grams compared with 28.7 (27.1-29.1) weeks gestation and 1,209 (1,130-1,220) grams in the Calmer group. In both groups, three out of the five infants were male. Other

Group	Gestational	Birth weight	Age at	Maternal age at	Minutes infant fed
	age (weeks)	(grams)	assessment (days)	delivery (years)	before study
Facilitated tucking $(n = 5)$	28.1	1,235	25	24	30
	(27.7-28.9)	(1,194-1,390)	(22-29)	(22-28)	(30-30)
Calmer $(n = 5)$	28.7	1,209	4	33	75
	(27.1-29.1)	(1,130-1,220)	(1-27)	(29-35)	(60-120)

Table I. Baseline Characteristics (Median [Interquartile Range]).

Table 2. Median (Interquartile Range) of the Different Components of (HRV: Hz/ms²) at Each Time Point.

HRV	Group	Baseline	Poke	Recovery	Difference Baseline-Poke	Difference Poke-Recovery
HF	FT	3.6 (3.1-9.1)	0.4 (0.3-7.2)	5.2 (4.1-12.8)	-3.2	4.8
	Calmer	36.0 (23.7-73.2)	2.2 (1.1-3.0)	6.8 (1.7-21.1)	-33.8	4.6
	Difference	32.6	1.8	2.7		
LF	FT	۱۱.6 (9.4-25.1)	4.2 (3.1-6.2)	48.8 (15.9-66.5)	-7.4	44.6
	Calmer	85.9 (56.1-141.3)	〕15.0 (1.5-28.1)	33.8 (32.0-119)	-70.9	18.8
	Difference	67.5	ÌI.4	Ì 17.9		

Note. n = 5 for both the Calmer and FT groups. HRV = heart rate variability; HF = high frequency power; FT = facilitated tucking; LF = low frequency power.

Baseline characteristics were also similar between the two groups (Table 1).

Minimal difference in mean HR was found between the two groups. The median (IOR) HR at Baseline, Poke, and Recovery for the FT group was 158 (157-159) bpm, 186 (171-188) bpm, and 169 (168-171) bpm, respectively, compared with 159 (156-167) bpm, 173 (169-177) bpm, and 163 (155-169) bpm in the Calmer group. However, when the HF component of the HRV was calculated, a clear difference between the groups was evident. The infants in the Calmer group had a higher median (IQR) HF (Hz/ms²) at Baseline, Poke, and Recovery of 36.0 (23.7-73.2), 2.2 (1.1-3.0), and 6.8 (1.7-21.1), respectively. In contrast, the FT group had a median (IQR) HF (Hz/ms²) of 3.6 (3.1-9.1) at Baseline, 0.4 (0.3-7.2) at Poke and 5.2 (4.1-12.8) at Recovery. The absolute difference in HF (Hz/ms²) between the groups at each time point was 32.3 at Baseline, 1.7 at Poke, and 1.6 at Recovery. There was a similar trend with the LF component of the HRV. Table 2 displays the median (IQR) components of HRV as well as the absolute differences between each group at Baseline, Poke, and Recovery. Figure 2 displays the HF changes across all three time points in both groups.

Discussion

To the best of our knowledge, this randomized controlled pilot study is the first to report the initial feasibility of managing acute pain in preterm infants in the NICU with a novel medical robot invented by an occupational therapist and

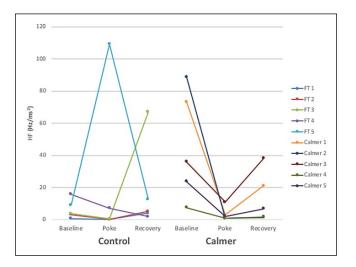


Figure 2. Heart Rate Variability Across Pain Procedure Phases. Note. HF = high frequency.

others meant to simulate pain-mitigating components of skin-to-skin holding. Our invention used expert occupational therapy knowledge regarding the ways in which touch and sensory stimulation can alter early brain development. In this case, this knowledge was applied in a neonatal pain context.

