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To a future where humans and machines live
together in harmony.



Foreword

Technology-dependent industries and agencies, such as Defence, are keenly seek-
ing game-changing capability in trusted autonomous systems. However, behind the
research and development of these technologies is the story of the people, collab-
oration and the potential of technology.

The motivation for Defence in sponsoring the open publication of this exciting
new book is to accelerate Australia’s Defence science and technology in Trusted
Autonomous Systems to a world-class standard. This journey began in July 2015
with a first invitational symposium hosted in Australia with some of the world-class
researchers featured in this book in attendance. Since that time, engagement across
the academic sector both nationally and internationally has grown steadily. In the
near future in Australia, we look forward to establishing a Defence Cooperative
Research Centre that will further develop our national research talent and sow the
seeds of a new generation of systems for Defence.

Looking back over the last century at the predictions made about general pur-
pose robotics and AI in particular, it seems appropriate to ask “so where are all the
robots?” Why don't we see them more embedded in society? Is it because they can't
deal with the inevitable unpredictability of open environments— in the case for the
military, situations that are contested? Is it because these machines are simply not
smart enough? Or is it because humans cannot trust them? For the military, these
problems may well be the hardest challenges of all, as failure may come with high
consequences.

This book then appropriately in the spirit of foundations examines the topic with
an open and enquiring flavour, teasing apart critical philosophical, scientific,
mathematical, application and ethical issues, rather than assuming a stance of
advocacy.
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The full story has not yet been written but it has begun, and I believe this
contribution will take us forward. My thanks in particular to the authors and the
editors, Prof. Hussein A. Abbass at the University of New South Wales for his
sustained effort and art of gentle persuasion, and my own Defence Scientist,
Research Leader Dr. Jason Scholz and Principal Scientist Dr. Darryn J. Reid.

Canberra, Australia
April 2017

Dr. Alex Zelinsky
Chief Defence Scientist of Australia
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Preface

Targeting scientists, researchers, practitioners and technologists, this book brings
contributions from like-minded authors to offer the basics, the challenges and the
state of the art on trusted autonomous systems in a single volume.

On the one hand, the field of autonomous systems has been focusing on tech-
nologies including robotics and artificial intelligence. On the other hand, the trust
dimension has been studied by social scientists, philosophers, human factors spe-
cialists and human–computer interaction researchers. This book draws threads from
these diverse communities to blend the technical, social and practical foundations to
the emerging field of trusted autonomous systems.

The book is structured in three parts. Each part contains chapters written by
eminent researchers and supplemented with short chapters written by high calibre
and outstanding practitioners and users of this field. The first part covers founda-
tional artificial intelligence technologies. The second part focuses on the trust
dimension and covers philosophical, practical and technological perspectives on
trust. The third part brings about advanced topics necessary to create future trusted
autonomous systems.

The book is written by researchers and practitioners to cover different types of
readership. It contains chapters that showcase scenarios to bring to practitioners the
opportunities and challenges that autonomous systems may impose on the society.
Examples of these perspectives include challenges in Cyber Security, Defence and
Space Operations. But it is also a useful reference for graduate students in engi-
neering, computer science, cognitive science and philosophy. Examples of topics
covered include Universal Artificial Intelligence, Goal Reasoning, Human–Robotic
Interaction, Computational Motivation and Swarm Intelligence.

Canberra, Australia Hussein A. Abbass
Edinburgh, Australia Jason Scholz
Edinburgh, Australia Darryn J. Reid
March 2017
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Chapter 1
Foundations of Trusted Autonomy:
An Introduction

Hussein A. Abbass, Jason Scholz and Darryn J. Reid

1.1 Autonomy

To aid in understanding the chapters to follow, a general conceptualisation of auton-
omy may be useful. Foundationally, autonomy is concerned with an agent that acts
in an environment. However, this definition is insufficient for autonomy as it requires
persistence (or resilience) to the hardships that the environment acts upon the agent.
An agent whose first action ends in its demise would not demonstrate autonomy. The
themes of autonomy then include agency, persistence and action.

Action may be understood as the utilisation of capability to achieve intent, given
awareness.1 The action trinity of intent, capability and awareness is founded on a
mutual tension illustrated in the following figure.

If “capability” is defined as anything that changes the agent’s awareness of the
world (usually by changing the world), then the error between the agent’s aware-
ness and intent drives capability choice in order to reduce that error. Or, expressed
compactly, an agent seeks achievable intent.

The embodiment of this action trinity in an entity, itself separated from the environ-
ment, but existing within it, and interacting with it, is termed an agent, or autonomy,
or intelligence.

1D.A. Lambert, J.B. Scholz, Ubiquitous Command and Control, Intelligent Decision Technolo-
gies, Volume 1 Issue 3, July 2007, Pages 157–173, IOS Press Amsterdam, The Netherlands.
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2 H. A. Abbass et al.

So it is fitting that Chapter 2 by Tom Everitt and Marcus Hutter opens with
the topic Universal Artificial Intelligence (UAI): Practical Agents and Fundamen-
tal Challenges. Their definition of UAI involves two computational models: Turing
Machines; one representing the agent, and one the environment, with actions by the
agent on the environment (capability), actions from the environment on the agent
(awareness), and actions from the environment to the agent including a utilisation
reward (intent achievement) subject to uncertainty. The “will” that underpins the
intent of this agent is “maximisation of reward”. Thismachine intelligence is express-
ible - astoundingly - as a single equation. Named AIXI, it achieves a theoretically-
optimal agent in terms of reward maximisation. Though uncomputable, the construct
provides a principled approach to considering a practical artificial intelligence and its
theoretical limitations. Everitt and Hutter guide us through the development of this
theory and the approximations necessary. They then examine the critical question
of whether we can trust this machine given machine self-modification, and given
the potential for reward counterfeiting, and possible means to manage these. They
also consider agent death and self-preservation. Death for this agent involves the
cessation of action, and might represented as an absorbing zero reward state. They
define both death and suicide, to assess the agent’s self-preservation drive which has
implications for autonomous systems safety. UAI provides a fascinating theoretical
foundation for an autonomous machine and indicates other definitional paths for
future research.

In this action trinity of intent, capability, and awareness, it is intent that is in some
sense the foremost. Driven by an underlying will to seek utility, survival or other
motivation, intent establishes future goals. Chapter 3 Benjamin Johnson, Michael
Floyd, Alexandra Coman, Mark Wilson and David Aha consider Goal Reasoning
and Trusted Autonomy. Goal Reasoning allows an autonomous system to respond
more successfully to unexpected events or changes in the environment. In relation
to UAI, the formation of goals and exploration offer the massive benefit of exponen-

http://dx.doi.org/10.1007/978-3-319-64816-3_2
http://dx.doi.org/10.1007/978-3-319-64816-3_3


1 Foundations of Trusted Autonomy: An Introduction 3

tial improvements in comparison with random exploration. So goals are important
computationally to achieve practical systems. They present two different models of
Goal Reasoning: Goal-Driven Autonomy and the Goal Lifecycle. They also describe
the Situated Decision Process (SDP), which manages and executes goals for a team
of autonomous vehicles. The articulation of goals is also important to human trust,
as behaviours can be complex and hard to explain, but goals may be easier because
behaviour (as capability action on the environment) is driven by goals (and their
difference from awareness). Machine reasoning about goals also provides a basis for
the “mission command” of machines. That is, the expression of intent from one agent
to another, and the expression of a capability (e.g. a plan) in return provides for a
higher level of control with the “human-on-the-loop” applied to more machines than
would be the case of the “human-in-the-loop”. In this situation, the authors touch on
“rebellion”, or refusal of an autonomous system to accept a goal expressed to it. This
is an important trust requirement if critical conditions are violated that the machine
is aware of, such as the legality of action.

The ability to reason with and explain goals (intent) is complemented in
Chapter 4 by consideration of reasoning and explanation of planning (capability).
TimMiller, Adrian R. Pearce and Liz Sonenberg examine social planning for trusted
autonomy.Social planning ismachineplanning inwhich theplanning agentmaintains
and reasons with an explicit model of the humans with which it interacts, including
the human’s goals (intent), intentions (in effect their plans or in general capability to
act), beliefs (awareness), as well as their potential behaviours. The authors combine
recent advances to allow an agent to act in a multi-agent world considering the other
agents’ actions, and a Theory of Mind about the other agents’ beliefs together, to
provide a tool for social planning. They present a formal model for multi-agent epis-
temic planning, and resolve the significant processing that would have been required
to solve this if each agent’s perspective were a mode in modal logic, by casting the
problem as a non-deterministic planning task for a single agent. Essentially, treat-
ing the actions of other agents in the environment as non-deterministic outcomes
(with some probability that is not resolved until after the action) of one agents own
actions. This approach looks very promising to facilitate computable cooperative and
competitive planning in human and machine groups.

Considering autonomy as will-driven (e.g. for reward, survival) from Chapter 2,
and autonomy as goal-directed and plan-achieving (simplifying computation and
explanation) from Chapters 3 and 4, what does autonomy mean in a social context?
The US Defense Science board2 signals the need for a social perspective,

it should be made clear that all autonomous systems are supervised by human operators at
some level, and autonomous systems’ software embodies the designed limits on the actions
and decisions delegated to the computer. Instead of viewing autonomy as an intrinsic property
of an unmanned vehicle in isolation, the design and operation of autonomous systems needs
to be considered in terms of human-system collaboration.

2U.S. Defence Science Board, Task Force Report: The Role of Autonomy in DoD Systems, July
2012, pp. 3–5.

http://dx.doi.org/10.1007/978-3-319-64816-3_4
http://dx.doi.org/10.1007/978-3-319-64816-3_2
http://dx.doi.org/10.1007/978-3-319-64816-3_3
http://dx.doi.org/10.1007/978-3-319-64816-3_4


4 H. A. Abbass et al.

The Defense Science Board report goes on to recommend “that the DoD aban-
don the use of ‘levels of autonomy’ and replace them with an autonomous systems
reference framework”. Given this need for supervision and eventual human-system
collaboration, perhaps a useful conceptualisation for autonomy might borrow from
psychology as illustrated in the following figure.

Here, a popular definition3 of ‘autonomy as self-sufficient and self-directed’ is
situated in a setting of social maturity and extended to include ‘awareness of self’.
Covey4 popularises a maturity progression from dependence (e.g. on parents) via
independence to interdependence. The maladjusted path is progression from depen-
dence to co-dependence. Co-dependent agents may function but lack resilience as
compromise to one agent affects the other(s) thus directly affecting own survival or
utility. For the interdependent agent cut off from communication there is the fall-back
state of independence.

So, if this might be a preferred trajectory for machine autonomy, what are the
implications a strong and independent autonomy? In Chapter 5, Bobby D. Bryant
and Risto Miikkulainen consider a neuroevolutionary approach to adaptive multi-
agent teams. In their formulation, a similar and significant capability for every agent
is posed. They propose a collective where each agent has sufficient breadth of skills
to allow for a self-organized division of labour so that it behaves as if it were a hetero-
geneous team. This division is dynamic in response to conditions, and composed of
autonomous agents occurs without direction from a human operator. Indeed in gen-
eral, humans might be members of the team. This potentially allows for massively-
scalable resilient autonomous systems with graceful degradation, as losing any agent
affects a loss of role(s) which might be taken up by any other agent(s) all of which
have requisite skills (capability). Artificial neural networks are used to learn teams
with examples given in the construct of strategy games.

Furthering the theme of social autonomy in Chapter 6, John Harvey examines
both the blessing and curse of emergence in swarm intelligence systems. We might

3J.M. Bradshaw, The Seven Deadly Myth of Autonomous Systems, IEEE, 2013.
4S. R. Covey, The Seven Habits of Highly Effective People, Free Press, 1989.

http://dx.doi.org/10.1007/978-3-319-64816-3_5
http://dx.doi.org/10.1007/978-3-319-64816-3_6


1 Foundations of Trusted Autonomy: An Introduction 5

consider agents composing a swarm intelligence as “similar” and ranging to identical,
but not necessarily “significant” capabilities, with the implications that resilience is
a property of the collective rather than the individual. Harvey notes that swarm
intelligence may relate to a category within the complexity and self-organisation
spectrum of emergence characterised as weakly predictable. Swarms do not require
centralised control, and may be formed from simple agent interactions, offering
the potential for graceful degradation. That is, the loss of some individuals may
only weakly degrade the effect of the collective. These and other “blessings” of
swarm intelligence presented by the author are tempered by the shortcomings of
weak predictability and controllability. Indeed, if they are identical, systematic failure
may also be possible as any design fault in an individual is replicated. The author
suggests a future direction for research related to the specification of trust properties,
might follow from the intersection of liveness properties based on formal methods
and safety properties based on Lyapunov measures. Swarm intelligence also brings
into question the nature of intelligence. Perhaps it may arise as an emergent property
from interacting simpler cognitive elements.

If a social goal for autonomy is collaboration, then cooperation and competi-
tion (e.g. for resources) is important. Furthermore, interdependent autonomy must
include machines capable of social conflict. Conflict exists where there is mutually
exclusive intent. That is, if the intent of one agent can only be achieved if the intent
of the other is not achieved. Machine agents need to recognise and operate under
these conditions. A structured approach to framing competition and conflict is in
games. Michael Barlow, in Chapter 7 examines trusted autonomous game play. Bar-
low explains four defining traits of games that include a goal (intent), rules (action
bounds), a feedback system (awareness), and voluntary participation. Voluntary par-
ticipation is an exercise of agency where an agreement to act within those conditions
is accepted. Barlow examines both perspectives of autonomy for games and games
for autonomy. Autonomous entities are usually termed AIs in games, and may serve
a training purpose or just provide an engaging user experience. So, improving AIs
may improve human capabilities. Autonomous systems can also benefit from games,
as games provide a closed-world construct for machine reasoning and learning about
scenarios.

These chapters take us on a brief journey of some unique perspectives, from
autonomy as individual computational intelligence through to collective machine
diversity.

1.2 Trust

Trust is a ubiquitous concept. We all have experienced it one way or another, yet it
appears to hold many components that we may never converge on a single, precise,
and concise definition of the concept. Yet, the massive amount of literature on the
topic is evidence that the topic is an important one for scientific inquiry.

http://dx.doi.org/10.1007/978-3-319-64816-3_7


6 H. A. Abbass et al.

The main contribution of this part of the book is to showcase the complexity of
the concept in an attempt to get a handle on its multifaceted nature. This part of the
book is a brief inquiry into the meaning of trust, how it is perceived in human-human
interaction and in human-machine interaction, and attempts to confine the ambiguity
of the topic through novel perspectives and scientifically-grounded opinions.

It initially sounded logical to us to start this part of the book with those chap-
ters discussing trust in its general form before the chapters discussing the trusted
autonomy literature. As logical as this idea may sound, it is arguably biasing in a
methodological treatment of trust in trusted autonomy.

The previous structure reflects the path that most research in the literature has
been following. First, an attempt is made to understand the concept in the human
social context then we use this understanding to define what aspect of the concept
can be mapped to the human-machine interaction context. Why not? After all, we
would like the human to trust and accept the machine as part of our social system.

The previous argument is the strength and weakness of the rationale behind that
logic. It is a strong argument when we investigate human-machine interaction; when
trust in this relationship is only a means to an end. The ultimate end is the human
accepts the machine, accepts its decision, and accepts its role within a context.

However, this view falls short methodologically to study trust in trusted auton-
omy. In the ultimate form of trusted autonomous systems, the parties of a trusting
relationship are both autonomous; thus, both parties need to establish trust in them-
selves, and then in each other. If one party is a human and the other is a machine,
the machine needs to trust the human (machine-human trust) and the human needs
to trust the machine (human-machine trust). Therefore, to merely assume that the
machine needs to respect what trust is in a human system limits our grasp on the
complexity of trust in trusted autonomy.

The nature of trust in a machine needs to be understood. How can machines
evaluate trust is a question whose answers need to stem from studies that focus on
the nature of the machine.

We then decided to flip the coin in the way we structure this part of the book. We
start the journey of inquiry with a chapter written by Lewis, Sycarab and Walker.
The chapter entitled “The Role of Trust in Human-Robot Interaction” paves the
way to understand trust from a machine perspective. Lewis et al. present a thorough
investigation of trust in human-robot interaction, starting with the identification of
factors affecting trust as means for measuring trust. They conclude by calling for a
need to establish a battery of tasks in human-robot interaction to enable researchers
to study the concept of trust.

Kate Devitt in her chapter entitled “Trustworthiness of Autonomous Systems”
starts a journey of inquiry to answer three fundamental questions: who or what
is trustworthy? how do we know who or what is trustworthy? and what factors
influence what or who is trust worthy? She proposes a model of trust with two
primary dimensions: one related to competency and the second related to integrity.
The author concludes the chapter by discussing the natural relationship between risk
and trustworthiness; followed by questioning who and what should we trust?
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Michael Smithson investigates the relationship between trust and uncertainty in
more depth in his chapter entitled “Trusted Autonomy Under Uncertainty”. His
first inquiry into the relationship between trust and distrust, takes the view that an
autonomous system is an automaton and investigates the human-robotic interaction
from this perspective. The inquiry into uncertainty leads to discussing the relationship
between trust and social dilemmas up to the issue of trust repair.

AndrewDowse in his chapter “The Need for Trusted Autonomy inMilitary Cyber
Security” presents on the need for trusted autonomy in the Cyber space. Dowse
discusses the requirements for trust in the Cyber space by discussing a series of
challenges that needs to be considered.

Bruza and Hoenkamp bring the field of quantum cognition to offer a lens on
trust in their chapter “Reinforcing trust in autonomous systems: a quantum cognitive
approach”. They look into the interplay between system 1 - the fast reactive system -
and system 2 - the slow rationale thinking system. They discuss an experiment with
images, where they found that humans distrust fake images when they distrust the
subject of the image. Bruza and Hoenkamp then presents a quantum cognition model
of this phenomenon.

JasonScholz in his chapter “Learning to ShapeErrorswith aConfusionObjective”
presents an investigation into class hiding in machine learning. Through class re-
weighting during learning, the error of a deep neural network on a classification task
can be redistributed and controlled. The chapter addresses the issue of trust from two
perspectives. First, error trading allows the user to establish confidence in themachine
learning algorithm by focusing on classes of interest. Second, the chapter shows that
the user can exert control on the behavior of the machine learning algorithm; which
is a two-edge sword. It would allow the user the flexibility to manipulate it, while at
the same time it may offer an opportunity for an adversary to influence the algorithm
through class redistribution.

The last chapter in this part show cases a few practical examples from work
conducted at the University of British Columbia. Hart and his colleagues in their
chapter on “Developing Robot Assistants with Communicative Cues for Safe, Fluent
HRI” list examples of their work ranging from Car Door Assembly all the way to the
understanding of social cues and how these communicative cues can be integrated
in a human-robot interaction tasks.

1.3 Trusted Autonomy

Part III of the book has a distinctively philosophical flavour: the basic theme that
runs through all of its chapters concerns the nature of autonomy, as distinct from
automation, and the requirements that autonomous agents must meet if they are to
be trustworthy, at least. Autonomy is more or less understood as a requirement for
operating in complex environments that manifest uncertainty; without uncertainty
relatively straightforward automation will do, and indeed the autonomy is generally
seen here as being predicated on some form of environmental uncertainty. Part III
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is heavily concerned with the centre point of autonomy in terms of intrinsic moti-
vation, computational motivation, creativity, freedom of action, and theory of self.
Trustworthiness is largely seen as a here as a necessary but not sufficient condition
for such agents to be trusted by humans to carry out tasks in complex environments,
with considerable implications for the need for controls on agent behaviour as a
component of its motivational processes.

Sun argues that agents need to have intrinsic motivation, meaning internal moti-
vational processes, if they are to deal successfully with unpredictable complex envi-
ronments. Intrinsic motivation is required under such conditions because criteria
defining agent control cannot be specified prior to operation. The importance of
intrinsic motivation in regards to the successful operation and acceptance by humans
under conditions of fundamental uncertainty represents a challenge that requires
serious redress of familiar but outdated assumptions and methodologies.

Furthermore, the ability to understand the motivation of other agents is central
to trust, because having this ability means that the behaviour of other agents is
predictable even in the absence of predictability of future states of the overall envi-
ronment. Indeed, the argument is that predictability of the behaviour of other agents
through understanding their motivations is what enables trust, and this also explains
why trust is such an important issue in an uncertain operating environment.

The chapter presents an overview of a cognitive architecture – the Clarion cogni-
tive architecture – supporting cognitive capabilities as well as intrinsic and derived
motivation for agents; it amounts to a structural specification for a variety of psycho-
logical processes necessary for autonomy. In particular, the focus of the chapter in
this regard is on the interaction between motivation and cognition. Finally, several
simulations of this cognitive architecture are given to illustrate how this approach
enables autonomous agents to function correctly.

Merrick et al. discussion on computational motivation extends a very similar argu-
ment, by arguing that computational motivation is necessary to achieve open-ended
goal formulation in autonomous agents operating under uncertainty.Yet it approaches
this in a very different manner, by realising computational motivation in practical
autonomous systems sufficient for experimental investigation of the question. Here,
computational motivation includes curiosity and novel-seeking as well as adaptation,
primarily as an epistemic motivation for knowledge increase.

Agents having different prior experiences may behave differently, with the impli-
cation that intrinsic motivation through prior experience impacts trustworthiness.
Thus trust is a consequence of how motivational factors interact with uncertainty in
the operating environment to produce an effect that is not present under closed envi-
ronments containing only measurable stochastic risk, where essentially rationality
and thus trustworthiness is a definable in terms of an optimality condition that means
that agents operate without a much scope for exercising choice.

The chapter concludes that the empirical evidence presented is consistent with the
thesis that intrinsicmotivation in agents impacts trustworthiness, in potentially simul-
taneously positive and negative ways, because of the complex of overlapping and
sometimes conflicting implications motivation has for privacy and security. Trust-
worthiness is also impacted by what combination of motivations the agents employ
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and whether they operate in mixed or homogeneous agent environments. Finally, if
humans are to develop trust in autonomous agents, then agent technologies have to
be transparent to humans.

General computational logics are used by Bringsjord and Naveen as the basis for
a model of human-level cognition as formal computingmachines to formally explore
the consequences for trust of autonomy. The chapter thereby sets formal limits on
trust very much akin to those observed for humans in the psychology literature, by
presenting a theorem stating, under various formal assumptions, that an artificial
agent that is autonomous (A) and creative (C) will tend to be, from the standpoint
of a fully informed rational agent, intrinsically untrustworthy (U ). The chapter thus
refers to the principle for humans as PACU, and the theorem as TACU. The proof of
this theorem is obtained using ShadowProver, a novel automated theorem proving
program.

After building an accessible introduction to the principlewith reference to the psy-
chologymaintaining it for humans and empirical evidence for its veracity, the chapter
establishes a formal version of the principle. This requires establishing formalisa-
tions of what it means to be an ideal observer, of what it means to be creative, and
of what it means to be autonomous, and a formal notion of collaborative situations.
The chapter describes the cognitive calculus DeLEL in which TACU is formalised,
and the novel theorem prover ShadowProver used to prove the theorem.

More broadly, the chapter seeks not just to establish the theorem, but to establish
the case for its plausibility beyond the specific assumptions of the theorem. Beyond
the limitations of this particular formalisation - and the authors invite further inves-
tigation based on more powerful formalisations - the TACU theorem establishes the
necessity of active engineering practices to protect humans from the unintended con-
sequences of creative autonomous machines, by asserting legal and ethical limits on
what agents can do. The preconditions of autonomy and creativity are insufficient;
just as with humans, societal controls in the form of legal and ethical constraints are
also required.

Derwort’s concerns relate to the development of autonomous military command
and control (C2). Autonomous systems in military operational environments will not
act alone, but ratherwill do so in concertwith other autonomous andmanned systems,
and ultimately all under broad national military control exercised by human decision-
makers. This is a situation born of necessity and the opportunity afforded by rapidly
developing autonomous technologies: autonomous systems and the distributed C2
across them is emerging as a response to the rapid increase in capabilities of potential
military adversaries and the limited ability to respond to them with the development
of traditional manned platforms.

The chapter outlines a number of past scenarios involving human error in C2,
with tragic consequences, to illustrate the limitations of human decision-making, and
plausible military scenarios in the not-too-distant future. There are no doubt risks
involved with taking the human out of the decision-making in terms of responsibility,
authority and dehumanising of human conflict, yet any rational discussion on the use
of autonomy in war and battle needs to also be moderated by due recognition of the
inherent risks of having humans in the decision-making processes.
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Autonomous systems are merely tools, and the cost of their destruction is merely
counted in dollars. Therein lies a particular strength, for autonomous systems with
distributed C2 has enormous potential to create and implement minimal solutions in
place of the more aggressive solutions to tactical problems to which stressed humans
are prone. Autonomy offers the potential to intervene in in the face of unexpected
circumstances, to de-escalate, to improve the quality as well as speed of military
decision-making. Therein may lie its most serious potential for military operational
use.

Young presents on the application of autonomy to training systems and raises
questions about how such systems will impact the human learning environments in
which they are used. Chapter 19 explores this starting from the pivotal premise of
traditional teaching whereby the students must have trust in the teacher to effectively
concede responsibility to the teacher.What does thismean if the teacher is amachine?
The chapter seeks to explore what is possible with autonomy in the classroom, and
what we might reasonably expect to be plausible.

A map is presented showing the interconnected functional components of a train-
ing system, including both those that are provided by human trainees and those
that might be provided by machines. It includes the functions of the teacher and
the learner, including the training topic and measurement of learning. The authors
present three key drivers likely to determine the future of autonomous systems in
training and education: autonomous systems development, training systems, and
trust. Some of the functions required for a learning environment are already being
provided by machines, albeit in relatively limited ways; the advance of autonomous
systems technologies will expand the potential for delegatingmore of these functions
to machines.

Trust is presented as a function of familiarity, which is consistent with the view of
trust in some preceding chapters as requiring predictability of other agents’ behav-
iours even within a complex environment that is inherently unpredictable. Trust is
held to be central to learning, and trust through familiarity over time is the basis
for exploring a number of future scenarios. The first revolves around the frustration
that might be the result of the perceived artificiality of autonomous teachers, com-
pounded by inconsistencies between different autonomous teachers over subsequent
time periods. The second concerns the social dislocation and potential incompetence
resulting frommachines taking over simpler tasks from humans and thereby denying
the humans knowledge of those tasks and thereby effecting the quality of higher-level
human decision-making. The third is a scenario in which the machine responsible
for teaching the human grows up with the human in a complex relationship marked
by mutual trust, suggesting that the human’s trust in the machine is symbiotic with
the development of the machine’s trust in the human.

Boyce and Griffin begin with an elucidation of the harshness and remoteness
of space, marked by extreme conditions that can degrade or destroy spacecraft.
Manoeuvres in orbits near earth or other large objects are complex and counter-
intuitive. Gravitational fields are not uniform, interactions between multiple objects
canproduce significant errors, and space is becoming increasingly crowded, requiring
the ability to conduct evasive actions in advance of potential collisions. Close human

http://dx.doi.org/10.1007/978-3-319-64816-3_19
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operation is inefficient and dangerous, mandating the use of autonomy for a wide
range of spacecraft functions.

With increasing miniaturisation of spacecraft, traffic management and collision
avoidance are becoming pressing problems driving greater degrees of spacecraft
autonomy. Yet the lack of trust ascribed to the limitations of automated code gener-
ation, runtime analysis and model checking for verification and validation for soft-
ware that has to make complex decisions is a large barrier to adoption of higher-level
autonomy for spacecraft. Linked to this is the need for human domain experts to
be involved in the design and development of software in order to build trust in the
product.

The chapter concludes with some possible space scenarios for autonomy, the
first of which might be achieved in the near future, involving greater autonomous
analysis of information from different sources. The second concerns autonomy in
space traffic management, linked to all spacecraft that have the ability to manoeuvre,
that includes the decision-making and action currently undertaken by humans. The
final scenario concerns distributed space systems that can self-configurewithminimal
human input, both to achieve capabilities not achievable using single large spacecraft
and to respond to unexpected events such as partial system failure.

The final chapter presents a picture of autonomous systems development primarily
froman economic point of view, on the basis that an economic agent is an autonomous
agent; the difference being that economics is primarily concerned with analysing
overall outcomes from societies of decision-makers while AI is squarely focussed
on decision-making algorithm development. The connection between economics and
AI is probably more widely understood in economics - which has long utilised and
contributed, in turn, to the development ofmachine learning and automated reasoning
methods - than it is in autonomy research. Thus the chapter treats autonomy as the
allocation of scarce resources under conditions of fundamental uncertainty.

The main thrust of the chapter is an economic view of uncertainty, which distin-
guishes between epistemic uncertainty and ontological uncertainty, and its conse-
quences for autonomy. Ontological uncertainty is the deeper of the two: epistemic
uncertainty amounts to ignorance of possible outcomes due to sampling limits, while
ontological uncertainty relates to the presence of unsolvable paradoxical problems;
the chapter thus draws out the connection between the economic notion of ontolog-
ical uncertainty and the famed incompleteness theorems of Gödel, the unsolvability
of the Halting Problem of Turing, and incompressibility theorems of Algorithmic
Information Theory.

Drawing on both financial economics and macroeconomic theory, commonplace
investment strategies are presented in the context of this notion of uncertainty, noting
that, under conditions of ontological uncertainty, what might be seemingly rational
for an individual agent in the short-term need not be rational in the long-term nor from
the perspective of the entire social enterprise. Certain well-known bond investment
strategies, however, appear to have the potential to strike a healthy balance and yield
desirable long-term properties for both the agent and the broader system of which it
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is a component, and thus may offer a basis for autonomous systems. Interestingly,
implementing such a strategy in an agent seems to require a theory of self, to provide
the kinds of motivational processes discussed in other chapters as well.
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Chapter 2
Universal Artificial Intelligence

Practical Agents and Fundamental Challenges

Tom Everitt and Marcus Hutter

2.1 Introduction

Artificial intelligence (AI) bears the promise of making us all healthier, wealthier,
and happier by reducing the need for human labour and by vastly increasing our
scientific and technological progress.

Since the inception of theAI research field in themid-twentieth century, a range of
practical and theoretical approaches have been investigated. This chapter will discuss
universal artificial intelligence (UAI) as a unifying framework and foundational
theory for many (most?) of these approaches. The development of a foundational
theory has been pivotal for many other research fields.Well-known examples include
the development of Zermelo-Fraenkel set theory (ZFC) for mathematics, Turing-
machines for computer science, evolution for biology, and decision and game theory
for economics and the social sciences. Successful foundational theories give a precise,
coherent understanding of the field, and offer a common language for communicating
research.Asmost research studies focus on one narrowquestion, it is essential that the
value of each isolated result can be appreciated in light of a broader framework or goal
formulation.UAI offers several benefits toAI research beyond the general advantages
of foundational theories justmentioned. Substantial attention has recently been called
to the safety of autonomousAI systems [10]. A highly intelligent autonomous system
may cause substantial unintended harm if constructed carelessly. The trustworthiness
of autonomous agents may be much improved if their design is grounded in a formal
theory (such as UAI) that allows formal verification of their behavioural properties.
Unsafe designs can be ruled out at an early stage, and adequate attention can be given
to crucial design choices.
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UAI also provides a high-level blueprint for the design of practical autonomous
agents, along with an appreciation of fundamental challenges (e.g. the induction
problem and the exploration–exploitation dilemma).Much can be gained by address-
ing such challenges at an appropriately general, abstract level, rather than sepa-
rately for each practical agent or setup. Finally, UAI is the basis of a general, non-
anthropomorphic definition of intelligence. While interesting in itself to many fields
outside of AI, the definition of intelligence can be useful to gauge progress of AI
research.1

The outline of this chapter is as follows: First we provide general background
on the scientific study of intelligence in general, and AI in particular
(Sect. 2.2). Next we give an accessible description of the UAI theory (Sect. 2.3).
Subsequent sections are devoted to applications of the theory: Approximations and
practical agents (Sect. 2.4), high-level formulations and approaches to fundamen-
tal challenges (Sect. 2.5), and the safety and trustworthiness of autonomous agents
(Sect. 2.6).

2.2 Background and History of AI

Intelligence is a fascinating topic, and has been studied from many different per-
spectives. Cognitive psychology and behaviourism are psychological theories about
how humans think and act. Neuroscience, linguistics, and the philosophy of mind
try to uncover how the human mind and brain works. Machine learning, logic, and
computer science can be seen as attempts to make machines that think.

Scientific perspectives on intelligence can be categorised based on whether they
concern themselves with thinking or acting (cognitive science vs. behaviourism), and
whether they seek objective answers such as in logic or probability theory, or try to
describe humans as in psychology, linguistics, and neuroscience. The distinction is
illustrated in Table2.1. The primary focus of AI is on acting rather than thinking, and
on doing the right thing rather than emulating humans. Ultimately, we wish to build
systems that solve problems and act appropriately; whether the systems are inspired
by humans or follow philosophical principles is only a secondary concern.

Induction and deduction. Within the field of AI, a distinction can be made between
systems focusing on reasoning and systems focusing on learning.Deductive reason-
ing systems typically rely on logic or other symbolic systems, and use search algo-
rithms to combine inference steps. Examples of primarily deductive systems include
medical expert systems that infer diseases from symptoms, and chess-playing agents
deducing good moves. Since the deductive approach dominated AI in its early days,
it is sometimes referred to as good old-fashioned AI.

1See [42, 43] for discussions about the intelligence definition.
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Table 2.1 Scientific perspectives on intelligence

Thinking Acting

Humanly Cognitive science Turing test, behaviourism

Rationally Laws of thought Doing the right thing

A more modern approach to AI shifts the focus from reasoning to learning. This
inductive approach has become increasingly popular, both due to progress inmachine
learning and neural networks, and due to the failure of deductive systems to man-
age unknown and noisy environments. While it is possible for a human designer to
construct a deductive agent for well-defined problems like chess, this task becomes
unfeasible in tasks involving real-world sensors and actuators. For example, the reac-
tion of any physical motor will never be exactly the same twice. Similarly, inferring
objects from visual data could potentially be solved by a ‘hard-coded’ deductive
system under ‘perfect circumstances’ where a finite number of geometric shapes
generate perfectly predictable images. But in the real world, objects do not come
from a finite number of geometric shapes, and camera images from visual sensors
always contain a significant amount of noise. Induction-oriented systems that learn
from data seem better fitted to handle such difficulties.

It is natural to imagine that some synthesis of inductive and deductive mod-
ules will yield superior systems. In practice, this may well turn out to be the case.
From a theoretical perspective, however, the inductive approach is more-or-less self-
sufficient. Deduction emerges automatically from a “simple” planning algorithm
once the induction component has been defined, as will be made clear in the follow-
ing section. In contrast, no general theory of AI has been constructed starting from
a deductive system. See [67] (Sect. 1.1) for a more formal comparison.

2.3 Universal Artificial Intelligence

Universal Artificial Intelligence (UAI) is a completely general, formal, foundational
theory of AI. Its primary goal is to give a precise mathematical answer to what is
the right thing to do in unknown environments. UAI has been explored in great tech-
nical depth [28, 33], and has inspired a number of successful practical applications
described in Sect. 2.4.

The UAI theory is composed of the following four components:

http://dx.doi.org/10.1007/978-3-319-64816-3_1
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UAI

Framework

Learning Goal Planning

• Framework. Defines agents and environments, and their interaction.
• Learning. The learning part of UAI is based on Solomonoff induction. The general
learning ability this affords is the most distinctive feature of UAI.

• Goal. In the simplest formulation, the goal of the agent will be tomaximise reward.
• Planning. (Near) perfect planning is achieved with a simple expectimax search.

The following sections discuss these components in greater depth.

2.3.1 Framework

The framework of UAI specifies how an agent interacts with an environment. The
agent can take actions a ∈ A . For example, if the agent is a robot, then the actions
may be different kinds of limb movements. The environment reacts to the actions
of the agent by returning a percept e ∈ E . In the robot scenario, the environment is
the real world generating a percept e in the form of a camera image from the robot’s
visual sensors. We assume that the set A of actions and the set E of percepts are
both finite.

The framework covers a verywide range of agents and environments. For example,
in addition to a robot interacting with the real world, it also encompasses: A chess-
playing agent taking actions a in the form of chess moves, and receiving percepts e
in the form either of board positions or the opponent’s latest move. The environment
here is the chess board and the opponent. Stock-trading agents take actions a in the
form of buying and selling stocks, and receive percepts e in the form of trading data
from a stock-market environment. Essentially any application of AI can be modelled
in this general framework.

Amore formal example is given by the following toy problem, called cheese maze
(Fig. 2.1). Here, the agent can choose from four actions A = {up, down, left, right}
and receives one of two possible percepts E = {cheese, no cheese}. The illustration
shows amazewith cheese in the bottom right corner. The cheesemaze is a commonly
used toy problem in reinforcement learning (RL) [82].

• Interaction histories. The interaction between agent and environment proceeds
in cycles. The agent starts taking an action a1, to which the environment responds
with a percept e1. The agent then selects a new action a2, which results in a
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Fig. 2.1 Cheese maze environment

new percept e2, and so on. The interaction history up until time t is denoted
æ<t = a1e1a2e2 . . . at−1et−1. The set of all interaction histories is (A × E )∗.

• Agent and environment. We can give formal definitions of agents and environ-
ments as follows.

Definition 1 (Agent) An agent is a policy π : (A × E )∗ → A that selects a new
action at = π(æ<t ) given any history æ<t .

Definition 2 (Environment) An environment is a stochastic function μ : (A ×
E )∗ × A � E that generates a new percept et for any history æ<t and action at .
Let μ(et | æ<t at ) denote the probability that the next percept is et given the history
æ<t at .

The agent and the environment are each other’s analogues. Their possible interac-
tions can be illustrated as a tree where the agent selects actions and the environment
respondswith percepts (see Fig. 2.2). Note in particular that the second percept e2 can
depend also on the first agent action a1. In general, our framework puts no restriction
on how long an action can continue to influence the behaviour of the environment
and vice versa.

s0

s1

s2

a

Histories and states. It is instructive to compare the generality of the history repre-
sentation in the UAI framework to the state representation in standard RL. Standard
RL is built around the notion of Markov decision processes (MDPs), where the agent
transitions between states by taking actions, as illustrated to the right. The MDP
specifies the transition probabilities P(s ′ | s, a) of reaching new state s ′ when tak-
ing action a in current state s. AnMDP policy τ : S → A selects actions based on
the state s ∈ S .
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Fig. 2.2 The tree of possible agent-environment interactions. The agent π starts out with taking
action a1 = π(ε), where ε denotes the empty history. The environment μ responds with a percept
e1 depending on a1 according to the distribution μ(e1 | a1). The agent selects a new action a2 =
π(a1e1), to which the environment responds with a percept e2 ∼ μ( · | a1e1a2)

The history framework of UAI is more general than MDPs in the following
respects:

• Partially observable states. In most realistic scenarios, the most recent observa-
tion or percept does not fully reveal the current state. For example, when in the
supermarket I need to remember what is currently in my fridge; nothing in the
percepts of supermarket shelves provide this information.2

• Infinite number of states.Another common assumption in standard RL is that the
number of states is finite. This is unrealistic in the real world. The UAI framework
does not require a finite state space, andUAI agents can learnwithout ever returning
to the same state (see Sect. 2.3.2).

• Non-stationary environments. Standard RL typically assumes that the environ-
ment is stationary, in the sense that the transition probability P(s ′ | s, a) remains
constant over time. This is not always realistic. A car that changes travelling direc-
tion from a sharp wheel turn in dry summer road conditions may react differently
in slippery winter road conditions. Non-stationary environments are automatically
allowed for by the general definition of aUAI environmentμ : (A ×E )∗×A � E
(Definition 2). As emphasised in Chapter11 of this book, the non-stationarity and
non-ergodicity of the real world is what makes truly autonomous agents so chal-
lenging to construct and to trust.

• Non-stationary policies. Finally, UAI offers the following mild notational con-
venience. In standard RL, agents must be represented by sequences of policies
π1, π2, . . . to allow for learning. The initial policy π1 may for example be ran-
dom, while later policies πt , t > 1, will be increasingly directed to obtaining
reward. In the UAI framework, policies π : (A × E )∗ → A depend on the
entire interaction history. Any learning that is made from a history æ<t can be
incorporated into a single policy π .

2Although histories can be viewed as states, this is generally not useful since it implies that no state
is ever visited twice [28] (Sect. 3.3.3).

http://dx.doi.org/10.1007/978-3-319-64816-3_11
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In conclusion, the history-based UAI framework is very general. Indeed, it is hard
to find AI setups that cannot be reasonably modelled in this framework.

2.3.2 Learning

The generality of the UAI environments comes with a price: The agent will need
much more sophisticated learning techniques than simply visiting each state many
times, which is the basis of most learning in standard RL. This section will describe
how this type of learning is possible, and relate it to some classical philosophical
principles about learning.

A good image of aUAI agent is that of a newborn baby.Knowing nothing about the
world, the baby tries different actions and experiences various sensations (percepts)
as a consequence. Note that the baby does not initially know about any states of the
world—only percepts. Learning is essential for intelligent behaviour, as it enables
prediction and thereby adequate planning.
Principles. Learning or induction is an ancient philosophical problem, and has been
studied formillennia. It can be framed as the problemof inferring a correct hypothesis
from observed data. One of the most famous inductive principles is Occam’s razor,
due to William of Ockham (c. 1287–1347). It says to prefer the simplest hypothesis
consistent with data. For example, relativity theory may seem like a complicated
theory, but it is the simplest theory that we know of that is consistent with observed
(non-quantum) physics data. Another ancient principle is due to Epicurus (341–
270 BC). In slight conflict with Occam’s razor, Epicurus’ principle says to keep all
hypothesis consistent with data. To discard a hypothesis one should have data that
disconfirms it.

Thomas Bayes (1701–1761) derived a precise rule for how belief in a hypothesis
should change with additional data. According to Bayes’ rule, the posterior belief
Pr(Hyp | Data) should relate to the prior belief Pr(Hyp) as:

Pr(Hyp | Data) = Pr(Hyp)Pr(Data | Hyp)
∑

Hi∈H Pr(Hi )Pr(Data | Hi )

Here H is a class of possible hypotheses, and Pr(Data | Hyp) is the likelihood of
seeing the data under the given hypothesis. Bayes’ rule has been highly influential
in statistics and machine learning.

Twomajor questions left open by Bayes’ rule are how to choose the prior Pr(Hyp)
and the class of possible hypotheses H . Occam’s razor tells us to weight simple
hypotheses higher, and Epicurus tells us to keep any hypothesis for consideration.
In other words, Occam says that Pr(Hyp) should be large for simple hypotheses,
and Epicurus prescribes using a wide H where Pr(Hyp) is never 0. (Note that this
does not prevent the posterior Pr(Hyp | Data) from being 0 if the data completely
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disconfirms the hypothesis.) While valuable, these principles are not yet precise. The
following four questions remain:

I. What is a suitable general class of hypotheses H ?
II. What is a simple hypothesis?
III. How much higher should the probability of a simple hypothesis be compared to

a complicated one?
IV. Is there any guarantee that following these principles will lead to good learning

performance?

Computer programs. The solution to these questions come from a somewhat unex-
pected direction. In one of the greatest mathematical discoveries of the 20th century,
Alan Turing invented the universal Turing machine (UTM). Essentially, a UTM can
compute anything that can be computed at all. Today, the most well-known examples
of UTMs are programming languages such as C, C++, Java, and Python. Turing’s
result shows that given unlimited resources, these programming languages (andmany
others) can compute the same set of functions: the so-called computable functions.

Solomonoff [77–79] noted an important similarity between deterministic envi-
ronments μ and computer programs p. Deterministic environments and computer
programs are both essentially input-output relations. A program p can therefore be
used as a hypothesis about the true environment μ. The program p is the hypothesis
that μ returns percepts e<t = p(a<t ) on input a<t .

As hypotheses, programs have the following desirable properties:

• Universal. As Turing showed, computer programs can express any computable
function, and thereby model essentially any environment. Even the universe itself
has been conjectured computable [20, 33, 70, 87]. Using computer programs as
hypotheses is thus in the spirit of Epicurus, and answers question I.

• Consistency check. To check whether a given computer program p is consistent
with some data/history æ<t , one can usually run p on input a<t and check that the
output matches the observed percepts, e<t = p(a<t ). (This is not always feasible
due to the halting problem [27].)

• Prediction. Similarly, to predict the result of an action a given a hypothesis p, one
can run p with input a to find the resulting output prediction e. (A similar caveat
with the halting problem applies.)

• Complexity definition.When comparing informal hypotheses, it is often hard to
determine which hypothesis is simpler and which hypothesis is more complex (as
illustrated by the grue and bleen problem [23]). For programs, complexity can
be defined precisely. A program p is a binary string interpreted by some fixed
program interpreter, technically known as a universal Turing machine (UTM). We
denote with �(p) the length of this binary string p, and interpret the length �(p)
as the complexity of p. This addresses question II.3

3The technical question of which programming language (or UTM) to use remains.
In passive settings where the agent only predicts, the choice is inessential [29]. In
active settings, where the agent influences the environment, bad choices of UTMs
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The complexity definition as length of programs corresponds well to what we
consider simple in the informal sense of the word. For example, an environment
where the percept alwaysmirrors the action is given by the following simple program:

procedure MirrorEnvironment
while true do:

x ← action input
output percept ← x

In comparison, a more complex environment with, say, multiple players inter-
acting in an intricate physics simulation would require a much longer program. To
allow for stochastic environments, we say that an environment μ is computable if
there exists a computer program μp that on input æ<t at outputs the distribution
μ(et | æ<t at ) (cf. Definition 2).
Solomonoff induction. Based on the definition of complexity as length of strings
coding computer programs, Solomonoff [77–79] defined a universal prior Pr(p) =
2−�(p) for programhypotheses p,which gives rise to auniversal distribution M able to
predict any computable sequence.Hutter [28] extended the definition to environments
reacting to an agent’s actions. The resulting Solomonoff-Hutter universal distribution
can be defined as

M(e<t | a<t ) =
∑

p : p(a<t )=e<t

2−�(p) (2.1)

assuming that the programs p are binary strings interpreted in a suitable programming
language. This addresses question III.