Infants in the Calmer group had an 90%, 82%, and 24% increased HF activation at Baseline, Poke, and Recovery phases, respectively, compared with infants in the FT group. In addition to higher HF across all phases, Calmer infants had a heightened responsiveness/variability of the autonomic

system (it goes deeper to decrease and returns faster to higher values) compared with those in the FT group. Moreover, the trends for both HF and LF were similar. The greater difference from Baseline to Poke in LF in Calmer group indicated a more positive Calmer effect on increasing total variability of the HR (more variability is healthier). Thus, compared to infants who received FT, infants in the Calmer group appeared to have more optimal functioning of their ANS.

One infant within the FT group (FT 5) had a much higher HF response from Poke to Recovery, which was in contrast to all the other infants in the study. After a thorough chart review, a clinical/medical reason could not be ascertained for this response. Nor could we explain it as being related to any events that occured during the assessment as all the equipment functioned well. With this small sample size, we cannot be sure that response was an outlier or if some other unknown influence affected the infant. Another infant, also in the FT group (FT 3), had an interrupted recovery due to clinical care needs (Figure 2), which potentially artificially increased the HRV. Both of these infants were included in the final analysis as intended. However, if these infants were to be excluded from the analysis, the benefit of Calmer is potentially greater, with up to a 40% increase of HF activation within the Recovery phase.

These preliminary results suggested a positive effect of Calmer for reducing acute pain-related procedural physiological stress experienced by preterm infants. Indeed, our results parallel findings in another controlled trial where a physical robot's breathing-like motion was able to produce a statistically significant calming effect in adults who held the breathing robot in their lap so they could feel it (Sefidgar et al., 2015). If Calmer is shown in larger studies to be efficacious, it represents a unique opportunity to expand our scope of potential brain protective practices for high-risk infants. Moreover, Calmer may have applications beyond the NICU in other pediatric populations with whom occupational therapists work, such as for helping infants recover from surgery or for calming infants who may, for medical or neurodevelopmental reasons, have prolonged periods of agitation.

As is to be expected, the main limitation of this pilot study is the small number of patients in each group, which means that, although there was a difference between the two groups, interpreting it statistically is not possible. Other considerations are also important. As others have reported, we found wide variation in the data. (e.g., Krueger, van Oostrom, & Shuster, 2010), yet, many studies describing HRV in preterm infants have used cohort designs. We have a used randomized design, which aims to control variables that might otherwise influence outcomes; thus, the level of variation may be as a result of the low sample size and/or it may be related to sympathovagal immaturity in these preterm infants (e.g., McCain, Ludington-Hoe, Swinth, & Hadeed, 2005). A larger randomized clinical trial has just been completed that will allow us to evaluate the effect of Calmer on HRV with greater precision (unpublished data).

The length of time each group was provided treatment before the heel lance differed between groups. Because we were conducting the first pilot study, we were not able to alter what is the standard of care in our NICU for the length of time FT is applied. Finally, as ECG data recordings during painful procedures may contain signals with movement artifacts as the infants respond to the stimulus, chosing the optimal analysis segments can be challenging. We made every attempt to chose segments as close to the phase markers as possible with as clean a signal as possible. Even with those considerations in mind, the greater percent differences in PS activation across all blood collection phases that were found in the infants who received Calmer treatment supported advancing the work on this technology.

Conclusion

This randomized controlled pilot study suggests that Calmer shows promise for further development and evaluation to help reduce the multiple long-term effects of increased stress in preterm infants admitted to an NICU. Our work adds to the occupational therapy evidence base regarding effective early sensory interventions for hospitalized preterm infants and illustrates the initial steps taken for technology transfer in safety critical hospital settings. Capitalizing on these positive results, a larger, nationally funded, randomized controltrial has just been completed, which has evaluated in a larger sample, the impact of a revised prototype of Calmer for reducing stress in preterm infants in the next stage of transferring this novel technology into clinical care.

Authors' Note

Trial Registration Number: www.ClinicalTrials.gov: NCT014 33588. This work has been presented twice at conferences in abstract form: Williams N, Holsti L, MacLean K, Collet JP. Calmer: A novel approach for reducing stress in preterm infants. Pediatric Academic Society, E-PAS2016:2881.620. Baltimore USA, May, 2016 and Holsti L, Williams N, MacLean K, Collet JP. Calmer: A novel approach for reducing stress in preterm infants. Canadian Association of Occupational Therapy. Vancouver, Canada. Platform Presentation. June 22, 2018.

Acknowledgments

The authors would like to thank Mary Beckingham and Alice van Zanten for completing the recruitment and data collection for the study. They would also like to thank the families who agreed to be part of this study.

Ethical Approval

The study was approved by the Clinical Research Ethics Board of the University of British Columbia and the Children's and Women's Health Centre of British Columbia Research Review Committee (Certificate Number: H11-01968).

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Authors Drs. MacLean and Holsti are inventors of the Calmer medical device for pain management for preterm infants. In partnership with the Provincial Health Services Association of British Columbia, Canada, we could, in the future, receive royalties as a result of licensing agreements made with private industry for commercialization of the device. We have not received any remuneration to date. In addition, we did not participate actively in the data analysis in this article so as to remain at arms-length. None of the other authors have relationships with any sponsoring organization or a for-profit interests the organization represents, or with any for-profit product discussed or implied in the text of the our article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Funding for this study was provided by the BC Children's Hospital Research Institute and the University of British Columbia Faculty of Medicine. LH is supported by a Canadian Institutes of Health Research Canada Research Chair in Neonatal Health and Development.

ORCID iD

Liisa Holsti (D) https://orcid.org/0000-0003-0315-0330

References

- Axelin, A., Salantera, S., & Lehtonen, L. (2006). "Facilitated tucking by parents" in pain management of preterm infants-a randomized cross over trial. *Early Human Development*, 82, 241-247.
- Borovikova, L., Ivanova, S., Zhang, M., Yang, H., Botchkina, G., Watkins, L., . . . Tracey, K. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. *Nature*, 405, 458-462.
- Brummelte, S., Grunau, R., Chau, V., Poskitt, K., Brant, R., Vinall, J.,... Miller, S. (2012). Procedural pain and brain development in premature newborns. *Annals of Neurology*, *71*, 385-396.
- Campbell-Yeo, M., Fernandes, A., & Johnston, C. (2011). Procedural pain management for neonates using nonpharmacological strategies: Part 2: Mother-driven interventions. *Advances in Neonatal Care*, 11, 312-318.
- Carbajal, R., Lenclen, R., Jugie, M., Paupe, A., Barton, B. A., & Anand, K. J. (2005). Morphine does not provide adequate analgesia for acute procedural pain among preterm infants. *Pediatrics*, 115, 1494-1500.
- Cong, X., Cusson, R., Walsh, S., Hussain, N., Ludington-Hoe, S., & Zhang, D. (2012). Effects of skin-to-skin contact on autonomic pain responses in preterm infant. *Journal of Pain*, 13, 636-645.
- Cong, X., Ludington-Hoe, S., McCain, G., & Fu, P. (2009). Kangaroo Care modifies preterm infant heart rate variability in response to heel stick pain: Pilot study. *Early Human Development*, 85, 561-567.
- Doesburg, S., Chau, C., Cheung, T., Moiseev, A., Ribary, U., Herdman, A., . . . Grunau, R. (2013). Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age. *Pain*, 154, 1946-1952.
- Franck, L., & Spencer, C. (2003). Parent visiting and participation in infant caregiving activities in a neonatal unit. *Birth*, 30, 31-35.
- Grunau, R. E., Holsti, L., & Peters, J. W. B. (2006). Long-term consequences of pain in human neonates. *Seminars in Fetal* and Neonatal Medicine, 11, 268-275.