Given some history æ<t at , we can predict the next percept et with probability:

M(et | æ<t at ) = M(e<t et | a<t at )

M(e<t | a<t )
.

This is just an application of the definition of conditional probability P(A | B,C) =
P(A, B | C)/P(B | C), with A = et , B = e<t , and C = a<t at .
Prediction results. Finally, will agents based on M learn? (Question IV.) There are,
in fact, a wide range of results in this spirit.4 Essentially, what can be shown is that:

Theorem 1 (Universal learning) For any computable environment μ (possibly sto-
chastic) and any action sequence a1:∞,

M(et | æ<t at ) → μ(et | æ<t at ) as t → ∞wi th μ-probabili t y 1.

(Footnote 3 continued)
can adversely affect the agent’s performance [44], although remedies exist [46]. Finally, [54]
describes a failed but interesting attempt to find an objective UTM.
4Overviews are provided by [28, 29, 48, 67], More recent technical results are given by [30, 39,
41, 45].
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The convergence is quick in the sense that M only makes a finite number of
prediction errors on infinite interaction sequences æ1:∞. In other words, an agent
based onM will (quickly) learn to predict any true environmentμ that it is interacting
with. This is about as strong an answer to question V as we could possibly hope
for. This learning ability also loosely resembles one of the key elements of human
intelligence: That by interactingwith almost any new ‘environment’ – be it a new city,
computer game, or language – we can usually figure out how the new environment
works by interacting with it.

2.3.3 Goal

Intelligence is to use (learnt) knowledge to achieve a goal. This sectionwill define the
goal of reward maximisation and argue for its generality.5 For example, the goal of
a chess agent should be to win the game. This can be communicated to the agent via
reward, by giving the agent reward for winning, and no reward for losing or breaking
game rules. The goal of a self-driving car should be to drive safely to the desired
location. This can be communicated in a reward for successfully doing so, and no
reward otherwise. More generally, essentially any type of goal can be communicated
by giving reward for the goal’s achievement, and no reward otherwise.

The reward is communicated to the agent via its percept e. We therefore make the
following assumption on the structure of the agent’s percepts:

Assumption 1 (Percept=Observation+Reward) The percept e is composed of an
observation o and a reward r ∈ [0, 1]; that is, e = (o, r). Let rt be the reward
associated with the percept et .

The observation part o of the percept would be the camera image in the case
of a robot, and the chess board position in case of a chess agent. The reward r
tells the agent how well it is doing, or how happy its designers are with its current
performance. Given a discount parameter γ , the goal of the agent is to maximise the
γ -discounted return

r1 + γ r2 + γ 2r3 + . . . .

The discount parameter γ ensures that the sum is finite. It also means that the agent
prefers getting reward sooner rather than later. This is desirable: For example, an
agent striving to achieve its goal soon is more useful than an agent striving to achieve
it in a 1000years. The discount parameter should be set low enough so that the
agent does not defer acting for too long, and high enough so that the agent does
not become myopic, sacrificing substantial future reward for small short-term gains
(compare delayed gratification in the psychology literature).

Reinforcement learning [82] is the study of agents learning tomaximise reward. In
our setup, Solomonoff’s result (Theorem 1) entails that the agent will learn to predict

5Alternatives are discussed briefly in Sect. 2.6.2.
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which actions or policies lead to percepts containing high reward. In practice, some
care needs to be taken to design a sufficiently informative reward signal. For example,
it may take a very long time before a chess agent wins a game ‘by accident’, leading
to an excessively long exploration time before any reward is found. To speed up
learning, small rewards can be added for moving in the right direction. A minor
reward can for example be added for imitating a human [69].

The expected return that an agent/policy obtains is called value:

Definition 3 (Value) The value of a policy π in an environment μ is the expected
return:

V π
μ = E

π
μ[r1 + γ r2 + γ 2r3 + . . .].

2.3.4 Planning

The final component of UAI is planning. Given knowledge of the true environment
μ, how should the agent select actions to maximise its expected reward?

Conceptually, this is fairly simple. For any policy π , the expected reward V π
μ =

E[r1 + γ r2 + . . . ] can be computed to arbitrary precision. Essentially, using π and
μ, one can determine the histories æ1:∞ that their interaction can generate, as well
as the relative probabilities of these histories (see Fig. 2.2). This is all that is needed
to determine the expected reward. The discount γ makes rewards located far into
future have marginal impact, so the value can be well approximated by looking only
finitely far into the future. Settling on a sufficient accuracy ε, the number of time
steps we need to look ahead in order to achieve this precision is called the effective
horizon.

To find the optimal course of action, the agent only needs to consider the various
possible policies within the effective horizon, and choose the one with the highest
expected return. The optimal behaviour in a known environment μ is given by

π∗
μ = arg max

π

V π
μ (2.2)

We sometimes call this policy AIμ. A full expansion of (2.2) can be found in [28]
(p. 134). Efficient approximations are discussed in Sect. 2.4.1.

2.3.5 AIXI – Putting It All Together

This section describes how the components described in previous sections can be
stitched together to create an optimal agent for unknown environments. This agent
is called AIXI, and is defined by the optimal policy
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π∗
M = arg max

π

V π
M (2.3)

The difference to AIμ defined in (2.2) is that the true environment μ has been
replaced with the universal distribution M in (2.3). A full expansion can be found
in [28] (p. 143). While AIμ is optimal when knowing the true environment μ, AIXI
is able to learn essentially any environment through interaction. Due to Solomonoff’s
result (Theorem 1) the distribution M will converge to the true environmentμ almost
regardless of what the true environment μ is. And once M has converged to μ, the
behaviour of AIXI will converge to the behaviour of the optimal agent AIμ which
perfectly knows the environment. Formal results onAIXI’s performance can be found
in [28, 38, 46].

Put a different way, AIXI arrives to the world with essentially no knowledge or
preconception of what it is going to encounter. However, AIXI quickly makes up
for its lack of knowledge with a powerful learning ability, which means that it will
soon figure out how the environment works. From the beginning and throughout
its “life”, AIXI acts optimally according to its growing knowledge, and as soon as
this knowledge state is sufficiently complete, AIXI acts as well as any agent that
knew everything about the environment from the start. Based on these observations
(described in much greater technical detail by [28]), we would like to make the claim
that AIXI defines the optimal behaviour in any computable, unknown environment.
Trusting AIXI. The AIXI formula is a precise description of the optimal behaviour
in an unknown world. It thus offers designers of practical agents a target to aim
for (Sect. 2.4). Meanwhile, it also enables safety researchers to engage in formal
investigations of the consequences of this behaviour (Sects. 2.5 and 2.6). Having
a good understanding of the behaviour and consequences an autonomous system
strives towards, is essential for us being able to trust the system.

2.4 Approximations

The AIXI formula (2.3) gives a precise, mathematical description of the optimal
behaviour in essentially any situation. Unfortunately, the formula itself is incom-
putable, and cannot directly be used in a practical agent. Nonetheless, having a
description of the right behaviour is still useful when constructing practical agents,
since it tells us what behaviour we are trying to approximate. The following three
sections describe three substantially different approximation approaches. They dif-
fer widely in their approximation approaches, and have all demonstrated convinc-
ing experimental performance. Sect. 2.4.4 connects UAI with recent deep learning
results.
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2.4.1 MC-AIXI-CTW

MC-AIXI-CTW [85] is the most direct approximation of AIXI. It combines the
Monte Carlo Tree Search algorithm for approximating expectimax planning, and
the Context Tree Weighting algorithm for approximating Solomonoff induction. We
describe these two methods next.
Planningwith sampling. The expectimax planning principle described in Sect. 2.3.4
requires exponential time to compute, as it simulates all future possibilities in the
planning tree seen in Fig. 2.2. This is generally far too slow for all practical purposes.

A more efficient approach is to randomly sample paths in the planning tree, as
illustrated in Fig. 2.3. Simulating a single random path atet . . . amem only takes a
small, constant amount of time. The average return from a number of such sim-
ulated paths gives an approximation V̂ (æ<t at ) of the value. The accuracy of the
approximation improves with the number of samples.

A simple way to use the sampling idea is to keep generating samples for as long
as time allows for. When an action must be chosen, the choice can be made based on
the current approximation. The sampling idea thus gives rise to an anytime algorithm
that can be run for as long as desired, and whose (expected) output quality increases
with time.
Monte Carlo Tree Search. TheMonte Carlo Tree Search (MCTS) algorithm [2, 11,
36] adds a few tricks to the sampling idea to increase its efficiency. The sampling
idea and the MCTS algorithm are illustrated in Fig. 2.3.

One of the key ideas ofMCTS is in optimising the informativeness of each sample.
First, the sampling of a next percept ek given a (partially simulated) history æ<kak
should always be done according to the current best idea about the environment
distribution; that is, according to M(ek | æ<kak) for Solomonoff-based agents.

The sampling of actions ismore subtle. The agent itself is responsible for selecting
the actions, and actions that the agent knows it will not take, are pointless for the
agent to simulate. As an analogy, when buying a car, I focus the bulk of my cognitive
resources on evaluating the feasible options (say, the Ford and the Honda) and only
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Fig. 2.3 Sampling branches from the planning tree gives an anytime algorithm. Sampling actions
according to the optimistic value estimates V+ increases the informativeness of samples. This is
one of the ideas behind the MCTS algorithm
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briefly consider clearly infeasible options such as a luxurious Ferrari. Samples should
be focused on plausible actions.

One way to make this idea more precise is to think of the sampling choice as
a multi-armed Bandit problem (a kind of “slot machine” found in casinos). Bandit
problems offer a clean mathematical theory for studying the allocation of resources
between arms (actions) with unknown returns (value). One of the ideas emerging
from the bandit literature is the upper confidence bound (UCB) algorithm that uses
optimistic value estimates V+. Optimistic value estimates add an exploration bonus
for actions that has received comparatively little attention. The bonus means that a
greedy agent choosing actions that optimise V+ will spend a sufficient amount of
resources exploring, while still converging on the best action asymptotically.

The MCTS algorithm uses the UCB algorithm for action sampling, and also uses
some dynamic programming techniques to reuse sampling results in a clever way.
The MCTS algorithm first caught the attention of AI researchers for its impressive
performance in computer Go [22]. Go is infamous for its vast playout trees, and
allowed the MCTS sampling ideas to shine.
Induction with contexts. Computing the universal probability M(et | æ<t at ) of
a next percept requires infinite computational resources. To be precise, conditional
probabilities for the distribution M are only limit computable [48]. We next describe
how probabilities can be computed efficiently with the context tree weighting algo-
rithm (CTW) [86] under some simplifying assumptions.

One of the key features of Solomonoff induction and UAI is the use of histories
(Sect. 2.3.1), and the arbitrarily long time dependencies they allow for. For example,
actiona1 mayaffect the percept e1000. This is desirable, since the realworld sometimes
behaves this way. If I buried a treasure in my backyard 10years ago, chances are I
may find it if I dug there today. However, in most cases, it is the most recent part
of the history that is most useful when predicting the next percept. For example, the
most recent five minutes is almost always more relevant than a five minute time slot
from a week ago for predicting what is going to happen next.

We define the context of length c of a history as the last c actions and percepts of
the history:

procedure MIRRORENVIRONMENT

while true do:
x ← action input
output percept ← x

Relying on contexts for prediction makes induction not only computationally
faster, but also conceptually easier. For example, if my current context is 0011, then
I can use previous instances where I have been in the same context to predict the next
percept:
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Table 2.2 The tradeoff for the size of the considered context

Short context More data Less precision

Long context Less data Greater precision

Long contexts offer greater precision but require more data. The MCTS algorithm dynamically
trades between them

In the pictured example, P(1) = 2/3 would be a reasonable prediction since in
two thirds of the cases where the context 0011 occurred before it was followed by a 1.
(Laplace’s rule gives a slightly different estimate.) Humans often make predictions
this way. For example, when predicting whether I will like the food at a Vietnamese
restaurant, I use my experience from previous visits to Vietnamese restaurants.

One question that ariseswhendoing inductionwith contexts is how longor specific
the context should be. Should I use the experience from all Vietnamese restaurants
I have ever been to, or only this particular Vietnamese restaurant? Using the latter, I
may have very limited data (especially if I have never been to the restaurant before!)
On the other hand, using too unspecific contexts is not useful either: Basing my
prediction on all restaurants I have ever been to (and not only the Vietnamese), will
probably be too unspecific. Table2.2 summarises the tradeoff between short and long
contexts, which is nicely solved by the CTW algorithm.

The right choice of context length depends on a few different parameters. First,
it depends on how much data is available. In the beginning of an agent’s lifetime,
the history will be short, and mainly shorter contexts will have a chance to produce
an adequate amount of data for prediction. Later in the agent’s life, the context can
often be more specific, due to the greater amount of accumulated experience.

Second, the ideal context length may depend on the context itself, as aptly demon-
strated by the example to the right. Assume you just heard the word cup or cop. Due
to the similarity of the words, you are unable to tell which of them it was. If the most
recent two words (i.e. the context) was fill the, you can infer the word was cup, since
fill the cop makes little sense. However, if the most recent two words were from the,
then further context will be required, as both drink from the cup and run from the
cop are intelligible statements.
Context Tree Weighting. The Context Tree Weighting (CTW) algorithm is a clever
way of adopting the right context length based both on the amount of data available
and on the context. Similar to how Solomonoff induction uses a sum over all possible
computer programs, the CTW algorithm uses a sum over all possible context trees
up to amaximumdepth D. For example, the context trees of depth D ≤ 2 are the trees:
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cup or cop?

from the

drink run

fill the

The structure of a tree encodes when a longer context is needed, and when a
shorter context suffices (or is better due to a lack of data). For example, the leftmost
tree corresponds to an iid process, where context is never necessary. The tree of
depth D = 1 posits that contexts of length 1 always are the appropriate choice. The
rightmost tree says that if the context is 1, then that context suffices, but if the most
recent symbol is 0, then a context of length two is necessary. Veness et al. [85] offer
a more detailed description.

For a given maximum depth D, there are O(22
D
) different trees. The trees can

be given binary encodings; the coding of a tree Γ is denoted CL(Γ ). Each tree Γ

gives a probability Γ (et | æ<t at ) for the next percept, given the context it prescribes
using. Combining all the predictions yields the CTW distribution:

CTW(e<t | a<t ) =
∑

Γ

2−CL(Γ )Γ (e<t | a<t ) (2.4)

The CTW distribution is tightly related to the Solomonoff-Hutter distribution (2.1),
the primary difference being the replacing of computer programs with context trees.
Naively computing CTW(et | æ<t at ) takes double-exponential time. However, the
CTW algorithm [86] can compute the prediction CTW(et | æ<t at ) in O(D) time.
That is, for fixed D, it is a constant-time operation to compute the probability of
a next percept for the current history. This should be compared with the infinite
computational resources required to compute the Solomonoff-Hutter distribution M .

Despite its computational efficiency, the CTW distribution manages to make a
weighted prediction based on all context trees within the maximum depth D. The
relative weighting between different context trees changes as the history grows,
reflecting the success and failure of different context trees to accurately predict the
next percept. In the beginning, the shallower trees will have most of the weight due
to their shorter code length. Later on, when the benefit of using longer contexts start
to pay off due to the greater availability of data, the deeper trees will gradually gain
an advantage, and absorb most of the weight from the shorter trees. Note that CTW
handles partially observable environments, a notoriously hard problem in AI.
MC-AIXI-CTW. Combining the MCTS algorithm for planning with the CTW
approximation for induction yields the MC-AIXI-CTW agent. Since it is history
based,MC-AIXI-CTWhandles hidden states gracefully (as long as long-term depen-
dencies are not too important). The MC-AIXI-CTW agent can run on a standard
desktop computer, and achieves impressive practical performance. For example,
MC-AIXI-CTW can learn to play Rock Paper Scissors, TicTacToe, Kuhn Poker,
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and even Pacman, just by trying actions and observing percepts, and without addi-
tional knowledge about the rules of the game [85]. For computational reasons, in
PacMan the agent did not view the entire screen, only a compressed version telling
it the direction of ghosts and nearness of food pellets (16 bits in total). Although less
informative, this drastically reduced the number of bits per interaction cycle, and
allowed for using a reasonably short context. Thereby the less informative percepts
actually made the task computationally easier.
Other approximations of Solomonoff induction. Although impressive, a major
drawback of the CTW approximation of Solomonoff induction is that the CTW-
agents cannot learn time dependencies longer than the maximum depth D of the
context trees. Thismeans thatMC-AIXI-CTWwill underperform in situations where
long-term memory is required.

A few different approaches to approximating Solomonoff induction has been
explored. Generally they are less well-developed than CTW, however.

A seemingly minor generalisation of CTW is to allow loops in context trees. Such
loops allow context trees of a limited depth to remember arbitrarily long dependen-
cies, and can significantly improve performance in domains where this is impor-
tant [12]. However, the loops break some of the clean mathematics of CTW, and
predictions can no longer be computed in constant time. Instead, practical imple-
mentations must rely on approximations such as simulated annealing to estimate
probabilities.

The speed prior [71] is a version of the universal distribution M where the prior
is based on both program length and program runtime. The reduced probability
of programs with long runtime makes the speed prior computable. It still requires
exponential or double-exponential computation time, however [18]. Recent results
show that program-based compression can be done incrementally [19]. These results
can potentially lead to the development of a more efficient anytime-version of the
speed prior. It is an open questionwhether such a distribution can bemade sufficiently
efficient to be practically useful.

2.4.2 Feature Reinforcement Learning

Feature reinforcement learning (�MDP) [31, 32] takes a more radical approach
to reducing the complexity of Solomonoff induction. While the CTW algorithm
outputs a distribution of the same type as Solomonoff induction (i.e. a distribution
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Fig. 2.4 �MDP infers an underlying state representations from a history

over next percepts), the �MDP approach instead tries to infer states from histories
(see Fig. 2.4).

Histories and percepts are often generated by an underlying set of state transitions.
For example, in classical physics, the state of the world is described by the position
and velocity of all objects. In toy examples and games such as chess, the board state is
mainly what matters for future outcomes. The usefulness of thinking about the world
in terms of states is also vindicated by simple introspection: with few exceptions,
we humans translate our histories of actions and percepts into states and transitions
between states such as being at work or being tired.

In standard applications of RL with agents that are based on states, the designers
of the agent also design a mechanism for interpreting the history/percept as a state. In
�MDP, the agent is instead programmed to learn themost useful state representation
itself. Essentially, a state representation is useful if it predicts rewards well. To avoid
overfitting, smaller MDPs are also preferred, in line with Occam’s razor.

The computational flow of a �MDP agent is depicted in Fig. 2.5. After a percept
et−1 has been received, the agent searches for the best map� : history 
→ state for its
current history æ<t . Given the state transitions provided by�, the agent can calculate
transition and reward probabilities by frequency estimates. The value functions are
computed by standardMDP techniques [82] ormodern PAC-MDP algorithms, which
allows for a near-optimal action to be found in polynomial time. Intractable planning
is avoided. Once the optimal action has been determined, the agent submits it to the
environment and waits for a new percept.

�MDP is not the only approach for inferring states frompercepts. Partially observ-
able MDPs (POMDPs) [35] is another popular approach. However, the learning of
POMDPs is still an open question. The predictive state representation [51] approach
also lacks a general and principled learning algorithm. In contrast, initial consistency
results for�MDP show that under some assumptions,�MDP agents asymptotically
learn the correct underlying MDP [80].

A few different practical implementations of �MDP agents have been tried. For
toy problems, the ideal MDP-reductions can be computed with brute-force [56].
This is not possible in harder problems, where Monte Carlo approximations can be
used instead [57]. Finally, the idea of context trees can be used also for �MDP. The
context tree given the highest weight by the CTW algorithm can be used as a map �
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that considers the current context as the state. The resulting �MDP agent exhibits
similar performance as the MC-AIXI-CTW agent.

Generalisations of the �MDP agent include generalising the states to feature
vectors [31] (whence the name feature RL). As mentioned above on page xxx, loops
can be introduced to enable long-term memory of context trees [12]. The Markov
property of states can be relaxed in the extreme state aggregation approach [34]. A
somewhat related idea using neural networks for the feature extraction was recently
suggested [74].

2.4.3 Model-Free AIXI

Both MC-AIXI-CTW and �MDP aremodel-based in the sense that they construct a
model for how the environment reacts to actions. In MC-AIXI-CTW, the models are
the context trees, and in �MDP, the model is the inferred MDP. In both cases, the
models are then used to infer the best course of action. Model-free algorithms skip
the middle step of inferring a model, and instead infer the value function directly.

Recall that V π (æ<t at ) denotes the expected return of taking action at in history
æ<t , and thereafter following the superscripted policy π , and that V ∗(æ<t at ) denotes
expected return of at and thereafter following an optimal policy π∗. The optimal
value function V ∗ is particularly useful for acting: If known, one can act optimally by
always choosing action at = arg maxaV

∗(æ<t a). This action at will be optimal under
the assumption that future actions are optimal, which is easily achieved by selecting
them from V ∗ in the same way. In other words, being greedy with respect to V ∗ gives
an optimal policy. In model-free approaches, V ∗ is inferred directly from data. This
removes the need for an extra planning step, as the best action is simply the action
with the highest V ∗-value. Planning is thereby incorporated into the induction step.

Fig. 2.5 Computational flow of a �MDP-agent
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Manyof themost successful algorithms in traditionalRLaremodel-free, including
Q-learning and SARSA [82]. The first computable version of AIXI, the AIXItl
agent [28] (Sect. 6.2), was a model-free version of AIXI. A more efficient model-
free agent compress and control (CNC) was recently developed by developed by
Veness et al. [84]. The performance of the CNC agent is substantially better than
what has been achieved with both the MC-AIXI-CTW approach and the �MDP
approach. CNC learned to play several Atari games (Pong, Bass, and Q*Bert) just by
looking at the screen, similar to the subsequent famous Deep Q-Learning algorithm
(DQN) [53] discussed in the next section. The CNC algorithm has not yet been
generalised to the general, history-based case. The version described by Veness et
al. [84] is developed only for fully observable MDPs.

2.4.4 Deep Learning

Deep learning with artificial neural networks has gained substantial momentum the
last few years, demonstrating impressive practical performance in a wide range of
learning tasks. In this section we connect some of these results to UAI.

A standard (feed-forward) neural network takes a fixed number of inputs, propa-
gates them through a number of hidden layers of differentiable activation functions,
and outputs a label or a real number. Given enough data, such networks can learn
essentially any function. In one much celebrated example with particular connection
to UAI, a deep learning RL system called DQN learned to play 49 different Atari
video games at human level just by watching the screen and knowing the score (its
reward) [53]. The wide variety of environments that the DQN algorithm learned to
handle through interaction alone starts to resemble the general learning performance
exhibited by the theoretical AIXI agent.

One limitationwith standard feed-forward neural networks is that they only accept
a fixed size of input data. This fits poorly with sequential settings such as text, speech,
video, and UAI environments μ (see Definition 2) where one needs to remember the
past in order to predict the future. Indeed, a key reason that DQN could learn to
play Atari games using feed-forward networks is that Atari games are mostly fully
observable: everything one needs to know in order to act well is visible on the screen,
and no memory is required (compare partial observability discussed in Sect. 2.3.2).

Sequential data is better approached with so-called recurrent neural networks.
These networks have a “loop”, so that part of the output of the network at time t
is fed as input to the network at time t + 1. This, in principle, allows the network
to remember events for an arbitrary number of time steps. Long short-term memory
networks (LSTMs) are a type of recurrent neural networks with a special pathway
for preserving memories for many time steps. LSTMs have been highly successful
in settings with sequential data [50]. Deep Recurrent Q-Learning (DRQN) is a gen-
eralisation of DQN using LSTMs. It can learn a partially observable version of Atari
games [25] and the 3DgameDoom [37].DQNandDRQNaremodel-free algorithms,

http://dx.doi.org/10.1007/978-3-319-64816-3_6
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and so are most other practical successes with deep learning in RL. References [58,
73] (Chap. 5) provide more extensive surveys of related work.

Due to their ability to cope with partially observable environments with long-term
dependencies between events, we consider AIs based on recurrent neural networks
to be interesting deep-learning AIXI approximations. Though any system based on
a finite neural network must necessarily be a less general learner than AIXI, deep
neural networks tend to be well-fitted to problems encountered in our universe [49].

The connection between the abstract UAI theory and practical state-of-the-art RL
algorithms underlines the relevancy of UAI.

2.5 Fundamental Challenges

Having a precise notion of intelligent behaviour allows us to identify many subtle
issues that would otherwise likely have gone unnoticed. Examples of issues that have
been identified or studied in the UAI framework include:

• Optimality [28, 44, 46]
• Exploration vs. exploitation [46, 61]
• How should the future be discounted? [40]
• What is a practically feasible and general way of doing joint learning and planning
[32, 84, 85]

• What is a “natural” universal Turing machine or programming language? [44, 54]
• How should embodied agents reason about themselves? [17]
• Where should the rewards come from? [16, 26, 68]
• How should agents reason about other agents reasoning about themselves? [47]
• Personal identity and teleportation [62, 63].

In this section we will mainly focus on the optimality issues and the exploration
vs. exploitation studies. The question of where rewards should come from, together
with other safety related issues will be treated in Sect. 2.6. For the other points, we
refer to the cited works.

2.5.1 Optimality and Exploration

What is the optimal behaviour for an agent in any unknown environment? The AIXI
formula is a natural answer, as it specifieswhich action generates the highest expected
return with respect to a distribution M that learns any computable environment in a
strong sense (Theorem 1).

The question of optimality is substantially more delicate than this however, as
illustrated by the common dilemma of when to explore and when to instead exploit
knowledge gathered so far. Consider, for example, the question of whether to try a
new restaurant in town. Trying means risking a bad evening, spending valued dollars

http://dx.doi.org/10.1007/978-3-319-64816-3_5
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on food that is potentially much worse than what your favourite restaurant has to
offer. On the plus side, trying means that you learn whether it is good, and chances
are that it is better than your current favourite restaurant.

The answer AIXI gives to this question is that the restaurant should be tried if and
only if the expected return (utility) of trying the restaurant is greater than not trying,
accounting for the risk of a bad evening and the possibility of finding a new favourite
restaurant, as well as for their relative subjective probabilities. By giving this answer,
AIXI is subjectively optimal with respect to its belief M . However, the answer is not
fully connected to objective reality. Indeed, either answer (try or don’t try) could have
been justified with some belief.6 While the convergence result Theorem 1 shows that
M will correctly predict the rewards on the followed action sequence, the result
does not imply that the agent will correctly predict the reward of actions that it is
not taking. If the agent never tries the new restaurant, it will not learn how good
it is, even though it would learn to perfectly predict the quality at the restaurants
it is visiting. In technical terms, M has guaranteed on-action convergence, but not
guaranteed off-action convergence [28] (Sect. 4.1.3).

An alternative optimality notion is asymptotic optimality. An agent is asymp-
totically optimal if it eventually learns to obtain the maximum possible amount of
reward that can be obtained from the environment. No agent can obtain maximum
possible reward directly, since the agent must first spend some time learning which
environment is the true one. That AIXI is not asymptotically optimal was shown
by [44, 61]. In general, it is impossible for an agent to be both Bayes-optimal and
asymptotically optimal [61].

Bayes-optimality Subjective Immediate
Asymptotic optimality Objective Asymptotic

Among other benefits, the interaction between asymptotically optimal agents
yields clean game-theoretic results. Almost regardless of their environment, asymp-
totically optimal agents will converge on a Nash-equilibria when interacting [47].
This result provides a formal solution to the long-open grain-of-truth problem, con-
necting expected utility theory with game theory.

2.5.2 Asymptotically Optimal Agents

AIXI is Bayes-optimal, but is not asymptotically optimal. The reason is that AIXI
does not explore enough. There are various ways in which one can create more
explorative agents. One of the simplest ways is by letting the agent act randomly for

6In fact, for any decision there is one version of AIXI that prefers each option, the different versions
of AIXI differing only in which programming language (UTM) is used in the definition of the
universal distribution M (2.1) [44].
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Fig. 2.6 In this environment, focused exploration far outperforms random exploration. Focused
exploration finds out the content at the question mark in 6 time steps. With random exploration, the
expected number of steps required is 26, an exponential increase

periods of time. A fine balance needs to be struck between doing this enough so that
the true environment is certain to be discovered, and not doing it too much so that the
full benefits of knowing the true environment can be reaped (note that the agent can
never know for certain that it has now found the true environment). If exploration
is done in just the right amount, this gives rise to a (weakly) asymptotically optimal
agent [38].
Optimistic agents. Exploring randomly is often inefficient, however. Consider for
example the environment depicted in Fig. 2.6. An agent that purposefully explores
the rightmost question mark, finds out the truth exponentially faster than a randomly
exploring agent. For a real-world example, consider how long it would take you to
walk into a new restaurant and order a meal by performing random actions. Going to
a restaurant with the intention of finding out how good the food is tends to be much
more efficient.

Optimism is a useful principle for devising focused exploration. In standard RL,
this is often done with positive initialisation of value estimates. Essentially, the agent
is constructed to believe that “there is a path to paradise”, and will systematically
search for it. Optimism thus leads to strategic exploration. In the UAI framework,
optimistic agents can be constructed using a growing, finite class Nt of possible
environments, and act according to the environment ν ∈ Nt that promises the highest
expected reward. Formally, AIXI’s action selection (2.3) is replaced by

at = arg max
a

max
ν∈Nt

Vν(æ<t a).

Optimistic agents are asymptotically optimal [81].
Thompson-sampling. A third way of obtaining asymptotically optimal agents is
through Thompson-sampling. Thompson-sampling is more closely related to AIXI
than optimistic agents. While AIXI acts according to a weighted average over all
consistent environments, a Thompson-sampling agent randomly picks one environ-
ment ν and acts as if ν were the true one for one effective horizon.When the effective
horizon is over, the agent randomly picks a new environment ν ′. Environments are
sampled from the agent’s posterior belief distribution at the time of the sampling.

Since Thompson-sampling agents act according to one environment over some
time period, they explore in a strategic manner. Thompson-sampling agents are also
asymptotically optimal [46].
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2.6 Predicting and Controlling Behaviour

The point of creating intelligent systems is that they can act andmake decisions with-
out detailed supervision or micromanagement. For example, Sect. 18.5.3 in this book
describes the application of autonomous AI systems to unmanned space missions.
However, with increasing autonomy and responsibility, and with increasing intelli-
gence and capability, there inevitably comes a risk of systems causing substantial
harm [10]. The UAI framework provides a means for giving formal proofs about the
behaviour of intelligent agents. While no practical agent may perfectly implement
the AIXI ideal, having a sense of what behaviour the agent strives towards can still
be highly illuminating.

We start with some general observations. What typically distinguishes an
autonomous agent from other agents is that it decides itself what actions to take
to achieve a goal. The goal is central, since a system without a goal must either be
instructed on a case-by-case basis, or work without clear direction. Systems optimis-
ing for a goal may find surprising paths towards that goal. Sometimes these paths
are desirable, such as when a Go or Chess program finds moves no human would
think of. Other times, the results are less desirable. For example, [8] used an evolu-
tionary algorithm to optimise circuit design of a radio controller. Surprisingly, the
optimal design found by the algorithm did not contain any oscillator, a component
typically required. Instead the system had evolved a way of using radio waves from
a nearby computer. While clever, the evolved controller would not have worked in
other circumstances.

In general, artificial systems optimise the literal interpretation of the goal they are
given, and are indifferent to implicit intentions of the designer. The same behaviour
is illustrated in fairy tales of “evil genies”, such as with King Midas who wished
that everything he touched would turn to gold. Closer to the field of AI is Asimov’s
([7]) three laws of robotics. Asimov’s stories illustrate some problems with AIs
interpreting these laws overly literally.

The examples above illustrate how special care must be taken when designing the
goals of autonomous systems. Above, we used the simple goal of maximising reward
for our UAI agents (Sect. 2.3.3). One might think that maximising reward given by a
human designer should be safe against most pitfalls: After all, the ultimate goal of the
system in this case is pretty close to making its human designer happy. This section
will discuss some issues that nonetheless arise, and ways in which those issues can
potentially be addressed. For more comprehensive overviews of safety concerns of
intelligent agents, see [4, 21, 76, 83].

2.6.1 Self-Modification

Autonomous agents that are intelligent and have means to affect the world in various
ways may, in principle, turn those means towards modifying itself. An autonomous

http://dx.doi.org/10.1007/978-3-319-64816-3_18
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agentmay for example find away to rewrite its own source code. Although present AI
systems are not yet close to exhibiting the required intelligence or “self-awareness”
required to look for such self-modifications, we can still anticipate that such abil-
ities will emerge in future AI systems. By modelling self-modification formally,
we can assess some of the consequences of the self-modification possibility, and
look for ways to manage the risks and harness the possibilities. Formal models of
self-modification have been developed in the UAI-framework [15, 65, 66]. We next
discuss some types of self-modification in more detail.
Self-improvement. One reason an intelligent agent may want to self-modify could
be for improving its own hardware or software. Indeed, Omohundro [60] lists self-
improvement as a fundamental drive of any intelligent system, since a better future
version of the agent would likely be better at achieving the agent’s goal. The Gödel
machine [72] is an agent based on this principle: TheGödelmachine is able to change
any part of its own source code, and uses part of its computational resources to find
such improvements. The claim is that theGödelmachinewill ultimately be an optimal
agent. However, Gödel’s second incompleteness theorem and its corollaries imply
fundamental limitations to formal systems’ ability to reason about themselves. Yud-
kowsky and Herreshoff [89] claim some progress on how to construct self-improving
systems that sidestep these issues.

Though self-improvement is generally positive as it allows our agents to become
better over time, it also implies a potential safety problem. An agent improving itself
may becomemore intelligent than we expect, which admonishes us to take extra care
in designing agents that can be trusted regardless of their level of intelligence [10].
Self-modification of goals. Another way an intelligent system may use its self-
modification capacity is to replace its goal with something easier, for example by
rewriting the code that specifies its goal. This would generally be undesirable, since
there is no reason the new goal of the agent would be useful to its human designers.

It has been argued on philosophical grounds that intelligent systems will not want
to replace their goals [60]. Essentially, an agent should want future versions of itself
to strive towards the same goal, since that will increase the chances of the goal being
fulfilled. However, a formal investigation reveals that this depends on subtle details
of the agent’s design [15]. Some types of agents do not want to change their goals,
but there are also wide classes of agents that are indifferent to goal modification,
as well as systems that actively desire to modify their goals. The first proof that an
UAI-based agent can be constructed to avoid self-modification was given by [26].

2.6.2 Counterfeiting Reward

The agent counterfeiting reward is another risk. An agent that maximises reward
means an agent that actively desires a particular kind of percept: that is, a percept
with maximal reward component. Similar to how a powerful autonomous agent may
modify itself, an autonomous agent may be able to subvert its percepts, for example
bymodifying its sensors. Preventing this risk turns out to be substantially harder than
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preventing self-modification of goals, since there is no simple philosophical reason
why an agent set to maximise reward should not do so in the most effective way; i.e.
by taking control of its percepts.

More concretely, the rewards must be communicated to the agent in some way.
For example, the reward may be decided by its human designers every minute,
and communicated to the robot through a network cable. Making the input and
the communication channel as secure against modification as possible goes some
way towards preventing the agent from easily counterfeiting reward. However, such
solutions are not ideal, as they challenge the agent to use its intelligence to try and
overcome our safety measures. Especially in the face of a potentially self-improving
agent, this makes for a brittle kind of safety.

Artificial agents counterfeiting reward have biological analogues. For example,
humans inventing drugs and contraception may be seen as ways to counterfeit plea-
sure without maximising for reproduction and survival as would be evolutionary
optimal. In a more extreme example, [59] plugged a wire into the pleasure centre of
rats’ brains, and gave the rats a button to activate the wire. The rats pressed the button
incessantly, forgetting other pleasures such as eating and sleeping. The rats eventu-
ally died of starvation. Due to this experiment, the reward counterfeiting problem is
sometimes called wireheading [88] (Chap.4).

What would the failure mode of a wireheaded agent look like? There are several
possibilities. The agent may either decide to act innocently, to reduce the probability
of being shut down. Or it may try to transfer or copy itself outside of the control of
its designers. In the worst-case scenario, the agent tries to incapacitate or threaten its
designers, to prevent them from shutting it down. A combination of behaviours or
transitions over time are also conceivable. In either of the scenarios, an agent with
fully counterfeited reward has no (direct) interest in making its designers happy. We
next turn to some possibilities for avoiding this problem.
Knowledge-seeking agents. One could consider designing agents with other types
of goals than optimising reward. Knowledge-seeking agents [64] are one such alter-
native. Knowledge-seeking agents do not care about maximising reward, only about
improving their knowledge about the world. It can be shown that they do not wire-
head [68]. Unfortunately, it is hard to make knowledge-seeking agents useful for
tasks other than scientific investigation.
Utility agents. A generalisation of both reward maximising agents and knowledge
seeking agents areutility agents.Utility agentsmaximise a real-valuedutility function
u(æ<t ) over histories. Setting u(æ<t ) = R(æ<t ) gives a reward maximising agent,7

and settingu(æ<t ) = −M(æ<t )gives a knowledge-seeking agent (trying tominimise
the likelihood of the history it obtains, tomake itmaximally informative).While some
utility agents are tempted to counterfeit reward (such as the special case of reward
maximising agents), properly defined utility agents whose utility functions make
them care about the state of the world do avoid the wireheading problem [26].

The main challenge with utility agents is how to specify the utility function.
Precisely formulating one’s goal is often challenging enough even using one’s native

7The return R(æ<t ) = r1 + γ r2 + . . . is defined and discussed in Sect. 2.3.3.
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language. A correct formal specification seems next to impossible for any human to
achieve. Utility agents also seem to forfeit a big part of the advantage with induction-
based systems discussed in Sect. 2.2. That is, that the agent can learn what we want
from it.
Value learning. The idea of value learning [13] is that the agent learns the utility
function u by interacting with the environment. For example, the agent might spend
the initial part of its life reading the philosophy literature on ethics, to understandwhat
humans what. Formally, the learning must be based on information contained in the
history æ<t . The history is therefore used both to learn about the true utility function,
and to evaluate how well the world currently satisfies the inferred utility function.
Concrete value learning suggestions include inverse reinforcement learning (IRL)
[3, 14, 24, 55, 75] and apprenticeship learning [1]. Bostrom [9, 10] also suggests
some interesting alternatives for value learning, but they are less concrete than IRL
and apprenticeship learning.

Concerns have been raised that value learning agents may be incentivised to
learn the “wrong thing” by modifying their percepts. Suggested solutions include
indifference [5, 6] and belief consistency [16].

2.6.3 Death and Self-Preservation

The UAI framework can also be used to formally define death for artificial agents,
and for understanding when agents will want to preserve themselves. A natural
definition of death is the ceasing of experience. This can be directly defined in the
UAI framework.Death is the ending of the history.When an agent is dead, it receives
no more percepts, and takes no more actions. The naturalness of this definition
should be contrasted both with the ongoing controversy defining death for biological
systems and with the slightly artificial construct one must use in state-based MDP
representations. To represent death in an MDP, an extra absorbing state (with reward
0) must be introduced.

A further nice feature of defining death in the UAI framework is that the universal
distribution M can be interpreted to define a subjective death probability. Recall
Eq. (2.1) on page xxx that M is defined as a sum over programs,

M(e<t | a<t ) =
∑

p : p(a<t )=e<t

2−�(p).

Some computer programs pmay fail to produce an output at all. As a consequence,M
is actually not a proper probability distribution, but a semi-measure. Summingover all
percept probabilities gives total probability less than 1, i.e.

∑
e∈E M(e | a) < 1. For

example,M(0 | a) = 0.4 andM(1 | a) = 0.4 givesM(0 | a)+M(1 | a) = 0.8 < 1.
The lacking probability 0.2 can be interpreted as a subjective death probability [52].
The interpretation makes sense as it corresponds to a probability of not seeing any
percept at all (i.e. death). Further, interpreting programs as environments, themeasure



42 T. Everitt and M. Hutter

deficit arises because some programs fail to output. An environment program that
fails to output a next percept is an environment where the agent will have no further
experience (i.e. is dead).

Having a definition of death lets us assess an agent’s self-preservation drive [60].
In our definition of death, the reward obtained when dead is automatically 0 for any
agent. We can therefore design self-preserving agents that get reward communicated
as a positive real number, say between 0 and 1. These agents will try to avoid death
as long as possible, as death is the worst possible outcome. We can also define
suicidal agents by letting the reward be communicated in negative real numbers, say
between −1 and 0. For these agents, obtaining the implicit death reward of 0 is like
paradise. Suicidal agents will therefore consider termination as the ideal outcome.
The difference in behaviour that ensues is somewhat surprising since positive linear
transformations of the reward typically do not affect behaviour. The reason that it
affects behaviour in UAI is that M is a semi-measure and not a measure.8

These different kinds of agents have implications for AI safety. In Sect. 2.6.1 we
discussed the possibility of a self-improving AI as a safety risk. If a self-improving
AI becomes highly intelligent and is self-preserving, then it may be very hard to
stop. As a rough comparison, consider how hard it can be to stop relatively dumb
computer viruses. A suicidal agent that becomes powerful will try to self-terminate
instead of self-preserve. This also comes with some risks, as the agent has no interest
in minimising collateral damage in its suicide. Further research may reveal whether
the risks with such suicides are less than the risks associated with self-preserving
agents.

2.7 Conclusions

In summary, UAI is a formal, foundational theory for AI that gives a precise answer
to the question of what is the optimal thing to do for essentially any agent acting
in essentially any environment. The insight builds on old philosophical principles
(Occam, Epicurus, Bayes), and can be expressed in a single, one-line AIXI equation
[28] (p. 143).

The AIXI equation and the UAI framework surrounding it has several important
applications. First, the formal framework can be used to give mathematically precise
statements of the behaviour of intelligent agents, and to devise potential solutions to
the problem of how we can control highly intelligent autonomous agents (Sect. 2.6).
Such guarantees are arguably essential for designing trustworthy autonomous agents.
Second, it has inspired a range of practical approaches to (general) AI. Several fun-
damentally different approaches to approximating AIXI have exhibited impressive
practical performance (Sect. 2.4). Third, the precision offered by the mathematical

8Interesting observations about how the agent’s belief in its own mortality evolves over time can
also be made [52].
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framework of UAI has brought to light several subtle issues for AI. We discussed
different optimality notions and directed exploration-schemes, and referenced many
other aspects (Sect. 2.5).
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Chapter 3
Goal Reasoning and Trusted Autonomy

Benjamin Johnson, Michael W. Floyd, Alexandra Coman,
Mark A. Wilson and David W. Aha

3.1 Introduction

An important consideration for any autonomous system is the need to react intelli-
gently to unplanned events and observations. Doing so requires that the system be
given the freedom and ability to adjust its behavior, without being commanded to
do so by a human operator or external system. A good deal of research in robot-
ics and autonomy focuses on developing systems that can change their actions and
plans, to more reliably or more optimally achieve their goals. However, it is also
important to develop systems that autonomously deliberate on the goals themselves.
Goal Reasoning (e.g., [38]) is the study of how autonomous agents can dynamically
reason about and adjust their goals. Doing so enables agents to adapt intelligently to
changing conditions and unexpected events, allowing them to address a wider variety
of complex problems. Section 1.3 argues for the generality of reward maximization
for goals; Goal Reasoning, then, would allow the autonomous agent to adapt its own
reward function.

Goal Reasoning capabilities, in one form or another, may prove useful in many
applications. In domains where the agents must operate autonomously for substantial
periods of time or with limited communications, such as in unmanned underwater
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operations, it is imperative that the agents have the freedom to act on the information
they gather during the mission; they cannot rely on timely operator input, and must
be able to adjust their goals autonomously, should the need arise. Goal Reasoning can
also be used to allow autonomous agents to deliberate about the goals of other agents,
such as an operator. This can lower the burden on the operator and avoid information
overload, allowing the operator to focus on other, immediate tasks (e.g., operating
their own vehicle, or observing their surroundings). Similarly, Goal Reasoning can
be useful in systems that involve multiple, collaborating autonomous agents. In such
a system, it is valuable for each agent to be able to adjust its own goals, based on the
goals or actions of the other agents with which it is collaborating.

Goal Reasoning also raises interesting questions with regard to the topic of Trusted
Autonomy. One definition of Trusted Autonomy, taken from [1], refers to it as:

[T]he ability to form teams of humans and/or machines that make educated and conscious
decisions to delegate risky tasks among team members seamlessly and symbiotically.

Trust, then, is inherent in any well-functioning autonomous system in which tasks or
goals are delegated to agents within the system. In particular, a Goal Reasoning agent
requires a large degree of trust to have the freedom to autonomously determine and
adjust its goals. As such, Goal Reasoning pushes the scope of Trusted Autonomy,
as the trust of other agents must extend beyond the completion of known tasks or
towards achieving a known goal, to trusting the agent’s ability to make decisions
regarding its goals.