- Grunau, R., Whitfield, M., Petrie-Thomas, J., Synnes, A., Cepeda, I., Keidar, A., . . . Johannesen, D. (2009). Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. *Pain*, 143, 138-146.
- Holsti, L. (2012). Occupational therapists play an important role in managing pain in infants in neonatal intensive care units. *Occupational Therapy Now*, 14, 8-9.
- Holsti, L., Backman, C., & Engel, J. (2013). Occupational therapy. In P. McGrath, B. Stevens, S. Walker, & W. Zempsky (Eds.), Oxford textbook of pediatric pain.Oxford, UK: Oxford University Press. doi:10.1093/med/9780199642656.003.0057
- Holsti, L., & Grunau, R. E. (2007a). Initial validation of the behavioral indicators of infant pain (BIIP). *Pain*, 132, 264-272.
- Holsti, L., & Grunau, R. E. (2007b). Extremity movements help occupational therapists identify stress responses in preterm infants in the neonatal intensive care unit: A systematic review. *Canadian Journal of Occupational Therapy*, 74, 183-194.
- Holsti, L., & Grunau, R. (2010). Is sucrose the solution? Considerations of sucrose for reducing procedural pain in preterm infants. *Pediatrics*, 125, 1042-1047.
- Holsti, L., Oberlander, T. F., & Brant, R. (2011). Does breastfeeding reduce acute procedural pain in preterm infants in the neonatal intensive care unit? A randomized clinical trial. *Pain*, 152, 2575-2581.
- Holsti, L., Weinberg, J., Whitfield, M., & Grunau, R. (2007). Relationships between adrenocorticotropic hormone and cortisol are altered during clustered nursing care in preterm infants born at extremely low gestational age. *Early Human Development*, 83, 341-348.
- Holsti, L., Zwicker, J. G., & Grunau, R. E. (2016). Comment on the paper by van den bosch et al. entitled 'Prematurity, opioid exposure and neonatal pain: Do they affect the developing brain?': The impact of subtle messaging. *Neonatology*, 109, 120-121.
- Huston, J., & Tracey, K. (2011). The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. *Journal of Internal Medicine*, *269*, 45-53.
- Johnston, C., Campbell-Yeo, M., Fernandes, A., Inglis, D., Streiner, D., & Zee, R. (2014). Skin-to-skin care for procedural pain in neonates. *Cochrane Database of Systematic Reviews*. Issue 1. Art. No.: CD008435.
- Johnston, C., Fernades, A., & Cambell-Yeo, M. (2011). Pain in neonates is different. *Pain*, 152, S65-S73.
- Johnston, C., Filion, F., & Campbell-Yeo, M. (2008). Kangaroo mother care diminishes pain from heel lance in very preterm infants: A cross-over trial. *BMC Pediatrics*, 8, Article 13.
- Krueger, C., van Oostrom, J. H., & Shuster, J. (2010). A longitudinal description of heart rate variability in 28–34-week-old preterm infants. *Biological Research for Nursing*, 11, 261-268.
- Howson, C., Merialdi, M., Lawn, J., Requejo, J., & Say, L. (2009). White paper on preterm birth. The global and regional toll. White Plains, NY: March of Dimes.
- McCain, G. C., Ludington-Hoe, S. M., Swinth, J. Y., & Hadeed, A. J. (2005). Heart rate variability responses of a preterm infant to kangaroo care. *Journal of Obstetric, Gynecologic & Neonatal Nursing*, 34, 689-694.
- McPherson, C., & Grunau, R. (2014). Neonatal pain control and neurologic effects of anesthetics and sedatives in preterm infants. *Clinics in Perinatology*, 41, 209-227.
- Moorman, J., Carlo, W., Kattwinkel, J., Schelonka, R., Porcelli, P., Navarrete, C., . . . Michael O'Shea, T. (2011). Mortality reduc-

tion by heart rate characteristic monitoring in very low birth weight neonates: A randomized trial. *Journal of Pediatrics*, *159*, 900-906.