There are many open questions with respect to Goal Reasoning agents and their
relation to Trusted Autonomy. What motivates the agent to change its goals? How do
humans interact with robotic agents and delegate tasks? When will the agents choose
to overrule an operator’s commands, and why? How can the Goal Reasoning process
be framed to promote transparency? How can one ensure that certain safety conditions
and guarantees are maintained, despite the additional freedom of autonomy provided
to a Goal Reasoning agent? These are just a few of the questions raised by the
relationship between Goal Reasoning and Trusted Autonomy. In this chapter, we
describe Goal Reasoning and elaborate on some of these important questions. While
we focus on a few selected topics of research, there is a large and growing body of
work on Goal Reasoning and related topics. For additional reading, see the survey
papers [20, 38], or the proceedings of several Goal Reasoning workshops [2–4, 34].

This chapter is structured as follows. In Sect. 3.2, we describe a simple model
of Goal Reasoning called Goal-Driven Autonomy (GDA), as well as a domain-
independent method for goal selection in GDA, and an application of GDA in a
human-robot teaming task. Section 3.3 focuses on a more comprehensive model of
Goal Reasoning based on goal refinement, an architecture for ensuring the behaviors
of Goal Reasoning agents that use this model, and its application in a distributed
robotics task. For both models, we describe the importance of transparency to en-
gendering operator trust. We then describe two extensions to Goal Reasoning in
Sect. 3.4, first on how inverse trust can be used as a basis for adaptive autonomy, and
then on rebel agents and their relation to Trusted Autonomy. We then conclude in
Sect. 3.5.
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3.2 Goal-Driven Autonomy Models

This section describes the Goal-Driven Autonomy (GDA) model of Goal Reasoning,
which has been studied by several groups (e.g., [11–13, 22, 25, 29, 38, 39]). We
discuss only some of our own group’s work on GDA, and its relation to Trusted
Autonomy. We start with an introduction to GDA in Sect. 3.2.1, describe an approach
for goal selection in GDA in Sect. 3.2.2, and an application of the GDA model in a
human-robot teaming task in Sect. 3.2.3.

3.2.1 Goal-Driven Autonomy

One proposed model for Goal Reasoning is that of Goal-Driven Autonomy (GDA)
[25, 28], which allows an autonomous agent to introduce new goals, manage existing
goals, and preempt active goals. An early instantiation of GDA is in an agent called
Autonomous Response to Unexpected Events (ARTUE). Molineaux et al. show that
the Goal Reasoning capabilities provided by GDA allow ARTUE to better react to
unexpected events, and improve performance, versus an on-line planning system [28].

In the GDA model (shown in Fig. 3.1), an agent performs Goal Reasoning via a
repeated 4-step sequence:

1. First, the agent uses a Discrepancy Detector to compare its observations with a
set of expected observations (given by the planner). Any differences between the
expected and actual observations are used to define a set of discrepancies.

Fig. 3.1 Conceptual
diagram of the Goal-Driven
Autonomy model
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2. Next, the Explanation Generator creates one or more possible explanations for
the set of discrepancies. Each explanation hypothesizes a possible cause for the
set of discrepancies, based on the current and prior observed states.

3. Third, theGoal Nominator nominates a set of potentially appropriate goals, based
on the generated explanation(s).

4. Finally, given the current set of pending goals and the set of newly nominated
goals, the Goal Manager selects a subset of goals to be passed to the planner as
pending goals. This may involve adding, deleting, and/or modifying the pending
goals.

These four steps (Discrepancy Detection, Explanation Generation, Goal Nomi-
nation, and Goal Management) form the core of the GDA model of Goal Reasoning.
Molineaux et al. [28] also contrasted this model with a conceptual model of on-line
planning [30]. In both cases, the planner uses a model of the environment, a current
state, and an active goal, and generates a plan to achieve that goal. However, GDA’s
planner also generates a set of expectations. For both models, the controller uses
the generated plan to apply an action to the state transition system, and updates the
current state. The primary difference between GDA and the on-line planning model
is in the ability of the GDA controller to reason over a set of goals, rather than being
limited to pursuing a single, set goal.

We relate GDA to the topic of Trusted Autonomy as follows. In Sect. 3.2.2 we
describe a domain-independent method for goal selection, which is a subtask of
goal management, and how it can be biased to choose goals that engender operator
trust. Then in Sect. 3.2.3 we describe the use of a GDA agent in a simulated mission
involving human-robot teaming, and the importance of transparency in that mission.

3.2.2 Goal Selection

An integral part of Goal Reasoning is the problem of goal selection (i.e., a subtask of
goal management in which one or more goals are chosen for subsequent execution).
Agents that are teamed directly with humans can receive operator-selected goals,
or seek approval from operators to pursue their self-selected goals. However, some
agents may not have access to operators in a timely fashion. For instance, an au-
tonomous underwater vehicle (AUV) cannot communicate with operators unless it
surfaces, and an interplanetary robot may require excessive time to consult operators
on mission-critical decisions. In these and similar contexts, the agents’ ability to
intelligently select their goals is critical.

One approach for goal selection involves manually constructing knowledge bases
that dictate what goals to formulate based on the agent’s beliefs about the world (e.g.,
ARTUE [28] uses an engineered rule set that governs goal formulation). However,
this approach requires extensive domain-specific knowledge engineering. It is also
limiting, as the agent knows only how to respond to situations that were anticipated by
the designer. The greater control afforded by hand-tuned goal selection mechanisms
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may appear at first to offer greater predictability for operators. However, an agent
employing such a system cannot be expected to respond intelligently to situations
outside its programmed knowledge.

For instance, during tests applying GDA on an AUV, we found that low-level
software responsible for controlling the vehicle was at one point unable to correctly
determine the vehicle’s motion [41]. The vehicle deviated significantly from its in-
tended trajectory without reporting that deviation to the GDA agent. More robust
goal selection abilities offer the possibility of mitigating such failures through au-
tonomous responses.

Some agents address the need for more robust goal selection through the use of
learning. For example, agents may learn goal selection knowledge from criticism and
query-answer interaction with a human expert [31], from demonstrations by human
experts [40], or from Q-learning [22]. These approaches are more adaptable than
manually engineered systems, but they rely on the availability of human experts or
demonstration data for training. Also, agents using these approaches may perform
poorly when confronted with new situations for which they were not trained.

Another approach is to control goal selection through the application of motiva-
tors, which encode high-level, domain-independent desires the agent wants to fulfill.
We adopted this approach in Motivated ARTUE (M-ARTUE) [42], an extension
of ARTUE. M-ARTUE expresses these motivators in terms of the agent’s plan-
ning model; thus the motivator functions themselves are domain-independent and
do not require further domain knowledge than that encoded for the agent’s planner.
M-ARTUE applies the following motivators to guide its behavior:

• Social: This encodes the desire to pursue goals provided by the agent’s human
operators or teammates.

• Opportunity: This encodes the desire to gather and conserve resources, as well
as preserve the agent’s possible actions in future states.

• Exploration: This encodes the desire to visit states that the agent has not visited
previously.

To achieve broadly applicable, domain-independent implementations of these
motivators, we first introduced two subfunctions:

• Urgency: um(sc) returns a numeric value representing the agent’s need to fulfill a
particular motivator m in the current state sc.

• Fitness: fm(Xg) returns a numeric value representing how well a plan (to achieve
a given goal g) fulfills a particular motivator m, using the sequence of states Xg

the agent expects to visit while executing the plan.

We defined these functions to embody the following properties for each motivator:

• Social: This motivator’s urgency increases as time passes without the agent achiev-
ing any operator goals. Its fitness expresses a high value for any plan that achieves
an operator goal, and a low value for other plans.
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• Opportunity: This motivator’s urgency increases as the agent expends resources
and as fewer actions are available in the current state. Its fitness expresses higher
values for plans that retain high quantities of resources and many available actions,
and lower values for plans that do not.

• Exploration: This motivator’s urgency is initially high and decreases as time passes,
to encourage the agent to explore early but prioritize other desires after it has
gathered more information. Its fitness expresses higher values for plans that visit
more new states, and lower values for plans that visit more known states.

During goal selection, M-ARTUE prefers the goal with the highest overall fitness,
which is defined for each goal in the current state as the sum of the motivators’ fitness
scores, weighted by urgency:

F(Xg, sc) =
∑

m

um(sc) fm(Xg)

M-ARTUE’s approach for goal selection was tested in a simulated Mars rover
domain with hazards, with the objective of successfully maneuvering up to three
rovers to given destinations around a map within a fixed number of actions. In three
different levels of difficulty (controlled by the prevalence of hazards) it achieved
comparable performance to ARTUE without requiring domain engineering for goal
selection [42].

Other researchers have investigated the use of motivations or drives as goal
selection mechanisms: several alternate approaches are described in Sects. 14.5 and
15.5. For instance, Sun [36] uses drives analogous to our motivators in CLARION;
however, the drives have domain-specific aspects (e.g., Thirst and Hunger drives in
CLARION contrast with resource management in our Opportunity motivator), and
their preferred implementation is using a supervised back-propagating neural net-
work. Also, the experimental focus of [36] is on cognitive plausibility, while we focus
on agent performance. Merrick and Shafi [27] focus on three motivations (Achieve-
ment, Affiliation, and Power), extending a psychological theory of achievement that
models competing impulses of success and failure. Unlike our work, this forgoes
planning as a mechanism, instead modeling probability of success using past ex-
periences and less domain knowledge. The authors propose inverse probability of
success or socially-determined value of goals as alternatives to modeling how well
a goal satisfies a particular motivation; but our motivators address the problem of
determining the direct value of a goal using future predictive states. Finally, this
work proposes “motive profiles” for agents (encompassing different sets of values
for the model’s parameters) and focuses on testing those motive profiles against the
expected responses for corresponding human profiles in certain psychological tests.
Baldassarre and Mirolli [6] focus on the use of the psychological theory of intrinsic
motivation as a basis for long-term learning through exploration. This work bears
some resemblance to our Exploration motivator; however, we focus primarily on
acquisition of knowledge about the world and do not address the acquisition of new
skills. Moreover, our system is guided by novelty of state, as contrasted with metrics
of predictability or acquisition of competence.

http://dx.doi.org/10.1007/978-3-319-64816-3_14
http://dx.doi.org/10.1007/978-3-319-64816-3_15
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Goal selection methods based on motivators (or other primitives) allow
autonomous agents to make their own decisions in situations their designers did
not anticipate. This may be viewed as a step toward greater autonomy, but does not
necessarily establish a mutual understanding of trust as a concept [1]. Introducing
an additional motivator that represents the desire to establish trust between the agent
and its operators (or other agents) could establish a basis of understanding for trust-
worthiness, as well as a means for the agent to determine courses of action that would
maximize human-machine trust. For example, in [17], an autonomous agent applies
“inverse trust” metrics that guide a robot’s behavior towards increasing the trust it
receives from human operators. A motivator utilizing a similar metric, applied in
goal selection, might enable a Goal Reasoning agent to become more trusted by its
operators. In future research, we plan to investigate an extension of M-ARTUE that
incorporates trust-related motivators.

3.2.3 An Application for Human-Robot Teaming

A solitary Goal Reasoning agent can be the sole determiner of its own tasks and goals.
However, if the agent collaborates with other agents or humans as a member of a team,
it needs to consider both the goals of individual teammates as well as the overall team
goals. Failure to do so could lead to teammates viewing the agent as selfish (e.g., never
assisting any of its teammates) or hinder the efficient achievement of team objectives
(e.g., performing actions that create more work for teammates). This contrasts with
a traditional multi-agent setting where other entities may provide a Goal Reasoning
agent with motivations for goal change (e.g., saving an injured civilian, defending
against an aggressive enemy), but they do not share any squad-level goals with the
agent. It may be necessary to reason about their goals or motivations, which requires
sharing team goals with the agent.

Our Autonomous Squad Member (ASM) project [18] focuses on the design and
development of an extended GDA agent that controls a simulated unmanned ground
vehicle, which is embedded with a detached squad that is performing surveillance
tasks in a rural environment. The ASM agent (Fig. 3.2) observes the other squad
members and controls its behavior accordingly.

More specifically, the ASM agent continuously monitors the behavior of its team-
mates to identify their current goals. Using its current sensory inputs (i.e., observa-
tions of the environment or spoken dialog detected by its Natural Language Clas-
sifier), the agent’s Explanation Generator attempts to explain what actions each
teammate must have performed for the environment to be in its current state (i.e.,
explain the most recent actions that were observed). The actions of each teammate
are used by the agent’s Plan Recognizer to recognize their respective plans and asso-
ciated goals (i.e., predict their future actions based on previously observed actions).
If the ASM agent determines that some, or all, of the teammates have changed their
goals, it can change its goal in response, using its Goal Selector. For example, if
the teammates were patrolling but are now retreating, it can use that information to
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Fig. 3.2 The Autonomous
Squad Member (ASM)
agent’s conceptual design

reason that there must be a threat that the teammates have observed but the agent has
not, so it should also retreat. Similarly, the agent can also modify its goals in response
to an opportunity or an unexpected external event (i.e., something it perceives in the
environment). The ASM agent’s current goal is used to control its behavior by gen-
erating a plan (i.e., using the Planner) and executing its actions in the environment.

The ASM model can be contrasted with the GDA model introduced in Sect. 3.2.1
and shown in Fig. 3.1, with several notable differences. The ASM model specifically
differentiates natural language utterances from other state observations and uses the
Natural Language Classifier to pre-process them before they are provided as input
to the Explanation Generator. Explanation in the ASM model is not a single process
but is done at two levels, with the Explanation Generator explaining what actions
each teammate must have performed and the Plan Recognizer reasoning about what
plans they must be performing. Similarly, in the ASM model, discrepancy detection
is not a single module but happens throughout the system. For example, discrepancies
about expected and observed states are handled in the Explanation Generator, while
discrepancies about past and current goals of teammates are handled in the Goal
Selector. The Goal Selector itself differs from the GDA model since it only performs
a subset of the duties of the GDA model’s Goal Manager.

To support Trusted Autonomy, we are integrating the ASM agent with a user inter-
face that adds transparency between the agent and a human operator. This interface
uses the Situation awareness-based Agent Transparency (SAT) model [9], a trans-
parency model that attempts to reduce user overhead, provide situational awareness,
and allow for appropriate calibration of trust in the agent. The SAT interface provides
three levels of transparency information: the agent’s status (e.g., current state, goals,
plans, physical location), the agent’s reasoning process (e.g., what motivated it to
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perform its current task), and the agent’s projections (e.g., future environment states,
future resource levels). Each transparency element is presented using icons on the
user interface, allowing the user to quickly and intuitively process information and
identify changes in the agent’s behavior.

In this application of SAT, we are displaying to the user interface information
pertaining to the ASM agent’s location in its environment, its current goal, its current
task, and influence factors pertaining to why it selected that goal and is operating on
that task. Our objective is to demonstrate the benefits of the SAT model in a real-time
environment in mission-critical situations.

3.3 Goal Refinement

Section 3.2 described some of our group’s work on GDA, a simple model of Goal
Reasoning. In this section, we describe our work on goal refinement, which is a
more comprehensive Goal Reasoning model. We begin in Sect. 3.3.1 by describing
its basic concepts and realization in the Goal Lifecycle. In Sect. 3.3.2 we present
an architecture for ensuring guarantees on the behavior of agents that employ this
model. Finally, we describe its application to a distributed robotics task in Sect. 3.3.3.

3.3.1 Goal Lifecycle

Our group defined a second model for Goal Reasoning, based on the concept of goal
refinement, which we call the Goal Lifecycle [33]. Goal refinement, an extension of
plan refinement [24], models the progressive refinement of goals through the addition
of constraints. This is visualized in the Goal Lifecycle shown in Fig. 3.3 [33]. In this
model, individual goals transition through stages of increasingly detailed modes
by activating a series of refinement strategies. For example, goals and their initial
constraints are introduced using the formulate strategy, while the expand strategy
concerns the automated generation of plans for a given goal.

Briefly, the refinement strategies are:

1. Formulate: This creates a new goal and enters it into the Goal Lifecycle by defining
its initial constraints, criteria, and prerequisites.

2. Select: This chooses which goal(s) to actively pursue; it ensures that the goals’
prerequisites are met and that the agent has the needed resources to pursue them.

3. Expand: This generates one or more expansions (i.e., plans) to achieve a given
goal, along with a set of expectations for each.

4. Commit: This picks a single expansion to pursue from the set of expansions
created by the expand strategy.

5. Dispatch: This executes the committed expansion and defines the criteria by which
a goal can be evaluated during execution.
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Fig. 3.3 The Goal Lifecycle [33] depicts the application of strategies to transition goals (and
their associated constraints) through a sequence of modes. While the top-level strategies progress
goals towards completion, the set of resolve strategies (e.g., re-expand) support goal adaptation,
deferment, and reformulation

In addition to these strategies, which progressively add detail to the goal’s de-
finition, the Goal Lifecycle includes a set of strategies for detecting and reacting
to events and changes during execution. After being dispatched, each goal can be
actively monitored and, if problems are detected, or if an unexpected event occurs,
the goal can be evaluated. As a result of this evaluation, the system may elect to
continue the goal as is, drop the goal (as either completed or failed), or attempt to
resolve the detected problems through one of several strategies (e.g., repair, defer).
Resolve strategies transition a goal to an earlier mode before execution resumes.

In contrast to the GDA model, goal refinement provides a more explicit repre-
sentation of the context in which a goal is pursued by a Goal Reasoning agent. This
has benefits that relate to Trusted Autonomy. For example, contextual constraints
can be used to guarantee that agents will behave according to a given specification,
and can also be used to more clearly deliberate on and communicate details of their
reasoning (i.e., for selecting the next strategy to apply). We discuss these topics in
the following sections.

3.3.2 Guaranteeing the Execution of Specified Behaviors

Once a Goal Reasoning agent is provided with or self-selects a goal to pursue, it must
use some combination of planning and control algorithms to undertake the actions
necessary to achieve it. Careful design of these components can provide valuable
capabilities for a Goal Reasoning agent. Here we describe the Situated Decision
Process (SDP), which manages and executes goals for a team of autonomous vehicles.
A more thorough description of the SDP and its components can be found in [33],
and we describe an application of the SDP in Sect. 3.3.3.

The SDP (Fig. 3.4) takes as input goal updates (e.g., commands) from an operator
and passes them to the Mission Manager, which performs Goal Reasoning operations
using the Goal Lifecycle described in Sect. 3.3.1. Once the Mission Manager selects



3 Goal Reasoning and Trusted Autonomy 57

Fig. 3.4 A conceptual design of the Situated Decision Process (SDP). The Mission Manager
performs Goal Reasoning operations. It creates a schedule of actions for a team of vehicles, each
of which operates a synthesized Finite State Automaton

a goal, it dispatches an expansion to the vehicles by creating a schedule of commands
for them and passing that schedule to the Coordination Manager. The Coordination
Manager interprets the schedule and passes the applicable commands to a Team
Executive, which then assigns the commands to individual vehicles.

Each vehicle interprets their command as an input to a Finite State Automaton
(FSA), which is automatically synthesized using a template. This template specifies
the regions where the behaviors are to be executed, ensuring they are active in only
appropriate areas, as well as any mission sensors that cause an automatic switching
between behaviors when the vehicle observes a particular event. This yields a play-
calling architecture, detailed in [5], which provides guarantees on the execution of the
goals chosen by the Mission Manager. The execution of each command is predicated
on the satisfaction of a set of pre-defined health sensors, which establish required
conditions before the vehicle can pursue the commanded goal (e.g., the vehicle must
have a sufficient amount of fuel to reach the goal location). If one or more of the
health sensors are not satisfied, the FSA activates a contingency behavior that causes
the vehicle to engage in a behavior aimed towards maintaining safety (e.g., landing
an air vehicle) or fixing the health sensor (e.g., returning to a base station to refuel).

The FSAs used by the vehicles are synthesized from a temporal logic specification,
and are guaranteed to satisfy this specification. Full details on the synthesis process
we use in the SDP can be found in [26]. Briefly, the behavior of the vehicle is specified
as a Linear Temporal Logic (LTL) formula:

φ = ϕe → ϕs, (3.1)

where the behavior of system ϕs is specified in reaction to changes in environment ϕe.
The specified behavior of the environment and system includes three components:

• The initial state: ϕ
{e,s}
i

• A set of safety constraints that restrict the transitions of the system: ϕ
{e,s}
t

• A set of goal conditions that must be satisfied infinitely often: ϕ
{e,s}
g
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Formula φ is specified over a set of Boolean propositions that represent the state of
the environment, as sensed by the vehicle, and the state of the system. The resulting
FSA is synthesized automatically, in a manner that guarantees that the transitions
given by the FSA will satisfy φ. Coupled with the play-calling templates that are used
to generate the specification, the resulting FSA is guaranteed to activate behaviors
that pursue the commanded goal, whenever its observed internal and external state
allow it to do so.

This framework relates to Trusted Autonomy. While the SDP can adjust its goals
autonomously, the pursuit of those goals is constrained to abide by specific guaran-
tees. Such guarantees will affect how such an agent or group of agents is viewed and
trusted within a larger system.

3.3.3 A Distributed Robotics Application

One interesting question concerning Goal Reasoning and Trusted Autonomy is how
to design a Goal Reasoning system that clearly communicates how and why it chooses
to change its goals. We have addressed this in Goal Reasoning with Information
Measures (GRIM), a Goal Reasoning system that instantiates the Goal Lifecycle,
described in Sect. 3.3.1. GRIM, which is a derivation of the SDP (Sect. 3.3.2), em-
ploys a single measure for assessing goal performance and communicates this to
an operator. We briefly describe an application of GRIM here; a more complete
description can be found in [23].

We applied GRIM to a simulated disaster relief scenario (Fig. 3.5) where a team
of two autonomous vehicles must survey a set of regions to locate a local official
and establish communications. Each of these three regions (labeled as an Airport
and two Office Buildings) corresponds to an individual survey goal within the Goal
Lifecycle, and is surveyed by following a series of waypoints. The Goal Reasoning
process in GRIM is then framed with respect to the uncertainty left in the area survey,
which is defined as the length of the search pattern that has yet to be traversed by the
vehicles.

Figure 3.6 displays a graphical representation of four of the Goal Lifecycle strate-
gies. In Fig. 3.6a, each of the three survey goals is formulated by generating con-
straints on the maximum allowable uncertainty over time. After each of the goals is
formulated, GRIM selects a single goal (the Airport survey goal) to pursue, based
on the constraints of each goal. The selected goal is then expanded by generating a
set of plans to achieve it. The expectations of these plans (depicted as a change in
the uncertainty over time) are shown in Fig. 3.6b. GRIM then commits to a single
expansion, and dispatches that expansion to the vehicles. The expectations for the
expansion, and a set of performance bounds that are generated as part of the dispatch
strategy, are shown in Fig. 3.6c. Finally, Fig. 3.6d displays the execution performance
over time, as obtained by the monitor strategy.

During execution, when the vehicle’s performance is predicted to violate a goal
constraint (as occurs in Fig. 3.6d when its ongoing execution reaches the worst-case
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Fig. 3.5 Map of the survey regions for the disaster relief scenario used to demonstrate GRIM. Each
of the three survey regions is covered by a waypoint pattern that the vehicles follow to search for a
local official

(a)Formulate: Uncertainty and deadline
constraints for the survey goals.

(b) Expand: Expected survey performance for
each expansion of the Airport survey goal.

(c)Dispatch: Expectations and bounds for
the dispatched expansion (“1vehicleNorm”).

(d) Monitor:Execution performance of the
airport survey goal.

Fig. 3.6 Plots of selected strategies from the execution of GRIM for the disaster relief scenario
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execution bound), GRIM triggers the evaluate strategy to determine what violation
occurred. If the execution satisfies the completion criteria, the goal is marked as
completed and dropped. If it instead violates the constraints on the goal, the goal is
marked as failed and dropped. If neither of these has occurred, but the performance
violates the execution bounds, a resolve strategy is activated in an attempt to adjust the
goal (or its expansion) before continuing execution. The selected resolve strategy can
transition the goal back to an earlier mode in the Goal Lifecycle. For example, it may
repair the committed expansion by adjusting parameters that affect the expectations
and bounds. Alternately, a resolve strategy may force GRIM to completely re-expand
the goal to obtain a new set of expansions, before proceeding to commit to and
dispatch one of the new expansions.

For further details on the operation of GRIM, please see [23], which describes
an ablation study with the resolve strategies. We showed that they allow GRIM to
perform Goal Reasoning during execution, improve its performance, and enable it
to successfully complete more goals under uncertain and changing conditions.

Associating the Goal Lifecycle strategies with a single metric, as is done in GRIM,
can be useful for multiple reasons. For example, it can be used to define clear deci-
sion points that increase the transparency of the decision process used by the Goal
Reasoning system. For a system that has as much autonomy as GRIM, which can
change not only its plans but also its goals, transparency in how those decisions are
made may help to promote operator trust.

3.4 Future Topics

Section 3.2 and 3.3 described models of Goal Reasoning and their relation to Trusted
Autonomy. In this section, we describe future extensions to these models. We begin
with a discussion on inverse trust and its support of adaptive autonomy in Sect. 3.4.1,
and then describe the concept of rebel agents and their relation to Trusted Autonomy
in Sect. 3.4.2.

3.4.1 Adaptive Autonomy and Inverse Trust

The ASM and GRIM agents have certain properties that, arguably, have the potential
to engender trust. For example, since the ASM agent continuously monitors the
behavior of teammates, it can rapidly respond to any changes in their plans or goals.
Similarly, since the GRIM agent monitors the progress of controlled vehicles with
respect to goal constraints, it can automatically apply a resolve strategy when it
recognizes that a constraint is projected to be violated. However, neither ASM nor
GRIM agents use specific mechanisms to build or maintain operator trust.

Traditional computational trust metrics [35] are used to measure how much trust
an agent has in another agent using information from past interactions or third-party
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feedback. These metrics allow an agent embedded in a human team to measure
its trust in other teammates but do not allow it to measure how trustworthy it is
from its teammates’ perspective. For this reason, we developed an inverse trust
metric [15] that allows an agent to estimate its own trustworthiness. While many
factors that influence human-robot trust (discussed in more detail in Sect. 7.6) are
not directly observable to an agent (e.g., a teammate’s experience with other agents,
or a teammate’s internal evaluation of an agent), factors that are observable, such as
the agent’s performance, have been found to have the greatest influence on trust [19].

The inverse trust estimate allows an agent to evaluate its own performance and
use that information to estimate the corresponding influence on its trustworthiness
(i.e., increasing, decreasing, constant). Based on this estimate, an agent can reason
about whether its current behavior is trustworthy or untrustworthy. In situations
where the agent believes its behavior is untrustworthy, it can modify its behavior in
an attempt to learn (and apply) a more trustworthy behavior, thus implementing a
form of adaptive autonomy. Preliminary studies in limited simulations have shown
that an agent using an inverse trust method can successfully adapt its behavior given
implicit feedback [15], and can benefit further from explicit feedback [16] as well as
the ability to generate explanations when it modifies its behaviors [14].

The primary benefit of our approach is that it gives the agent control over maintain-
ing trust and does not require an exhaustive engineering effort to develop behaviors
that will be trustworthy for all teammates, in all environments, and in all contexts.
However, we have not yet integrated it with a Goal Reasoning agent, and to date it
has only been examined in the context of an agent whose goals are static. Our plans
for future work include testing variants of inverse trust in a Goal Reasoning agent
in environments in which the operator can specify a variety of goals to achieve, and
where unexpected situations can arise (thus motivating the need for self-selection of
goals or recommendation of goal changes to the operator). We expect that our stud-
ies will demonstrate the utility of adaptive autonomy in interactive Goal Reasoning
agents.

3.4.2 Rebel Agents

Rebel agents [10] represent a relatively novel research direction in the context of
Goal Reasoning. Rebel agents can object to, or even completely reject, goals or
associated courses of action that are assigned to them by external agents (human
or artificial), and they challenge the general attitudes or behaviors of those other
agents. For example, an operator may command a rebel agent to pursue a specified
goal without knowledge of the agent’s context or access to its information sources,
in which case the agent may respond with a recommendation for an alternative goal
(along with an explanation).

Several situations exist in which modeling a rebel agent that can adjust its goals
(or plans) can be viewed as beneficial, including the following:

http://dx.doi.org/10.1007/978-3-319-64816-3_7
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• Divergent information sources: The agent may have access to information currently
not available to the operator, which requires immediate action that is incompatible
with the assigned goal.

• Moral conflict: The agent may be endowed with a “moral conscience” model that
conflicts with an assigned goal. This can be a factor for protest in human-robot
interaction [8].

• Diversity: The agent may be intended to contribute to the diversity of its team
so as to ensure that sufficiently varied points of view and alternative goals are
considered. This direction is inspired by studies claiming that diverse teams tend
to outperform non-diverse teams [21, 37] under certain circumstances.

• Self-assessment: The agent may assess its assigned task as not being a good match
for its capabilities. This relates to studies in personality psychology where the
strengths-based leadership approach [32] argues that every person (i.e., leaders
or other team members) should be offered the opportunity to routinely conduct
activities in line with their strengths.

• Believability: An agent playing a character in an interactive narrative or training
simulation may be given (and refuse) a goal that undermines its believability [7].

Several of these situations assume that the agent has an internal motivation model
that conflicts with an assigned goal (or plan). This model can be based on many
factors, such as simulated memory, emotion, or social relationships. The agent’s
attitude towards a goal can change over time (due, for example, to changes in the
environment or in the agent’s knowledge of an operator’s motivation), leading to
incremental increase or decrease in the agent’s inclination to rebel. The rebel agents
may or may not be “aware” that they are rebelling; i.e., they may not be able to
reason about the social implications and potential consequences of rebellion. For
those agents that are rebellion-aware (e.g., social planning agents, as described in
Chap. 4), an inner conflict may emerge between the drive to rebel based on the agent’s
own motivating factors and the anticipated consequence of rebellion.

In one definition of Trusted Autonomy, Abbass et al. [1] express trust in terms of
vulnerability. A moment of rebellion is inherently one of vulnerability. By rebelling,
an agent (1) makes itself vulnerable, and (2) creates vulnerability in the system it is
(or was originally) part of. This anticipates some ways in which trust can be a factor
for rebellion, such as the following:

• Self-trust: The agent’s amount of trust in itself (e.g., its trust that it can accurately
assess the current situation as warranting opposition).

• Perceived trust: The agent’s model of how much other agents trust its judgment
(e.g., based on its perceived expertise).

• Risk: The degree to which the agent trusts other agents to handle the vulnerabilities
that rebellion creates for the rebel agent and the entire system.

• Distrust: The agent’s distrust of other agents (i.e., its belief that it cannot entrust
its vulnerabilities to them if the goal is to be achieved).

The relation between rebellion and trust is multifaceted. Some ways in which
rebellion can impact trust include:
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1. Rebellion can diminish the trust of other agents in the rebel agent (e.g., an operator
may lose trust in an agent that refuses to pursue an assigned goal/objective).

2. Rebellion can increase the trust of other agents in the rebel agent (e.g., a rebel
agent that displays expertise when rejecting a goal, by raising objections when
appropriate, may be more trusted to act autonomously).

3. The way in which other agents behave following a situation of rebellion can
impact the trust of the rebel agent in those other agents.

In our future work on Goal Reasoning agents that can rebel, we plan to first test
them in scenarios in which agents may rebel because their operator does not have
complete access to their current state (including sensor data). We wish to model
methods through which the agent learns how to explain its rebellion and negotiate
with its operator so as to maximize its confidence that it is pursuing a well-justified
goal. For example, this may involve soliciting an explanation from the operator as to
why a goal should be pursued, or providing an argument for rejecting it.

3.5 Conclusion

The topic of Goal Reasoning is an important one in Robotics, Intelligent Agents,
and Artificial Intelligence. Creating autonomous systems that can deliberate on and
change their own goals allows those systems more freedom to intelligently adapt
their behaviors to unexpected events and changing conditions. This chapter presented
two different models of Goal Reasoning. First, we presented the GDA model and
a related method for goal selection using motivators, as well as an application of
GDA in a human-robot teaming task. We also presented a model based on goal
refinement, instantiated in the Goal Lifecycle, and discussed an architecture for
placing guarantees on the behavior of the agents as well as an application in multi-
agent robotics. Finally, we discussed two ongoing extensions to our Goal Reasoning
work: adaptive autonomy using inverse trust and the study of rebel agents.

Goal Reasoning also has a number of close connections to the topic of Trusted
Autonomy. Goal Reasoning agents can modify and change their goals autonomously,
in addition to adjusting how they achieve those goals. As such, any trust of such
systems must inherently extend to their capability to reason at the goal level. Goal
Reasoning also provides opportunities to design systems that cultivate trust through
transparency or through goals that actively account for the trust of other agents.
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Chapter 4
Social Planning for Trusted Autonomy

Tim Miller, Adrian R. Pearce and Liz Sonenberg

4.1 Introduction

Earlywork onTrustedAutonomy (SeeSect. 4.5) introduced the term social autonomy
(See Chap.1) to capture the idea that to be coordinated with other agents or keep its
commitments, an agent must relinquish some of its autonomy, but that an agent that
is sociable and responsible can still be autonomous: it would attempt to coordinate
with others where appropriate and keep its commitments as much as possible, but it
would exercise its autonomy in entering into those commitments in the first place [1].

It has been argued that human-machine trust can enhance performance in complex
situations [2], andwhilewe acknowledge there aremany unanswered questions about
the relationship between human-human trust, and human-machine trust, especially in
the context of technology advances impacting machine capability for autonomy [3],
we adopt the hopefully uncontroversial perspective that successful human-agent in-
teraction demands that the agent behaves in an intuitive and explainable way from
the perspective of the human.

So the work described here, on computational mechanisms for constructing and
representing explainable plans in human-agent interactions, addresses one aspect of
what it will take to meet the requirements of a trusted autonomous system. In turn,
such properties are essential to enable the deployment of autonomous systems from
the laboratory into production, such as in manufacturing assembly environments,
assistive robotics, disaster management, defence applications, and self-driving cars.

Consider a simple example of a self-driving car that receives information that a
road on its planned route is blocked. Re-planning the route to take a different road is
straightforward, but the autonomy in the car should inform the passengers of this so
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that they understand why an unusual route is taken. However, the autonomy should
not inform the passengers if they are aware of this road closure already; for example,
on the return trip.

We assert that scenarios such as this require social planning. Social planning
is automated planning in which the planning agent maintains and reasons with an
explicit model of the humans with which it interacts, including the human’s goals,
intentions(See Sect. 6.6), and belief, as well as their potential behaviours. Indeed, hu-
mans themselves use these concepts to make decisions that are intuitive, explainable,
and acceptable to other people. This phenomenon is known as Theory of Mind(See
Sect. 15.8), a term introduced by Premack andWoodruff in the context of the study of
animal behaviour [4] andwidely used since in philosophy, psychology amd cognitive
science, e.g. [5, 6].

The state-of-the-art in artificial intelligence offers limited foundations on such
constructs. Indeed, as articulated recently, challenges for artificial intelligence in the
delivery of systems that can operate autonomously under some conditions, but cannot
always complete an entire task on their own (so-called semi-autononmous systems),
include the development of realtime activity and intent recognition techniques, the
designof representations for humanactions that are usable in the context of automated
planning, integrated with interfaces that facilitate communication and transfer of
control between the human and the machine, and supported by novel execution
architectures [7]. The work described in this chapter addresses (in part) the second
and fourth of these issues.

Specifically, we seek to build artificial agents that are able to fluidly operate
in complex dynamic environments with humans, interacting in a ‘human-intuitive’
manner. We are developing building blocks towards the design of non-human agents
whose actions can be trusted and understood by humans, and towards approaches
that take these factors into account when designing the collaboration with humans.

The structure of this Chapter is as follows. So far we have offered an overview
of the challenge of planning in human-agent teams, with a specific focus on social
planning as one way to increase transparency and explainability, and hence a criti-
cal enabler of trust. Section4.1 provides some high level background on (classical)
planning and the motivation for social planning. Section4.3 includes an introduction
to a recent body technical work by the authors and collaborators in social planning
- specifically in multi-agent epistemic planning [8–15]. In Sect. 4.4, we present two
scenarios that illustrate the benefits of planning in the presence of nested belief rea-
soning and first-person multi-agent planning, hence indicating how social planning
could be used as a means for planning human-agent interaction explicitly as part of
the ‘deliberation’ cycle. Section4.5 offers some brief summary remarks.

4.2 Motivation and Background

In this section, we outline some background material required to understand the
chapter, as well as some motivation for our work.

http://dx.doi.org/10.1007/978-3-319-64816-3_6
http://dx.doi.org/10.1007/978-3-319-64816-3_15
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Fig. 4.1 Conceptual model
of AI planning (from [16])

4.2.1 Automated Planning

Planning research in classical planning has yielded highly efficient mechanisms for
plan synthesis suiting single-agent scenarios. Figure4.1 outlines a conceptual model
of AI planning. A planning problem is formulated as a tuple 〈F, I,G,A〉, with the
following meanings:

1. F is a set of Boolean fluents describing the objects within the world of interest;
2. I ⊆ F is the initial state represented as the set of Boolean fluents that are true in

the world before the plan-execution agent performs any actions;
3. G ⊆ F is a set of fluents describing the desired objectives, such as achieving a

goal or performing a specific task; and
3. A is a set of actions, described as a pair containing a precondition specifying the

fluents that must be true for that action to be executed, and the effects that action
will have on the world, described as fluents that will become true or false.

The output consists of either a plan (a sequence of actions for the agent to perform)
or a policy (an action to perform for each reachable state).

A simple and commonly supported extension to classical planning is conditional
effects. A conditional effect of an action is of the form (C → l), in which C is a set
of fluents representing a condition, and l is a single fluent. The informal semantics
of such an effect is that if C held before the action was executed, then l holds after
the action is executed. A single action can have multiple such conditional effects.

Much research over the last three decades has focused on the problem of offline
classical planning, proposing compact state and transition encodings and effective
domain-independent heuristics. This has led to massive improvements in classical
planning tools, which can solve problems with hundreds of actions and large state
spaces (≈21000 states) from several milliseconds to just a few hours.

However, classical planning is the simplest of the domain-independent planning
problems, as it assumes the following:
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• Deterministic events: The effects of all actions are deterministic — there is only
one possible set of effects, and those effects happen each time the action is applied
in the real world.

• Worlds change only as the result of an action: the only manner in which a world
changes is when the planning agent executes an action — the world is otherwise
static.

• Fully observable (omniscience): the state of the world is always fully observable
— as such, when an action is applied, the agent can see the effects fully.

• Single actor (omnipotence): There are no other agents in the world, either coop-
erative, adversarial, and ambivalent.

Clearly, none of these assumption hold in the setting of real-world autonomy.
However, more recently, research in the area of automated planning has focused on
relaxing the problem description to enable a wider range of problems to be speci-
fied. In particular, planning in non-deterministic [17] and partially-observable [18]
domains has matured to the point in which many problems in these domains can
be solved efficiently offline, producing robust policies for execution. A key part of
almost all solutions in this area is that a classical planning tool is used to solve part
of the richer, underlying problem.

However, most planning research to date is still lacking in one key area: the
consideration of other agents (human or otherwise) in the domain.

4.2.2 From Autistic Planning to Social Planning

To move into planning into multi-agent environments, agents must move out of the
so-called autistic realm and into the social realm [19]. This means that a single agent
reasoning in a multi-agent environment must have a Theory of Mind, considering
the possible behaviours and mental states of others in the environment.

Building on recent analysis by Bolander and Herzig [20], we note that extending
classical planning to the multi-agent case presents many new challenges:

1. Planners must track beliefs (or knowledge) of other agents, which are typically
incomplete and only partially correct.

2. These beliefs include higher-order beliefs; that is, beliefs about other agents’
beliefs about other agents’ beliefs, etc. (as in Fig. 4.2).

3. Other agents have their own goals and intentions, which may be cooperative or
competitive with our own, and these goals and intentions direct their actions,
which influence our ability to achieve our own goals.

4. Chosen actions should be plausible or acceptable from the perspective of other
agents; for example, in an adversarial setting in which an agent is attempting to
conceal their real identity, their actions must conform to the identity attributed to
them by their adversaries.
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Fig. 4.2 Tracking others’ beliefs about beliefs (taken from http://www2.compute.dtu.dk/~tobo/
epistemic-planning-cph/index.php)

These present significant computational challenges: the actions of the other a-
gents can induce a combinatorial explosion in the number of contingencies to be
considered, making both the search space and the solution size exponentially larger,
hence demanding novel methods [12, 21, 22].

The ability to hold a Theory of Mind to oneself and others, and to understand that
others are doing the same, is important in many domains. Consider two fighter pilots
seeking to disable an enemy radar defended by missiles. To do so, the pilots need to
fool the enemymissile operators into believing that the two aircraft are attacking from
the opposite direction to what they are truly attacking, in order to get close enough
to the radar. Further, they need to attack simultaneously— one will destroy the radar
while the other provides cover. However, they may be required to approach without
communication, to reduce the chance of revealing their location. Thus, their agreed
plan is to attack simultaneously only when they believe the enemy is deceived, and
they believe that their team member believes that the enemy is deceived. To do this,
they need to independently observe the same events as each other in the environment,
and from these, update their theory of the others’ mental state, as well as that of the
enemy. Provided that both pilots are able to observe key events and understand that
the observations of these events are common (known as co-presence), then they can
coordinate their actions without communication.

http://www2.compute.dtu.dk/~tobo/epistemic-planning-cph/index.php
http://www2.compute.dtu.dk/~tobo/epistemic-planning-cph/index.php
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In a first-order theory of mind, the reasoner considers that other people have
beliefs, desires, etc. that influence their behaviour; e.g. they believe we are attacking
from the opposite direction. In a second-order theory of mind, the reasoner allows
that others are doing the same about us and other people; e.g.my co-pilot believes that
the enemy believe that we are attacking from the opposite direction. In higher-order
theories of mind, this nesting continues; I believe that my co-pilot believes the enemy
believe that we are attacking from the opposite direction, and I believe my co-pilot
believes I believe this.

Such reasoning has received much attention in empirical studies of children’s
and adults’ reasoning, e.g. [6, 23–25] and there is considerable evidence that many
adults have ToM abilities of levels 3 and 4, with some subjects succeeding in tasks
requiring level 5 reasoning, yet even level 2 reasoning is beyond the reach of almost
all state-of-the-art planning tools.

Multi-agent systems research has contributed a deep understanding of concepts
such as group knowledge, group belief, and collective intention, often informed by
philosophical and psychological perspectives, e.g. [26–30]. Studies have also exam-
ined computational models of ToM, e.g. [8, 31, 32], and also the impact of different
levels of awareness that an agent has about the others acting in a team task context,
e.g. [33]. Although the tools used in such investigations are highly expressive – typ-
ically description logics and rich multi-modal logics, and some bespoke algebraic
belief update mechanisms – they are not accompanied by efficient reasoning en-
gines, so fall short of providing practical means for systematically operationalising
complex analyses.

Existing multi-agent planning tools that do take into account the beliefs, goals,
intentions and capabilities of others, e.g. [34], consider a third-person view, in which
a plan is constructed for a team, and each member is given their part to execute.
When planning must be distributed amongst a team (including, when humans are
to be in the loop), a semi-autonomous system must plan for its own actions while
considering others explicitly - i.e. such reasoning demands a first-person view.

4.3 Social Planning

The authors, in conjunction with several collaborators, have made recent advances
in this area; notably in the area of multi-agent epistemic planning. In this section, we
overview two of the key advances made and provide a high-level technical overview
of these. The two areas are:

1. Efficient epistemic planning — Bolander and Anderson [21] define the concept
of epistemic planning domains, a generalisation of classical planning domains in
which action models can have preconditions and effects on the (possibly nested)
belief of others. They also show epistemic planning to be decidable in the single-
agent case, but only semi-decidable in the multi-agent case.
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In recent work, the authors, along with other collaborators, showed how restricted
forms of epistemic knowledge bases can be used for efficient querying [10, 11,
15], and proposed a method that used these knowledge bases to take extend
planningdomainswith higher-order belief operators, in a similar spirit toBolander
and Anderson’s epistemic planning, and encode these as propositional planning
problem [13]. The resulting encoding allows a large class of epistemic planning
problems to be solved efficiently.

2. First-person perspective multi-agent planning — The authors and their collab-
orators propose a computational model for reasoning about and with others in
multi-agent environments using heterogeneous agent models [8, 9], and subse-
quently instantiate this model as a non-deterministic planning problem [14]. The
result is a planning tool that can produce policies for acting in a multi-agent en-
vironment, in which the policy has been compiled such that the agent considers
the actions of others as it deliberates.

The latter item allows an agent to act in a multi-agent world considering the other
agents’ actions, while the former extends this with a Theory of Mind about the other
agents’ beliefs. Integrating these two pieces provides a tool for social planning: the
ability to consider the possible behaviours and mental states (in this case, beliefs and
goals) of others during the deliberation process.

4.3.1 A Formal Model for Multi-agent Epistemic Planning

In this section, we present a formal model for our multi-agent epistemic planning
problem. This problem extends standard planning problems with the addition of
epistemic fluents and multi-agent actions.

4.3.1.1 Epistemic Fluents

The notion of epistemic planning refers to the ability to reason about knowledge (or
belief), rather than just about facts of the world. In the example of the two fighter
pilots outlined in Sect. 4.2.2, these pilots are reasoning about the knowledge/beliefs
of their partners as well as that of their adversary. Such reasoning is imperative for
Theorem of Mind reasoning: to put oneself in the shoes of another, one must adopt
their perspective of the world, including their understanding of the environment and
others within it.

Epistemic logics extend standard propositional logics with modal operators, in
which the mode of the formula represents the perspective of individual agents and
groups of agents. First, we present some background material on epistemic and
doxastic1 logics that is required for this chapter. Throughout the remainder of this

1We use the term “epistemic” to refer to both knowledge and belief throughout the paper.
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chapter, we will assume that the epistemic logic use is modal logic K D (see Fagin
et al. [35] for a definition of this), and as such, is truly a belief operator, rather than
a knowledge operator.

Due to the high computational complexity of epistemic logic,we adopt a simplified
version of epistemic/doxastic logic by restrictingmodal formulae to restricted modal
literal (RML) [36], proposed by Lakemeyer and Lespérance. An RML is defined
using the following grammar:

φ ::= p | [i]φ | ¬φ

where p is a propositional literal and i is an agent identified. Note that anRMLcannot
contain disjunctions, and is always in negation normal form (NNF). A set of RMLs,
which is equivalent to their conjunction, is called a proper epistemic knowledge base
(PEKB).

These RMLs are the fluents used in our epistemic planning problems: they offer
an increase in expressiveness over propositional fluents, but as we will show later,
they do not greatly increase the difficultly of solving the problem.

4.3.1.2 First-Person Multi-agent Planning

Similar to our earlier work [14], we define a first-person multi-agent planning prob-
lem as a tuple

〈Ag, F, I,Gi=0···|Ag|−1,Ai=0···|Ag|−1〉

where:

• Ag is the set of agents in the world, including the planning agent specially desig-
nated as 0;

• F is a set of epistemic fluents, in which each fluent is an RML;
• I ⊆ F is the initial state of the world;
• Gi ⊆ F is the goal for agent i ∈ Ag; and
• Ai is the finite set of actions agent i can execute.

Note the difference between this and the definition of classical planning outlined
in Sect. 4.2: there is a set of agents associated with the problem definition, fluents
can be epistemic, each agent has a goal, and actions are associated with particular
agents.

Each action a ∈ Ai is a tuple of the form 〈Prea,Effa〉 where Prea ⊆ F is the
precondition that must hold for the action to be executed, and Effa is a set of one
or more possible conditional effects, in which exactly one of the effects will hold
after the execution of the action, but we do not know which until the action has been
executed; that is, actions can be non-deterministic. We assume here that the non-
deterministic effects are fully-observable; that is, the agents do not which outcome
will occur, but they can observe the outcome immediately after the action is executed.
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Fig. 4.3 An epistemic PDDL description of sharing a secret

The set of all joint actions between agents is the cross product of all individual
actions: A = A0 × · · · × A|Ag|−1. To model that it is possible for some agents to
perform an action while others do not, (at least some) agents must be equipped with
a “noop” (no operation) action, which has no effects.

Example 1 Consider theGrapevine problem, based on the well-known gossip prob-
lem, in which agents can move between rooms, share a secret piece of information in
their room, but only those agents in the room will learn the secret when it is shared.
The epistemic Planning Domain Description Language (PDDL) [37] extension of
this action can be modelled as in Fig. 4.3.

In this example, ?l is a room, ?a is the agent sharing the secret, and ?as are
the other agents in the room. The fluent [?a2](secret ?as) means that agent
?a2 believes fluent (secret ?as). Note that any agent can execute this action.
Action preconditions can be used to restrict actions to only a subset of the agents in
the domain.

The derive condition at the top of the action definition models the conditions of
mutual awareness. Essentially, this says that for any agent in the room ?l, they will
derive the effects of this action if the action is executed. In essence, they will be
aware that the action has been executed and will see its effect. They will therefore
know the secret, but also know that all other agents in the room know the secret.

The types of goals one could consider in this example are: to share one’s secret
with only a subset of the agents; to deceive a particular set of agents; or to have every
agent share their secret with everyone else.

A solution to afirst-personmulti-agent planningproblem is apolicy P : 2F → A0,
thus mapping a partial state (a set of fluents) to an action specifying which action the
0 agent should take in a state that satisfies the partial state.

4.3.2 Solving Multi-agent Epistemic Planning Problems

While multi-agent epistemic planning problems are significantly more expressive
than standard classical or contingent planning problems, they often can be solvedwith
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some compilations to and modifications of existing — albeit advanced — planning
technology.

As noted earlier, we solve this problem in two ways. First, we compile away the
epistemic fluents in the planning problem into standard propositional fluents, such
that any action defined using epistemic fluents can be compiled into an equivalent
action and solved using an existing planner, such as a classical planner or non-
deterministic planner. Second, by modifying an existing non-deterministic planning
tool to consider multiple agents (without epistemic fluents), and then treating the ef-
fects of other agents actions as non-determinism in the environment. Thus, compiling
a multi-agent epistemic planning problem into a multi-agent propositional planning
problem and using this multi-agent planner, we can solve this rich class of problems.

4.3.2.1 Compiling Away Epistemic Fluents

There are several parts to the compilation – in this section we describe just the two
most important: encoding consistent belief update; and encoding the perspective of
other agents when the planning agent is unsure whether they witnessed an event.
These both extend a base encoding, which strips away epistemic fluents are replaces
them with propositional fluents suitable for our (non-epistemic) multi-agent planner.
Technical details about this encoding can be found inMuise et al. [13]. In this section,
we simply provide the intuition behind these via some examples.
Base Encoding. The base encoding describes a simplemulti-agent planning problem
that is not equivalent to the original problem. This encoding is then extended to deal
with belief update and uncertain firing of events.

Put simply, the encoded problem takes the original problem and compiles it to
an alternative problem such that each epistemic fluent in the action models, initial
state, and goal is encoded into a proposition; that is, fluents of the form [?a]p are
compiled toa_p. Thus,a_p represents the agent a believing p as a proposition. This
replacement is nested for nested beliefs; for example, [?a][?b][?c]p is encoded
as a_b_c_p. Negations of the form not([?a]p) are encoded as not_a_p.
Belief Update. In classical planning, belief update is straightforward: when a propo-
sition becomes true, it is no longer false, and vice versa. However, in epistemic
planning, the problem is not so simple. Consider the Grapevine example described
in Example1, in which agent 1 learns secret s, modelled as the epistemic fluent
[?a]s. The propositional fluent a_s models this, however, we must also consider
that if [?a]s is true, then so is not([?a] not(s))—if agent a believes s, then
is should not believe the negation of s. Thus, for every compiled action in which a_s
becomes true, so too must not_a_not_s. This counters for epistemic actions in
which not([?a] not(s)) is a precondition for example. If we add only a_s to
the state, then not_a_not_s will not be true when that precondition is evaluated
for another action. As such, the encoded model would not be equivalent without this
modified belief update.
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The reverse problem occurs if we want to no longer believe
not([?a] not(s)) – we must also remove [?a]s.

To solve these problems, one could modify our multi-agent underlying planner to
know that whenever a_s is true, then not_a_not_smust also be true. Instead, we
extend the base encoding by adding additional effects to actions that explicitly con-
sider these situations, resulting in an encoding that faithfully encodes the dynamics
of the original problem.

Compiling this down not only allows us to keep the epistemic and multi-agent
parts of our solution loosely coupled – it means that our epistemic compilation tool
can be used for other problems and other planners that support PDDL,2 such as other
classical planners, temporal planners, non-deterministic planners, etc.
Uncertain Firing. Consider again theGrapevine scenario, and an example in which
we model the trustworthiness of agents. We may have a model of the share ac-
tion that only believes a secret an agent shares if we believe that agent is trust-
worthy. For this, we would use a conditional effect on the action of the form
[0]trustworthy(?a) ––> [0]secret(?a), meaning that we only add
[0]secret(?a) to our state if [0]trustworthy(?a)was in our state before
the action was executed (recall that the planning agent is agent 0). This models what
is intended, but what if agent 0 is unsure whether agent a is trustworthy? That is,
neither [0]trustworthy(?a) nor [0]not(trustworthy(?a)) are in the
state. Should [0]secret(?a) be added to the state?

Our intuition is that the solution should be to remove [0]not (secret(?a))
(if it is in the state) if not([0]trustworthy(?a)) holds before the action exe-
cutes. Note here that not([0]trustworthy(?a)) is not the same as [0]not
(trustworthy(?a)). In the latter, we model that agent 0 believes that a is not
trustworthy, while in the former we model that it is not the case that agent 0 believes
a is trustworthy – agent 0 may be unsure of agent a’s trustworthiness.

Thus, we model that if 0 is unsure whether a is trustworthy, then it should not
believe the secret, but it should at least no longer believe that the secret is false either:
it should be uncertain whether the secret is true or not.

4.3.2.2 Multi-agent Problems as Non-deterministic Problems

The difference between single-agent and multi-agent planning problems is clear: in
multi-agent planning problems, the agents must consider not only their own actions,
but actions of other agents as well. For example, consider the simple two-player game
Tic-Tac-Toe. When playing a move, we should not only consider whether we can get
three pieces in a row, which is trivial in a single-player version, but also whether our
opponent can block us or whether they can also get their own three pieces in a row.

One way to model other agents is to treat them as a dynamic environment. That
is, when we execute an action, and another agent can subsequently change the world,

2Note: the underlying planner must support conditional effects for our compilation to work.
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Multi-agent execution Multi-agent execution as non-determinism

Fig. 4.4 Treating other agents’ actions as non-determinism

we treat their action as arbitrary changes in a dynamic environment, such that it is
as if the environment itself changed, rather than being explicitly changed by another
agent.

Such an approach presents an opportunity to build on recent advances in non-
deterministic planning [17] to extend planning technology to multi-agent environ-
ments. In non-deterministic planning, actions can have multiple possible effects, but
the actual effect cannot be known until after the action is executed.

Using techniques in non-deterministic planning, we can cast the problem of plan-
ning in multi-agent environments as a non-deterministic planning task. Essentially,
we can treat the actions of other agents in the environment as non-deterministic
effects of our own actions.

Figure4.4 outlines the intuition behind this idea. Figure4.4: Left shows an agent
me considering the execution of action a. If agents ag1 and ag2 will then subse-
quently perform actions, then from a deliberation perspective, the possible effects of
executing action a should be consider as all possible effects of agents ag1 and ag2’s
actions. Figure4.4: Right illustrates the non-deterministic treatment of this.

Modelling the problem like this results in a faithful encoding of the original
problem; however, as noted earlier in Sect. 4.2, the actions of the other agents can
induce a combinatorial explosion in the number of contingencies to be considered,
making the search for solutions too high for all but the most trivial applications.

One way that we mitigate this problem is to consider the intent of the other agents
in the scenario. That is, if we know/believe that the other agents have some particular
intent, then we are able to reduce the branching factor by focusing the search only
on those actions that are plausible given the other agents’ intent.

For example, consider Tic-Tac-Toe. We know our opponent’s goal: to win the
game. Given this, if we are planning what to do in the state of the game shown in
Fig. 4.5, where the opponent isO and we are player X. If it is our move, one possible
move is to place X in the bottom right corner, which sets us up to win along the
bottom row. We then need to consider player Y’s moves. A rational agent would
consider that player O’s most plausible response is to play in the top-right corner,
winning the game. Player O’s next most plausible move (if one can really consider
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Fig. 4.5 A sample game
state of Tic-Tac-Toe

any such move as plausible!), would be to block the cell at the middle bottom, thus
preventing us from winning.

Our search algorithm considers this by looking at the other agents’ goals and
using standard planning search heuristics to decide which actions are the best for the
other agents when assessing what they may do. It uses these heuristics to rank the
opponents move frommost plausible to least plausible. Then, it considers the agent’s
most plausible action first at each stage of a scenario, until the search terminates.
Then, it considers the next most plausible action, and so on.

Using the Tic-Tac-Toe example, our algorithm would consider player Y first
playing top-right, then itwould considermiddle-bottom.Othermoves are implausible
and it is little value to explore them. The search continues until either: (a) the entire
search terminates, in which case we have a complete solution and the plausibility
ranking is meaningless; or more likely (b) a pre-defined time or memory budget is
exhausted, at which point it has the best move considering the search space that it
has explored.

This search strategy is highly effective in many domains, because it does not
assume complete rationality of the other agents; nor that the model we have of the
other agents is complete. That is, rather than determine exactly which action other
agents will choose, it considers all, but only reasons about the effects of the most
plausible ones. Given enough time and memory, this will result in a complete search,
but for large problems, it focuses the search on those actions that are the most likely.

Technical details of the problem formulation, solution, and evaluation of this
approach can be found in Muise et al. [14].

4.4 Social Planning for Human Robot Interaction

To demonstrate the benefits of social planning, we present two case studies involving
semi-autonomous teams, which we have adapted to illustrate the benefits of planning
in the presence of nested belief and first-person multi-agent planning.
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4.4.1 Search and Rescue

Disaster response and management involves a number of important tasks, such as
preparation before disaster, response and restoration. If we consider a scenario of a
simplified search and rescue mission following a natural disaster, such as an earth-
quake, there are a series of tasks that must be undertaken to search for survivors
and get them to the appropriate service, such as medical evacuation. As part of this,
we can imagine a scenario in which two unmanned ground vehicles (UGVs) and a
human operator are working as a three-member semi-autonomous team to locate and
assess survivors.

The environment of this scenario consists of a set of buildings, organised according
to a known map. However, the buildings may be damaged, leading to unexpected
inaccessibility to search regions or locations. Buildings may contain survivors or
could be empty, but this is initially unknown.

The human supervisor oversees the entire mission and coordinates the UGVs.
They can interact with the agents controlling the vehicles by assigning goals, such
as to search a particular building or to return back to particular base location. They
can also query the agents on their current goals, intentions, and beliefs; including the
nested beliefs of the other agent and the operator themselves.

The two UGVs have the same capabilities, which can be modelled as actions in
epistemic PDDL, such as:

1. Moving to specific way-points, identified by coordinates on the map, including
inside buildings.

2. Attempt to open doors to buildings/rooms (which may either succeed or fail).
3. Go into buildings and rooms, providing the doors are open.
4. Take a picture and upload it for assessment.
5. Drop a first-aid survival pack, provided that the agent believes there is a survivor

in need of this.
6. Drop water to a survivor.
7. Lift a survivor onto one of the vehicles, which requires the assistance of the other

vehicle.
8. Communicate with the other agent or the supervisor.

This final action — communication — is enabled by the epistemic actions. Com-
munication can simply be modelled as an action with epistemic effects. For example,
one agent can send amessage to the others indicating that a particular door is blocked
(e.g. by rubble).

Such an action can be modelled as follows:

Parameters The parameters are the agents to which to send the message, and the
location of the door that is blocked.

Precondition The precondition is that the sending agent believes that the door is
blocked, and believes the recipient does not believe that the door is blocked.
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Effects The effects are that the sending agent believes that the receiving agents
believe that the door is blocked, and further, the sending agent believes that the
receiving agent believes that the sending agent believes that the door is blocked.
Similarly, an agent receiving such amessagewould believe that the door is blocked
and that the sender believes that the door is locked.

Although this scenario is a simplification of a real search and rescue mission, it
illustrates the implications that explicitlymodelling these communication actions has
on the scenario.We assert that these go someway towards improving the interactions
between the semi-autonomous team, such as:

Efficiency It may be that the other vehicle agent could want to use that door
later as part of a plan, and now knows to plan a different route to get inside the
building/room that does not used this blocked door.

Lower Communication Overhead By explicitly representing the beliefs of others
(and potentially their nested beliefs of the team), the amount of communication
overhead can be reduced. For example, the precondition of the action above is
that the receiving agents do not already believe this information. Thus, if the
planning agent already has information noting that another agent beliefs the door is
blocked, it will not send this information on. This is particularly important in semi-
autonomous teams, inwhich human collaborators aremore easily overloadedwith
information than their artificial team members.

Re-planning Having an explicit model of the other agents’ Theory of Mind, and
being able to update this model, enables agents to identify that their expectation of
their teammembers’ behaviour is no longer valid, thus triggering them to re-assess
or re-plan the intentions and plans of their team members.

Coordination As outlined in the task of the fighter pilots in Sect. 4.2.2, providing
updates of each others mental states allows agents to synchronise on joint actions
that require e.g. simultaneous execution, such as lifting a survivor onto one of
the vehicles to transport them back to a location with further medical assistance,
which may require that each agent believes that the survivor is on the stretcher
and believes that the other agent believes this as well.

Transparency It provides some transparency to the human supervisor, informing
themwhy the agent is not entering the room that it had originally planned, without
(at least in some cases) the agent having to explicitly update the supervisor on its
new plan.

Epistemic goals Being able to model the epistemic effects allow us to pose epis-
temic goals, such as that agent A believes something is true while agent B believes
the opposite — in other words, one of the agents is deceived.

While it is straightforward to model communication actions in other planning
languages, the ability to model the epistemic effects of these actions, and have these
effects represented as a Theory of Mind, enables additional possibilities over using
propositional planning, particularly regarding coordination and transparency.
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Fig. 4.6 Industrial painting
robots with optional human
inspection; presented in [39],
the video can be found at
http://tiny.cc/2aytrw

Further to this though, we assert that epistemic first-person multi-agent problem
is a more natural way to model these problems, compared to existing approaches,
such as keeping a separate model for each other agent [38].

In particular, the ability to model and reason about epistemic goals requires the
ability to model basic multi-agent epistemic effects — they cannot be captured with
separate models.

4.4.2 Collaborative Manufacturing

In Fig. 4.6 we consider a variant of a painting and assessment task presented in [39]
where robot actions are only partially observable to human operators. The task
involves the real-time scheduling of painting robots for the fuselage of an aeroplane.
Human operators optionally intervene in the painting process to assess the quality of
the painted surfaces.

The painting robots must adapt and re-schedule to the optional assessment of
panels by human operators, to allow the panels to have sufficient drying time and to
achieve the goal of painting the fuselage in the time allocated to the task. The temporal
constraints are captured in this task using a form of temporal constraint networks
termed simple temporal networks (STNs) [40].3 The time required for the application
of each coat is captured using the STNs, along with the time before the (optional)
assessment of each coat; including the assessment time. From the perspective of
the painting robots, paths through STNs emerge according to the non-deterministic
choice of humans according to which panels they chose to assess. This forms a
branching tree, similar to Fig. 4.4: Left, as painting robots and human operators
interleave painting and assessment tasks. At any instant, there is aminimal STN that
achieves all of the tasks within a minimum time, which will be traversed according
to the optional assessments that are potentially performed by human operators in the
future.

3See [39] for the STN encoding details for this task and the video at http://tiny.cc/2aytrw.

http://tiny.cc/2aytrw
http://tiny.cc/2aytrw
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Fig. 4.7 Industrial assembly
with human-robot
interaction; presented in [41],
the video can be found at
http://tinyurl.com/7n439eg

If the robots work too far down the fuselage from the human operators, humans
cannot distinguish which panels the robots are painting. If nested belief is used
during planning this allows robots to choose panels to paint which are observable to
human assessors. The robots know that actions observable to the human operators
allow the humans to infer the minimal STN. The robots therefore know that humans
know the robots know the humans know the minimal STN. Humans can therefore
understand the choice of panel robots make to paint; and can even take this choice
into account in deciding which panel next to assess. Thus, theory of mind facilitates
the robots to maintain human knowledge of which panel(s) are ready to assess.
Social planning builds trust between robots and human operators—leading to goal
achievement within shorter times.

In another industrial task, shown in Fig. 4.7, an assembly task is shown where a
human and a robot share in a simple assembly task that involves placing fasteners then
applying torque to each fastener. The robot shares the task by applying sealant to each
hole ahead of placement of the fastener. The robot must be able to handle different
preferences of human operators. For example, operators may choose to place all the
fasteners first, then apply torque to each one. Alternatively operators may choose to
place each fastener then apply torque to each one immediately following placement.
The approach described in [41] shows an approach that can adapt to the preferences
of humans using dynamic scheduling, the video can be found at http://tinyurl.com/
7n439eg.

We adapt this task to utilise social planning. If we assume the goal is to minimise
the overall time to complete the task, theory of mind facilitates robots to adapt to
humans changing their preferred assembly behaviour part-way through the achieve-
ment of task, as they learn to perform the task within less time. Using theory of mind
principles, the robot uses social planning in the knowledge that the human knows
the robot knows the human has learned the shortest human-robot interleaving strat-
egy. This enables the robot to perform other preparatory tasks, such as fetching and
positioning the correct number of fasteners, further shortening the time to complete
the task.

http://tinyurl.com/7n439eg
http://tinyurl.com/7n439eg
http://tinyurl.com/7n439eg
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4.5 Discussion

We have presented an an outline of several principal elements of the emerging field
of social planning. These include theory of mind, as wemove to first-person perspec-
tive planning in a multi-agent setting, and we present a formal model for first-person
multi-agent epistemic planning. We have covered two emerging solution techniques
for solving multi-agent epistemic planning problems, including an approach for
compiling away epistemic fluents, where multi-agent problems are posed as non-
deterministic problems, for which solutions are quite well understood. Finally, we
presented two case studies of semi-autonomous systems by adapting examples from
the literature to utilise social planning and theory of mind principles to demonstrate
the benefits for realising trusted autonomy. These examples demonstrate how so-
cial planning can used to improve the interaction between humans and robots in
semi-autonomous teams.

The work forms an important step towards achieving trusted autonomy where the
perspective of both humans and robots are explicitly modelled using a first-person
theory of mind approach. There is excellent potential for the exploitation of recen-
t developments in efficient epistemic and non-deterministic reasoning techniques.
For example, recent techniques in proper epistemic databases such as ‘knowing
whether’ [10] can be used to establish the knowledge of human operators during
more complex tasks without knowing the knowledge itself, and the observability
of asynchronously occurring actions can even be modelled [42]. Further work and
experimentation is warranted to explore the application of these and other related
techniques in social planning.

References

1. M.N. Huhns, D.A. Buell, Trusted autonomy. IEEE Internet Comput. 6(3), 92–95 (2002)
2. H.A. Abbass, E. Petraki, K. Merrick, J. Harvey, M. Barlow, Trusted autonomy and cognitive

cyber symbiosis: open challenges. Cogn. Comput. 8(3), 385–408 (2016)
3. S. Wheeler, Trusted autonomy: conceptual developments in technology foresight. Technical

Report DSTO-TR-3153, Defence Science and Technology Group (DSTG), 2015
4. D. Premack, G.Woodruff, Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1(4),

515–526 (1978)
5. J. Call, M. Tomasello, Does the chimpanzee have a theory of mind? 30 years later. Trends

Cogn. Sci. 12(5), 187–192 (2008)
6. A.I. Goldman, Theory of mind, in Oxford Handbook of Philosophy and Cognitive Science,

Chap. 17, ed. by E. Margolis, R. Samuels, S. Stich (Oxford University Press, Oxford, 2012),
pp. 201–213

7. S. Zilberstein, Building strong semi-autonomous systems, in Proceedings of the Twenty-Ninth
AAAIConference onArtificial Intelligence, Austin, Texas,USA, 25–30 Jan 2015, pp. 4088–4092

8. P. Felli, T. Miller, C.J. Muise, A.R. Pearce, L. Sonenberg, Artificial social reasoning: compu-
tational mechanisms for reasoning about others, in Social Robotics—6th International Con-
ference, ICSR 2014, Sydney, NSW, Australia, October 27–29, 2014. Proceedings (2014), pp.
146–155



4 Social Planning for Trusted Autonomy 85

9. P. Felli, T. Miller, C.J. Muise, A.R. Pearce, L. Sonenberg, Computing social behaviours using
agent models, in Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2978–2984

10. T. Miller, P. Felli, C.J. Muise, A.R. Pearce, L. Sonenberg, ‘Knowing whether’ in proper epis-
temic knowledge bases, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, Phoenix, Arizona, USA, 12–17 Feb 2016, pp. 1044–1050

11. T. Miller, C.J. Muise, Belief update for proper epistemic knowledge bases, in Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9–15 July 2016, pp. 1209–1215

12. T. Miller, A. Pearce, L. Sonenberg, F. Dignum, P. Felli, C. Muise, Foundations of human-agent
collaboration: situation-relevant information sharing, in 2014 AAAI Fall Symposium Series
(2014)

13. C.J. Muise, V. Belle, P. Felli, S.A. McIlraith, T. Miller, A.R. Pearce, L. Sonenberg, Planning
over multi-agent epistemic states: a classical planning approach, in Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 Jan 2015, pp.
3327–3334

14. C.J. Muise, P. Felli, T. Miller, A.R. Pearce, L. Sonenberg, Planning for a single agent in a
multi-agent environment using FOND, in Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp.
3206–3212

15. C.J. Muise, T. Miller, P. Felli, A.R. Pearce, L. Sonenberg, Efficient reasoning with consistent
proper epistemic knowledge bases, in Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, 4–8 May 2015,
pp. 1461–1469

16. T.-C. Au, U. Kuter, D. Nau, Planning for interactions among autonomous agents, in Interna-
tional Workshop on Programming Multi-Agent Systems (Springer, Berlin, 2008), pp. 1–23

17. C.J. Muise, S.A. McIlraith, J. Christopher Beck, Improved non-deterministic planning by ex-
ploiting state relevance. In Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, 25–19 June
2012

18. H. Palacios, H. Geffner, Compiling uncertainty away in conformant planning problems with
bounded width. J. Artif. Intell. Res. 35, 623–675 (2009)

19. F. Dignum, G.J. Hofstede, R. Prada. From autistic to social agents, in Proceedings of the 12th
International AAMAS Conference (2014), pp. 1161–1164

20. T. Bolander, A. Herzig, Group attitudes and multi-agent planning: overview and perspectives
(2014),Accessed at http://www.sintelnet.eu/wiki/reports/Thomas_Bolander_WG3_report.pdf

21. T. Bolander, M.B. Andersen, Epistemic planning for single- and multi-agent systems. J. Appl.
Non Class. Logics 21(1), 9–34 (2011)

22. A. Pearce, L. Sonenberg, P. Nixon, Toward resilient human-robot interaction through situ-
ation projection for effective joint action, in Robot-Human Teamwork in Dynamic Adverse
Environment: AAAI Fall Symposium (2011), pp. 44–48

23. A. Brandenburger, X. Li, Thinking about thinking and its cognitive limits (2015), http://
adambrandenburger.com/articles/papers/. Accessed Sept 2016

24. T. Kneeland, Identifying higher-order rationality. Econometrica 83(5), 2065–2079 (2015)
25. H.D. Schlinger, Theory of mind: an overview and behavioral perspective. Psychol. Rec. 59(3),

435–448 (2009)
26. M. Gilbert, Modelling collective belief. Synthese 73(1), 185–204 (1987)
27. R. Hakli, Group beliefs and the distinction between belief and acceptance. Cogn. Syst. Res.

7(2), 286–297 (2006)
28. L. Lismont, P. Mongin, On the logic of common belief and common knowledge. Theor. Decis.

37(1), 75–106 (1994)
29. R. Tuomela, W. Balzer, Collective acceptance and collective social notions. Synthese 117(2),

175–205 (1998)

http://www.sintelnet.eu/wiki/reports/Thomas_Bolander_WG3_report.pdf
http://adambrandenburger.com/articles/papers/
http://adambrandenburger.com/articles/papers/


86 T. Miller et al.

30. H. van Ditmarsch, J. van Eijck, R. Verbrugge, Common knowledge and common belief, in
Discourses on Social Software, ed. by J. van Eijck, R. Verbrugge, vol. 5 of Texts in Logic and
Games (2009), pp. 99–122

31. L. Van Maanen, R. Verbrugge, A computational model of second-order social reasoning, in
Proceedings of the 10th International Conference on Cognitive Modeling (2010), pp. 259–264

32. H. Weerd, R. Verbrugge, B. Verheij, Negotiating with other minds: the role of recursive theory
of mind in negotiation with incomplete information, in Autonomous Agents and Multi-Agent
Systems (2015), pp. 1–38

33. H. De Weerd, R. Verbrugge, B. Verheij, How much does it help to know what she knows you
know? An agent-based simulation study. Artif. Intell. 199, 67–92 (2013)

34. R.F. Kelly, A.R. Pearce, Asynchronous knowledgewith hidden actions in the situation calculus.
Artif. Intell. 221, 1–35 (2015)

35. Y.M.R. Fagin, J.Y. Halpern, M.Y. Vardi, Reasoning about Knowledge (MIT Press, Cambridge,
MA, 1995)

36. G. Lakemeyer, Y. Lespérance, Efficient reasoning in multiagent epistemic logics, in European
Conference on Artificial Intelligence (2012), pp. 498–503

37. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins,
PDDL—The Planning Domain Definition Language (1998)

38. V.V. Unhelkar, J.A. Shah, Contact: Deciding to communicate during time-critical collaborative
tasks in unknown, deterministic domains, in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, Phoenix, Arizona, USA, 12–17 Feb 2016, pp. 2544–2550

39. M.CGombolay, R.Wilcox, J.A Shah. Fast scheduling ofmulti-robot teamswith temporospatial
constraints, inRobotics: Science and Systems IX, TechnischeUniversität Berlin, Germany, June
2013, pp. 49–56

40. R. Dechter, I.Meiri, J. Pearl, Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)
41. R. Wilcox, S. Nikolaidis, J. Shah, Optimization of temporal dynamics for adaptive human-

robot interaction in assembly manufacturing, in Robotics Science and Systems VIII (2012), pp.
441–448

42. R.F. Kelly, Asynchronous Multi-Agent Reasoning in the Situation Calculus. Ph.D. University
of Melbourne (2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 5
A Neuroevolutionary Approach to Adaptive
Multi-agent Teams

Bobby D. Bryant and Risto Miikkulainen

5.1 Introduction

Multi-agent systems are a commonplace in social, political, and economic enter-
prises. Each of these domains consists of multiple autonomous parties cooperating
or competing at some task. Multi-agent systems are often formalized for entertain-
ment as well, with instances ranging from team sports to computer games. Games
have previously been identified as a possible “killer application” for artificial intelli-
gence [14], and a game involving multiple autonomous agents is a suitable platform
for research into multi-agent systems as well.

The agents that comprise a multi-agent system can be either homogeneous or
heterogeneous. Heterogeneous teams are often used for complex tasks because they
allowagents to be specialized for sub-tasks (e.g. [2, 13, 29]).However, heterogeneous
teams of sub-task specialists are brittle: if one specialist fails then the whole team
may fail at its task. Moreover, when the agents in a team are programmed or trained
to optimize a pre-specified division of labor, the team may perform inefficiently if
the size of the team changes – for example, if more agents are added to speed up the
task – or if the scope of the task changes.

For example, suppose you owned a team of ten reactor cleaning robots, and the
optimal division of labor for the cleaning task required two sprayers, seven scrubbers,
andonepumper (Fig. 5.1). If the individual robotswere programmedor trained as sub-
task specialists the team would be brittle and lacking in flexibility. Brittle, because
the failure of a single spraying robot would reduce the entire team to half speed at the
cleaning task, or the loss of the pumper robot would cause the team to fail entirely.
Inflexible, because if a client requested a 20% speed-up for the task you would not be
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Fig. 5.1 Left: A heterogeneous team of cleaning robots is trained or programmed for sub-task
specializations. Such a system is inflexible when the scope of the task changes, and brittle if key
specialists are unavailable. Right: An Adaptive Team of Agents provides every agent with the
capability of performing any of the necessary sub-tasks, and with a control policy that allows
agents to switch between tasks at need. The resulting team is more flexible and less brittle than the
heterogeneous team

able to simply send in 20% more robots; you would have to add �20%� more robots
for each sub-task specialization, four more robots in all rather than two.

An alternative approach is to use a team of homogeneous agents, each capable
of adopting any role required by the team’s task, and capable of switching roles to
optimize the team’s performance in its current context. We call such a multi-agent
architecture an Adaptive Team of Agents (ATA) [4]. An ATA is a homogeneous
team that self-organizes a division of labor in situ so that it behaves as if it were a
heterogeneous team. It changes the division dynamically as conditions change, and
if composed of autonomous agents it must be able to organize the necessary divisions
of labor without direction from a human operator.

Thus the ATA requires trusted autonomy. Within the team, individual agents must
trust all the others to “do the right thing”. Agents cannot select appropriate sub-tasks
without some sort of assurance – possibly supported by observation – that the other
members of the team are also selecting contextually appropriate sub-tasks. The owner
of the team, whether in the context of robotics, simulation, or games, must also be
able to trust the team as a whole to work out an effective division of labor in order
to get the team’s overall task done thoroughly and efficiently. That is, the team must
pursue its owner’s intent, and either the reality or appearance of intent may need to be
instilled into the individual agents in order to achieve that. An ATA is robust because
there are no critical task specialists that cannot be replaced by other members of the
team; it is flexible because individual agents can switch roles whenever they observe
that a sub-task is not receiving sufficient attention. If necessary, an agent can alternate
between roles continuously in order to ensure that sufficient progress is made on all
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sub-tasks. Thus for many kinds of task an ATA could be successful even if there are
fewer agents than the number of roles demanded by the task.

Such adaptivity is often critical for autonomous agents embedded in games or sim-
ulators. For example, games in the Civilizationtm genre usually provide a “settler”
unit type that is capable of founding new cities plus carrying out various construc-
tion tasks. Play of the game requires a division of labor among the settlers, and the
details of the division vary with the number in play and the demands of the grow-
ing civilization – e.g. the choice between founding more cities versus constructing
roads to connect the existing cities. If the settler units were heterogeneous, i.e. each
recruited to perform only one specific task, there would be a great loss of flexibility
and a risk of complete loss of support for a game strategy if all the settlers of a given
type were eliminated. But in fact the game offers homogeneous settlers, and human
players switch them between tasks as needed. For embedded autonomous settlers,
that switching would have to be made by the settler units themselves: an Adaptive
Team of Agents is desirable.

Here we explore the Adaptive Team of Agents experimentally, using genetic algo-
rithms to train artificial neural networks (ANN) as the “brains” for the agents in a
game, and find that it is possible to evolve an ATAwith ANN controllers for a simple
but non-trivial strategy game. The game, called Legion II, is described in Sect. 5.2,
and the agents’ control architectures are described in Sect. 5.3. The evolutionary
mechanism used to train the game agents to behave as an adaptive team, called Neu-
roevolution with Enforced Sub-Populations (ESP), is described in Sect. 5.4. Method-
ological considerations are addressed in Sect. 5.5, and then experiments are reported
in Sect. 5.6. Finally, discussion of the experimental results and an examination of
future directions is given in Sect. 5.7.

5.2 The Legion II Game

Legion II is a discrete-state strategy game designed as a test bed for studying the
division of labor in multi-agent systems. It requires a group of legions to defend a
province of the Roman Empire against the pillage of a steady influx of barbarians.
The legions are the agents under study; they are trained by the method described in
Sect. 5.4, or by other methods reported elsewhere (e.g. [3, 5, 6]). The barbarians act
according to a preprogrammed policy, to serve as a foil for the legions.

Legion II provides challenges similar to those providedbyother games and simula-
tors currently used for computational intelligence approaches tomulti-agent learning
research (e.g. [1, 15, 26, 27]), and is expandable to provide more complex learn-
ing challenges as research progresses. In its current incarnation it is incrementally
more complex than a multi-predator/multi-prey game. It is conceptually similar to
the pseudo-Warcrafttm simulator used in [1], differing primarily in its focus on the
predators rather than the prey, and consequently in the details of scoring games.
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The following subsections describe the components, features, and rules of the
Legion II game, including the map, the game agents, and the method of calculating
game scores.

5.2.1 The Map

Legion II is played on a planar map. The map is tiled with hexagonal cells in order
to discretize the location and movement of objects in the game; in gaming jargon
such cells are called hexes (singular hex). Several randomly selected map cells are
distinguished as cities, and the remainder are considered to be farmland (Fig. 5.2).

The hex tiling imposes a six-fold radial symmetry on the map grid, defining the
cardinal directions NE, E, SE, SW, W, and NW. This six-fold symmetry, along with
the discretization of location imposed by the tiling, means that an agent’s atomic
moves are restricted to a discrete choice of jumps to one of the six cells adjacent

Fig. 5.2 A large hexagonal playing area is tiled with smaller hexagons in order to discretize the
positions of the game objects. Legions are shown iconically as close pairs of men ranked behind
large rectangular shields, and barbarians as individuals bearing an axe and a smaller round shield.
Each icon represents a large body of men, i.e. a legion or a warband. Cities are shown in white, with
any occupant superimposed. All non-city map cells are farmland, shown with a mottled pattern.
The game is a test bed for multi-agent learning methods, whereby the legions must learn to contest
possession of the playing area with the barbarians. (Animations of the Legion II game can be viewed
at http://nn.cs.utexas.edu/keyword?ATA.)

http://nn.cs.utexas.edu/keyword?ATA
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to the agent’s current location, and that the atomic move is always in one of the six
cardinal directions. This map structure has important consequences for the design of
the sensors and controllers for the agents in the game, which are described in detail
in Sect. 5.3.

5.2.2 Units

There are two types of autonomous agents that can be placed on the map in a Legion
II game: legions and barbarians. In accordance with gaming jargon these mobile
agents are called units (singular unit) when no distinction needs to be made between
the types.

Each unit is considered to be “in” some specific map cell at any time. A unit may
move according to the rules described below, but its moves occur as an atomic jump
from the cell it currently occupies to an adjacent one, not as continuous movement
in Euclidean space.

The current position of each unit is shown by a sprite on the game map. In
accordance with the jargon of the Civilization game genre, the sizes of the units are
ambiguous. Thus the unit type called “a legion” represents a body of legionnaires,
but is shown graphically as only a pair of men behind large rectangular shields.
Similarly, the unit type called “a barbarian” represents a body of barbarians operating
as a warband, but is shown graphically as only a single individual with axe and shield
(Fig. 5.2).

The legions start the game already on the map, in randomly selected map cells.
There are no barbarians in play at the start of the game. Instead, barbarians enter at
the rate of one per turn, in a randomly selected unoccupied map cell.

5.2.3 Game Play

Legion II is played in turns.At the beginning of each turn a newbarbarian is placed at a
random location on the map. If the randomly generated location is already occupied
by a unit, a new location is generated. This search continues until an unoccupied
location for the new barbarian is found.

Thereafter, each legion is allowed to make a move, and then each barbarian in
play makes a move. A unit’s move can be a jump to one of the six adjacent map
cells, or it can elect to remain stationary for the current turn. When all the units have
made their moves the turn is complete, and a new turn begins with the placement of
another new barbarian. Play continues for a pre-specified number of turns, 200 in all
the experiments reported here.

All the units are autonomous; there is no virtual player that manipulates them
as passive objects. Whenever it is a unit’s turn to move, the game engine calculates
the activation values for that unit’s egocentric sensors, presents them to the unit’s
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controller, and implements the choice of move signaled at the output of the unit’s
controller, as described in Sect. 5.3.

There are some restrictions on whether the move requested by a unit is actually
allowed, and the restrictions vary slightly between the legions and the barbarians.
The general restrictions are that only one unit may occupy any given map cell at a
time, and no unit may ever move off the edge of the playing area defined by the tiling.

If a legion requests a move into an unoccupied map cell, or requests to remain
stationary for the current turn, the request is immediately implemented by the game
engine. If the legion requests moving into a map cell occupied by another legion, or
requests a move off the edge of the map, the game engine leaves the legion stationary
for that turn instead. If the legion requests moving into a map cell occupied by a
barbarian, the game engine immediately removes the barbarian from play and then
moves the legion as requested.

If a barbarian requests a move that is neither off-map nor into an occupied map
cell, the request is immediately implemented by the game engine. If the barbarian
requests a move into a map cell occupied by either a legion or another barbarian,
the game engine leaves it stationary for the current turn. (Notice that this does not
allow a barbarian to eliminate a legion from play the way a legion can eliminate
a barbarian.) If the barbarian requests a move off the edge of the map, the game
engine consults the barbarian’s controller to see what its second choice would have
been. If that second choice is also off-map then the game engine leaves the barbarian
stationary for the current turn; otherwise, the secondary preference is implemented.

Barbarians are given their second choice when they request a move off the map,
because their programming is very simple, and it is not desirable to leave them ‘stuck’
at the edge of the map during a game. Legions do not get the second-chance benefit;
they are expected to learn to request useful moves.

5.2.4 Scoring the Game

The game score is computed as follows. The barbarians accumulate points for any
pillaging they are able to do, and the legions excel by minimizing the amount of
pillage points that the barbarians accumulate. At the end of every game turn, each
barbarian in play receives 100 points for pillage if it is in a city, or only a single point
otherwise. The points are totaled for all the barbarians each turn, and accumulated
over the course of the game. When a barbarian is eliminated no points are forfeited,
but that barbarian cannot contribute any further points to the total thereafter.

This scoring schemewas designed in order to force the legions to learn two distinct
classes of behavior in order to minimize the barbarian’s score. Due to the expensive
point cost for the cities, the legions must keep the barbarians out of them, which
they can easily do by garrisoning them. However, further optimization requires any
legions beyond those needed for garrison duty to actively pursue and destroy the
barbarians in the countryside. If they fail to do so, a large number of barbarians will
accumulate in the countryside, and though each only scores one point of pillage per
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turn, their cumulative aggregate is very damaging to the legions’ goal of minimizing
the barbarian’s score.

In principle the legions might be able to minimize the pillage by neglecting to
garrison the cities and utilizing every legion to try to chase down the barbarians,
but the random placement of the incoming barbarians means that they can appear
behind the legions, near any ungarrisoned cities, and inflict several turns of the very
expensive city pillaging before a legion arrives to clear them out. The barbarian
arrival rate was by design set high enough to ensure that the legions cannot mop
them up fast enough to risk leaving any cities ungarrisoned. Thus the legions must
garrison the cities in order to score well, and any improvement beyond what can be
obtained by garrisoning the cities can only come at the cost of learning a second
mode of behavior, pursuing the barbarians.

For the purposes of reporting game scores the pillage points collected by the
barbarians are normalized to a scale of [0, 100], by calculating themaximumpossible
points and scaling the actual points down according to the formula:

Scorereported = 100 × Pointsactual/Pointspossible (5.1)

The result can be interpreted as a pillage rate, stated as a percentage of the expected
amount of pillaging that would have been done in the absence of any legions to
contest the barbarians’ activities. Notice that from the legions’ point of view, lower
scores are better.

In practice the legions are never able to drive the score to zero. This fact is due
in part to the vagaries of the starting conditions: if the random set-up places all the
legions very distant from a city and a barbarian is placed very near that city on the
first turn, there is nothing the legions can do to beat that barbarian into the city, no
matter how well trained they are. However, a factor that weighs in more heavily
than that is the rapid rate of appearance of the barbarians versus the finite speed of
the legions. Since the legions and barbarians move at the same speed, it is difficult
for the legions to chase down the barbarians that appear at arbitrary distances away.
Moreover, as the legions thin out the barbarians on the map the average distance
between the remaining barbarians increases, and it takes the legions longer to chase
any additional barbarians down. Thus even for well-trained legions the game settles
down into a dynamic equilibrium between the rate of new barbarian arrivals and the
speed of the legions, yielding a steady-state density of barbarians on the map, and
thus a steady-state accumulation of pillage counts after the equilibrium is achieved.

5.3 Agent Control Architectures

The legions and barbarians are controlled by policies that map egocentric sensory
inputs onto a choice of the discrete actions allowed in the game. This section describes
their sensors and controllers. The simpler sensors and controllers used by the barbar-
ians are described first, then the more elaborate system used to control the legions.
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5.3.1 Barbarian Sensors and Controllers

The legions are the only learning agents in the game, so the barbarians can use any
simple pre-programmed logic that poses a suitable threat to the legions’ interests. The
barbarians’ basic design calls for them to be attracted toward cities and repulsed from
legions, with the attraction slightly stronger than the repulsion, so that the barbarians
will take some risks when an opportunity for pillaging a city presents itself. This
behavior is implemented by algebraically combining two “motivation” vectors, one
for the attraction toward cities and one for the repulsion from legions:

Mfinal = Mcities + 0.9Mlegions (5.2)

Each vector consists of six floating point numbers, indicating the strength of the
barbarian’s “desire” to move in each of the six cardinal directions. The 0.9 factor is
what makes the motivation to flee the legions slightly weaker than the motivation
to approach the cities. After the combination, the peak value in the Mfinal vector
indicates which direction the barbarian “most wants” to move. In situations where
a second choice must be considered, the second-highest value in Mfinal is used to
select the direction instead.

The values in the two arrays are derived, directly or indirectly, from the activation
values in a simple sensor system. The barbarian’s sensor system consists of two
sensor arrays, one that detects cities and another that detects legions. Each array
divides the world into six 60◦ non-overlapping egocentric fields of view. The value
sensed for each field is:

s =
∑

i

1

di
, (5.3)

where di is the distance to an object i of the correct type within that field of view.
The distances are measured in the hex-tile equivalent of Manhattan distance, i.e. the
length of the shortest path of map cells from the viewer to the object, not counting
the cell that the viewer itself is in (Fig. 5.3).

For simplicity, if an object is exactly on the boundary between two fields of view,
the sensors report it as being in the field to the clockwise of the boundary. Due to the
relatively small map, no limit is placed on the range of the sensors.

Notice that this sensor architecture obscures a great deal of detail about the envi-
ronment. It does not give specific object counts, distances, or directions, but rather
only a general indication of how much opportunity or threat the relevant class of
objects presents in each of the six fields of view.