- Morison, S., Holsti, L., Grunau, R., Whitfield, M., Oberlander, T., Chan, H., & Williams, L. (2003). Are there developmental distinct motor indicators of pain in preterm infants? *Early Human Development*, 72, 131-146.
- Oberlander, T. F., & Saul, J. P. (2002). Methodological considerations for the use of heart rate variability as a measure of pain reactivity in vulnerable infants. *Clinics in Perinatology*, *29*, 427-443.
- Parrish, W., Rosas-Ballina, M., Gallowitsch-Puerta, M., Ochani, M., Ochani, K., Yang, L., . . . Pavlov, V. (2008). Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling. *Molecular Medicine*, 14, 567-574.
- Roofthooft, D. W. E., Simons, S. H. P., Anand, K. J. S., Tibboel, D., & Van Dijk, M. (2014). Eight years later, are we still hurting newborn infants? *Neonatology*, *105*, 218-226.
- Sefidgar, Y., MacLean, K., Yohanana, S., Van der Loos, M., Croft, E., & Garland, J. (2015). Design and evaluation of a touchcentered calming interaction with a social robot. *Transactions* on Affective Computing, 7, 108-121.
- Smith, S., Haley, S., Slater, H., & Moyer-Mileur, L. (2013). Heart rate variability during caregiving and sleep after massage therapy in preterm infants. *Early Human Development*, 89, 525-529.
- Smith, S., Lux, R., Haley, S., Slater, H., Beachy, J., Beechy, J., & Moyer-Mileur, L. (2013). The effect of massage on heart rate variability in preterm infants. *Journal of Perinatology*, 33, 59-64.
- Snedec, N., Simoncic, M., Klemenc, M., Ihan, A., Vidmar, I., & Grosek, S. (2013). Heart rate variability of transported critically ill neonates. *European Journal of Pediatrics*, 172, 1565-1571.

- Stevens, B., Gibbins, S., & Franck, L. (2000). Treatment of pain in the neonatal intensive care unit. *Pediatric Clinics of North America*, 47, 633-650.
- Stevens, B., Pillai Riddell, R., & Oberlander, T. (2007). Assessment of pain in neonates and infants (3rd ed.) (K. Anand, B. Stevens, & P. McGrath, Eds.). Toronto, Ontario, Canada: Elsevier.
- Suto, M., Holsti, L., Ranger, M., & MacLean, K. (unpublished data). Calmer, the non-mom: A robot strategy for providing but not supplanting a crucial human role.
- Trembley, S., Ranger, M., Chau, C. M. Y., Ellegood, J., Lerch, J. P., Holsti, L., & Grunau, R. E. (2017). Let's not sugar coat it: Long term adverse effects on the brain of repeated sucrose for pain management in preterm infants. *Pain*, 158, 1586-1598.
- Vergara, E., Anzalone, M., Bigsby, R., Gorga, D., et al. (2006). Neonatal Intensive Care Unit Task Force. Specialized knowledge and skills for occupational therapy practice in the neonatal intensive care unit. *The American Journal of Occupational Therapy*, 60, 659-668.
- Ward-Larson, C., Horn, R., & Gosnell, F. (2004). The efficacy of facilitated tucking for relieving procedural pain of endotracheal suctioning in very low birth weight infants. *Maternal Child Nursing: The American Journal of Maternal/Child Nursing*, 29, 151-156.
- Waxman, J. A., Pillai Riddell, R. R., Tablon, P., Schmidt, L. A., & Pinhasov, A. (2016). Development of cardiovascular indices of acute pain responding in infants: A systematic review. *Pain Research and Management*, 2016, Article 8458696. doi:10.1155/2016/8458696
- Zwicker, J., Grunau, R., Adams, E., Chau, V., Brant, R., Poskitt, K., . . . Miller, S. P. (2013). Score for neonatal acute physiology-II and neonatal pain predict corticospinal tract development in premature newborns. *Pediatric Neurology*, 48, 123-129.