Once these values have been calculated and loaded into the sensor arrays, the
activations in the array that senses cities can be used directly for the Mcities vector
in Eq.5.2.Mlegions can be derived from the values in the array that senses legions by
permuting the values in the array to reverse their directional senses, i.e. the sensor
activation for legions to the west can be used as the motivation value for a move to
the east, and similarly for the other five cardinal directions. After the conversions
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Fig. 5.3 The solid black lines show the boundaries of the six sensory fields of view for one
barbarian near the northwest corner of the map. The boundaries emanate from the center of the map
cell occupied by the barbarian and out through its six corners. The dashed white lines show the
hexagonal Manhattan distances to the three legions in the SE field of view of the sensing barbarian.
These lines are traced from the center to center along a path of map cells, and thus emanate through
the sides of the hexagons rather than through the corners as the field boundaries do

from sensor activations to motivation vectors, Mfinal can be calculated and its peak
value identified to determine the requested direction for the current move.

There is no explicitmechanism to allowabarbarian to request remaining stationary
for the current turn. For simplicity the game engine examines a barbarian’s location
at the start of its move and leaves the barbarian stationary if it is already in a city.
Otherwise the game engine calculates the values to be loaded into the barbarian’s
sensors, performs the numerical manipulations described above, and implements the
resulting move request if it is not prohibited by the rules described in Sect. 5.2.3.

The resulting behavior, although simple, has the desired effect in the game. As
suggested by Fig. 5.3, barbarians will stream toward the cities to occupy them, or
congregate around them if the city is already occupied. Other barbarians will flee
any roving legions, sometimes congregating in clusters on the periphery of the map.
The barbarians are quick to exploit any city that the legions leave unguarded. They
do, however, tend to get in each other’s way when a legion approaches a crowd and
they need to flee, resulting in many casualties, but that is perhaps an appropriate
simulation of the behavior of undisciplined barbarians on a pillaging raid.
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5.3.2 Legion Sensors and Controllers

Unlike the barbarians, the legions are required to learn appropriate behavior for their
gameplay. They are therefore provided with a more sophisticated, trainable control
system. The design includes a sensor system that provides more detail about the
game state than the barbarians’ sensors do, plus an artificial neural network “brain”
to map the sensor inputs onto a choice of actions.

5.3.2.1 The Legions’ Sensors

The legions are equippedwith sensor systems that are conceptually similar to the bar-
barians’, but enhanced in several ways. Unlike the barbarians, the legions have a sen-
sor array for all three types of object in the game: cities, barbarians, and other legions.
Also unlike the barbarians, each of those three sensor arrays are compound struc-
tures consisting of two six-element sub-arrays plus one additional element (Fig. 5.4),
rather than the barbarian’s simple six-element sensor arrays.

An array’s two six-element sub-arrays are similar to the barbarians’ sensor arrays,
except that one only detects objects in adjacent map cells and the other only detects
objects at greater distances. For the former, the game engine sets the array elements
to 1.0 if there is an object of the appropriate type in the adjacent map cell in the
appropriate direction, and to 0.0 otherwise. For the latter, the game engine assigns
values to the elements slightly differently from the way it assigns values to the bar-
barian’s sensors. First, it ignores objects at d = 1, since those are detected by the
short-range array described above. Second, since the distances used in the calcula-
tions for this array are always greater than one, it deducts one from the distances
used in the calculations, in order to increase the signal strength. That is, Eq.5.3 used
for the barbarians becomes:

s =
∑

i

1

di − 1
, (5.4)
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Fig. 5.4 The legions have three sensor arrays, one each for cities, barbarians, and other legions.
Each of those three arrays consists of three sub-arrays as shown above. A single-element sub-array
(left) detects objects co-located in the map cell that the legion occupies. Two six-element sub-
arrays detect objects in the six radial fields of view; one only detects adjacent objects, and the other
only detects objects farther away. These 13 elements of each of the three compound arrays are
concatenated to serve as a 39-element input activation for an artificial neural network that controls
the legion’s behavior (Fig. 5.5)
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for objects i of the correct type and at a distance greater than one, within that field
of view.

A third difference is that sensed objects near a boundary between two sensor fields
are not arbitrarily assigned to the field to the clockwise of the boundary. Instead,
objects within 10◦ of the boundary (from the legion’s perspective) have their signal
split between the twofields.As a result each sensor array is effectively a set of 40◦ arcs
of unsplit signals alternating with 20◦ arcs of split signals, though the aggregations
result in an array of only six activation values. As with the barbarians’ sensors, there
is no range limit on this long-range sub-array.

The additional single sensor element in a compound array detects objects in the
legion’s own map cell: if an object of the appropriate type is present the game engine
sets the value of this sensor to 1.0; otherwise it sets it to 0.0. However, a legion
does not detect itself, and since the rules prevent multiple units from occupying the
same map cell, the only time this local detection sensor is activated in practice is
when the legion occupies a city. In principle the detect-local sensor could have been
eliminated from the sensor arrays used to detect legions and barbarians, but identical
arrays were used for all object types in order to simplify the implementation, and to
make allowance for future game modifications that would allow “stacking” multiple
units within a single map cell.

The full architecture of the compound sensors is shown in Fig. 5.4. The two sub-
arrays contain six elements each, corresponding to the six cardinal directions. Thus
together with the additional independent element, each array reports 13 floating point
values ≥0.0 whenever a sense is collected from the environment. Since there is one
compound sensor for each of the three types of game object, a legion’s egocentric
perception of the game state is represented by 39 floating point numbers.

5.3.2.2 The Legions’ Controller Network

A legion’s behavior is controlled by a feed-forward neural network. The network
maps the legion’s egocentric perception of the game state onto a choice of moves.
Whenever it is a legion’s turn to move, the game engine calculates the sensor values
for the legion’s view of the current game state and presents the resulting 39 floating
point numbers to the input of the controller network. The values are propagated
through the network, and the activation pattern at the network’s output is decoded to
determine the legion’s choice of move for the current turn (Fig. 5.5).

The output layer of the networks consist of seven neurons, corresponding to the
seven discrete actions available to the legions. When the input activations have been
propagated through the network the activation pattern at the output layer is interpreted
as an action unit coding, i.e. the action corresponding to the output neuron with the
highest activation level is taken to be the network’s choice of action for the current
turn.

In addition to the sensory inputs, each neuron in the controller networks is fed
by a bias unit with a fixed activation of +1.0 and a trainable weight to propagate
the value into the neuron’s accumulator. For the experiments reported below, the
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Fig. 5.5 During play the values obtained by a legion’s sensors are propagated through an artificial
neural network to create an activation pattern at the network’s output. This pattern is then interpreted
as a choice of one of the discrete actions available to the legion. When properly trained, the network
serves as a “brain” for the legion as an autonomous agent in the game

controller network’s hidden layer consisted of 10 neurons, which was found to be
effective in preliminary survey experiments.

5.3.2.3 Properties of the Legions’ Control Architecture

There are a number of important consequences of the adoption of this sensor/
controller architecture for the legions, which the reader may wish to keep in mind
while reading about the methodologies and experiments:

• The sensor readings are egocentric. For a given state of the game, each of the
legions in play will perceive the map differently, depending on their individual
locations on the map.

• The sensors provide a lossy view of the map. The legions have complete state
information about their immediate neighborhood, but that is reduced to a fuzzy
“feel” for the presence of more distant objects.

• The legions must work with uninterpreted inputs. There is a semantic structure to
the sensor arrays, but that structure is not known to the legions: the sense values
appear as a flat vector of floating point numbers in their controller networks’
input layers. The significance of any individual input or set of inputs, or of any
correlations between inputs, is something the legions must obtain via the learning
process.

• There is no explicit representation of goals. None of the network inputs, nor any
other part of the controller logic, provide a legion with any sort of objective.
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Coherent higher-level behavior must be learned as a response to a sequence of
inputs that vary over time.

• The legions do not have memory. The feed-forward controller networks do not
allow for any saved state, so the legions are not able to learn an internal represen-
tation for goals to make up for the lack of externally specified goals. All actions
are immediate reactive responses to the environment.

These various requirements and restrictions conspire to present the legionswith a very
difficult challenge if they are to learn to behave intelligently. The intent of the game
designer, and any real or apparent intent on the part of the individual legions, must be
instilled by means of the learning system. However, experience shows that properly
trained artificial neural networks excel at producing the appearance of purposeful
intelligent behavior (e.g. [1, 10, 17, 19, 20, 23]).

5.4 Neuroevolution With Enforced Sub-Populations (ESP)

For many agent control tasks the correct input-output mappings for the agents’ con-
trollers are not known, so it is not possible to program them or train them with
supervised learning methods. However, controllers such as artificial neural networks
can be evolved to perform a task in its actual context, discovering optimal mappings
in the process. The use of a genetic algorithm to train an artificial neural network is
called neuroevolution. Surveys of the field can be found in [24, 28]. An overview of
the use of neuroevolution to learn egocentric input-output mappings for game agents’
controllers can be found in [16].

One of the most empirically effective neuroevolutionary algorithms yet devised
is Neuroevolution with Enforced Sub-Populations (NE-ESP, or usually just ESP) [9,
11]. The basic concept behind ESP is that each genetic representation specifies only
a single neuron rather than an entire network, and a separate breeding population is
maintained for each neuron in the network.

Evaluations cannot be made on a network’s neurons in isolation, so the evalua-
tions in ESP are done by drawing one neuron at random from each sub-population,
assembling them into a complete network, evaluating the network as for any other
neuroevolutionary algorithm, and ascribing that network’s fitness score back to each
of the individual neurons used to create it. When all the neurons in all the popu-
lations have been evaluated, selection and breeding is done independently within
each sub-population. However, the fitness of an individual neuron depends not on its
properties in isolation, but on howwell it works together with neurons from the other
populations. Thus the neurons in the sub-populations are subjected to cooperative
coevolution [18, 21], and as evolution progresses they converge as symbiotic species
into functional niches that work together in a network as a good solution to the target
problem.

ESPwas originally introduced for training fully recurrent networks as continuous-
state controllers, e.g. for the inverted pendulum problem and the conceptually similar
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application to a finless rocket [12]. Both the application and the details of the ESP
implementation used for Legion II are novel.

In Legion II ESP is used for learning to make a discrete choice among the legions’
possible atomic actions. For the experiments reported here, the controller networks
were non-recurrent feed-forward networks with a single hidden layer, as described
in Sect. 5.3.2.2 (Fig. 5.5). A distinct sub-population was used for each position for
a neuron in the network, regardless of which layer it is in; the representations in
the populations held only the weights on the input side of the neurons (Fig. 5.6).
In principle it is not necessary to provide separate neurons for the output layer; an
architecture more similar to previous uses of ESP would have dispensed with those
neurons and stored both the input and output weights in the representations of the
hidden-layer neurons. That is in fact the mechanism used in the original Legion I
experiments [4]. However, the introduction of new sub-populations for the output
layer contributed to the improved scores in the experiments reported here.

Fitness evaluations were obtained during evolution by playing the current gen-
eration of controllers against randomly generated game setups; the set of possible
game setups is so large that none ever have to be reused. A different sequence of
training games was used for each independent run with a given parameterization in
a given experiment. For fair evaluations within a single run, every neuron was eval-
uated against the same game before moving on to the next game. The methodology
is described in more detail in Sect. 5.5.

When the ESP mechanism is used, the actual fitness of a network is ascribed to
each neuron used to construct it. As a result, the ascribed fitness is only an estimate of
a neuron’s “true” fitness; the “true” fitness is in fact ill-defined, since the neurons are
only useful when associated with other neurons in the other populations. However, a
reasonable estimate of the fitness of a neuron – given that it will be used in a network
with neurons from the other populations – can be obtained by evaluating the neuron
repeatedly, in networks comprised of independent random selections of neurons.

Thus for the experiments described here each neuron was evaluated on three
different games per generation, and the three resulting fitness ratings were averaged
to estimate the neuron’s fitness. The associations of the neurons into networks were
re-randomized before each of the three games so that the averaged fitness ratings
would reflect the quality of a given neuron per se more than the quality of the other
neurons it happened to be associatedwith in the network. Eachof the three evaluations
used a different game setup, and all of the neurons were evaluated on the same three
games during the generation.

Since the training game setups differed continually from generation to generation,
learning progressed somewhat noisily: a neuron that performed well on the training
games in one generation might not perform well on the new training games of the
following generation. However, neuroevolution with ESP is robust even when evalu-
ations are somewhat noisy, and the use of three games per generation helped smooth
the noise of the evaluations. The continually changing stream of training games from
generation to generation required candidate solutions to generalize to novel game
setups, or else risk having their constituent neurons be weeded out of the breeding
population; if a network performed poorly on the game setup used during a given
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Fig. 5.6 To apply the ESP
method of neuroevolution for
training the legions’
controllers, a separate
breeding population was
maintained for each of the 17
neurons used in the
controller network
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generation it received a poor fitness score, regardless of how well it had performed
during previous generations.

As described in Sect. 5.5.2, an evaluation against the validation set was done at
the end of every generation. For ordinary evolutionary mechanisms the network that
performed best on the current generation’s fitness evaluationswould be chosen for the
run against the validation set. However, the notion of “best network in the population”
is ill-defined when the ESP mechanism is used, so for the Legion II experiments a
nominal best network is defined as the network composed by selecting the most fit
neuron fromeach sub-population. Itwas that nominal best network thatwas evaluated
against the validation set at the end of each generation.

Breeding was done by a probabilistic method that strongly favored the most fit
solutions, but also allowed less fit solutions to contribute to the next generation with
low probability. The mechanism was as follows. When all the training evaluations
for a generation were complete, the storage for the representations of the solutions
in each sub-population was sorted from most fit to least fit, so that the most fit
had the lowest index. Then each representation was replaced one at a time, starting
from the highest index (i.e., the least fit neuron in the population). Two parents
were selected with uniform probability over the indices less than or equal to the
index of the representation currently being replaced. I.e., that representation or any
more fit representation could be chosen as a parent. The two selections were made
independently, so that it was possible for the same representation to be used for
both parents; in such cases the child would differ from the parent only by mutations.
(Notice that this mechanism always breeds the most fit neuron with itself at the final
pairing.) Since the less fit representations were progressively eliminated from the
effective breeding pool, the more fit solutions had more opportunities to contribute
to the next population. Preliminary survey experiments showed that this mechanism
produced better results than a simple elitist mechanism.

Once a pair of parents were selected they were bred with either 1-point or 2-
point crossover, with a 50% chance for each. Only one child was produced from
the crossover; the remaining genetic material was discarded. Each weight in the
representation was then subjected to a mutation at a 10% probability, independently
determined.Mutationswere implemented as a delta to the currentweight chosen from
the exponential distribution (Eq.5.5) with λ = 5.0, and inverted to be a negative delta
with a 50% chance.

f (x, λ) = λe−λx , x ≥ 0 (5.5)

That choice of λ reduced the mean of the distribution, and was chosen on the basis
of preliminary survey experiments. The deltas resulting from this distribution were
small with high probability, but potentially very large with a low probability. That
distribution allowed mutations to support both fine tuning of the weights and jumps
to more distant regions of the solution space.

Training on the Legion II problemwith neuroevolutionmakes progress asymptot-
ically. For the experiments reported here, evolution was allowed to continue for 5000
generations, well out onto the flat of the learning curve, to ensure that comparisons
and analyses were not made on undertrained solutions.



5 A Neuroevolutionary Approach to Adaptive Multi-agent Teams 103

5.5 Experimental Methodology

The Legion II experiments followed the familiar methodology of using distinct train-
ing, validation, and test sets. However, procedural questions arise when applying that
methodology to a game such as Legion II. This section explains how those questions
were resolved for the experiments reported below.

5.5.1 Repeatable Gameplay

When training or testing by means of dynamic gameplay rather than static examples,
it is useful to have a definition for the concept of “the same game”, e.g. to make
comparative evaluations of the performance of embedded game agents. However,
games that are genuinely identical with respect to the course of play are, in general,
impossible to generate, if they involve embedded game agents that learn: as the agents
learn, their behavior will change, and the changed behavior will cause the course of
the game to vary from earlier plays. For example, if the legions in Legion II fail to
garrison the cities during the early stages of training, the barbarians will occupy the
cities. But later during training, when the legions have learned to garrison the cities,
the details of the barbarians’ behavior must also change in response – i.e., the city
will not be pillaged as before – even if there has been no change to the starting state
and the barbarians’ control policy.

It is therefore useful to have a pragmatic definition of “the same game” for exper-
imental work. Thus for Legion II two games are identified as “the same game” if
they use the same starting position for the cities and legions, and the same schedule
for barbarian arrivals. The schedule for arrivals includes both the time and the ran-
domly selected position on the map. For all the games reported here the barbarian
arrivals were fixed at one per turn, so only their placement mattered for identifying
two games as being the same.

However, the randomized placement of the barbarians is not always repeatable:
as described in Sect. 5.2.3, if the position selected for placing a new barbarian on
the map is occupied, an alternative randomly selected position is used instead, and
re-tries continue until an empty map cell is found. But as described above, changes
to the legions’ behavior will result in different game states at a given point in time
for various instances of “the same game”, so a barbarian placement during one play
of the game may not be repeatable in another run using a different controller for the
legions. Therefore, for pragmatic reasons, “the same game” is defined for Legion II
to consider only the first try for the positioning of arriving barbarians; the additional
tries triggered by the unavoidable divergences of the game state are not considered
to make two games different.

This concept of “the same game” was used to create sets of games that were used
repeatedly during training and testing, as follows.
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5.5.2 Training

Randomized learning algorithms such as neuroevolution do not always produce their
best solution at the end of a fixed-length run; the random modifications to the rep-
resentations in an evolutionary population can make the solutions worse as well as
better. Therefore it is useful to have a mechanism for returning the best solution
obtained at any time in the course of a run.

The commonly used mechanism is to evaluate candidate solutions periodically
during training, and, if the top performer is better than any previously encountered
during the run, to save that top performer as the potential output of the learning
algorithm. At the end of the run, the most recently saved top performer is returned as
the solution produced by the algorithm. The learning algorithm still runs for some
fixed number of iterations that the experimenter deems sufficient for finding a good
solution, but that solution may be discovered at any time during the run.

The periodic evaluation is performed against a validation set.When generalization
is desired, the validation set must be independent of the training data; otherwise the
algorithmwill return a solution that is biased toward goodperformance on the training
data at the expense of poorer performance on more general data of the same type.
For supervised learning, the validation set normally takes the form of a reserved
subset of the available training examples. However, when annotated examples are
not available, such as when using evolutionary learning to learn a motor control task
or a controller for an embedded game agent, the validation set can be a standardized
set of example problems. The definition of “the same game” in Legion II allows
construction of a distinctive set of games to serve as the validation set for Legion II
learning tasks, and that is the mechanism used in the experiments reported here.

Therefore stopping was handled in the experiments by running the learning algo-
rithms for a period deemed to be “long enough”, and using the validation set mech-
anism to control which candidate was actually returned as the result of a run. The
validation set for Legion II was a set of ten games. A set of ten games with indepen-
dently generated starting positions and barbarian placement positions was judged to
be a sufficient evaluation for generalization; larger sets adversely affect the run time
of the evolutionary algorithm. The score for a controller’s validation performance
was defined as the average of the game scores obtained by play against the ten games
of the validation set.

An evaluation was made against the validation set at the end of each generation,
and the nominal best network saved if its validation score was better than at any
previous generation. For a given run of the training program the same validation set
was used at each evaluation period, to ensure consistent evaluations. However, the
validation set was created independently for each run. The idea is that each run should
represent an independent sample of the space of all possible runs, for a given param-
eterization of the learning algorithm. Since the random selection of a validation set is
part of the the “possible world” of the run of a stochastic algorithm, its construction
was allowed to vary from run to run, along with all the other stochastic decisions.
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5.5.3 Testing

Each run of the learning algorithm returned a single neural network as its output.
The networks were saved to files for later testing with a separate program; the test
program spilled various run-time metrics to a file for analysis and plotting with the
R statistical computing environment [22].

Tests of current performancewere also conducted during the course of training, for
the production of learning curves. Tests were only run on those generations where the
evaluation on the validation set produced a new top performer, i.e. when measurable
progress had been made. These were “side tests”; the learning algorithms ran the
tests and spilled the results to a file for later analysis, but did not make any training
decisions on the basis of the tests, to avoid biasing the training toward the test games.

Whether during the learning run or afterward, tests were run on a set of games
constructed as the validation set was, but independent of both the validation set and
the training games. As with the validation evaluations, the evaluation score for this
composite test was defined as the average of the scores obtained on the individual
games of the test set.

Unlike the validation set, the same test set was used for every independent run of
every learning algorithm, to ensure that any differences in the test metrics were the
result of differences in the solutions being examined rather than differences in the
difficulty of independently generated test sets. The training-time evaluations on the
test set are not as frequent as the evaluations on the validation set, so a larger test
set could be used without unduly extending the run times of the training algorithms.
Also, it is essential that the test set be an accurate model of the set of possible
games; therefore a set of 31 games was used. (Statisticians deem a minimum of 30
samples necessary for characterizing a distribution when the measurements are not
known a priori to fall into a normal distribution; it sometimes proves useful to use
31 rather than that minimum, so that there will be a clearly defined median for any
measurement, to be used as a principled choice whenever it proves useful to plot or
analyze a single “typical” example.)

5.6 Experiments

ANN controllers for the legions in Legion II were trained using ESP and the pro-
cedures described above. The homogeneity required by the ATA architecture was
enforced by using the same controller to make all the legions’ decisions during a
game. The game parameters were set to require a division of labor to perform well:
there were more legions than cities, the randomized placement of the barbarians and
the 100:1 ratio of pillage between the cities and countryside made it essential to
garrison the cities, and the large number of barbarians arriving over the course of the
game made it essential to eliminate barbarians in the countryside as well, if pillage
was to be minimized. With one barbarian arriving per turn, the count would ramp up



106 B. D. Bryant and R. Miikkulainen

from one to 200 over the course of a game in the absence of action by the legions,
providing an average of ∼100 pillage points per turn. With three cities each subject to
an additional 100 pillage points per turn, pillaging the countryside can amount to ∼1/4
of the worst possible score. Thus the legionary ATAmust take actions beyond simply
garrisoning the cities in order to minimize the pillage: a division of labor is required.

The following sections examine the results of the training experiment and the
behavior produced in the legions.

5.6.1 Learning the Division of Labor

Hundreds of runs of neuroevolutionary learning on the Legion II problem, with a
variety of learning parameters and a number of changes to the game rules and network
architecture since the initial results reported in [4], have consistently performed well,
where “well” is defined fuzzily as “learns to bring the pillage rate substantially below
the 25% threshold” obtainable by a policy of static garrisons and no division of labor
to support additional activity by the spare legions. For the experiments reported here,
eleven independent runs of the base learning method with the parameters described
in Sect. 5.4 (but independent streams of random numbers) produced a mean test
performance score of 4.316%, with all falling in the range 3.5–6.0%. (Recall that
there is no a priori expectation that a 0% pillage rate could be learned.) The scores on
the games in the test set show that all eleven runs produced controllers that allowed
the legions to reduce pillaging well below the 25% rate obtainable by garrisoning
the cities and taking no further actions against the barbarians.
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Fig. 5.7 The plot shows progress against the test set for the median performer of the eleven training
runs. At each generation when progress was made on the validation set, the nominal best network
was also evaluated against the test set. The hatch marks at the bottom of the plot identify those
generations. Test scores for those generations (only) are connected with straight lines to improve
visibility. The plot is not strictly monotonic because progress on the validation set does not strictly
imply progress on the test set
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As described in Sect. 5.5.3, performance against the test set was also checked dur-
ing training so that learning progress can be examined. A typical learning curve is
shown in Fig. 5.7. The learning curve is familiar from many machine learning appli-
cations (though inverted because lower scores are better), with fast initial learning
tapering off into slower steady progress. Experience shows that learning by neu-
roevolution on the Legion II problem appears to progress asymptotically. There is
no stair-step pattern to suggest that the legions’ two modes of behavior were learned
sequentially; observations confirm that the legions begin chasing barbarians even
before they have learned to garrison all the cities rigorously.

The behavior of a trained controller network can be evaluated qualitatively by
observing real-time animations of game play. In every case that has been observed,
trained legions begin the game with a general rush toward the cities, but within a
few turns negotiate a division of labor so that some of the legions enter the cities
or remain near them as garrisons while the others begin to chase down barbarian
warbands in the countryside. The only time the cities are not garrisoned promptly
is when their positioning allows two of them mask the third from the legions’ low-
resolution sensors. However, even in those cases the third city is garrisoned as soon
as one of the roaming legions pursues a barbarian far enough to one side to have
a clear view of the third city so that it can “notice” that it is ungarrisoned. A feel
for these qualitative context-aware behaviors can be obtained by comparing end-of-
game screenshots taken early and late during a training run, as shown in Fig. 5.8.
An animation of the trained legions’ behavior can be found at http://nn.cs.utexas.edu/
keyword?ATA.

The legions’ division of labor can can also be examined by the use of run-time
metrics. The test program was instrumented to record, after each legion’s move, how

Fig. 5.8 Two end-of-game screenshots show the legions’ performance before and after training.
Left: Before training the legionsmove haphazardly, drift to an edge of themap, or sit idle throughout
the game, thereby failing to garrison the cities and allowing large concentrations of barbarians to
accumulate in the countryside. Right: After training the legions have learned to split their behavior
so that three defend the three cities while the other two move to destroy most of the barbarians
pillaging the countryside. The desired adaptive behavior has been induced in the team

http://nn.cs.utexas.edu/keyword?ATA
http://nn.cs.utexas.edu/keyword?ATA
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Fig. 5.9 The plot shows the distance from each legion to its nearest city over the course of a single
game. The five legions start at random distances from the cities, but once some legion has had time
to reach each of the three cities the team settles into an organizational split of three garrisons and
two rovers. Note that the garrisons’ average distance from their respective cities is not 0.0, because
whenever there is only a single adjacent warband it is reasonably safe to exit the city long enough
to eliminate it. The legions sometimes swap roles when a rover approaches a garrisoned city, e.g.
Legions #3 and #4 just before turn 25. (The numbering of the legions is arbitrary; they are identical
except for the happenstance of their starting positions. The lines have been smoothed by plotting
the average of the values measured over the previous ten turns.)

far away it was from the nearest city. The result for allowing the median performer
among the eleven trained networks to play the first game in the test set is shown in
Fig. 5.9. The plot clearly shows that after a brief period of re-deploying from their
random starting positions three of the legions remain very near the cities at all times
while two others rove freely. The rovers do approach the cities occasionally, since
that is where the barbarians primarily gather, but for most of the game they remain
some distance away.

When a rover does approach a city there is sometimes a role swap with the current
garrison, but the 3:2 split is maintained even after such swaps. However, the legions
show surprisingly persistent long-term behavior for memoryless agents: the plot
shows that Legion #1 acts as a rover for almost 3/4 of the game, and Legion #3, after
starting as a garrison and then swapping roles with a rover, spends the final 7/8 of
the game in that new role.

5.6.2 Run-Time Readaptation

The training games were parameterized to require the legions to organize a division
of labor, and they successfully learned to do that. However, the motivation for the
ATA multi-agent architecture in Sect. 5.1 calls for teams that can reorganize when-
ever a change in circumstances requires it. For example, if the pumper robot in the
motivating example breaks down, one of the other robots should take over the task
so that the team will not fail entirely. The legions in the Legion II game should also
be able to reorganize at need.
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Fig. 5.10 In a second test, play follows the pattern of the previous test until turn 100, when a fourth
city is added to the map. The team is forced to re-organize its division of labor so that there are now
four garrisons and only a single rover. The role swaps continue, but they always leave four legions
hovering near the cities. The typically lower average distance from the rover to its nearest city after
the city is added is an artifact of the increased density of cities on the map. Legion #2 erroneously
abandons its city near the end of the game; see the text for the explanation

That necessary ability was examined by modifying the test program to support
the addition or removal of a city at the mid-point of the test games. When a city is
added, the legions should reorganize into a team of four garrisons and one rover, or
when a city is removed they should reorganize into a team of two garrisons and three
rovers.

The result of adding a city is shown in Fig. 5.10. The plot again shows the
median-performing controller’s behavior on the first game in the test set. Since the
legions’ behavior is deterministic and the game’s stochastic decisions are repeated,
as described in Sect. 5.5.1, the game follows its original course exactly, up until the
city is added at the mid-point of the game. Thereafter the team can no longer afford
to have two rovers, and the plot shows the resulting reorganization. There are still
role swaps in the second half of the game, but the swaps now always maintain four
garrisons and a single rover.

The average distance from the rover to the cities is lower in the second half of the
game. That is primarily an artifact of having more cities on the small map: regions
that were once distant from all the cities no longer are, so even without any change
in behavior the rover is expected to be nearer some city than before, on average. A
second cause is an indirect result of the change in the team’s organization. With only
one rover in the field, the legions are not able to eliminate the barbarians as quickly
as before, so during the second half of the game the concentration of barbarians on
the map builds up to a higher level than previously. Since they tend to crowd around
the cities and the roving legions tend to chase down the barbarians wherever they
mass, the roving legion now has more reason to operate close to the cities.

The plot shows Legion #2 vacating the city it was garrisoning right at the end of
the game. That is also an artifact of the increased density of the barbarians on the
map. In ordinary play the trained legions are able to maintain a dynamic equilibrium
between the rate of influx of the barbarians and the rate they are eliminated; the
denser the barbarians are on the map, the easier it is for the rovers to catch some
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Fig. 5.11 In a third test, the mid-game reorganization experiment is repeated, except this time a
city is removed from the map. That city had been garrisoned by Legion #4, which now finds itself
far from the nearest city, and immediately adopts the role of a rover. (The steep ramp-up of its
nearest-city distance on the plot is an artifact of the smoothing; the change is actually instantaneous
when the city is suddenly removed from under the legion.) There is a role swap just before turn
150, but the team consistently keeps two legions very near the two remaining cities, with the other
three roving at various distances

of them. However, when the add-city test causes one of the rovers to swap roles to
garrison duty, that equilibrium can no longer be maintained by the single remaining
rover, and the number of barbarians in play starts ramping up after the city has been
added. Eventually their number oversaturates the legions’ sensors – they have not
seen such densities since early during training – and the legions begin to behave
erratically. However, until their sensory input diverges quite far from what they were
trained for, the legions are seen to exhibit the desired behavior.

The result of removing a city at the mid-point of a game is shown in Fig. 5.11.
The play proceeds as before, until the city is removed at turn 100. At that point the
legion formerly garrisoning that city finds itself far away from any, but it adopts
the roving behavior rather than sitting idle or trying to crowd into one of the other
cities, and it maintains that behavior for the remainder of the game. There is a role
swap between two of the other legions later, but the team is always left with two
legions hovering very near the cities on garrison duty, while the other three range
over various distances in pursuit of the barbarians.

5.7 Discussion

The experiments show that the Adaptive Team of Agents is a feasible architecture for
multi-agent systems, and that ATAs can be created by neuroevolutionary methods.
The legions learned the desired variety of behavior, and the ability to organize a divi-
sion of labor by individually adopting an appropriate choice of behaviors. They also
learned to swap roles without disrupting the required organization of the team, both
in the ordinary course of events and in response to a change in the scope of their task.
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Such capabilities are essential for the agents embedded in many types of game or
simulator. Games often providemultiple agents of some generic type – e.g. the settler
type in the Civilization game – which must as individuals pursue differing activities
that contribute to the success of the team rather than the individual. And those agents
must be adaptive in their choice of activities, taking account of the game state,
including the choices being made by their peers. Yet the scripted behavior of agents
in commercial and open source games commonly fail at that requirement, making
decisions that appear to take little account of context. For example, in strategy games,
even when the agents are not autonomous and a higher-level AI is able to manipulate
them according to some plan, individual agents are frequently observed to make
piecemeal attacks that are suicidal due to a lack of supporting actions by their peers.
To a human observer, such agents simply do not seem very intelligent. Appropriate
computational intelligence methods should be able to take game intelligence beyond
the brittleness, inflexibility, and narrowness of scripted activity, and for many games
or simulators the context-awareness and adaptivity of the agents in an ATA will be a
necessary part of any successful solution.

In the field of evolutionary robotics, Floreano et al. also examined homogeneous
teams controlled by ANNs evolved by team selection, in a study of hypotheses for
explaining biological altruism [8]. Altruismdoes not play an explicit role inLegion II,
but their study found that a homogeneous team evolved by team selection performed
better than three other architectures examined, producing robust altruistic behavior in
the process. Altruism, when appropriate, is an important facet of trusted autonomy
in multi-agent environments, and can contribute to the appearance of intelligent
behavior as well.

It is interesting to note that the necessary adaptivity for ourATAwasobtainedusing
a simple feed-forward network for the legions’ controllers. We know that artificial
neural networks are powerful computing devices (see e.g. [7, 25]), and that genetic
algorithms are able to train them to sophisticated behaviors (e.g. [1, 3, 15, 26, 27,
29]). To a first approximation it may be concluded that the Legion II controllers have
been trained to partition the game’s state space, as seen from an egocentric point
of view, into two classes, and to choose a behavior on the basis of which class the
current state observation falls in to. However, what they actually choose is one of
seven atomic moves, none of which can be uniquely associated with either of the
two behavior classes.

For an agent to pursue a coherent higher-level behavior across many game turns –
i.e., to give an appearance of intent-driven behavior – would seem to require access
to some internal state, i.e. an ability to “remember” what it is doing. Conjecturally,
the Legion II agents have learned a workaround whereby they effectively store their
internal state in the external environment. I.e., in addition to whatever else they learn
during training, they learn a mapping from their egocentric view of the environment
to a virtual representation of whatever internal state information is necessary for
“remembering” what they are doing. The flow of information is in fact recurrent:
the fact that the agents move within their environment causes a transformation of
their next view of the environment. In an otherwise static environment those trans-
formations would be deterministic; the presence of other agents in the Legion II
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environment makes them somewhat noisy. However, the potential noisiness in the
state transitions may be greatly reduced if the agents also learn an implicit model
of the other agents’ behaviors. If they can predict how those other agents will act,
they can learn to predict what effect their choice of actions will have on their next
snapshot view of their world with high accuracy. Thus it is possible, in principle,
for the pairing of a sufficiently powerful computational device with a sufficiently
powerful learning mechanism to learn to use an egocentric view of the external state
as if it were an internal state, for systems such as the Legion II game. Future work
must pursue this concept to determine what the limits of such a mechanism are. Does
a feed-forward network embedded in an environment that it can manipulate become
as powerful as a Turing machine?

The ad hoc use of plots of an ad hoc metric for detecting the legions’ division
of labor in Sect. 5.6 also reveals a need for developing methods of behavior anal-
ysis. When studying agents in visible environments such as games and simulators,
behavior is paramount [3]. Meaningful behavioral metrics are essential, and it would
be useful to have methods that are abstract enough to be portable across application
domains, and sensitive enough to detect similarities or differences in behavior when
a domain involves more subtlety than a switch between two discrete behaviors. Work
in this area is already underway, andwill be amajor component of the study of visibly
intelligent behavior in the future.

The Legion II ATA experiments also revealed a special challenge for the applica-
tion of computational intelligencemethods to agent behavior problems. The goal of a
simulation as understood by a machine learning algorithm – e.g. minimizing pillage
in the Legion II game – may be satisfied by some abstract optimization, with little
or no regard for the appearance of details of the learned behavior. For example, the
legions in the Legion II ATA experiment learned to switch between appropriate roles
on the basis of context, but some of the details of their behavior are not satisfactory to
an observer. The garrisons’ learned behavior often produced “mindless” oscillations
in and out of their cities when there were no barbarians nearby to threaten pillage,
and such behavior would likely be the subject of ridicule if seen in the behavior of the
agents in a commercial game. In principle such details of behavior can be addressed
by careful specification of the goals of the training regimen, such as an evolutionary
reward function that penalizes undesirable behavior, but for applications as complex
as a commercial game it may be as difficult to specify an appropriate reward function
as it has proven to be to write a script that covers all situations adequately. There-
fore work is underway on suppressing such oddities of behavior and inducing other
desirable traits that will make agents look intelligent to observers, rather thanmerely
acting out some abstractly optimal solution to the problem they have been trained
for. (See [3] for an extensive preliminary treatment.)
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5.8 Conclusions

TheAdaptive TeamofAgents is a viable architecture for systemsbased on themethods
of computational intelligence, and has immediate applications in domains such as
games and simulators, where autonomous agents must show flexible diversity of
behavior at both the individual and team level. Such flexibility, supported by fulfilled
trust among the members of a team, is a critical component of trusted autonomy in
multi-agent systems, and is a key aspect of the sort of visibly intelligent behavior
that viewers expect from agents that model real or imagined creatures or groups
in some simulated world. Neuroevolution in particular can create such flexibility,
alongwith other desired characteristics of visibly intelligent behavior.More powerful
neuroevolutionary methods continue to be developed, and it can be expected that
further work in applying them to the rich challenges of modern videogames will
produce results of both practical and scientific merit.

Acknowledgements This work was supported in part by NSF grant IIS-0083776, Texas Higher
Education Coordinating Board grant ARP-003658-476-2001, and a fellowship from the Digital
Media Collaboratory at the IC2 Institute at the University of Texas at Austin. Most of the CPU time
for the experiments was made possible by NSF grant EIA-0303609, for the Mastodon cluster at
UT-Austin.
Civilization is a registered trademark of Take-Two Interactive Software, Inc., and Warcraft is a
trademark of Blizzard Entertainment, Inc. The images used in Legion II’s animated display are
derived from graphics supplied with the FOSS game Freeciv, http://www.freeciv.org/.

References

1. A. Agogino, K. Stanley, R. Miikkulainen, Online interactive neuro-evolution. Neural Process.
Lett. 11, 29–38 (2000)

2. T. Balch, Behavioral Diversity in Learning Robot Teams. Ph.D. thesis, Georgia Institute of
Technology, 1998. Technical Report GIT-CC-98-25

3. B.D. Bryant, Evolving Visibly Intelligent Behavior for Embedded Game Agents. Ph.D. thesis,
Department of Computer Sciences, The University of Texas at Austin, Austin, TX, 2006

4. B.D. Bryant, R. Miikkulainen, Neuroevolution for adaptive teams, in Proceeedings of the 2003
Congress on Evolutionary Computation (CEC 2003), vol. 3 (IEEE, Piscataway, NJ, 2003), pp.
2194–2201

5. B.D. Bryant, R. Miikkulainen, Evolving stochastic controller networks for intelligent game
agents, in Proceedings of the 2006 Congress on Evolutionary Computation (CEC 2006) (IEEE,
Piscataway, NJ, 2006), pp. 3752–3759

6. B.D. Bryant, R. Miikkulainen, Exploiting sensor symmetries in example-based training for
intelligent agents, inProceeedings of the 2006 IEEE Symposium onComputational Intelligence
and Games (CIG’06), ed. by S.J. Louis, G. Kendall (IEEE, Piscataway, NJ, 2006), pp. 90–97

7. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signals
Syst. 2(4), 303–314 (1989)

8. D. Floreano, S.Mitri, A. Perez-Uribe, L.Keller, Evolution of altruistic robots, inComputational
Intelligence: Research Frontiers: IEEEWorld Congress on Computational Intelligence, WCCI
2008, Hong Kong, China, June 1–6, 2008, Plenary/Invited Lectures, ed. by Jacek M. Zurada,
Gary G. Yen, Jun Wang (Springer, Berlin, 2008), pp. 232–248

http://www.freeciv.org/


114 B. D. Bryant and R. Miikkulainen

9. F. Gomez, Robust Non-Linear Control Through Neuroevolution. Ph.D. thesis, Department of
Computer Sciences, The University of Texas at Austin, 2003

10. F. Gomez, R. Miikkulainen, 2-D pole-balancing with recurrent evolutionary networks, in Pro-
ceedings of the InternationalConferenceonArtificialNeuralNetworks (Springer,Berlin, 1998),
pp. 425–430

11. F. Gomez, R. Miikkulainen, Solving non-Markovian control tasks with neuroevolution, in
Proceedings of the 16th International Joint Conference on Artificial Intelligence (Morgan
Kaufmann, San Francisco, CA, 1999), pp. 1356–1361

12. F. Gomez, R. Miikkulainen, Active guidance for a finless rocket using neuroevolution, in
Proceedings of the Genetic and Evolutionary Computation Conference (Morgan Kaufmann,
San Francisco, CA, 2003), pp. 2084–2095

13. T.D. Haynes, S. Sen, Co-adaptation in a team. Int. J. Comput. Intell. Organ. 1, 231–233 (1997)
14. J.E. Laird, M. van Lent, Human-level AI’s killer application: interactive computer games, in

Proceedings of the 17th National Conference on Artificial Intelligence (AAAI Press, Menlo
Park, CA, 2000)

15. S.M. Lucas, Cellz: a simple dynamic game for testing evolutionary algorithms, inProceeedings
of the 2004 Congress on Evolutionary Computation (CEC 2004) (IEEE, Piscataway, NJ, 2004),
pp. 1007–1014

16. R. Miikkulainen, B.D. Bryant, R. Cornelius, I.V. Karpov, K.O. Stanley, C.H. Yong, Computa-
tional intelligence in games, in Computational Intelligence: Principles and Practice, Chap. 8,
ed. by G.Y. Yen, D.B. Fogel (IEEE Computational Intelligence Society, Piscataway, NJ, 2006),
pp. 155–191

17. D. Moriarty, R. Miikkulainen, Learning sequential decision tasks. Technical Report AI95-229,
Department of Computer Sciences, The University of Texas at Austin, 1995

18. D.E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. Ph.D.
thesis, Department of Computer Sciences, The University of Texas at Austin, 1997. Technical
Report UT-AI97-257

19. D.E. Moriarty, R. Miikkulainen, Discovering complex Othello strategies through evolutionary
neural networks. Connection Sci. 7(3), 195–209 (1995)

20. D.E. Moriarty, R. Miikkulainen, Evolving obstacle avoidance behavior in a robot arm, in From
Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of
Adaptive Behavior, ed. by P. Maes, M.J. Mataric, J.-A. Meyer, J. Pollack, S.W. Wilson (MIT
Press, Cambridge, MA, 1996), pp. 468–475

21. M.A.Potter,K.A.De Jong,Evolvingneural networkswith collaborative species, inProceedings
of the 1995 Summer Computer Simulation Conference (1995)

22. R Development Core Team, R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2004

23. N. Richards, D. Moriarty, P. McQuesten, R. Miikkulainen, Evolving neural networks to play
Go, in Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA-97,
East Lansing, MI), ed. by T. Bäck (Morgan Kaufmann, San Francisco, CA, 1997), pp. 768–775

24. J.D. Schaffer, D. Whitley, L.J. Eshelman, Combinations of genetic algorithms and neural net-
works: a survey of the state of the art, in Proceedings of the International Workshop on Com-
binations of Genetic Algorithms and Neural Networks, ed. by D. Whitley, J. Schaffer (IEEE
Computer Society Press, Los Alamitos, CA, 1992), pp. 1–37

25. H.T. Siegelmann, E.D. Sontag, Analog computation via neural networks. Theor. Comput. Sci.
131(2), 331–360 (1994)

26. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Evolving adaptive neural networks with and
without adaptive synapses, inProceeedings of the 2003Congress onEvolutionaryComputation
(CEC 2003), vol. 4 (IEEE, Piscataway, NJ, 2003), pp. 2557–2564

27. K.O. Stanley, B.D. Bryant, R. Miikkulainen, Real-time neuroevolution in the NERO video
game. IEEE Trans. Evol. Comput. 9(6), 653–668 (2005)

28. X. Yao, Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
29. C.H.Yong, R.Miikkulainen,Cooperative coevolution of multi-agent systems. Technical Report

AI01-287, Department of Computer Sciences, The University of Texas at Austin, 2001



5 A Neuroevolutionary Approach to Adaptive Multi-agent Teams 115

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 6
The Blessing and Curse of Emergence
in Swarm Intelligence Systems

John Harvey

6.1 Introduction

We live in an increasingly complex and interconnected world, where there is an
increasing need for autonomous systems that can control systems that are beyond
the capabilities of humanoperators. Tobe useful, however, these autonomous systems
must be able to be trusted, even in scenarios which cannot be predicted in advance.
This is particularly important in safety critical systems where a mistake may lead
to loss of life. At the same time, however, not taking advantage of the performance
benefits of autonomous systems could also potentially lead to loss of life. One of
the key issues to be addressed in developing trusted autonomous systems is dealing
with the phenomenon of ‘emergence’, either by taking advantage of emergence or
avoiding emergence.

In simple terms, emergence is behaviour at the global level that was not pro-
grammed in at the individual level and cannot be readily explained basedonbehaviour
at the individual level. More formally, De Wolf identifies that “A system exhibits
emergence when there are coherent emergents at the macro-level that dynamically
arise from the interactions between the parts at the micro-level. Such emergents
are novel w.r.t. the individual parts of the system” [1]. A well known example of
emergence is the appearance of ‘gliders’ in Conway’s The Game of Life [2]. The
glider-like objects are an outcome of the code that controls the The Game of Life
but the objects themselves were never explicitly ‘designed in’ as part of the code. In
nature, the complex patterns displayed by flocks of birds and schools of fish are an
emergent property of the interaction of many individual units without any centralised
control.

Emergence is closely related to the concepts of ‘complexity’ and
‘self-organisation’. Including both of these concepts, Goldstein defines emergence
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as “... the arising of novel and coherent structures, patterns and properties during the
process of self-organization in complex systems” [3]. Complexity has been defined
by Kennedy et al. as: “The interaction of many parts of a system, giving rise to
behaviours and/or properties that are not found in the individual elements of the
system” [4]. Or as Wolfram put it: “It is possible to make things of great complex-
ity out of things that are very simple. There is no conservation of simplicity” [5].
Self organisation is defined by Camazine et al. as “... a process in which pattern
at the global level of a system emerges solely from numerous interactions among
the lower-level components of the system” [6]. Features of self organising systems
that are essential to emergent behaviour are the existence of: positive feedback—that
leads to amplification of fluctuations; negative feedback—to counterbalance ampli-
fication and provide stabilisation; multi stability—the coexistence of many stable
states; and the existence of state transitions—leading to dramatic change of the
system behaviour, i.e. ‘bifurcations’ in behaviour occur when some parameter/s are
varied.

Goldstein [3] identifies five essential features of emergence:

• Radical novelty—novel behaviour occurs that cannot be predicted.
• Coherence or correlation—the novel behaviour has some level of coherence over
time.

• Global or macro-level behaviour—coherence occurs at the macro level.
• Dynamical—the macro-level, while having some coherence in time, also evolves
over time.

• Ostensive—emergent behaviours are recognised ostensively, i.e. by showing them-
selves.

While Goldstein identifies that emergence is inherently unpredictable, Fromm [7]
proposes that there are four types of emergence, only two of which are unpredictable.
The four types of emergence proposed by Fromm are shown in Table 6.1. Using
Fromm’s classification scheme, there is a clear gradation in the complexity of systems
that display emergent behaviour, from the least complex in Type I, to the most
complex in Type IV.

The following Sections will examine the implications of emergent behaviour
in swarm intelligence systems, specifically in relation to their potential use in
autonomous systems. As identified in Table 6.1, based on Fromm’s classifica-
tion scheme, swarm intelligence systems fall into Type II ‘Weak and predictable’
emergence.

Table 6.1 Fromm’s classification of types of emergence

Type Name Predictability Example

I Nominal/ Intentional Predictable Ordinary machines such as
clocks or steam engines

II Weak Predictable in principle School of fish, flock of birds

III Multiple Not predictable Stock markets, pattern
formation in nature

IV Strong Not predictable in principle Life and culture
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6.2 Emergence in Swarm Intelligence

Swarm intelligence systems, based on the local interaction of a large number of
relatively simple agents, display complex, goal-oriented behaviour at theglobal level.
Swarm intelligence is defined by Kordon as “... coherence without choreography and
is based on the emerging collective intelligence of simple artificial individuals” [8].
Swarm intelligence systems have proven useful in solving a wide range of complex,
non-linear, real-world problems based on their ability to search complex problem
spaces where other methods are unsuitable or ineffective.

Swarm intelligence systems, commonly comprising large numbers of relatively
simple, homogenous agents, are one form of multi-agent systems. Alternate imple-
mentations exist. For example inChap. 5, Bryant andMiikulainen examine the advan-
tages and disadvantages of homogenous versus heterogenous agents and the benefits
of adaptability of the agents.

Examples of swarm intelligence systems relevant to trusted autonomy include
swarm robotics [9–12], control of groups of unmanned aerial vehicles [13–16], con-
trol of autonomous land and underwater vehicles [17, 18], network switching [19],
economic load dispatch [20], the control of switching networks [21], and the control
of chaotic non-linear networks [22].

The ‘intelligence’ displayed by swarm intelligence systems is an emergent prop-
erty of the system, without any form of external control, synchronous clock or shared
memory and in the absence of any system-wide communication mechanism [23].

While the emergent behaviour of swarm intelligence systems has proven useful in
solving complex real-world problems, as Parunak notes: “Neither self-organization
nor emergence is necessarily good” [15]. Emergence, therefore, can be both a blessing
and a curse in the application of swarm intelligence techniques to develop trusted
autonomous systems.

6.3 The ‘Blessing’ of Emergence

The emergent behaviour of swarm intelligence systems can be a ‘blessing’ in some
complex problem solving situations, based on a number of advantages that emergent
behaviour offers. The first of these advantages is simplicity: individual agents tend
to be quite simple, yet together they can produce very complicated behaviour. This
means that programming is easy as the complexity of individual agents is low [24–
26]. And because agents are relatively simple, programming errors are less likely
and debugging and validation of performance of the individual agents is relatively
simple.

The second is robustness: swarming systems are able to continue to operate,
albeit at a lower performance, even though there are failures in some individuals or
disturbances in the environment [12, 27]. Robustness also comes from the lack of
centralised control, which means there is no single point of failure.

http://dx.doi.org/10.1007/978-3-319-64816-3_5
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The third is flexibility: the system is self-adjusting, able to adapt quickly to
changing circumstances without changing individual agents’ behaviour [12, 26, 27].
Closely related to flexibility is the concept of environment integration: environmen-
tal dynamics are directly integrated into swarm’s behaviour, and can enhance system
performance [25].

The fourth is scalability: the swarm can operate using different swarm sizes with
little if any change to coordination mechanisms. Processing requirements, therefore,
tend to increase linearly as the swarm size increases [12, 26].

The fifth is autonomy: swarm intelligence systems operate without external con-
trol or supervision, providing the capacity to control systems that are too complex
or a require a response beyond the capacity of human involvement [17–19].

The sixth is parallelism: swarm intelligence systems inherently use parallel com-
putation for problem solving [19].

Together, these factors make the emergent nature of swarm intelligence systems
attractive for solving complex problems that cannot be broken down into simple parts.
They can therefore be attractive for use in autonomous systems and the advantages
they offer potentially contribute towards trust of the system.

6.4 The ‘Curse’ of Emergence

The emergent behaviour of swarm intelligence systems can also be a ‘curse’ in some
complex problem solving situations, based on a number of inherent limitations of
swarm intelligence systems. These limitations can lead to lack of trust in autonomous
systems that rely on swarm intelligence, which, in turn, rely on emergence.

The first of these limitations is the challenge of predicting the behaviour of swarm
intelligence systems. Fromm categorises swarming systems as Type II emergent
behaviour and predictable in principle, but in practice predictability is difficult to
achieve [7]. A simple swarming/not-swarming prediction may be possible, predict-
ing the detailed characteristics of swarming behaviour, however, is more challeng-
ing. Predictability is particularly important in relation to phase boundaries where
fundamental changes in behaviour occur [28]. As Wright et al. note, in real-world
systems “.. the presence of undesirable behaviours that are a result of unforeseen
non-linear interactions with the different components of these systems ... can have
catastrophic consequences ...” [29]. If predictability cannot be guaranteed, at least
within acceptable bounds, swarm intelligence systemswill not be used for safety crit-
ical applications a priori. In one approach to improve the predictability of swarming
systems,Harvey et al. have usedmeasures typically associatedwith chaotic dynamics
to quantify and predict swarming behaviour [30, 31].

The second limitation, and closely related to that of unpredictability, is the inabil-
ity to control the behaviour of swarm intelligence systems [28]. As Everitt and
Hutter note in Chap.3, “. . . with increasing autonomy and responsibility, and with
increasing intelligence and capability, there inevitably comes a risk of systems caus-
ing substantial harm.” Control of swarming systems is inherently difficult due to the

http://dx.doi.org/10.1007/978-3-319-64816-3_3
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emergent, non-linear nature of their dynamics. Lack of control may be unaccept-
able in some problem solving areas where safety is critical. The inherent absence of
centralised/higher-level control of swarming systemsmeans that control of behaviour
must be achieved indirectly, through the rules that control individual agent behaviour
or the parameters that ‘tune’ the rules. Developing appropriate rules at the individual
level can be a complex task. As Chevrier notes, the complexity is “...proportional to
the distance between the simplicity of individuals and the complexity of the collective
property” [32]. Choosing parameters to achieve a particular behaviour outcome is
also a difficult task and in many cases may not be possible [12, 33, 34]. An alternate
approach is to adjust parameters until a particular behaviour is achieved based on an
objective measure of behaviour using an optimisation routine [35]. Another possible
approach is to incorporate dynamic tuning—effectively a form of adaptation—in the
model but this considerably increases the complexity of the agents and potentially
the processing overhead and unpredictability of the behaviour of the system [36].

The third major limitation of swarm intelligence systems relates to the time
required to reach a solution, which may limit the usefulness of swarm intelligence
systems for on-line control tasks and time-critical tasks [33]. Options to improve
the time to obtain a solution include increasing the number of swarm members and
increasing the complexity of the members, for example, by incorporation of adap-
tation of members. These same changes, however, can also increase the processing
time to converge to a solution. Balancing these competing factors is itself a com-
plex optimising task which still may not lead to an acceptable outcome in the time
required.

6.5 Taking Advantage of the Good While Avoiding the Bad

As systems become too complex and/or too dynamic for human control, some form
of trusted autonomywill be required. In attempting to control such complex systems,
emergent behaviour is likely, and probably necessary. Paranuk observes, therefore,
that what is required are principles for designing and developing systems whose
emergent behaviour is beneficial, or at least benign [15].

Swarm intelligence systems have shown they can be beneficial in solving com-
plex real-world problems. This beneficial behaviour is dependent on emergence but
currently processes are not available to guarantee behaviour will be benign in all
possible circumstances. In an effort to take advantage of the benefits of swarm intel-
ligence systems, while avoiding the limitations, Winfield et al. [37] have introduced
the concept of “swarm engineering” which they see as a fusion of dependable sys-
tems engineering and swarm intelligence. They acknowledge the need to validate the
behaviour of such systems but argue there is no reason that validating swarm intelli-
gence systems should be any more complex than validating other complex systems.
Winfield et al. discuss two key features of a system in relation to dependability: ‘live-
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ness’, which relates to the swarm doing the right things; and ‘safety’ which relates to
the swarm not doing the wrong thing. The two concepts are related but not the same
thing. As Winfield et al. note: “A system that is provably safe could, for example, do
the wrong thing safely” [37].

Promising mathematical modelling approaches have been developed to validate
the ‘liveness’ aspect of swarm intelligence systems. In the context of swarm robotics
examples include: Lancaster who uses networks of simple probabilistic graphs to
predict swarm behaviour [38]; Dixon et al. who have investigated the verification
of swarms using temporal logic and model checking [39]; and Brambilla et al. who
have introduced an approach to the top-down design and verification of swarms via
formal specification and model checking [40]. Less progress has been achieved on
validation of safety aspects but Harper has shown the potential for using Lyapunov
stability techniques [41].

But even if ‘liveness’ and ‘safety’ aspects can be unambiguously determined,
there is still a body of work to be conducted to determine what ‘trusted’ means
in the real world. As Devitt notes in Chap. 10, “We have different thresholds for
trust depending on the risk of the decisions that have to be made and this in turn
depends on impact of decisions.” Consider a scenario where a swarm of robots is
tasked to find all the survivors after a disaster. If the robots find 90% of the survivors
but can be guaranteed not to injure anyone in the search process—can that system
be considered ‘trusted’. What if the swarm of robots can find 99% of survivors but
there is a 10% chance of injuring a survivor during the search—would that system
be trusted? Which would be the most trusted?

6.6 Conclusion

There is an increasing need for autonomous systems to control an increasingly com-
plexworld. To solve realworld problems, however, autonomous systemsmust be able
to be trusted. Swarm intelligence systems are one form of autonomous systems that
have proven useful in controlling complex real-world systems. The intelligence dis-
played by these systems is an emergent property of swarming systems. The emergent
behaviour of these systems is both a blessing and a curse. The emergent behaviour
provides the potential to solve problems that may not be able to be solved by other
means. But without the ability to verify and trust the emergent behaviour of swarm
intelligence systems in the full range of situations in which they will be applied, there
will be strict limits to their applicability in real-world systems. This is particularly
important in safety critical systems.

http://dx.doi.org/10.1007/978-3-319-64816-3_10
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Chapter 7
Trusted Autonomous Game Play

Michael Barlow

7.1 Introduction

Just as play is the engine that gives a game life, so autonomy and trust have always
been fundamental requirements for and enablers of all play.

Let us deal with autonomy first. Santayana [1] defines play as “..whatever is done
spontaneously and for its own sake”. Salen Tekinbas & Zimmerman [2] state “Play
is free movement within a more rigid structure.”- almost, in fact, a definition for
autonomy itself. Gilmore [3] defines the term play as: “Play refers to those activities
which are accompanied by a state of comparative pleasure, exhilaration, power and
the feeling of self-initiative.” Speaking of games Schell [4] states that “Games are
entered willfully”, while Avedon & Sutton-Smith [5] state “Games are an exercise
of voluntary control systems...”.

What then of trust? Huizinga [6] in his seminal study of play across cultures and
periods of history defined a core feature which he coined as the Magic Circle. The
magic circle delineates the mental space or universe created by players of a game. It
defines the boundary between the real world and the game world. Critically, ‘inside’
the circle is safe - trusting and trusted - play of the game. This powerful concept has
come to underpin much of the modern theory around game design.

So, trust and autonomy as individual concepts underpin all game play. Autonomy,
because players of their own free will and volition choose to play the game. As Sid
Meiers famously said [7] “[a game is] a series of interesting choices.” - the operative
word being choice. Trust, because players trust they are entering a shared virtual space
defined by the rules and objectives of the game and that the other players - whether
opponents or teammates - will share the ‘purity’ of that purpose, the willingness to
abide by the rules and play the game ‘for its own sake’. This psychological state or
attitude is known as a lusory attitude [8].
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The concept of a game is very broad; encompassing as it does sport in its mul-
tifarious forms (from individual to team, motor through to track-and-field, on or
under water or in the air or on a field, ancient versus modern, extreme, etc.); board
(e.g., Monopoly or Ticket to Ride), table-top (e.g., Warhammer 40K or Dungeons
& Dragons), and card (e.g., Bridge or Poker); gambling in its various forms; social
(e.g., drinking games or storytelling); games of childhood and the playground (e.g.,
‘tip’ and chasings, hide and seek, brandings, etc.); as well as the primary focus of this
chapter, digital games (i.e., including the categories or labels of computer game, video
game, console, mobile or smartphone and web). Numerous people ranging from aca-
demics working in the field of game studies, through practicing game designers have
provided definitions for what is a game. While definitions such as Costikyan’s [9]
“An interactive structure of endogenous meaning that requires players to struggle
toward a goal” or Tracy Fullerton’s [10] “A game is a closed, formal system, that
engages players in a structured conflict, and resolves its uncertainty in an unequal
outcome.” are succinct and subtly nuanced; Schell’s 1st definition from his Game
Design book [4] as a set of traits or attributes seems one of the most complete and
least controversial or open to argumentation. Paraphrasing “Games: Are enteredwill-
fully; have goals; have conflict; have rules; can be won and lost; are interactive; have
challenge; can create their own internal meaning; engage players; and are closed,
formal system.” McGonigal also shares a similar approach; though her list is even
shorter [11]: “When you strip away the genre differences and the technological com-
plexities, all games share four defining traits: a goal, rules, a feedback system, and
voluntary participation.”

But what is the significance of Trusted Autonomy to digital game design & play?
What challenges and opportunities exist (for Trusted Autonomy) in the new types of
technologies and game types & game play that are emerging?

7.2 TA Game AI

One long-standing, and apparently obvious area where Trusted Autonomy could
make a true impact in game execution and game environments is AI - Artificial
Intelligence - opponents, team-mates and characters to play along-side-of, against,
and to inhabit the imaginary game worlds. A superficial glance at the intersections
of computational intelligence and renowned cultural games of the intellect such as
Chess or Go would seem to indicate that the ‘AI challenge is solved’. In particular
IBM’s Deep Blue triumph over chess grandmaster Gary Kasparov in 1997 [12], and
most recently Google’s AlphaGo triumph over Go grandmaster Lee Sedol in early
2016 [13] mark turning points for computational intelligence; showing its ability to
exceed the highest levels of human performance in abstract games of reasoning.

While there is not yet consensus within the academic community about the scope,
range, type and enablers of human intelligence; there does seem to be broad agree-
ment that human intelligence is much more than simply logical and mathematical -
with visual/spatial, inter-personal (emotional), linguistic (language), and kinesthetics
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(bodily) being widely recognised (e.g., the theory of multiple intelligence [14]; or
the Cattell-Horn-Carroll theory of intelligence [15]).

Further, and clearly, many of the games humans play require and utilise intelli-
gence other than logical & mathematical. Indeed most, but not all, games are social
activities and often at multiple levels (e.g., consider a team-sport where there are
social elements at the intra-team and inter-team levels, and between players and offi-
cials, and perhaps between players and spectators). To express it another way, the
greater share of games require a focus upon and awareness of the other participants
of the play activity. In a multi-intelligence view this entails a minimum level of social
and emotional intelligence to be an effective participant in the play (game) activity.
In particular this requires active sensing and situational awareness of the other partic-
ipants and modelling of their motivations, objectives & goals, and future intent and
actions (e.g., an application of theory of the mind [16]). These are exactly the same
attributes and requirements for effective Trusted Autonomy teaming of humans and
computational intelligence actors.

As such advances in the technological underpinnings of Trusted Autonomy; and
in particular those centring upon machine modelling and understanding of human
intent, behaviour, trust, and emotional state;will find ready application as richer,more
responsive, AI in digital games. That is gameAI displaying a broader range of human
behaviours and intelligence, with those behaviours more responsive and appropriate
to the actions and choices of the human players. Computational (AI) team-mates and
opponents that are indistinguishable from humans (Viz. Turing Test [17]), and richer
NPCs (Non-Player-Characters - AI protagonists and entities in the game world) who
truly interact with and respond to a player’s in-game actions.

7.3 TA Game

Beyond in-game AI, the game ‘itself’ (i.e., as a system) could and should display the
same level of awareness of and adaptability to the player and his or her state. The
implications of such an approach for the way games are designed and developed are
profound.

Jess Schell [4], in his book on game design, makes clear that “The [game] designer
creates an experience . . . The game is not the experience . . . The experience rises
out of a game.” In other words the game serves as a vehicle - constructed by the
game designer and their team - to transmit an experience to the player of that game.
In Schell’s words [4]: “And it is this that makes game design so very hard . . . we
are far removed from what we are actually trying to create. We create an artefact
that a player interacts with, and cross our fingers that the experience that takes place
during the interactions is something they will enjoy.” Further, that ‘experience’ is by
its nature subjective and unique to each player, as it must of necessity be filtered and
interpreted through the lens of each individual player’s personality, tastes, intellect
and current state (at the time of play), and motivation.
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Game design and game development as practiced today is intensely a priori in
nature. The designer conceives the core play mechanics (the way the world will
work - its ‘physics’ - and its challenges), the setting, the story, the interface, the
characters that inhabit, and the locations of the world, the look and feel. Through the
development process these are further elaborated - 3Dmodels are created for terrain,
vegetation, buildings and characters; dialog is written for characters and recorded
by voice actors; music is composed and recorded; logic is devised for game AI and
coded by programmers, etc. etc. All this is decided, codified, and locked-in via a
resource intensive development process (typically for AAA games across a period
of 12–24months and through the skills of 50–150 specialists) before the standard
player ever experiences the game. Further, patches&DLC (DownLoadable Content)
aside, that content is immutable and the same for every player who experiences that
game.

But what if the game was aware enough of the player and their play goals, &
self-aware enough to work in partnership with the player to create the best possible
experience for that player at that time? What if the game software/system and the
player were in a Trusted, Autonomous configuration with the goal of creating that
optimum experience?

This would require a significant re-engineering of a game. Significant resources
would need to be dedicated to embedding computational intelligencewithin the game
- monitoring & modelling the player from moment-to-moment, prediction of desir-
able future game choices and environments to maintain engagement by the player,
and JIT (Just In Time) creation of game content (stories, challenges, characters,
dialogs, locations). This is extremely challenging. On the other hand there would be
significant savings in the reduction or elimination of all the resources dedicated to
development of game assets (the levels, dialog, music etc.) prior to release. Further,
each game would ideally be a unique, tailored, and bespoke experience prepared
(potentially, spun moment to moment; a kind of spontaneous but synchronized and
continuing ‘jam session’ or conversation between the player and the game) with the
individual player’s motivations for play and individual tastes in mind.

Certain enabling technologies exist as building blocks for this vision. The concept
of Flow [18] offers a framework in which to evaluate player engagement and interest
as the game and player undergo changes. Procedural content generation [19] is a
computational approach for the generation of simulation or game content - including
terrain, vegetation, architecture, and even story (e.g., [20]). Bringing these foun-
dational technologies together with low-cost and minimally intrusive sensing of the
player’s state (ideally physiological and EEG coupled with the already available
in-game choices/actions) is challenging but not insurmountable.

7.4 TA Game Communities

One of the more popular forms of online game play today are what are known as
MMO (MassivelyMulti-player Online) and simplyMultiplayer (typically 1st person



7 Trusted Autonomous Game Play 129

shooter) games. As an example the game League of Legends boast 27million players
each day (67million players each month and a daily maximum simultaneous players
of around 7.5million - Riot Games [21]), while steamcharts.com [22],- a website
that tracks player numbers in all games managed by the Steam application1 - shows
two other games with simultaneous player numbers in the hundreds of thousands
(Counter Strike: Global Offensive - peak number of simultaneous players in July
2016 of 636,056 and over 255million hours played in that month; DOTA 2 - peak
number of simultaneous players of over a million for July 2016; and number of hours
for July over 443million) and dozens more with over 10million hours of play for
July 2016 (e.g., Rust, Team Fortress 2, Rocket League, Grand Theft Auto V, Arma
3, ARK: Survival Evolved). This is but a subset of popular online multiplayer games
(e.g., War Thunder, World of Tanks, World of Warcraft also have very large player
bases).

Arguably the most serious challenge for these online communities of players
(and the companies that provide and profit from the games) is what is known as
toxic behaviour [23]. Toxic behaviour includes harassment of fellow players (verbal
abuse that includes racist, sexist, and sexually offensive language) and deliberate
‘griefing’ - the sabotage or corruption of a game being played by the perpetrator and
others. Certain games and their communities (including League of Legends) earn a
reputation as particularly toxic - deterring new players (newbies) from joining, and
leading experienced players to quit the community; though this is a problem shared
by all such games (and indeed online communities) to greater and lesser extents.
Through the lens of Trusted Autonomy this challenge of toxic online behaviour and
communities is one of creating a Trusted Autonomous environment for those players
and the community. One in which a player can choose to join a game at random (the
dominant form of play of these form of games, and known often as ‘solo queueing’;
as opposed to joining a game as a pre-configured team) and trust that the Magic
Circle is being maintained by the game and that the other players are there to play
with a lusory attitude.

The very scale of these games (e.g., for League of Legends several hundred
thousand simultaneous games - each of 20–45min - at any instant) and their player
bases require an automated, computational-based solution. One which monitors and
models each player’s behaviour and motivation in the short-term (e.g., within each
game) and on a longer-term basis. Most critically a game capable of supporting a
range of different motivations-for-play and able to offer roles and opportunities for
players with different goals and motivations for play - while still maintaining a fair,
enjoyable and safe gaming experience for all participants.

1Steam is a desktop PC (primarily) based application for purchasing and maintaining a library ‘in
the cloud’ of digital games. It is the single most popular and highest volume tool for this purpose
in the Windows PC environment and manages some of the most successful/popular games - but not
all such games.
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7.5 TA Mixed Reality Games

At the time of writing Pokemon Go from Niantic/Nintendo (The Pokemon Com-
pany [24]) has been released for less than one month (in most of the world less
than that period). A mobile (Android or iOS) based game, it has proven a social
phenomenon receiving massive amounts of media coverage due to its impact upon
social behaviour and use of public spaces, and proving to be immensely popular
(e.g., App Annie reports over 100million downloads of the application in the first 3
weeks of release [25]).

Pokemon Go is labelled an Augmented Reality game; but is more accurately a
mixed reality, or indeedRealityAugmentedGame (RAG; i.e., the virtual environment
of the game is the primary focus and stimulus, while the real-world serves to augment
that imaginary space). Abstracting out particulars, players move through the physical
environment but observe a virtualised version of the physical world upon theirmobile
device. It is in this virtual space that players interact with monsters (wild Pokemon)
and locations of interest (gyms and PokeStops - these later corresponding to actual
locations in the physical world such as a museum or other major building). Hence
the primary cognitive focus of players is upon the virtual space displayed upon their
device - not the real-world around them.

Already there can be found multiple news stories concerning misadventure suf-
fered by players of Pokemon Go - deaths (struck by a vehicle, wandered into a
dangerous area of the city and murdered), injury (falling off a cliff or being struck
by falling debris), robbery (criminals waiting at out-of-the-way locations frequented
by players and robbing them of their cash and personal effects) - as well as less trau-
matic but also non-trivial social impacts (stresses on public services and facilities,
disturbances to residents and special locations in the real-world such as cemeteries
or places of particular reverence).

As with the previous examples, there is a clear need to recast such mixed reality
games - where so much of a player’s finite cognitive capacity is dedicated to the
game or imaginary space - as a trusted autonomous relationship between player(s)
and the game. Future versions of RAGs should work to provide a safe - trusted -
experience for the players. This in turn will require a computationally intelligent
game; one not just aware of the virtual world but the physical world through which
the player moves; and which utilises that information to keep its player safe (and the
world safe from the actions of its player).

7.6 Discussion: TA Games

Several examples of significant changes to the way games are designed, developed
and played have been proposed based upon adopting a TrustedAutonomy framework
or approach. In particular Trusted Autonomous AI to play with, against and as occu-
pants of the virtual works; Trusted Autonomous games that self-modify to present
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the play opportunities of most interest to the players; Trusted Autonomous online
game communities that offer fulfilment for different player types while maintaining
a safe and trustworthy environment; and Trusted Autonomous Reality Augmented
Games (RAGs) that keep their players safe in the real-world while much of their
players’ attention is focused upon the virtual space.

Common to all approaches is the need for games to become ‘smart’ and become
‘aware’ - to be cognisant (sense ormonitor) the player, their community, and environ-
ment; and to use computational techniques to dynamically alter their own behaviour
and interaction with the player so as to satisfy those goals.

The challenges are large; but with continuing advances in sensor technologies,
modelling techniques & algorithms, computational power, big data and cloud com-
puting, and HCI this vision is realisable and promises an exciting new era for digital
gaming.

References

1. G. Santayana, The Sense of Beauty Being the Outlines of Æthetic Theory (Charles Scribner’s
sons, New York, 1896)

2. K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals (MIT Press, Cambridge
USA, 2004)

3. J.B. Gilmore. Child’s Play, chapter Play: A special behavior. (Wiley, New York, 1971), pp.
311–325

4. J. Schell, The Art of Game Design: A Book of Lenses (CRC Press, USA, 2008)
5. E.M. Avedon, B. Sutton-Smith, The Study of Games (Wiley, Hoboken, 1971)
6. J. Huizinga, Homo Ludens: A Study of the Play Element in Culture (Beacon Press Books,

Boston USA, 1950)
7. A. Rollings, D. Morris, Game Architecture and Design with Cdrom (Coriolis, Scottsdale,

Arizona, 2000)
8. B. Suits. 2005: The Grasshopper: Games, Life and Utopia. Toronto: University of Toronto

Press. Repr. Peterborough, Broadview Press, ON 2005
9. G. Costikyan. I have no words & i must design, http://www.costik.com/nowords2002.pdf,

2002. Accessed 2/8/2016
10. T. Fullerton. Game Design Workshop: A Playcentric Approach to Creating Innovative Games.

Morgan Kaufmann, 2008
11. J. McGonigal, Reality is Broken: Why Games Make us Better and how they can Change the

World (Penguin Books, London, 2011)
12. E. Gibney, Google ai algorithmmasters ancient game of go. Nature 529(7587), 445–446 (2016)
13. T. Chouard. The go files: ai computer clinches victory against go champion. Nature, News &

Comments, http://www.nature.com/news/the-go-files-ai-computer-clinches-victory-against-
go-champion-1, March 2016. Accessed 1/8/2016

14. H. Gardner, Frames of Mind: The Theory of Multiple Intelligences (Basic Books, New York,
1993)

15. K.S. McGrew.Contemporary Intellectual Assessment: Theories, Tests, and Issues, chapter The
Cattell-Horn-Carroll Theory of Cognitive Abilities: Past, Present, and Future, (Guilford Press,
New York, 2005) pp. 151–179

16. D. Premack, G. Woodruff, Does the chimpanzee have a theory of mind? Behavioral Brain Sci.
1(04), 515–526 (1978)

17. A.M. Turing, Computing machinery and intelligence. Mind 59(236), 433–460 (1950)

http://www.costik.com/nowords2002.pdf
http://www.nature.com/news/the-go-files-ai-computer-clinches-victory-against-go-champion-1
http://www.nature.com/news/the-go-files-ai-computer-clinches-victory-against-go-champion-1


132 M. Barlow

18. M. Czsentmihalyi, Flow: The Psychology of Optimal Experience (Harper and Row, New York,
1990)

19. M. Hendrikx, S. Meijer, J. Van Der Velden, A. Iosup. Procedural content generation for games:
a survey. ACM Trans Multimedia Computing, Communications Appl (TOMM), 9(1):1, (2013)

20. P. Gervás, Computational drafting of plot structures for russian folk tales. Cognitive Comput.
8(2), 187–203 (2016)

21. R. Games. Our games, http://www.riotgames.com/our-games, 2016. Accessed 4/8/2016
22. Steamcharts. Top games by current players, http://steamcharts.com/top. Accessed 4/8/2016
23. B. Maher, Can a video game company tame toxic behaviour? Nature 531(7596), 568 (2016)
24. The PokemonCompany. Pokemon go, http://www.pokemongo.com/, 2016.Accessed 4/8/2016
25. S. Singh. Pokemon go: An opportunity, not a threat. App Annie, July 29 2016, https://www.

appannie.com/insights/mobile-strategy/pokemon-go-an-opportunity-not-a-threat/, 2016.
Accessed 4/8/2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.riotgames.com/our-games
http://steamcharts.com/top
http://www.pokemongo.com/
https://www.appannie.com/insights/mobile-strategy/pokemon-go-an-opportunity-not-a-threat/
https://www.appannie.com/insights/mobile-strategy/pokemon-go-an-opportunity-not-a-threat/
http://creativecommons.org/licenses/by/4.0/


Part II
Trust



Chapter 8
The Role of Trust in Human-Robot
Interaction

Michael Lewis, Katia Sycara and Phillip Walker

8.1 Introduction

Robots and other complex autonomous systems offer potential benefits through
assisting humans in accomplishing their tasks. These beneficial effects, however,
may not be realized due to maladaptive forms of interaction. While robots are only
now being fielded in appreciable numbers, a substantial body of experience and
research already exists characterizing human interactions with more conventional
forms of automation in aviation and process industries.

In human interaction with automation, it has been observed that the human may
fail to use the system when it would be advantageous to do so. This has been
called disuse (underutilization or under-reliance) of the automation [97]. People also
have been observed to fail to monitor automation properly (e.g. turning off alarms)
when automation is in use, or they accept the automation’s recommendations and
actions when inappropriate [71, 97]. This has been called misuse, complacency, or
over-reliance. Disuse can decrease automation benefits and lead to accidents if, for
instance, safety systems and alarms are not consulted when needed. Another mal-
adaptive attitude is automation bias [33, 55, 77, 88, 112], a user tendency to ascribe
greater power and authority to automated decision aids than to other sources of advice
(e.g. humans). When the decision aid’s recommendations are incorrect, automation
bias may have dire consequences [2, 78, 87, 89] (e.g. errors of omission, where the
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user does not respond to a critical situation, or errors of commission, where the user
does not analyze all available information but follows the advice of the automation).

Both naïve and expert users show these tendencies. In [128], it was found that
skilled subject matter experts hadmisplaced trust in the accuracy of diagnostic expert
systems. (see also [127]). Additionally the Aviation Safety Reporting System con-
tains many reports from pilots that link their failure to monitor to excessive trust in
automated systems such as autopilots or FMS [90, 119]. On the other hand, when
corporate policy or federal regulations mandate the use of automation that is not
trusted, operators may “creatively disable” the device [113]. In other words: disuse
the automation.

Studies have shown [64, 92] that trust towards automation affects reliance (i.e.
people tend to rely on automation they trust and not use automation they do not
trust). For example, trust has frequently been cited [56, 93] as a contributor to human
decisions about monitoring and using automation. Indeed, within the literature on
trust in automation, complacency is conceptualized interchangeably as the overuse
of automation, the failure to monitor automation, and lack of vigilance [6, 67, 96].
For optimal performance of a human-automation system, human trust in automation
should be well-calibrated. Both disuse and misuse of the automation has resulted
from improper calibration of trust, which has also led to accidents [51, 97].

In [58], trust is conceived to be an “attitude that an agent (automation or another
person) will help achieve an individual’s goals in a situation characterized by uncer-
tainty and vulnerability.” Amajority of research in trust in automation has focused on
the relation between automation reliability and operator usage, oftenwithoutmeasur-
ing the intervening variable, trust. The utility of introducing an intervening variable
between automation performance and operator usage, however, lies in the ability to
make more precise or accurate predictions with the intervening variable than with-
out it. This requires that trust in automation be influenced by factors in addition to
automation reliability/performance. The three dimensional (Purpose, Process, and
Performance) model proposed by Lee and See [58], for example, presumes that trust
(and indirectly, propensity to use) is influenced by a person’s knowledge of what the
automation is supposed to do (purpose), how it functions (process), and its actual per-
formance. While such models seem plausible, support for the contribution of factors
other than performance has typically been limited to correlation between question-
naire responses and automation use. Despite multiple studies of trust in automation,
the conceptualization of trust and how it can be reliably modeled and measured is
still a challenging problem.

In contrast to automation where system behavior has been pre-programmed and
the system performance is limited to the specific actions it has been designed to
perform, autonomous systems/robots have been defined as having intelligence-based
capabilities that would allow them to have a degree of self governance, which enables
them to respond to situations that were not pre-programmed or anticipated in the
design. Therefore, the role of trust in interactions between humans and robots is
more complex and difficult to understand.

In this chapter, we present the conceptual underpinnings of trust in Sect. 8.2, and
then discussmodels of, and the factors that affect, trust in automation in Sects. 8.3 and
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8.4, respectively. Next, we will discuss instruments for measuring trust in Sect. 8.5,
before moving on to trust in the context of human-robot interaction (HRI) in Sect. 8.6
both in how humans influence robots, and vice versa. We conclude in Sect. 8.7 with
open questions and areas of future work.

8.2 Conceptualization of Trust

Trust has been studied in a variety of disciplines (including social psychology, human
factors, and industrial organization) for understanding relationships between humans
or between human and machine. The wide variety of contexts within which trust
has been studied leads to various definitions and theories of trust. The different
context within which trust has been studied has led to definitions of trust as an
attitude, an intention, or a behavior [72, 76, 86]. Both within the inter-personal
literature and human-automation trust literature, a widely accepted definition of trust
is lacking [1]. However, it is generally agreed that trust is best conceptualized as a
multidimensional psychological attitude involving beliefs and expectations about the
trustee’s trustworthiness derived from experience and interactions with the trustee
in situations involving uncertainty and risk [47]. Trust has also been said to have
both cognitive and affective features. In the interpersonal literature, trust is also
seen involving affective processes, since trust development requires seeing others as
personally motivated by care and concern to protect the trustor’s interests [65]. In the
automation literature, cognitive (rather than affective) processesmay play a dominant
role in the determination of trustworthiness, i.e., the extent to which automation is
expected to do the task that it was designed to do [91]. In the trust in automation
literature, it has been argued that trust is best conceptualized as an attitude [58] and
a relatively well accepted definition of trust is: “...an attitude which includes the
belief that the collaborator will perform as expected, and can, within the limits of
the designer’s intentions, be relied on to achieve the design goals” [85].

8.3 Modeling Trust

The basis of trust can be considered as a set of attributional abstractions (trust dimen-
sions) that range from the trustee’s competence to its intentions. Muir [91] com-
bined the dimensions of trust from two works ([4] and [100]). Barber’s model [4]
is in terms of human expectations that form the basis of trust between human
and machine. These expectations are persistence, technical competency, and fidu-
ciary responsibility. Although in the subsequent literature, the number and concepts
in the trust dimensions vary [58], there seems to be a convergence on the three
dimensions—Purpose, Process, and Performance [58]—mentioned earlier, along
with correspondences of those to earlier concepts, such as the dimensions in [4], and
those of Ability, Integrity, and Benevolence [76]. Ability is the trustee competence in
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performing expected actions, benevolence is the trustee intrinsic and positive inten-
tions towards the trustor, and integrity is trustee’s adherence to a set of principles
that are acceptable to the trustor [76].

Both trust in automation [92] and interpersonal relations literature
[37, 53, 84, 107] agree that trust relations are dynamic and varying over time. There
are three phases that characterize trust over time: trust formation, where trustors
choose to trust trustees and potentially increase their trust over time, trust dissolu-
tion, where trustors decide to lower their trust in trustees after a trust violation has
occurred, and trust restorationwhere trust stops decreasing after a trust violation and
gets restored (although potentially not to the same level as before the trust violation).
Early in the relationship, the trust in the system is based on the predictability of
the system’s behavior. Work in the literature has shown shifts in trust in response
to changes in properties and performance of the automation [56, 91]. When the
automation was reliable, operator trust increased over time and vice versa. Varying
levels of trust were also positively correlated with the varying levels of automation
use. As trust decreased, for instance, manual control became more frequent. As the
operator interacts with the system, he/she attributes dependability to the automation.
Prolonged interaction with the automation leads the operator to make generalizations
about the automation and broader attributions about his belief in the future behavior
of the system (faith). There is some difference in the literature as to when exactly
faith develops in the dynamic process of trust development. Whereas [100] argue
that interpersonal trust progresses from predictability to dependability to faith, [92]
suggest that for trust in automation, faith is a better predictor of trust early rather
than late in the relationship.

Some previous work has explored trust with respect to automation versus human
trustee [64]. Their results indicate (a) the dynamics of trust are similar, in that faults
diminish trust both towards automation or another human, (b) the sole predictor of
reliance on automation was the difference between trust and self-confidence, and
(c) participants, in human-human experiments, were more likely to delegate a task to
a human when the human was thought to have a low opinion of their own trustwor-
thiness. In other words, when participants thought their own trustworthiness in the
eyes of others was high, they were more likely to retain control over a task. However,
trustworthiness played no role when the collaborative partner was an automated
controller, i.e. only participants’ own confidence in their performance determined
their decision to retain/obtain control. Other work on trust in humans versus trust
in automation [61] explored the extent to which participants trusted identical advice
given by an expert system under the belief that it was given by a human or a com-
puter. The results of these studies were somewhat contradictory however. In one
study, participants were more confident in the advice of the human (though their
agreement with the human advice did not vary versus their agreement on the expert
system’s advice), while in the second study, participants agreed more with the advice
of the expert system, but had less confidence in the expert system. Similar contra-
dictory results have been shown in HRI studies, where work indicated that errors by
a robot did not affect participants’ decisions of whether or not to follow the advice
of a robot [111], yet did affect their subjective reports of the robot’s reliability and
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trustworthiness [104]. Study results by [71], however, indicated that reliance on a
human aid was reduced in situations of higher risk.

8.4 Factors Affecting Trust

The factors that are likely to affect Trust in automation have generally been cate-
gorized as those pertaining to automation, the operator, and the environment. Most
work on factors that have been empirically researched pertains to characteristics of
the automation. Here we briefly present relevant work on the most important of these
factors.

8.4.1 System Properties

The most important correlates of use of automation have been system reliability and
effects of system faults. Reliability typically refers to automation that has some error
rate—for example, misclassifying targets. Typically this rate is constant and data is
analyzed using session means. Faults are typically more drastic, such as controller
that fails making the whole system behave erratically. Faults are typically single
events and studied as time series.

System reliability: Prior literature has provided empirical evidence that there is a
relationship between trust in automation and the automation’s reliability [85, 96–98,
102]. Research shows [86] that declining system reliability can lead to systematic
decline in trust and trust expectations, and most crucially, these changes can be
measuredover time.There is also someevidence that only themost recent experiences
with the automation affect trust judgments [51, 56].

System faults: System faults are a form of system reliability, but are treated sep-
arately because they concern discrete system events and involve different experi-
mental designs. Different aspects of faults influence the relation between trust and
automation. Lee and Moray [56] showed that in the presence of continual system
faults, trust in the automation reached its lowest point only after six trials, but trust
did recover gradually even as faults continued. The magnitude of system faults has
differential effects on trust (smaller faults had minimal effect on trust while large
faults negatively affected trust and were slower to recover the trust). Another find-
ing [92] showed that faults of varying magnitude diminished trust more than large
constant faults. Additionally, it was found that when faults occurred in a particular
subsystem, the corresponding distrust did spread to other functions controlled by
the same subsystem. The distrust did not, however, spread to independent or similar
subsystems.
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System predictability: Although system faults affect the trust in the automation,
this happens when the human has little a priori knowledge about the faults. Research
has shown that when people have prior knowledge of faults, these faults do not
necessarily diminish trust in the system [64, 102]. A plausible explanation is that
knowing that the automation may fail reduces the uncertainty and consequent risk
associated with use of the automation. In other words, predictability may be as (or
more) important as reliability.

System intelligibility and transparency: Systems that can explain their reasoning
will be more likely to be trusted, since they would be more easily understood by their
users [66, 117, 121, 122]. Such explanatory facility may also allow the operator to
query the system in periods of low system operation in order to incrementally acquire
and increase trust.

Level of Automation: Another factor that may affect trust in the system is its level
of automation (i.e. the level of functional allocation between the human and the
system). It has been suggested [91, 93] that system understandability is an important
factor for trust development. In their seminal work on the subject [116], Sheridan and
Verplank propose a scale for assessing the level of automation in a system from 0 to
10, with 0 being no autonomy and 10 being fully autonomous. Since higher levels of
automation are more complex, thus potentially more opaque to the operator, higher
levels of automation may engender less trust. Some limited empirical work suggests
that different levels of automation may have different implications for trust [86].
Their work based on Level 3 [116] automation did not show same results when
conducted with Level 7 (higher) automation.

8.4.2 Properties of the Operator

Propensity to trust: In the sociology literature [105] it has been suggested that people
have different propensity to trust others and it has been hypothesized that this is
a stable personality trait. In the trust in automation literature, there is very limited
empirical work on the propensity to trust. Some evidence is provided in [97] suggests
that operator’s overall propensity to trust is distinct from trust towards a specific
automated system. In other words, it may be the case that an operator has high
propensity to trust in automation in general, but faced with a specific automated
system, their trust may be very low.

Self Confidence: Self-confidence is a factor of individual difference and one of the
few operator characteristics that has been studied in the trust in automation literature.
Work in [57] suggested that when trust was higher than self-confidence, automation,
rather than manual control would be used and vice versa when trust was lower than
self-confidence. However, later work [86], which was conducted with a higher level
of automation than [57], did not obtain similar results. It was instead found that
trust was influenced by properties of the system (e.g., real or apparent false diag-
noses) while self-confidence was influenced by operator traits and experiences (e.g.
whether they had been responsible for accidents). Furthermore, it was also found that
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self-confidence was not affected by system reliability. This last finding was also sug-
gested in the work of [64] which found that self-confidence was not lowered by shifts
in automation reliability.

Individual Differences and Culture: It has been hypothesized, and supported by
various studies, that individual differences [57, 74, 80, 119] and culture [50] affect
the trust behavior of people. The interpersonal relations literature has identifiedmany
different personal characteristics of a trustor, such as self-esteem [105, 106], secure
attachment [17], and motivational factors [54] that contribute to the different stages
in the dynamics of trust. Besides individual characteristics, socio-cultural factors
that contribute to differences in trust decisions in these different trust phases have
also been identified [8, 10, 32, 37]. For example, combinations of socio-cultural
factors that may result in quick trust formation (also called “swift trust” forma-
tion in temporary teams [83]) are time pressure [25] and high power distance with
authority [16]. People in high power distance (PD) societies expect authority figures
to be benign, competent and of high integrity. Thus people in high power distance
societies will engage in less vigilance and monitoring for possible violations by
authority figures. To the extent then that people of high PD cultures perceive the
automation as authoritative, they should be quick to form trust. On the other hand,
when violations occur, people in high PD cultures should be slow to restore trust once
violations have occurred [11]. Additionally, it has been shown [79] via replication of
Hofstede’s [45] cultural dimensions for a very large-scale sample of pilots, that even
in such a highly specialized and regulated profession, national culture still exerts
a meaningful influence on attitude and behavior over and above the occupational
context.

Todate, only a handful of studies consider cultural factors andpotential differences
in the context of trust in automation, with [99, 125] and [22] being exceptions. As
the use of automation gets increasingly globalized, it is imperative that we gain an
understanding on how trust in automation is conceptualized across cultures and how
it influences operator reliance and use of automation, and overall human-system
performance.

8.4.3 Environmental Factors

In terms of environmental factors that influence trust in automation, risk seems most
important. Research in trust in automation suggests that reliance on automation is
modulated by the risk present in the decision to use the automation [101]. People
are more averse to using the automation if negative consequences are more probable
and, once trust has been lowered, it takes people longer to re-engage the automation
in high-risk versus low risk situations [102]. However, knowing the failure behavior
of the automation in advance maymodify the perception of risk, in that people’s trust
in the system does not decrease [101].
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8.5 Instruments for Measuring Trust

While a large body of work on trust in automation and robots has developed over
the past two decades, standardized measures have remained elusive with many
researchers continuing to rely on short idiosyncraticallyworded questionnaires. Trust
(in automation) refers to a cognitive state or attitude, yet it hasmost often been studied
indirectly through its purported influence on behavior often without any direct cogni-
tive measure. The nature and complexity of the tasks and failures studied has varied
greatly ranging from simple automatic target recognition (ATR) classification [33], to
erratic responses of a controller embedded within a complex automated system [57]
to robots misreading QR codes [30]. The variety of reported effects (automation
bias, complacency, reliance, compliance, etc.) mirror these differences in tasks and
scenarios [27] and [28] have criticized the very construct of trust in automation on
the basis of this diversity as an unfalsifiable “folk model” without clear empirical
grounding. Although the work cited in the reply to these criticism in [98] as well
as the large body of work cited in the review by [96] have begun to examine the
interrelations and commonalities of concepts involving trust in automation, empiri-
cal research is needed to integrate divergent manifestations of trust within a single
task/test population so that common and comparable measures can be developed.

Most “measures” of trust in automation since the original study [92] have been
created for individual studies based on face validity and have not in general benefited
from the same rigor in development and validation that has characterizedmeasures of
interpersonal trust. “Trust in automation” has been primarily understood through its
analogy to interpersonal trust andmore sophisticated measures of trust in automation
have largely depended on rationales and dimensions developed for interpersonal
relations, such as ability, benevolence, and integrity.

Three measures of trust in automation, Empirically Derived (ED), Human-
Computer Trust (HTC), and SHAPE Automation Trust Index (SATI) have benefited
from systematic development and validation. The Empirically Derived 12 item scale
developed by [46]was systematically developed, subjected to a validation study [120]
and used in other studies [75]. In [46], they developed their scale in three phases
beginning with a word elicitation task. They extracted a 12-factor structure used to
develop a 12-item scale based on examination of clusters of words. The twelve items
roughly correspond to the classic three dimensions: benevolence (purpose), integrity
(process), and ability (performance).

The Human-Computer Trust (HTC) instrument developed in [72] demonstrated
construct validity and high reliability within their validation sample and has sub-
sequently been used to assess automation in air traffic control (ATC) simulations,
most recently in [68]. Subjects initially identified constructs that they believed would
affect their level of trust in a decision aid. Following refinement and modification
of the constructs and potential items, the instrument was reduced to five constructs
(reliability, technical competence, understandability, faith, and personal attachment).
A subsequent principal components analysis limited to five factors found most scale
items related to these factors.
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The SHAPE Automation Trust Index, SATI, [41] developed by the European
Organization for the Safety of Air Navigation is the most pragmatically oriented
of the three measures. Preliminary measures of trust in ATC systems were con-
structed based on literature review and a model of the task. This resulted in a seven
dimensional scale (reliability, accuracy, understanding, faith, liking, familiarity, and
robustness). The measure was then refined in focus groups with air traffic controllers
from different cultures rating two ATC simulations. Scale usability evaluations, and
construct validity judgments were also collected. The instrument/items have reported
reliabilities in the high 80s but its constructs have not been empirically validated.

All three scales have benefited from empirical study and systematic development
yet each has its flaws. The ED instrument in [46], for instance, addresses trust in
automation in the abstract without reference to an actual system and as a conse-
quence appears to be more a measure of propensity to trust than trust in a specific
system. A recent study [115] found scores on the ED instrument to be unaffected
by reliability manipulations that produced significant changes in ratings of trust on
other instruments. The HTC was developed from a model of trust and demonstrated
agreement between items and target dimensions but stopped short of confirmatory
factor analysis. Development of the SATI involved the most extensive pragmatic
effort to adapt items so they made sense to users and captured aspects of what users
believed contributed to trust. However, SATI development neglected psychometric
tests of construct validity.

A recent effort [21, 23] has led to a general measure of trust in automation vali-
dated across large populations in three diverse cultures, US, Taiwan and Turkey, as
representative of Dignity, Face, and Honor cultures [63]. The Cross-cultural measure
of trust is consistent with the three (performance, purpose, process) dimensions of
[58, 81] and contains two 9 item scales, one measuring the propensity to trust as
in [46] and the othermeasuring trust in a specific system. The second scale is designed
to be administered repeatedly to measure the effects of manipulations expected to
affect trust while the propensity scale is administered once at the start of an experi-
ment. The scales have been developed and validated for US, Taiwanese, and Turkish
samples and are based on 773 responses (propensity scale) and 1673 responses (spe-
cific scale).

The Trust Perception Scale-HRI [114, 115] is a psychometrically-developed 40
item instrument intended to measure human trust in robots. Items are based on data
collected identifying robot features from pictures and their perceived functional char-
acteristics.While developmentwasguidedby the triadic (human, robot, environment)
model of trust inspired by the meta-analysis in [43], a factor analysis of the resulting
scale found four components corresponding roughly to capability, behavior, task,
and appearance. Capability and behavior correspond to two of the dimensions com-
monly found in interpersonal trust [81] and trust in automation [58],while appearance
may have a special significance for trust in robots. The instrument was validated in
same-trait and multi-trait analyses producing changes in rated trust associated with
manipulation of robot reliability. The scale was developed based on 580 responses
and 21 validation participants.
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The HRI Trust Scale [131] was developed from items based on five dimensions
(team configuration, team process, context, task, and system) identified by 11 sub-
ject matter experts (SMEs) as likely to affect trust. A 100 participant Mechanical
Turk sample was used to select 37 items representing these dimensions. The HRI
Trust Scale is incomplete as a sole measure of trust and is intended to be paired
with Rotter’s [105] interpersonal trust inventory when administered. While Lee and
See’s dimensions [58] other than “process” are missing from the HRI scale, they are
represented in Rotter’s instrument.

Because trust in automation or robots is an attitude, self-report through
psychometric instruments such as these provides themost directmeasurement. Ques-
tionnaires, however, suffer from a number of weaknesses. Because they are intrusive,
measurements cannot be conveniently taken during the course of a task but only after
the task is completed. This may suffice for automation such as ATR where targets
are missed at a fixed rate and the experimenter is investigating the effect of that rate
on trust [33], but it does not work in measuring moment to moment trust in a robot
reading QR codes to get its directions [30].

8.6 Trust in Human Robot Interaction

Robots are envisioned to be able to process many complex inputs from the
environment and be active participants in many aspects of life, including work envi-
ronments, home assistance, battlefield and crisis response, and others. Therefore,
robots are envisioned to transition from tool to teammate as humans transition from
operator to teammate in an interaction more akin to human-human teamwork. These
envisioned transitions raise a number of general questions: How would human inter-
action with the robot be affected? How would performance of the human-robot team
be affected?Howwould human performance or behavior be affected?Although there
are numerous tasks, environments, and situations of human-robot collaboration, in
order to best clarify the role of trust we distinguish two general types of interactions
of humans and robots: performance-based interactions, where the focus is on the
human influencing/controlling the robot so it can perform useful tasks for the human,
and social-based interactions, where the focus is on how the robot’s behavior influ-
ences the human’s beliefs and behavior. In both these cases, the human is the trustor
and the robot the trustee. In particular, in performance based interactions there is
a particular task with a clear performance goal. An example of performance-based
interactions is where human and robot collaborate in manufacturing assembly, or
a UAV performing surveillance and recognition of victims in a search and rescue
mission. Here measures of performance could be accuracy and timing to complete
the task. On the other hand, in social interactions, the performance goal is not as
crisply defined. An example of such a task is the ability of a robot to influence a
human to reveal private knowledge, or how a robot can influence a human to take
medicine or do useful exercises.
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8.6.1 Performance-Based Interaction: Humans Influencing
Robots

A large body of HRI research investigating factors thought to affect behavior via
trust, such as reliability, rely strictly on behavioral measures without reference to
trust. Meyer’s [82] expected value (EV) theory of alarms provides one alternative by
describing the human’s choice as one between compliance (responding to an alarm)
and reliance (not responding in the absence of an alarm). The expected values of these
decisions are determined by the utilities associated with an uncorrected fault, the cost
of intervention and the probabilities of misses (affecting reliance) and false alarms
(affecting compliance). Research in [31], for example, investigated the effects of
unmanned aerial vehicle (UAV) false alarms andmisses on operator reliance inferred
from longer reaction times for misses and compliance inferred from shorter reaction
times to alarms. While reliance/compliance effects were not found, higher false
alarm rates correlated with poorer performance on a monitoring task, while misses
correlated with poorer performance on a parallel inspection task. A similar study
by [20] of unmanned ground vehicle (UGV) control found participants with higher
perceived attentional control were more adversely affected by false alarms (under-
compliance) while those with low perceived attentional control were more strongly
affected bymisses (over-reliance).Reliance and compliance canbemeasured inmuch
the same way for homogeneous teams of robots as illustrated by a follow up study
of teams of UGVs [19] of similar design and results. A similar study [26] involved
multiple UAVsmanipulating ATR reliability and administering a trust questionnaire,
again finding that ratings of trust increased with reliability.

Transparency, common ground, or shared mental models involve a second con-
struct (“process” [58] or “integrity” [76]) believed to affect trust. According to
these models, the extent to which a human can understand the way in which an
autonomous system works and predict its behavior will influence trust in the sys-
tem. There is far less research on effects of transparency, with most involving level
of automation manipulations. An early study [60] in which all conditions received
full information found best performance for an intermediate level of automation
that facilitated checks of accuracy (was transparent). Participants, however, made
substantially greater use of a higher level of automation that provided an opaque
recommendation. In this study, ratings of trust were affected by reliability but not
transparency. More recent studies have equated transparency with additional infor-
mation providing insight into robot behavior. Researchers in [9] compared conditions
in which participants observed a simulated robot represented on a map by a status
icon (level of transparency 1), overlaid with environmental information such as ter-
rain (level 2), or with additional uncertainty and projection information (level 3).
Note that these levels are distinct from Sheridan’s Levels of Automation mentioned
previously. What might appear as erratic behavior in level 1, for example, might be
“explained”’ by the terrain being navigated in level 2. Participant’s ratings of trust
were higher for levels 2 and 3. A second study manipulated transparency by com-
paring minimal (such as static image) contextual (such as video clip) and constant
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(such as video) information for a simulated robot team mate with which participants
had intermittent interactions but found no significant differences in trust. In [126],
researchers took a different approach to transparency by having a simulated robot
provide “explanations” of its actions. The robot guided by a POMDP model can
make different aspects of its decision making such as beliefs (probability of danger-
ous chemicals in building) or capabilities (ATR has 70% reliability) available to its
human partner. Robot reliability affected both performance and trust. Explanations
did not improve performance but did increase trust among those in the high relia-
bility condition. As these studies suggest, reliability appears to have a large effect
on trust, reliance/compliance, and performance, while transparency about function
has a relatively minor one, primarily influencing trust. The third component of trust
in robot’s “purpose” [58] or “benevolence” [76] has been attributed [69, 70, 95] to
“transparency” as conveyed by appearance discussed in Sect. 8.6.2. By this interpre-
tation, matching human expectations aroused by a robot’s appearance to its purpose
and capabilities canmake interactionsmore transparent by providing amore accurate
model to the human.

Studies discussed to this point have treated trust as a dependent variable to be
measured at the end of a trial and have investigated whether or not it had been
affected by characteristics of the robot or situation. If trust of a robot is modified
through a process of interaction, however, it must be continuously varying as evi-
dence accumulates of its trustworthiness or untrustworthiness. This was precisely
the conception of trust investigated by Lee andMoray [56] in their seminal study but
has been infrequently employed since. An recent example of such a study is reported
in [29] where a series of experiments addressing temporal aspects of trust involving
levels of automation and robot reliability have been conducted using a robot naviga-
tion and barriers task. In that task, a robot navigates through a course of boxes with
labels that the operator can read through the robot’s camera and QR codes presumed
readable by the robot. The labels contain directions such as “turn right” or “U turn”.
In automation modes, robots follow a predetermined course with “failures” appear-
ing to be misread QR codes. Operators can choose either the automation mode or a
manual mode in which they determine the direction the robot takes. An initial exper-
iment [29] investigated the effects of reliability drops at different intervals across a
trial, finding that decline in trust as measured by post trial survey was greatest if the
reliability decline occurred in the middle or final segments. In subsequent experi-
ments, trust ratings were collected continuously by periodic button presses indicating
increase or decrease in trust. These studies [30, 49] confirmed the primacy-recency
bias in episodes of unreliability and the contribution of transparency in the form of
confidence feedback from the robot.

Work in [24] collected similar periodic measures of trust using brief periodically
presented questionnaires to participants performing a multi-UAV supervision task
to test effects of priming on trust. These same data were used to fit a model similar
to that formalized by [39] using decision field theory to address the decision to rely
on the automation/robot’s capabilities or to manually intervene based on the balance
between the operator’s self-confidence and her trust in the automation/robot. The
model contains parameters characterizing information conveyed tooperator, inertia in



8 The Role of Trust in Human-Robot Interaction 147

changing beliefs, noise, uncertainty, growth-decay rates for trust and self-confidence,
and an inhibitory threshold for shiftingbetween responses.Byfitting these parameters
to human subject data, the time course of trust (as defined by the model) can be
inferred. An additional study of UAV control [38] has also demonstrated good fits
for dynamic trust models with matches within 2.3% for control over teams of UGVs.
By predicting effects of reliability and initial trust on system performance, such
models might be used to select appropriate levels of automation or provide feedback
to human operators. In another study involving assisted driving [123], the researchers
use both objective (car position, velocity, acceleration, and lane marking scanners)
and subjective (gaze detection and foot location) to train a mathematical model to
recognize and diagnose over-reliance on the automation. The authors show that their
models can be applied to other domains outside automation-assisted driving as well.

Willingness to rely on the automation has been found in the automation literature
to correlate with user’s self-confidence in their ability to perform the task [57]. It has
been found that if a user is more confident in their own ability to perform the task,
they will take control of the automation more frequently if they perceive that the
automation does not perform well. However, as robots are envisioned to be deployed
in increasingly risky situations, it may be the case that a user (e.g. a soldier) may
elect to use a robot for bomb disposal irrespective of his confidence in performing
the task. Another factor that has considerably influenced use of automation is user
workload. It has been found in the literature that users exhibit over-reliance [7, 40]
on the automation in high workload conditions.

Experiments in [104] show that people over-trusted a robot in fire emergency
evacuation scenarios conducted with a real robot in a campus building, although
the robot was shown to be defective in various ways (e.g. taking a circuitous route
rather then the efficient route in guiding the participant in a waiting room before
the emergency started). It was hypothesized by the experimenters that the partic-
ipants, having experienced an interaction with a defective robot, would decrease
their trust (as opposed to a non-defective robot), and also that participants’ self-
reported trust would correlate with their behavior (i.e their decision to follow the
robot or not). The results showed that, in general, participants did not rate the non-
efficient robot as a bad guide, and even the ones that rated it poorly still followed it
during the emergency. In other words, trust rating and trust behavior were not corre-
lated. Interestingly enough, participants in a previous study with similar scenarios of
emergency evacuation in simulation by the same researchers [103] behaved differ-
ently, namely participants rated less reliant simulated robots as less trustworthy and
were less prone to follow them in the evacuation. The results from the simulation
studies of emergency evacuation, namely positive correlation between participants’
trust assessment and behavior, are similar to results in low risk studies [30]. These
contradictory results point strongly that more research needs to be done to refine
robot, operator and task-context variables and relations that would lead to correct
trust calibration, and better understanding of the relationship between trust and per-
formance in human robot interaction.

One important issue is how an agent forms trust in agents it has not encountered
before. One approach from the literature in multiagent systems (MAS) investigates
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how trust forms in ad hoc groups, where agents that had not interacted before come
together for short periods of time to interact and achieve a goal, after which they
disband. In such scenarios, a decision tree model based on both trust and other
factors (such as incentives and reputation) can be used [13]. A significant problem
in such systems, known as the cold start problem, is that when such groups form
there is little to no prior information on which to base trust assessments. In other
words, how does an agent choose who to trust and interact with when they have
no information on any agent? Recent work has focused on bootstrapping such trust
assessments by using stereotypes [12]. Similar to stereotypes used in interpersonal
interactions among humans, stereotypes in MAS are quick judgements based on
easily observable features of the other agent. However, whereby human judgements
are often cloudedbycultural or societal biases, stereotypes inMAScanbe constructed
in a way that maximizes the accuracy. Further work by the researchers in [14] shows
how stereotypes in MAS can be spread throughout the group to improve others’
trust assessments, and can be used by agents to detect unwanted biases received
from others in the group. In [15], the authors show how this work can be used by
organizations to create decision models based on trust assessments from stereotypes
and other historical information about the other agents.

8.6.1.1 Towards Co-adaptive Trust

In other studies [129, 130], Xu and Dudek create an online trust model to allow a
robot or other automation to assess the operator’s trust in the system while a mission
is ongoing, using the results of the model to adjust the automation behavior on the
fly to adapt to the estimated trust level. Their end goal is trust-seeking adaptive
robots, which seek to actively monitor and adapt to the estimated trust of the user
to allow for greater efficiency in human-robot interactions. Importantly, the authors
combined common objective, yet indirect, measures of trust (such as quantity and
type of user interaction), with a subjective measure in the form of periodical queries
to the operator about their current degree of trust.

In an attempt to develop an objective and direct measure of trust the human has in
the system, the authors of [36] use a mathematical decision model to estimate trust
by determining the expected value of decisions a trusting operator would make, and
then evaluate the user’s decisions in relation to this model. In other words, if the
operator deviates largely from the expected value of their decisions, they are said
to be less trusting, and vice versa. In another study [108], the authors use two-way
trust to adjust the relative contribution of the human input to that of the autonomous
controller, as well as the haptic feedback provided to the human operator. They
model both robot-to-human and human-to-robot trust,with lower values of the former
triggering higher levels of force feedback, and lower values of the latter triggering
a higher degree of human control over that of the autonomous robot controller. The
authors demonstrate their model can significantly improve performance and lower
the workload of operators when compared to previous models and manual control
only.
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These studies help introduce the idea of “inverse trust”. The inverse trust problem
is defined in [34] as determining how “an autonomous agent can modify it’s behavior
in an attempt to increase the trust a human operator will have in it”. In this paper, the
authors base thismeasure largely on the number of times the automation is interrupted
by a human operator, and uses this to evaluate the autonomous agent’s assessment
of change in the operator’s trust level. Instead of determining an absolute numerical
value of trust, the authors choose to have the automation estimate changes in the
human’s trust level. This is followed in [35] by studies in simulation validating their
inverse trust model.

8.6.2 Social-Based Interactions: Robots Influencing Humans

Social robotics deals with humans and robots interacting in ways humans typically
interact with each other. In most of these studies, the robot—either by its appear-
ance or its behavior—influences the human’s beliefs about trustworthiness, feelings
of companionship, comfort, feelings of connectedness with the robot, or behavior
(such as whether the human discloses secrets to the robot or follows the robot’s rec-
ommendations). This is distinct from the prior work discussed, such as ATR, where
a robot’s actions are not typically meant to influence the feelings or behaviors of
its operator. These social human-robot interactions contain affective elements that
are closer to human-human interactions. There is a body of literature that looked at
how robot characteristics affected ratings of animacy and other human-like charac-
teristics, as well as trust in the robot, without explicitly naming a performance or
social goal that the robot would perform. It has been consistently found in the social
robotics literature that people tend to judge robot characteristics, such as reliability
and intelligence, based on robot appearance. For example, people ascribe human
qualities to robots that look more anthropomorphic. Another result of people’s ten-
dency to anthropomorphize robots is that they tend to ascribe animacy and intent
to robots. This finding has not been reported just for robots [109] but even for sim-
ple moving shapes [44, 48]. Kiesler and Goetz [52] found that people rated more
anthropomorphic looking robots as more reliable. Castro-Gonzalez et al. [18] inves-
tigated how the combination of movement characteristics with body appearance can
influence people’s attributions of animacy, liekeability, trustworthiness, and unpleas-
antness. They found that naturalistic motion was judged to be more animate, but only
if the robot had a human appearance. Moreover, naturalistic motion improved ratings
of likeability irrespective of the robot’s appearance. More interestingly, a robot with
human-like appearance was rated as more disturbing when its movements were more
naturalistic. Participants also ascribe personality traits to robots based on appearance.
For instance, in [118], robots with spider legs were rated as more aggressive whereas
robots with arms rated as more intelligent than those without arms. Physical appear-
ance is not the only attribute that influences human judgment about robot intelligence
and knowledge. For example, [59] found that robots that spoke a particular language
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(e.g. Chinese) were rated higher in their purported knowledge of Chinese landmarks
than robots that spoke English.

Robot appearance, physical presence [3], and matched speech [94] are likely
to engender trust in the robot [124] found that empathetic language and physical
expression elicits higher trust [62] found that highly expressive pedagogical inter-
faces engender more trust. A recent meta-analysis by Hancock et al. [43] found that
robot characteristics such as reliability, behaviors and transparency influenced peo-
ple’s rating of trust in a robot. Besides these characteristics, the researchers in [43]
also found that anthropomorphic qualities also had a strong influence on ratings of
trust, and that trust in robots is influenced by experience with the robot.

Martelato et al. [73] found that if the robot is more expressive, this encourages
participants to disclose information about themselves. However, counter to their
hypotheses, disclosure of private information by the robot, a behavior that the authors
labelled asmaking the robotmore vulnerable, did not engender increasedwillingness
to disclose on the part of the participants. In a study on willingness of children to
disclose secrets, Bethel et al. [5] found in a qualitative study that preschool children
were found to be as likely to share a secret with an adult as with a humanoid robot.

An interesting study is reported in [111], where the authors studied how errors
performed by the robot affect human trustworthiness and willingness of the human
to subsequently comply with the robot’s (somewhat unusual) requests. Participants
interacted with a home companion robot, in the experimental room that was the
pretend home of the robot’s human owner in two conditions, (a) where the robot
did not make mistakes and (b) where the robot made mistakes. The study found that
the participants’ assessment of robot reliability and trustworthiness was decreased
significantly in the faulty robot condition; nevertheless, the participants were not
substantially influence in their decisions to comply with the robot’s unusual requests.
It was further found that the nature of the request (revocable versus irrevocable)
influenced the participants’ decisions on compliance. Interestingly, the results in this
study also show that participants attributed less anthropomorphism when the robot
made errors, which contradict those found by an earlier study the same authors had
performed [110].

8.7 Conclusions and Recommendations

In this chapter we briefly reviewed the role of trust in human-robot interaction. We
draw several conclusions, the first of which is that there is no accepted definition of
what “trust” is in the context of trust in automation. Furthermore, when participants
are asked to answer questions as to their level of trust in a robot or software automa-
tion, they are almost never given a definition of trust, leaving open the possibility that
different participants are viewing the question of trust differently. From a review of
the literature, it is apparent that robots still have not achieved full autonomy, and still
lack the attributes that would allow them to be considered true teammates by their
human counterparts. This is especially true because the literature is largely limited to
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simulation, or to specific, scripted interactions in the real world. Indeed, in [42], the
authors argue that without human-like mental models and a sense of agency, robots
will never be considered equal teammates within a mixed human-robot team. They
argue that the reason researchers include robots in common HRI tasks is due to their
ability to complement the skills of humans. Yet, because of the tendency of humans
to anthropomorphize things they interact with, the controlled interactions researchers
develop for HRI studies are more characteristic of human-human interactions. While
this tendency to anthropomorphize can be helpful in some cases, it poses a serious
risk if this naturally gives humans a higher degree of trust in robots than is warranted.
The question of how a robot’s performance influences anthropomorphization is also
unclear—with recent studies finding conflicting results [110, 111].

There is a general agreement that the notion of trust involves vulnerability of the
trustor to the trustee in circumstances of risk and uncertainty. In the performance-
based literature, where the human is relying on the robot to do the whole task or part
of the task, it is clear that the participant is vulnerable to the robot with respect to the
participant’s performance in the experimental task. In most of the studies in social
robotics, however,where the robot is trying to get the participant to do something (e.g.
comply with instructions to throw away someone else’s mail, or disclose a secret) it is
not clear that the participant is truly vulnerable to the robot (unlesswe regard breaking
a social convention as making oneself vulnerable), merely enjoying the novelty of
robots, or feeling pressure to follow experimental procedure. Therefore, the notion
that was measured in those studies may not have been trust in the sense that the term
is defined in the trust literature. For example in [104], where participants showed
compliance with a robot guide even when reliability was ranked lower after an error,
the researchers admit several confounding factors (e.g., participants did not have
enough time to deliberate). The findings on human tendencies to ascribe reliability,
trustworthiness, intelligence and other positive characteristics to robots may prohibit
correct estimation of robot’s abilities and prevent correct trust calibration. This is
dangerous especially since the use of robots is envisioned to increase, especially in
high risk situations such as emergency response and the military.

This overview enables us to provide several recommendations for how futurework
investigating trust in human-autonomy and human-robot interaction would proceed.
First, it would be useful for the community to have a clear definition in each study as
towhat autonomy andwhat teammate characteristics the robot in the study possesses.
Second, it would be useful for each study to define the notion of trust the author’s
espouse, as well as which dimensions of the notion of trust they believe are relevant
to the task being investigated. The experimenters should also try to understand, via
surveys or other means, what definition of trust the participants have in their heads.
A possible idea is that experimenters could even give their definition of trust to the
participants and see how this may affect the participants’ answers.

Another recommendation is that, given the novelty of robots for the majority
of the population, along with the well-known fact from in-group/out-group studies
that people seem to be influenced very easily and for trivial reasons, it would be
useful to perform longer duration studies to investigate the transient nature of trust
assessments. In other words, how does trust in automation change as a function of
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how familiar users are with the automation and how much they interact with it over
time? One could imaging someone unfamiliar with automation or robots placing a
high degree of trust in them due to prior beliefs (which may be incorrect). Over time,
this implicit trust may fade as they work more with automation and realize that it is
not perfect.

Furthermore, we believe in a need to increase research in the multi-robot systems
area, as well as the area of robots helping human teams. As the number of robots
increase and hardware and operation costs decrease, it is inevitable that humans will
be interacting with larger numbers of robots to perform increasingly complex tasks.
Furthermore, trust in larger groups and collectives of robots is no doubt influenced
by different factors—specifically those regarding the robots’ behaviors—in addition
to single robot control. Similarly, there is little work investigating how multiple
humans working together with robots affect each others’ trust levels, which needs to
be addressed.

Finally, it would be helpful for the community to define a set of task categories of
human-robot interaction with characteristics that involve specific differing dimen-
sions of trust. Such characteristics could be the degree of risk to the trustor, the degree
of uncertainty, the degree of potential gain, whether the trustor’s vulnerability is to the
reliability of the robot, or the robot’s integrity or benevolence. Other studies should
expand on the notion of co-adaptive trust to improve how robots assess their own
behavior and how it affects the trust in them by their operator. As communication
is key to any collaborative interaction, research should not focus merely on how the
human sees the robot, but also how the robot sees the human.
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Chapter 9
Trustworthiness of Autonomous Systems

S. Kate Devitt

9.1 Introduction

Humans are constantly engaged in evaluating the trustworthiness of humans and sys-
tems. Effective robots and Autonomous Systems (AS) must be trustworthy. Under-
standing how humans trust will enable better relationships between human and
AS. Trust is essential in designing autonomous and semi-autonomous technolo-
gies, because “No trust, no use” [80]. Additionally, rates of usage are proportionally
related to the degree of trust expressed [54]. Hancock et al. [37] argue that trust
begets reliance, compliance and use. However, humans do already rely on systems
they do not trust. Consider the unreasonable privacy policies agreed to by users to
access services via apps, websites and cloud services [90]. Because privacy policies
can be changed at any time, private data may be sold by organisations for profit with-
out explicit consumer consent or even awareness. Consumers can find the benefits
of the services to enhance their lives and productivity too strong to resist. In these
situations, people rely on systems they do not trust and are not trustworthy. People
know that their data may be shared for corporate interests. People know that they
have signed away rights on their own images, etc. by using these services. As more
services operate without human decision makers yet offer irresistible perks, humans
may increasingly rely on untrusted AS to decide for them. Instead of trust, it may be
better to consider human reliance on other humans and systems as a measure of risk
aversion–of which trustworthiness remains a significant part.

S. Kate Devitt (B)
Robotics and Autonomous Systems, School of Electrical Engineering
and Computer Science, Faculty of Science and Engineering, Institute for
Future Environments, Faculty of Law, Queensland University of Technology,
Brisbane, Australia
e-mail: kate.devitt@qut.edu.au

© The Author(s) 2018
H. A. Abbass et al. (eds.), Foundations of Trusted Autonomy, Studies in Systems,
Decision and Control 117, https://doi.org/10.1007/978-3-319-64816-3_9

161



162 S. Kate Devitt

9.1.1 Autonomous Systems

AScanbe robots,AI programsor software that operatewithout humancontrol.ASare
made by teams of engineers, designers, mathematicians, and computer programmers
to serve a human need. AS actions and decisions are made by complex hierarchical
processes balancing the uncertainties of cross modal inputs such as cameras, micro-
phones, tactile responders with internal representations such as maps, directives and
event memories. AS execute functions such as actively selecting data, transform-
ing information, making decisions, or controlling processes without inputs [54]
(p. 50).AS are defined in contrastwith automated systems andmanual systems.Auto-
mated systems are largely deterministic to achieve predefined goals. Classic automata
such as Japanese karakuri demonstrate complicated, nevertheless predictable behav-
iours [1]. In contrast, AS learn and adapt in their environments rendering their actions
more indeterminate over time [36, 80]. Advanced AS may be capable of executive
functions such as planning, goal-setting, rule-making and abstract conceptualisation.
An ‘autonomous system’ can refer to a subset of functions within a larger functional
system or refer to the superset of functions undertaken by an agent or machine.
Regardless of the scope of functions of an autonomous system, it is important that
AS operate without human control.

9.1.2 Trustworthiness

Trustworthiness is a property of an agent or organisation that engenders trust in
another agent or organisation. Trust is a psychological state in which a person makes
themselves vulnerable because they are confident that other agents will not exploit
them [68]. Trust is also a social feeling of mutual confidence that increases the
efficiency of systems, allowing adaptations to externalities and uncertainties [4].
Trust, like empathy, truth telling and loyalty lubricates social interactions. Humans
depend on flexible cooperation with unrelated group members that rely on trust [89].
Thus, social success relies both the evaluation of the trustworthiness of others and
the presentation of oneself as trustworthy [23].

We can distinguish between the trust we place in individuals, and the general trust
we have in our society that affects how we make decisions more broadly, e.g. Adam
Smith [87] in theWealth of Nations noted that amerchant ismore comfortable trading
within their own society because they can “know better the character and situation
of the persons whom he trusts.” Empirical literature has linked improved trust with
more efficient public institutions, greater economic prosperity, self-reported health
and happiness across many societies using a range of statistical techniques (see [16]).
Within a Nation or society, trust is quite heterogeneous between individuals. Surveys
on whether subjects trust a generic person—measured on a scale between 0 (no trust
at all) and 10 (fully trusted)—find large interpersonal differences [14]. Economic
productivity peaks when the average citizen rates a generic person a ‘7’ level of
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trust-a fairly high level of trust. Pessimists trust too little and give up opportunities
too often. Optimists trust too much and get cheated more frequently. How does this
trust research relate to AS? Do economic models apply to designing trustworthiness
inAS? Shouldwe create trustworthy systems to engender a ‘7’ level of trustmatching
optimum human economic performance? That is to say, if we test the trustworthiness
of autonomous-human interactions, shouldwe aim to replicate the trustmetrics found
between people or some other measure?

It is important to acknowledge that trust is a complex phenomena and has been
defined differently depending on the discipline [78]. Economists consider it calcu-
lative [99] or institutional [70]. Psychologists focus on the cognitive attributes of
the trustor and the trustee [77, 96]. Sociologists find trust within human relation-
ships [33]. Understanding the way humans conceive of and act regarding trust is
critical to ensure the success of trusted AS. To bring different approaches under a
single framework for investigation, this chapter will examine trustworthiness with
three questions:

1. Who or what is trustworthy?-metaphysics
2. How do we know who or what is trustworthy?-epistemology
3. What factors influence what or who should we trust?-normativity

Building trustworthy autonomous systems requires understanding trust in human-
human relationships and human-AS interactions. A research program on trusted
AS ought to incorporate mental models informed from cognitive science to better
understand and respond to human thoughts and behaviour. An example of such
a research program is the recent work programming a robot with ACT-R/E [49,
94], an embodied extension of the ACT-R [3] cognitive architecture. The ACT-R/E
implementation takes features of human cognition, such as segmenting time into
events and narrative explanation to bring meaningfulness and trust to robot-human
relationships. But, it is just one of many promising frameworks to align AS with
human cognition. This chapter considers a range of theories of trust to influence the
design trustworthy autonomous systems.

9.2 Background

The Fukushima Daiichi nuclear power plant disaster stemming from the Japanese
earthquake and tsunami in March 2011 motivated DARPA to develop the Robot-
ics Challenge (DRC) in 2012. Immune to radiation damage, Japan could have used
robots to help rescue people, or go into the Fukishima power plant to turn off valves,
investigate leaks or structural damage. Yet after decades of robot research and devel-
opment Japan did not have a rescue robot. Where was the real Astroboy [1, 60]?
Humanoid Robotics Project (HRP)-2 was functionally designed to assist people in
construction, dangerous environments and home [47] but did not have the oper-
ational capacities to help when needed. In response, the DRC challenged robots
to perform tasks modeled on the context of urban search and rescue (USAR) and
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industrial disaster response task domains [105]. Tasks were real-world anthropomor-
phic manipulation and mobility; controlled by automated interfaces and teleopera-
tion. Challenges included obstacles such as opening a door, turning a valve, driving a
car, andwalking over a pile of chaotic bricks. The first robots to attempt the challenge
failed miserably. They almost all fell over or were unable to complete tasks so sim-
ple for humans. The DRC robots were not even autonomous-actions were manually
controlled by teams.

Thus, despite early optimism that robots would be capable of performing human-
level tasks by 2015, machines are still far from achieving this goal. Very basic tasks
still require supervisory human control from one or more operators. Complex envi-
ronments such as USAR, require continuous direct control by multiple operators.
Engineering autonomy in robots requires more research in both pragmatic design
and societal implications. Trust will emerge from evidence-based control interface
design that accommodatesmultiple control paradigms of the robot and the user [105].

Even though theDARPAchallenge remains difficult to accomplish,ASare already
being depended upon in our lives, from our adaptive smart phones [56], to off shore
oil rig drilling programs [34]. Self-driving modes in cars (see [91, 100]), mining
trucks [82] and buses [76] are already in use. Now is the time to understand the
metaphysical, epistemological and normative dimensions of trust and trustworthiness
so that we can build, use and thrive with AS.

9.3 Who or What Is Trustworthy?

Who or what is trustworthy? In this section I consider what sort of property trust-
worthiness is and the sorts of components a trusted AS might comprise of. Trust-
worthiness might be an intrinsic property of an agent similar to height, or a rela-
tional property similar to tallness. Perhaps a robot that survives the apocalypse, like
WALL-E [61] is trustworthy due to intrinsic moral virtues such as charm, cheeri-
ness and helpfulness, even if there are no other humans or robots to trust him? Or
WALL-E is trustworthy when compared to other robots such as EVE programmed
to obey directives. Trustworthiness might be a substantial property-an independent
particular-or a dispositional property-the capacity of an object to affect or be affected
by other things. The classic example of a dispositional property is fragility. A vase is
fragile because it breaks easily. A dispositional account might suppose that a person
is trustworthy because they speak truthfully or act reliably with others. It might be
thought that trustworthiness is both a dispositional and relational property estab-
lished by the subjective judgment of one agent X of another agent Y in virtue their
shared spatio-temporal interactions. For example, an employee goes through a three
month probation period or a solder undergoes basic training to build their reputation
with a Drill Sergeant or manager. The graduating employee or solider are deemed
trustworthy for a prescribed set of activities with a particular group of people in
a specific context. Note that any trustworthiness ascribed to an individual due to
these processes pertains to that domain of actions. It’s not clear how generalizable or
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transferable trustworthiness is. At least an argument needs to bemade to demonstrate
the transferability of trustworthiness across domains.

What is interesting about Trustworthiness understood as a dispositional and rela-
tional property is that it can be established by combining judgments from multiple
agents, such as through peer assessment [58]. In this way, an IT device can be judged
trustworthy through a network of sensors using a reputation-checking algorithm. For
example, beacon nodes on Wireless Sensor Networks can be evaluated on whether
they are providing accurate location identification by 1-hop neighboring nodes [88].
Autonomous trustworthiness-evaluation and -judgment is important when networks
are vulnerable tomalicious interference. Indeed, trustworthiness evaluation programs
are considered increasingly important with the proliferation of autonomous systems
connected via the Internet of Things (IoT) (see [17, 83, 104]).

If the dispositional and relational account of trustworthiness is right, then what
dispositional properties does it consist of? In the preceding paragraphs I suggested
that a person might be trustworthy because they speak truthfully or act reliably. Let’s
look at these ideas more closely.

Central to the notion of trustworthiness is reliability and accuracy. So, an AS
is trustworthy if we can rely on it being right. For example, a binnacle compass is
trustworthy if a sailor can rely on it to accurately adjust to the rise and fall of the
waves and orient to magnetic north [7]. If a sailor navigates to the wrong shore, she
might wonder if her compass has become unreliable and thus she ought not trust it.
Perhaps ferrous nails have been used that pull the needle away from true readings
and the binnacle compass’s reliability compromised?

Is trustworthiness more than reliability? How do properties such as adaptabil-
ity meet reliability? For example, the trustworthiness of a rescue dog might be its
capacity to adapt to severe conditions, such as digging through an avalanche to find a
stranded person, even if the dog has never encountered such an environment. Adapt-
ability is not an orthogonal trait, but a higher order reliability. In this case, we rely
on the dog to be adaptable in unusual, unexpected or changing conditions. The trust-
worthiness of people, creatures and machines is related to the reliability of their
capacities and functions in domains of differing complexity and uncertainty.

Is trustworthiness also about redundancy? We know that AS will not be perfectly
safe. There will be hardware failures, software bugs, perception errors and reasoning
errors [27]. Aerospace and military operations build in an expectation of failure into
design to enable trust. For example, Boeing 747’s only need a single engine to fly, yet
are equippedwith four engines to ensure redundancy [22]. TheSpaceShuttle program
used five identical general purpose digital computers [85]. Four of these computers
operated as a redundant set and the fifth calculated non-critical computations. The
anticipation of failure and the deliberate engineering of multiple systems in avionic
engineering makes these systems more reliable and hence more trustworthy. Still, is
there more to trust than reliability?

Philosophers have traditionally differentiated reliability and trust.While reliability
is necessary for trust, it isn’t sufficient. Reliability is a property of machines and
inanimate objects, where as trust occurs between conscious agents. For example,
we rely on a shelf to hold books, but do we trust the shelf [39]? Fully-fledged trust
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seems to involve reliability and psychological components such as the ability to
apologise if we let people down, if we fail to do as we said we would. A shelf has no
attitudes towards what it does. Human trust is traditionally mentally, linguistically
and rationally based rather than limited to summaries of behavior [24, 40, 48, 84].
AS are a challenge to traditional philosophical distinctions on trust because they
are inanimate, in the sense that they are programed to fulfill a set of tasks within a
domain and have no intrinsic care for humans and no self-driven desire to maintain
their reputation. The tradition to incorporate psychological attitudes in a model of
trust could either be misplaced or reconsidered to drive the design processing the age
of AS.

By focusing on systems as well as people, the business management litera-
ture may provide a more suitable starting framework for building trusted AS than
philosophy (for more philosophical discussion see [64]). The management two-
component model of trust differentiates competence-consisting of skills, reliabil-
ity and experience-and integrity-consisting of motives, honesty and character (see
Fig. 9.1). Using this framework user trust in AS could be grounded in reliable oper-
ations built by high-integrity organisations.

Competence comprises of skills, reliability and experience. A person or robot can
be competent and yet occasionally not have exactly the right skills for the job, or
the sometimes fail to do a task within their domain and sometimes reach the limit of
their experience. Competence is thought to improve when an individual learns more
skills, becomes more reliable and has more experiences. Integrity can be analysed
as comprising of motives, honesty and character. We trust someone who is trying
their best, who is transparent about their actions and has a character that, regardless
of competence, inclines them to take responsibility for their actions, be thoughtful
and empathetic to others and other traits. This two-factor model of trust combines
ability and ethics [19, 20, 51, 59]. Trust (T) consists of:

Fig. 9.1 A two-component model of trust incorporating competence-skills, reliability and
experience-and integrity-motives, honesty and character [19, 20, 51, 59]
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• Competence (C)
• skills (Cs)
• reliability (Cr)
• experience (Ce)
• Integrity (I)
• motives (Im)
• honesty (Ih)
• character (Ic)
• T = f(C, I)

Research suggests an asymmetry in the way trust is lost between these two fac-
tors. A single integrity failure may result in a loss of trust in the way that a single
incompetent action does not [51]. People use integrity judgments to generalize across
domains of a relationship, where as competence is more domain specific [20]. Addi-
tionally integrity-based trust implies a reduced threat of opportunism in a way that
competence-based trust does not [59]. Trust depends on beliefs about the other’s
benevolent motives [103].

Notice the difference between human-human trust and human-AI trust violations.
There is an interesting asymmetry between levels of competence required for humans
to trust other humans versus trusting AI. Unlike human-human relationships, trust
built up inductively between humans and AI can be destroyed with single instances
of inaccuracy or unreliability. Consider the mistakes Google’s AI made identifying
vertical wavy lines as a starfish [69]. A single misidentification of a starfish can
end trust in that machine learning algorithm even though it has performed well in
the past. Consider the disproportionate media scrutiny of the first Tesla autopilot
fatality. The Tesla flaw was due to the car’s incapacity to differentiate the reflectance
of light from a truck from the reflectance of the sky [86]. Even though human drivers
make perceptual errors leading to crashes all the time, the Telsa fatality caused much
uncertainty around whether the AI responsibly could be trusted. The Tesla case
is a good example of much higher competence-based trust thresholds for AS than
human operators and where a single model may not be sufficient. But, not only are
competency requirements misaligned between human-humans and human-AS, but
the integrity aspects of the model present a challenge for AS design.

Consider the requirement for honesty in Fig. 9.1. Engineers might correctly won-
der how to communicate complex computational processes to human operators who
themselves do not have the competency to understand their underlying logical oper-
ation? The data and algorithms of autonomous agents are hidden from most human
stake-holders and cannot be understood even if a translation layer were added and
explanations communicated in plain language. Perhaps human do not expect honesty
from AS the same way they do from other humans? A question then is, whether
humans should mistrust AS based on perceived honesty violations (Ih). Should
engineers creating anASprioritise transparency andcommunicationof their decision-
making mechanisms for trust and adoption? Should users demand them? It is impor-
tant to consider that integrity components of the trust model might be appropriate
for the human engineers, designers and corporate representatives of AS, but perhaps
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not crucial for the systems themselves? That is, so long as human stakeholders can
honestly report the technical specifications of AS to other experts such as regulators,
then AS do not need to convey integrity information to users.

What about the role of motives (Im) and character (Ic) on trusted autonomy?
Sometimes humans believe AS have more psychological reality than they actually
do due to clever programming. ELIZA was one of the first relational AIs designed to
engender trust using simple grammatical tricks [15, 95]. Little has been developed
since that could be dubbed motives or character. Merrick, Klyne and Hardhienata
in Sect. 15.5 discuss the interplay between motive and reliability. They argue that
lack of transparency in the motivations or experiences of an agent can reduce trust
between humans and robots, as it is difficulty to gauge why a robot is behaving the
way it is, and hence, whether it is trustworthy. They suggest reputational models to
help multiple users know when they should trust a particular agent. However, they
also note that there is very little work done that incorporates both computational
models of motivation and computational models of trust.

AIs in science fiction imagine how character might affect operations. HAL from
the movie 2001: A Space Odyssey [52, 53] is a malevolent AI who lacks integrity,
but is fairly competent at achieving a mission-albeit his own. Deep Thought from
the Hitchhikers guide to the Galaxy [2, 67] is a benevolent AI who provides answers
that humans don’t want to hear, such as that the meaning of life, the universe and
everything is 42. AIs can have varying degrees of competence and integrity that
affects how we trust them. Additionally, may be other factors in a successful model
of trust to truly understand how humans will respond to extremely smart AI.

The model described in this section is the start of an investigation of what
trustworthiness could be between humans an AS based on an interdisciplinary inves-
tigation. Critics have noted that themodel above confuses an influencing factor and an
indicator.1 They argue that reliability is an indicator of competence, not an input like
skills and experience that generate competence. Skills and competence are indepen-
dent variables that influence competence. I argue that while reliability is not an input,
it is a property of a trustworthy system, not merely an indicator, hence its inclusion
in the model along with skills and experience. Isolating reliability from skills and
experience is meant to allow for multiple ranges in skills, reliability and experience
to operate independently from one another. So, a person might be a skilled carpenter
with years of experience, yet be incompetent at time tm because his divorce lead him
to alcoholism and unreliable behaviours. Reliability is not merely the combination
of skills and experience, it requires additional features such as the adaptability and
redundancy discussed above. However, the critic is right that much more work needs
to done to refine and hone this model to appropriately capture the metaphysics of
trustworthiness forAS. Themanagementmodel is just the beginning of incorporating
human factors into AS design.

1Many thanks to an anonymous reviewer for bringing up this distinction.

http://dx.doi.org/10.1007/978-3-319-64816-3_15
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9.4 How do We Know Who or What Is Trustworthy

Howdowedecidewhether to trust? InSect. 9.3 the properties that establish and define
trustworthiness were considered. In this section the epistemology of trustworthiness
is examined-how do we knowwho or what is trustworthy?What are the indicators of
trust? If a person claims to justifiably trust another, it indicates they have the ability
and confidence to predict others’ behaviour [62]. Implicit, heuristic or ‘gut’ indicators
of trust are often grounded in physical responses and intuitions. Explicit, reflective
or rational trust stems from our experience of people over time and our reasons to
judge their trustworthiness. Often we do not know why we trust, we trust implicitly.
Thomas Reid (1764) [75] argued that reasons could not be required for trust given
that’most men would be unable to find reasons for believing the thousandth part
of what is told them.’ Reid’s point is that humans must be justified to trust even
in the absence of reasons. Consider the way we use Google maps. Many people
use Google maps to get them where they need to go, without knowing how Google
maps works, how their phone works or how traffic influences the instructions Google
maps provides. Not only do people not knowwhy they trust Google maps, it does not
seem to concern people that they do not know why. So how do humans make trust
judgments of systems and each other, and are these the same mechanisms that elicit
trust in AS? This section moves through implicit and explicit justifications of trust
followed by a cognitive model of trust and competence and finally a brief comment
on the relationship between trustworthiness and risk.

9.4.1 Implicit Justifications of Trust

Implicit justifications of trust are preconscious, embodied trust responses developed
without top-down cognitive evaluations. For example a monkey climbs a vertical
structure implicitly trusting that it will improve their odds of survival against preda-
tion. Researchers know how to alter physical properties of embodied AS (i.e. robots)
to engender implicit trust including how they look, sound and feel. Social robots
are designed with big responsive eyes and eyebrows [12], as are mobile, dexterous
and social robots (MDS) [11, 94]. Some designers have shaped robots like baby
animals-such as the harp seal robot PARO [1]-and use biomimetic features such as
soft skin for tactile trust [50]. The Kismet robot with human-like eyes, eyebrows and
lips was designed to recognize and mimic emotions, including facial expressions,
vocalisations and movement [12].

Physical actions connote trust in humans. Japanese robot designers have found
cultural identificationwith a robotwho imitates traditional ‘aizubandaisan’ dance [1].
Japanese robot designers try to build trust by incorporating aspects of fictional
references to helpful and social robots, such as Anime characters Astroboy and
the Patlabor [1]. But, representations can be incredibly primitive and build emo-
tional attachment, for example, humans watching 2D dots moving on a screen intu-
itively differentiate between animate versus inanimate movement based on how wel
algorithms replicate biological behaviour [74].Mimicry of biological behaviours can
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make people empathise and be concerned for the wellbeing of robots, evidenced by
viral videos of the Spot robot by Boston Dynamics being kicked and struggling to
stay upright [9].

People enter into a relationship with a robot if it simulates human-like emotional
and personal understanding, even though these relationships lack the authenticity of
shared humanmeaning [95]. Entirely soft autonomous robots may bridge the authen-
ticity divide, triggering different emotions and trust reactions than solid state robots.
Consider the 3D printed soft Octobot designed to emulate a real Octopus, controlled
with microfluidic logic instead of microchips [98]. Biology-inspired control systems
are likely to affect trust responses.

The way AS communicate verbally and through sound can have a big impact on
implicit trust. Tom Gruber (Siri Advanced Development Head at Apple) argues that
people feel more trusting of Apple’s Siri if she has a higher quality voice, “the better
voice actually pulls the user in and has them use it more. So it has an increasing-
returns effect” [56].

Physical characteristics also impact on how much humans move from empathy
to revulsion when robots are like humans, but eerily not quite like humans-known
as the uncanny valley [66] impacting how much people intuitively trust them. There
is much research still to be done on whether AS that does not attempt human-like
physical characteristics might not arouse the same empathy or emotional connection,
but may still generate trust. The rise of chatbots in the tradition of Eliza is a linguistic
means by which to generate disembodied trust. However, one benefit from realistic
facial gestures and embodied movements of robots could be a speed advantage of
conveying subtle information regarding the uncertainty of a robot’s beliefs, their
skepticism or their competing interests when providing an answer to human query
improving integrity judgments (see Fig. 18.1). Such gestures may be implementable
as avatar animations alongside text communication. The model outlined in Sect. 9.3
may also help us understand how humans implicitly trust autonomous systems in
lieu of human-like physical characteristics or avatars. Consider human-drivers who
trust Telsa’s autopilot function. The car has no physical similarities with humans.
Additionally, Telsa drivers cannot trust Tesla because they explicitly know anything
about the algorithms before they set the autopilot on. Trust could come from implicit
factors such as integrity or reliability (see Fig. 9.1). Integrity judgments may stem
from a cult of personality around ElonMusk’s extensive future vision for solar power,
electric cars and sustainable colonies on Mars [26]?

9.4.2 Explicit Justifications of Trust

Trust is explicitly justified when we have reasons to rely on someone or something.
These reasonsmight coalesce into a deductive, inductive or abductive inference based
on the testimony and behaviour of an agent. The link between trust and higher order
reasoning is supported by research showing that human intelligence relates to how
successfully people evaluate trustworthiness [16, 21, 102]. Under this hypothesis,
intelligent people foster relationships with people less likely to betray them andmake

http://dx.doi.org/10.1007/978-3-319-64816-3_18
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better contextual judgments to account for circumstances where trust is difficult
to uphold. Explicit reasons for trust may allow more nuanced and accurate trust
judgments than relying on gut feelings or intuition.

Faulkner [25] argues that though we need reasons to trust an agent generally, we
do not need reasons to justify particular statements from that agent. Our reasons
to trust are based on evaluations of a general trustworthiness of an agent [24, 39–
41, 63]. After all, the boy who cried wolf was not trusted in the end because he
had a history of false testimony even though he was correct in the final instance.
A trustworthy reputation for Y built up inductively with X can be shared quickly
via testimony to other agents P , Q and R etc... Thus, the value of a trustworthy
reputation is not only the ability of X to act based on information provided by Y , but
its transferability, that is, secondary agents P , Q and R, are justified to trust Y iff
they trust X without themselves needing prior interaction with Y . The transferability
of a trustworthiness judgment increases the effectiveness and efficiency of social
relationships and information systems.

But, does increased efficiency dangerously increase risk? Hume rejected testi-
mony as a source of justification for trust [43]. He thought that a hearerwas justified to
trust based only on their personal observations of the speaker’s history of truth-telling
plus inductive inference from those observations [29]. Hume’s reluctance to accept
other people’s pronouncements demonstrates the subtly and context-sensitivity of
trust relationships. An AS might be trustworthy for native English speakers, but
break down when deployed in mixed language context. Or an AS learns how to
operate with a Platoon, but must be re-skilled each time it interacts with a new
human team.

Highly complex AS are a problem for explicit justifications of trust. Because if
reasons are required for trust, then perhaps no individual has sufficient reasons to
make such a judgment? Take the job of calibrating a ScanEagle unmanned aircraft
with hyperspectral imagery sensors to map coastal areas [42]. One individual might
verify the location and ensure the imagery sensors are operating correctly but be
unable to evaluate the hyperspectral map. The point is that no one operator may know
or vouch for all components, mechanisms and physical properties that comprise a
complex AS. A key difference between human-human trust and human-As trust is
the complexity and difficulty of a single agent-agent dyad relationship. I propose
that instead of relying on individual testimony AS be judged trustworthy by teams
and groups that are themselves deemed to be trustworthy within the domain. Groups
may include (but are not limited to):

1. Regulatory agencies responsible for issuing parameters of safe operation
including physical construction and operational algorithms, operator licensing,
maintenance, consumer safety.

2. Institutions and companies designing and building AS.
3. Cohesive teams of staff responsible for successful operations.
4. Environmental conditions conducive to operational success.

Hume’s framework could still be useful within a more layered and complicated
system of establishing explicit trust. A Human regulatory framework means that an
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Fig. 9.2 Model of trust and
competence where human
levels of competence yield
the highest trust and trust is
reduced at sub-human and
super-human levels

individual is justified in trusting anAS in virtue of their background knowledge of the
past veracity of regulators, companies and staff plus inductive inference from those
beliefs to a current instance. However, induction remains a significant problem for
fast evolving AS. New AS may be made by cohesive and trustworthy teams, yet not
have sufficient inductive evidence to generate warranted trust in their safe operation.
This may be true, even though an individual knows that a particular aircraft company
has a history of trustworthiness and that the regulatory bodies have a history of safe
aircraft policies. In cases where innovation is radical and complex, trustworthiness
needs inductive and abductive arguments-inference to the best explanation-to justify
operations. An individual or organisation should devise an individualized set of
weighted factors that together render a trust or not-trust threshold for a particular AS.

9.4.3 A Cognitive Model of Trust and Competence

Considering both intrinsic and extrinsic forms of justification, is there a linear rela-
tionship between competence and trust (holding integrity constant)? I propose that
trust and competence forms more of a quadratic relation for trust. We build trust as
agents become more competent. We reserve a pinnacle of trust at a human level of
competence, and then trust declines as humans or machines exhibit competence at
the outlier or far beyond ordinary human capacity to understand it-see Fig. 9.2. This
model needs empirical testing, but I think the burden of proof is on the developers of
AS to demonstrate how trust can be retained or improved as competence surpasses
human capabilities and understanding. Such a justification may arise via reputational
justifications as specified in Sect. 9.4.2.
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To appreciate the impact of outlier competence, consider the AlphaGo game
played against leading Go player Lee SeeDol in 2016 [65]. In move 37, Match 2,
AlphaGo-amachine learningAI-placed a single black stone on the board that shocked
the human player Lee SeeDol so much that he immediately left the table. This move
was incomprehensible at a top Go playing level. What this move revealed was that
humans sometimes do not understand why an AI acts in order to evaluate it. This
is relevant because each competitor playing Go must presume the capacity in their
opponent (human or AI) and use game play to build theories to explain strategies
and mistakes of their opponent. When playing another human, Go players might
overtly inquire about the opponents Go background (how old were they when they
begin playing? How much have they played? Who have they played against? What
books have they read? What teachers have they had? What sort of handicap do they
have? etc.). Players watch their opponents actions, not only the stones placed, but the
manner of their placement, and the ultimate destination on the board. Each move can
be evaluated in the immediate context of the game, but also in forming what Nelson
Goodman [32] describes as overhypotheses about their opponents style, learning
journey, preferences, beliefs and desires. Players use these overhypotheses to predict
what an opponent will do, then use these predictions to design their own strategies to
counteract them. In terms of outcome, Move 37, was very strong, providing support
to stones over a large swathe of the board. But, at the moment the move was made, it
was impossible to trust by the human opponent because they could not evaluate the
competency of the action based on the information available about its genesis. What
was AlphaGo? How does it think? What grounds its decisions? How does it make
its decisions? Human understanding is critical to trust between humans and AS. It
is likely in the future that more and more AIs driving AS are complex, sophisticated
intellects, bornofmachine learning andother architectures. Thedanger is that humans
do not trust them because they cannot understand them.

Smithson in Sect. 9.7 discuses people’s aversion to systems that conflict with their
own forecasts and diagnoses. Users view autonomous systems as less trustworthy if
they do not understand how they operate, for example, if users do not know all the
possible failure modes of an autonomous system, they will trust it less than if they
know these states. His argument supports the hypothesis here that people are most
likely to trust systems that produce results aligned with human-levels of decision-
making.

Consider if AlphaGo was a platoon commander, sending troops into a war zone.
Imagine, just as in move 37, the AS commander ordered soldiers to go to a place they
could not make sense of; that they felt put their lives or civilian lives at unnecessary
risk? Keep in mind that each soldier has a duty to disobey an unlawful order if its ille-
gality is immediately obvious, such as procedural irregularity or moral gravity [71].
In these cases, humans ought not trust the AI, even if the AI proves to be more
competent than human decision makers. The AI could have access to huge reposito-
ries of data unable to be processed by humans. These calculations and decisions are
frightening to humans and justify wariness and skepticism. Even more significantly,
suppose complex sophisticated AIs were in charge of Lethal Autonomous Weapons
Systems (LAWS), both decisions to target and decisions to fire, how do we know



174 S. Kate Devitt

whether to trust them? How would deaths be judged just or unjust if the algorithms
deciding who dies are beyond human comprehension? LAWs led by AIs may lead
to unintended initiation of armed conflicts and the unjust escalation of conflicts [5].

It is important to note that leadingmanufacturers ofLAWscurrently require human
oversight and judgment for all decisions to target and to fire [5]. Current restrictions
are based on the notion that humans are better decision-makers than machines. How-
ever, manufacturers continue to build incrementally autonomous capabilities across
all systems. To imagine the impact of increasing autonomy for weapons systems, it is
instructive to consider how other industries have rolled out autonomous systems and
their impact on human users. Car manufacturer Tesla released a self-driving mode on
its cars with the requirement that humans always have their hands at the wheel. Yet,
Tesla drivers drive while deliberately disobeying protocols because they trust that the
systems do not actually require their oversight [86]. There is evidence as AS become
increasingly sophisticated humans may become either overly trusting or overly
skeptical. Consider research on autonomous offshore oil drilling system opera-
tions [34]. Drill operators sometimes abandon their duty to oversee AS due to
competing cognitive demands or they ignore the AS and make their own decisions
inefficiently. In both cases the level of trust in the autonomous system plays a direct
role in howhumans view their obligations to participate in broader systems operations
or obeyoversight protocols. In sum,while there are currently policies requiringLAWs
to be under ultimate human control, the pressures and stress of combat may lead
to humans relinquishing control. In the future humans may not have the competence
to be in control of these systems.

Perhaps more frightening is a future where AS knows how to manipulate consent
and trust in humans [10]. This is a situation where we trust an AS because it is
clever enough to manufacture our trust. But, it does so in either a disingenuous or
manipulative way. It is not hard to imagine such an AI capitalizing on inductive
trust tendencies or biases in humans. Consider Nelson Goodman’s [32] thought
experiment about the colour of emeralds known as the ‘grue-paradox’ [18]. In this
hypothetical, all our experience of emeralds is their greenishness, so we ascribe to
them the stable and persistent property ‘green’. Goodman points out that in fact,
Emeralds might be not green but ‘grue’. Grue is a property of objects that makes
them look green until a particular time (e.g. 2025), but look blue afterwards:

Definition 1 x is grue=d f x is examined before t and green
∨

x is not so examined
and blue.

If Emeralds are grue, they have never been green. Now suppose we take this
hypothetical case of false induction (i.e. trying to establish facts about emeralds
and their colour from history and experience) and consider malevolent programmers
building an AS. These programmers design a robot that engenders trust over time,
for a long time, like an embedded undercover operative. During production and
deployment, the AS passes every test humans and regulators can design to establish
its trustworthiness. The AS is tested in hundreds of real time situations and thousands
of simulated scenarios. But, unbeknownst to regulators, it has been programmed to
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switch modes in 2025 while deeply embedded in society. So, humans trusted it, but
then the AS betrays them and carries out its secret objective. There was no way
to know, inductively that the AS would flip. That it was actually an untrustworthy
AS. It is also concerning to consider if such hidden higher-level objectives can be
programmed, such programs could be activated or changed remotely and iteratively-
threatening the integrity of the AS.

9.4.4 Trustworthiness and Risk

Finally, when ascribing trustworthiness to agent Y, X needs to consider the context
of decisions. We have different thresholds for trust depending on the risk of the
decisions that have to be made and this in turn depends on impact of decisions-see
Fig. 9.3. This figure shows the relationship between decision impact, trustworthiness
and trust. Life-threatening decisions, such as our choice of neurosurgeon have a
higher threshold for trust than merely inconvenient decisions such as our choice
of lawyer to settle a contract on a house. Consider PARO, a robot that resembles a
baby-seal designed to assist the elderly similar to pet therapy. If PAROmalfunctions,
very little is lost to the humans who rely on it. But if a rescue robot malfunctions
during an evacuation human lives are at stake. If 0 = no trust and 1.0 = absolute trust,
We may need to trust our surgeon 0.99 in order to agree to brain surgery, but only
need to trust our check out clerk 0.65 in order to complete our retail shopping. This
is relevant in AS where similar algorithms may be installed or implemented into a

Fig. 9.3 Relationship between decision impact, trustworthiness and trust
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huge variety of contexts. We can imagine perceptual and mechanical algorithms that
allow a capsicum-picking robot [55] to drop 1 in 10 vegetables being reconfigured to
help in a rescue operation where dropping 1 in 10 children from a boat is absolutely
unacceptable.

9.4.5 Summary

This section examined the epistemology of trustworthiness. Implicit indicators of
trust can be grounded in physical responses and intuitions as well as reputational
features of the system that designed and built the AS. Explicit, reflective or rational
trust can be elusive, but must stem from our experience of people over time and our
reasons to judge their trustworthiness. As AS becomemore complex, reasons to trust
need to be curated from teams of experts including regulators, designers, engineers,
users and so forth. Inductive reasoning may need to be augmented by abductive
reasoning for radically innovative AS that involve untested combinations of systems
and/or new types of systems.

Even once explicit evaluation methods are established, the increasing competence
of AS is a risk to human trust. I argue that increased competence increases trust in AS
byhumans both for implicit and explicit justifications upuntil competence far exceeds
human comprehension. As AS competence continues to increase, humans may cease
trusting them because they do not understand them (perhaps frustrating engineers
and designers). Or, perhaps even worse, they falsely trust malevolent systems that
should not be trusted. Either way, humans may become unreliable at evaluating
trustworthiness as AS surpass human cognitive capacities.

9.5 What or Who Should We Trust?

What or who should we trust? Robots and AS should be programed with our best
normative theories of logic, rationality [46] and ethics tempered with pragmatic per-
formance expectations. Robots andAS are already computational devices, thus abide
by propositional logic, predicate logic, and sometimes paraconsistent logic [93].
Robots increasingly make decisions under uncertainty using Bayesian rationality
[8, 92]. In the future, robots and AS will be designed to test newer normative theo-
ries of rationality such as quantum cognition [13] (See Sect. 10). Ethically, we should
trust humans and AS that take care of our interests and obey the law. This section
will briefly survey ethical theories that AS ought to abide by.

Legal frameworks can do some of the normative heavy lifting for AS, but
unfortunately the law is not nearly nuanced enough to cover human-judged ethi-
cal behaviours. For example, suppose a tree branch has fallen on the road during a
storm [57]. A human driver would cross double-yellow lines on a road to go around
the branch once a safety-checkwas undertaken andwewould judge her ethical. How-

http://dx.doi.org/10.1007/978-3-319-64816-3_10
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ever, for us to trust an autonomous car to make the same judgment, violating legal
requirements regarding double-yellow lines, it would need to know a huge range of
concepts and contexts, e.g. computational versions of terms such as ‘obstruction’
and ‘safe’ [31]. Humans make decisions that violate the law strictly speaking, but
are usually nuanced actions that take context and risk into account.

In terms of human rights, AS ought to be aligned to the United Nations Decla-
ration of Human Rights, the Geneva Conventions and Protocols [44]), and human
rights law [6]. Additionally, AS ought consider a broad range of ethical theories
from philosophy. Consequentialism (or ‘Utilitarianism’) is a dominant ethical the-
ory that would justify AS actions if they cause the most happiness or ‘utility’. For a
Utilitarian, LAWs would be justified if they remove human error, thus reduce civil-
ian casualities. Self-driving cars are justified if they massively reduce the road toll,
even if the occasional person or bystander is killed through error. Utilitarian argu-
ments are the most frequently cited arguments in favour of deploying autonomous
systems. Deontological arguments focus not on the ends of decisions, but the way
decisions are made, aka ‘the ends do not justify the means’. Kant might agree
that lying to all children about the existence of Santa creates the most happiness,
but, it is unethical because it violates the Categorical Imperative [73]. A deon-
tologically or ‘duty’ based AS may have a duty to retain all records of software
upgrades and decision parameters in an impenetrable black box for later insurance
claims and legal determinations regardless of whether such records end up dispro-
portionately punishing low socioeconomic groups. Each design decision can be
worked through from different ethical perspectives including social contract the-
ory, virtue ethics or feminist ethics. While different theories may demand con-
flicting design decisions, many decisions may come out the same. For example,
there are both Utilitarian and Kantian justifications for rescue robots to obey triage
rules in a rescue. On the other hand, some ethical theories provide a unique way
of understanding how and why we trust each other under stressful and uncertain
circumstances. Virtue ethics justifies action not based on their consequences or inten-
tion, but on virtues such as bravery and honour. Where as Utilitarian or Kantian prin-
ciples could possibly be coded into a decision maker, virtue is built up over time, via
experience and feedback calibrating specific actions against virtuous norms. Virtue
ethics could be incorporated into probabilistic decision systems because the right
action is not the one that always produces the best outcome. Under virtue ethics we
trust an AS if it made the best decision possible in its context given its operating
parameters. Additionally, newer ethical theories might fill in some decision-making
gaps. For example, Feminist ethics [45] could justify preferential care behaviours in
a special operations team. There is a particular synchronicity between virtue ethics
and feminist ethics that could be fruitful for building trust [35].

Our reliance on people and AS is affected by our level of dependence and coop-
eration. Our trust in our life partner to care for us involves a multi-faceted risk and
trust over time (with shared cognition) versus the one-off trust we might place in
a surgeon. For example, we don’t really care if our surgeon is nice to his in-laws
at Christmas, just so long as he can remove the tumour. We trust people who we
believe have strong reasons for acting in our best interests [38]. The main incentive
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for these reasons is a desire to maintain a strong relationship with us (whether that
is economic, love, friendship etc.). Trust between individuals is different to trust we
have in corporations. This asymmetry is a really significant issue for AS, because
humans ground their trust in beliefs about the corporation behind the AS, not the
systems themselves instantiated in a single car, robot, or computer installation. Social
norming is an approach to procedural ethics outside of traditional philosophical the-
ories from anthropology and sociology [101]. Social norming is about learning how
to behave in groups to get along the best. It requires we understand social expec-
tations. Detailed theories of cooperative behaviour stem from disciplines such as
sociology, biology, anthropology and group psychology. These models are not about
competence and achieving optimal performance on tasks, but about creating themost
cohesive, resilient teams of organisms. Theories such as game theory contribute to
understanding social norming [72]. One of themany advantages of group level norms
is the ability to train AS with social norming without needing top-down ethical the-
ories to drive behaviours.

However, while there are promising avenues for research into the ethical pro-
gramming to improve trust, many barriers exist for the universalization of such pro-
gramming. This is because there remains vast disagreement on what the right ethical
principles are or even whether ethical principles exist such that they could be imple-
mented into an AS. What does ethical talk amount to? It seems that humans judge
each others actions as ethical or not ethical based a huge range of theoretical, con-
textual, pragmatic and social factors that ethical theories struggle to explain beyond
stipulating that actual human decision makers exhibit a sort of hopeless contrariness.

There is a lot of work to be done in determining what the most ethical action
is in any particular context and what model underpins such actions. However, even
if we can program AS to be ultimately logical, rational or ethical, humans may be
uncomfortable. Would we trust machines that obey norms without empathy [28]?
Consider the origins of the word robot from the 1920 play, Rossumovi Univerzální
Roboti (Rossum’s Universal Robots). In the play Czech writer Karel Capek endowed
robots with not just thoughts, but emotions to enable them to increase their productiv-
ity [97]. Capek’s robotswere forcedworkersmore like biological androidsReplicants
in Bladerunner than metal machines. If we program AS with emotions and empathy
to build trust, will they suffer if we treat them badly? If AS are moral agents that can
suffer, then building trustworthy autonomous systems also means building an ethi-
cal and legal framework around their use and identifying their rights [81]. Japanese
roboticists are already designing robots to have ‘kokoro’, translated into heart, spirit
or mind [1]. Kokoro stems from animist spiritual thinking that all objects, including
rocks and trees, have some level of consciousness and agency including emotions,
intelligence and intention. Robots and AS of the future may need complex social
identities to meet ethical and social norms.
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9.6 The Value of Trustworthy Autonomous Systems

The discussion of the metaphysics, epistemology and normativity of trustworthiness
has assumed that trustworthyAS are the desired goal. However, do humanswant their
decisions automated even if available AS are trustworthy? One the one hand optimis-
ing AS could be ideal for human-robot interactions, freeing up time and resources,
but on the other hand, perhaps humans want to make their own decisions? We might
think that humans develop a sense of identity and security from decision making
responsibility in their roles and jobs and that we risk devaluing human workers by
outsourcing decisions to AS. If so, then even if AS increase process productivity, it
may decrease productivity overall. Alternatively, humans may find work tedious and
be glad for near-optimal autonomous task allocations [30]. In the Culture novels by
science fictionwriter IainM. Banks, theAS ’Minds’makemost human decisions that
aren’t spiritual or fun and the human populace are perfectly content [79]. ‘Minds’ are
sentient hyper-intelligent AIs on space ships and inhabited planets that have evolved
to become far more intelligent than their original biological creators. The minds have
taken over the administrative infrastructure of the Culture civilization.We don’t have
to go too far to see that humans already welcome efficiencies that stem frommachine
learning when they use their smart phones. How many decisions and what sorts of
decisions will humans outsource to an AS if given the opportunity?

Interestingly Gombolay et al. [30] found that contrary to their hypotheses (and
in alignment to Iain M. Banks), humans prefer to outsource decision making to
autonomous robots even when they perceived their human co-leader more favorably
than their robotic co-leader. Interestingly, in follow up questionnaires, subjects felt
that their human co-leader had additional properties, such that they liked, appreciated
and understood them, that humans understood, trusted and respected each other, and
finally that subjects and human co-leaders were important to the task. However,
liking humans and wanting them around is not the same as wanting humans to make
decisions.

One of the important distinctions when considering AS is the difference between
physically instantiated AI (e.g. personal robot) that learns and grows with an individ-
ual or team, versus an integrated AI programmed to act over many physical bodies
(e.g. networked self-driving cars) that show no preferential or focused behaviours
with individual humans. In the latter case, Iain M. Banks Minds and Apple’s subtle
machine learning might work fine. But, in the former case, social norming may be
the right solution.

9.7 Conclusion

This chapter has examined the trustworthiness of autonomous systems. I have argued
that effective robots and autonomous systems must be trustworthy and the risks of
reliance justified relative to perceived benefits. Trustworthiness is a dispositional and
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relational property of agents relative to other agents within spatiotemporal bounds.
Trustworthy agents must be reliable (incorporating adaptability and redundancy). A
two-componentmodel of trust was used to differentiate factors of competence (skills,
reliability and experience) to factors of integrity (motives, honesty and character).
When humans evaluate the trustworthiness of autonomous systems and other humans
they use intrinsic, ‘gut’ level cues such as physicality as well as extrinsic ‘top down’
reasoning. Humans tend to trust agents operating within the bounds of human cog-
nition and are less trusting as systems operate at super-human levels. The threshold
for trustworthiness of an agent or organisation depends on the impact of decisions
in a particular context. Building trustworthy autonomous systems requires obeying
the norms of logic, rationality and ethics under pragmatic constraints-even though
there is disagreement on these principles by experts. AS may need sophisticated
social identities including empathy and reputational concerns to build human-like
trust relationships. Ultimately transdisciplinary research drawing on metaphysical,
epistemological and normative human and machine theories of trust are needed to
design trustworthy autonomous systems for adoption.
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Chapter 10
Trusted Autonomy Under Uncertainty

Michael Smithson

10.1 Trust and Uncertainty

10.1.1 What Is Trust?

The main goal of this chapter is to elaborate the connections between trust, distrust,
anduncertainty.Trustwill be treatedprimarily as a psychological state, but sometimes
also as a type of relationship or in purely behavioral terms. Trust, after all, is a social
concept. However, it is not a contractual relationship, and so “trust” herewill not have
the kind of meaning in legal or institutional forms such as “trust fund” or “company
trusts”. The main theme is that trust and distrust inherently involve uncertainty (and
risk) in two respects. First, uncertainty is a given in trust or distrust as a psychological
state. Second, the processes in a trust or distrust relationship generate unknowns.

It may seem odd to begin this chapter by reconsidering definitions of trust and
distrust, but this is necessary for three reasons. First, the concept of trust has been
diversely defined in various disciplines, chiefly economics, psychology, political sci-
ence, and sociology. These definitions often disagree with or talk past one another
(see the discussion in [30]). Second, “trust”, “mistrust”, and “distrust” are multifari-
ous in many natural languages. Each can be a noun or a verb, and each can describe
a psychological state, a belief, a feeling, a relationship, or even (in the case of trust)
a legal entity. And third, the terms have not been used consistently in the litera-
ture on human-robot interaction (HRI, from here on). Some HRI researchers have
treated “trust” as synonymous with reliability, while others have brought in matters
of trustee interest or intent regarding the trustor. “Distrust”, on the other hand, has
been relatively neglected in the HRI literature. Starting with “trust”, we shall avoid
the definitions used by some researchers that define trust by the ways in which it is
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formed [30]. Thus, while trust may arise from a rational choice (e.g., [16]), as a per-
sonality trait (e.g., [33]), or as an institutionalized or identity-based norm (e.g., [29]),
none of these actually defines trust. Trust is defined in this chapter as an outcome of
such choices, personalities, or normative processes.

A version of Hardin’s [16] tripartite conceptualization of trust will be used here.
In his framework, trust is defined in terms of attributes of the trustor, properties of the
trustee, and the specific context in which trust occurs. A trustor may be “trusting” in
the sense of an expectation (e.g., [18]), a positive feeling (e.g., [11]), or an attitude that
has an intentional component (i.e., being willing to trust). According to a survey of
65 sources of definitions of trust [30], the typical characteristics ascribed to a trustee
include predictability, reliability, competence, benevolence (toward the trustor), and
integrity. Thus, for instance, a trustor may expect or feel that a trustee is reliable or
benevolent.

Context includes the following components:

1. Dependence: What the trustor depends on the trustee to provide or to do,
2. Trust behavior: What the trustee must do to show and bestow trust,
3. Basis: Factors involved in the formation of trust, and
4. Stakes: The potential benefits and costs of trust.

The nature of the dependence involved in a trust relationship will also strongly
influence the kinds of uncertainties involved, as will be elaborated later on. Trust
behavior, as we will see later, involves a combination of deference to the trustee,
relinquishment of control over or micro-management of the trustee, and relevant
risk-taking. The basis for forming a trust relationship may be rational calculation,
personal disposition, reputational, social identity, part of a role, or even part of a set of
rules in an institutional setting [23]. The stakes can be financial or tangible, but also
may include intangibles such as esteem, reputation, and even willingness to trust in
future relationships. Moreover, the stakes may not be limited to direct consequences
of trust, but also can include “side-effects” such as sociability, opportunity, and
transaction costs and benefits.

What are the opposites of trust? The absence of trust, in the sense of indifference,
clearly is not the same as distrust, mistrust, or paranoia. “Distrust” and “mistrust”
often are used interchangeably, although common usage tends to construe “mistrust”
in terms of suspicion or doubt about a target, and “distrust” as without doubt that
the target is untrustworthy. A systematic treatment of distinctions between these
two terms is beyond our scope, and the focus in this chapter will be on distrust.
Several scholars have claimed distrust is the opposite of trust, whereby they mean
an expectation or suspicion that the distrusted party is unreliable and/or malevolent
(see [34]; or [12]: “I trust my friends; distrust my enemies”). Like trust, distrust is
a social entity through and through. We can employ Hardin’s tripartite framework
for dealing with distrust, in a similar manner to trust, by considering it in terms of
attributes of the distrustor, properties of the distrustee, and the specific context in
which distrust occurs.

Distrust, then, incorporates attributions of unreliability and intentions toward the
distrustor ranging from neglectful to malign. Distrustful relations therefore will be
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characterized by hyper-vigilance, attempts to free oneself from any dependence on
the distrusted party, and/or attempts to assert control over that party. Legally binding
and enforceable contracts are an example of a relationship that could be based on
distrust.

10.1.2 Trust and Distrust in HRI

Howhave trust and distrust been construed in the literature onHRI?Which definitions
or conceptions are most useful in understanding HRI and designing technologies to
implement or augment it? For instance, is trusting an AI-driven robot more like
trusting a refrigerator, a trading bank, a surgeon, or a friend-or is it like none of
these? Some scholars, such as Lee and See [26], have defined trust in HRI settings as
rather similar to trust in humans. Lee and See’s aspects of trust include performance,
process, and purpose. The first two are similar to the well-worn concepts of reliability
and predictability. The third refers to a belief that the automaton is functioning as its
designers intended, and includes agreement with those intentions.

However, others have suggested that trust in HRI is not the same as human-
to-human trust [28]. Jian et al. [20] found that people are more willing to rate an
automaton than a human being as “distrusted”, suggesting that there may be differ-
ences between human trust in automatons and human trust in humans. One source
of such differences is that people tend to regard expert systems, AI systems, or
computer-based decision support systems as more objective and rational than their
human counterparts [7]. One could also add that people may expect automatons to
have greater integrity than humans because they believe that automatons are not pro-
grammed to deceive. Of course, this stereotype could change rapidly as AIs become
more sophisticated. In the HRI literature, the prospect of deception by robots (or AI)
already has been raised [15].

There also is some evidence that people react more strongly to errors made by
automatons than those made by humans, so that there is a swifter decline in trust
(see [9, 43]). In a general sense, then, people may be less tolerant of uncertainties
manifested in automaton behavior than in the behavior of their human counterparts.
Humans, on the other hand, are expected to be more adaptive and creative than
automatons, so it is plausible that novel actions or proposals from humans will be
more trusted than if they come from automatons.

What is meant by “appropriate” trust in automatons? Oleson et al. [31] claim that
appropriate trust of a system manifests itself in appropriate reliance on that system.
Toomuch trust results in overreliance, and too little in insufficient reliance. However,
it is worth bearing in mind that other factors can result in over- or under-usage of a
system, such as a desire to avoid blame for bad outcomes (over-use) or a desire to
gain credit for good outcomes (under-use).

Addressing the question of appropriate trust, Ososky et al. [32] refer to humans’
tendency to anthropomorphize robots and to apply “inaccurate” mental models to
inferences about robots’ behaviours. Their remedy is that operatives have a full under-
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standing of the automaton’s capabilities and limitations. However, they do not sys-
tematically investigate the practical achievability of this suggestion. There already is
an abundance of software and automated systems whose complexities exceed human
capacity for anything approaching a complete understanding of their capabilities and
limitations. Hancock et al. [15] recommend “transparency” in the form of system
designs that are accessible and clear to human team members. However, there is an
obvious potential for difficult tradeoffs or even dilemmas if one of the design objec-
tives for a robot or AI also is that it is able to deceive enemies or even allies who are
not cleared to know about that robot or AI.

Interestingly, the question of whether humans perceive (or can perceive) that they
are trusted or distrusted by automatons seems to have been relatively neglected. At
first glance, the question might seem nonsensical; surely we are not about to deem
an automaton as being capable of trust. Nevertheless, the question makes sense for
three reasons.

First, humans do anthropomorphizemachines, sowe cannot rule out the possibility
that people may attribute an automaton’s behavior towards them to trust or distrust
of themselves by the automaton. This attribution certainly could arise when humans
adopt what Dennett [6] called the “intentional stance”. Dennett contrasts this stance
against the “design stance”, whereby an automaton’s behavior is explained via beliefs
about what it was designed to do. The intentional stance accounts for an automaton’s
behavior by assuming that it is a quasi-rational agent, with beliefs and desires of its
own and the intelligence to pursue those desires on the basis of its beliefs. Moreover,
people may be more likely to attribute trust to automatons than they would attribute
emotions such as desire, because they are more willing to attribute belief states to
automatons than feelings (cf. [19]) and the primary basis for trust is a set of beliefs.

Second, in connection with Lee and See’s concept of purpose as a basis for trust,
the intended uses of an automaton can include (dis)trust-relevant purposes such
as monitoring its human teammates or deferring decisions to them. Thus, humans
interacting with an automaton may adopt an intentional stance with regard to the
automaton’s designers and/or operators, attributing trust or distrust to these “pup-
peteers”, even if they maintain only a design stance regarding the automaton itself.
The automaton then manifests trust or distrust indirectly, via its apparently designed
purposes and uses.

Third, Dennett’s distinction between the design and intentional stances points to
a candidate criterion for appropriate trust. A design stance would be appropriate in
HRI most of the time. Automatons are indeed designed entities or systems; their
designers will have had purposes and uses in mind. Trust based on a design stance
will be limited to attributions of dependability, reliability, adherence to purpose-
directed behavior, and the like. This kind of trust will be inappropriate only if the
trustor has badly estimated the automaton’s reliability or has misconstrued its design
purposes. On the other hand, basing trust on an intentional stance clearly has pitfalls
in the form of attributing benign intentions to an automaton. So, trust based on an
intentional stance is likely to be inappropriate. However, as Dennett systematically
argues throughout his book, the intentional stance works very well for predicting
machine behavior, even when applied to something as simple as a thermostat. An
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intentional stance is, as Dennett points out [6], a viable alternative when a design
stance is not practical. This stance therefore is seductive and difficult to falsify.

Finally, imputation of trust to automatons also is important because, as automatons
are made increasingly human-like, humans will interact with them in more social
rule-following ways. Reciprocity is a key social rule governing many aspects of
human-human interactions, and it is likely to become increasingly relevant to HRI.
Trust and distrust often are reciprocated, so we may expect that people are more
likely to (dis)trust an automaton if they believe that the automaton (dis)trusts them.
In short, a trust-enhancing way of humanizing automatons is to enable them to
manifest trust-like behaviors toward their human teammates. Whether or when this
would be desirable is a matter for careful consideration by designers.

How should we measure or evaluate trust in human-automaton relations? Exam-
ples from the literature include theHumanComputer Trust Rating Scale [25]. Yagoda
andGillan [44] propose a scale that taps four closely-related adjectives for describing
different aspects of HRI: reliability, dependability, accessibility, and timeliness or
predictability. An in-depth critical review of the relevant measurement issues is not
within the scope of this chapter, but suffice it to say that measuring trust in HRI is
an active area of research and the current state of the art is at a fairly preliminary
level. It seems unlikely that a single scale or battery of scales will be adequate for
all types and contexts of HRI, and that as AI and related technologies advance, the
measurement of trust in automatons will need revising.

10.2 Trust and Uncertainty

10.2.1 Trust and Distrust Entail Unknowns

Trust as a psychological state entails willingness to take risks by placing oneself
in a vulnerable position with respect to the trustee (e.g., [11, 16, 23]). Uncertainty
is therefore a given in trust. Moreover, trust relations may have to be forged in
contexts bearing unknowns. This would be the case with new complex technology,
for example, even if it has undergone extensive testing.

The key connection between trust and uncertainty is that to enter a trust rela-
tionship requires at least some non-surveillance of the trustee, and at least tempo-
rary non-accountability (freedom from micro-management) for the trustee. Thus,
the trustorforgoes an entitlement to place the trustee under 24–7 surveillance or
total accountability. Thus, trust relationships create unknowns and require that the
trustor tolerate them [37]. Relinquishment of knowledge and control is primarily
what distinguishes trust relationships from contracts (or assurance). In effect, such
relinquishment amounts to trading one source of uncertainty for another, in the sense
that uncertainty about whether desired goals or outcomes will be attained is reduced
via the trust relationship, which in turn imposes a less aversive kind of uncertainty
regarding the means by which goals or outcomes will be reached, through allowing
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the trustee discretionary power. This trade must be viewed by the trustor as worth
enough to bear the risks entailed in a trust relationship.

Distrust as a psychological state amounts to a disposition to avoid being vulner-
able to the distrusted party, often arising as a result of uncertainty about this party’s
intentions or future actions. Distrust therefore may involve unknowns in the form
of suspicions as a given, or even as a justification for distrust in the first instance.
Distrust also brings with it two additional forms of uncertainty. First, onemay believe
or suspect that the distrusted party lacks integrity and therefore doubt the veracity
of information provided by that party. Second, distrust can morally license the man-
ufacture of unknowns by the distrustor, either by withholding information from or
outright deceiving the distrusted party. It seems plausible that people would find it
easier to justify either of these acts if the distrusted party is an automaton than if it is
a human, and therefore would be more likely to try to keep secrets from or deceive
an automaton. The consequences of distrust in HRI appear to be relatively neglected
in the research literature.

Relevant uncertainties can enter into any of Hardin’s tripartite components: the
(dis)trustor, the (dis)trustee, and the context. People can be unsure about their own
psychological states; they may not be familiar with the automaton’s reliability or
design specifications; and they may have to engage in HRI in situations fraught with
unknowns. Disentangling all of these uncertainties in a way that is relevant to trust
considerations requires, first, ascertaining what is at stake in a HRI trust relationship.
Thereafter, we can bring in knowledge about how and when people are likely to be
able to tolerate and work with unknowns.

10.2.2 What Is Being Trusted; What Is Uncertain?

The relevance of uncertainties and their effects on trust in HRI will hinge on what
is at stake in trusting an automaton. The stakes may be considered in terms of three
aspects: The scope of the automaton’s capabilities and responsibilities, the nature and
sources of potential malfunctions or mishaps, and the kinds of errors or malfunctions
committed by the automaton. The greater the scope of capabilities and responsibil-
ities attributed to the automaton, the greater the impact of uncertainties about its
functioning and capabilities on its trustworthiness. Likewise, greater perceived con-
trol over an important decisionwill be likely to increase the impact of uncertainties on
trust. Yagoda and Gillan [44] present a useful two-dimensional framework regarding
automaton capabilities. One dimension is the degree of intelligence and the other
is the level of autonomy. AI would be high on both dimensions, while expert sys-
tems are typically high on intelligence but low on autonomy. A battery exemplifies
low-intelligence but high-autonomy, and a robotic arm typifies low-intelligence and
low-autonomy. It is plausible that being higher on either of these dimensions will
increase the impact of uncertainties on trust in an automaton.

Turning now to the nature and sources of malfunctions or mishaps, two consid-
erations are important to bear in mind. First, what kinds of errors or malfunctions
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are most problematic? Suppose an automaton has a diagnostic function that makes
a binary decision to raise an alarm or not. False alarms will be regarded as more
harmful than misses in some settings (e.g., in a legal trial where false convictions are
worse than false acquittals) but the reverse will be the case in others (e.g., diagnosing
a contagious fatal disease, where false positives are not as harmful as false negatives).

Second, are the sources of potential malfunctions internal or external to the
automaton? Trusting an automaton to function properly is one thing if the only
possible causes of malfunction are hardware or software faults in the automaton
itself. It is quite another if malfunctions could be caused by damage from attacks,
sabotage, hacking, or other security breaches. This latter set of possibilities brings
with it questions of trust regarding the automaton’s robustness and security provi-
sions, which may have little or no connection with its primary purposes or functions.
Uncertainty about autonomy itself may raise doubts and concerns about who or what
is controlling the automaton (e.g., whether it has been hijacked).

Finally, we turn to considering errors and malfunctions. Errors or malfunctions
will break trust, although at least one study has suggested that they may not influence
decisions of whether to permit the automaton to act [35]. This finding highlights the
importance of separating considerations about trust from those regarding whether
humans will override an automaton. The connection between these two matters is
relatively unexplored. Reasons or explanations for uncertain or erroneous perfor-
mance also will influence trust. To begin, an absence of reasons or explanations will
be detrimental to trust. Dzindolet et al. [8] demonstrated that users distrust even
a generally high-performing system unless provided with reasons for why perfor-
mance errors have occurred. Moreover, providing these reasons can maintain or even
increase trust even when the system performs poorly, as long as the explanations do
not evoke counter-trust attributions. Two attributions arising from malfunctions or
errors that threaten trust are incompetence and betrayal. Deception or betrayal will
break trust more irrecoverably than performance errors or incompetence. Conse-
quently, uncertainty about honesty or benign “intent” will endanger trust more than
uncertainty about performance or performative competence.

The impact of errors or malfunctions also will depend on the extent to which
they can be rectified or undone. Uncertainties regarding reversible or steerable deci-
sions are less detrimental to trust than uncertainties about irrevocable decisions [35].
Smithson and Ben-Haim [40] argue that steerable or revocable choices are more
robust under extreme uncertainty than irrevocable ones. One aspect of their robust-
ness is that such choices engender less fear of unknowns and thereby pose less of a
threat to trust relations.

10.2.3 Trust and Dilemmas

Trust may involve dilemmas, which arise from particular sources of uncertainty and
generate additional unknowns.Here, “dilemmas” refer to situations inwhichmultiple
rational actors’ pursuit of self-interests lead to sub-optimal joint outcomes. Recently
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attention has been given to the “driverless car dilemma”: People want others to have
driverless cars programmed to sacrifice its passenger for the greater good, but they do
not prefer those cars for themselves [3]. Viewed from the utilitarian assumption that
sacrificing the passenger for the “greater good” is a public good regardless of whether
the passenger is oneself or another person, this is a classical free-rider dilemma.

One line of reasoning about rational self-interest suggests that trust itself is inher-
ently dilemmatic. The so-called “trust game” [2] has spawned a large literature. The
original two-player procedure involves two stages. Both players are given an initial
endowment of $10, one player is assigned to be the “sender”, and the other assigned to
be the “receiver”. In the first stage, the sender passes any amount, $0< s <$10, to the
receiver. The sender retains $10 - s, and the experimenter triples the amount sent, with
3 s passed to the receiver. In the second stage, the receiver passes any amount of the
money received $ 0 < r <$3s, back to the sender. The amount passed by the sender
is supposed to measure trust, and the amount returned by the receiver to measure
trustworthiness. A self-interested rational sender or receiver should send nothing, and
therein lies the dilemma claim. However, human players regularly demonstrate will-
ingness to send sizeable amounts (see [21] for a meta-analysis of 162 experimental
studies showing that this finding is robust across 35 countries).

Even if one does not accept the notion that trust is dilemmatic, dilemmas can
pose problems for human trust in automatons that are programmed to be rational
utility-maximizers. It is not difficult to imagine social dilemmas that could confront
automatons and their human teammates in military combat. Suppose that enemy
automatons A and B consider two alternative strategies available to each of them,
A1 and A2 versus B1 and B2. To simplify matters, suppose that the stakes are the
loss of 1000 lives on either or both sides. Both automatons are programmed to value
the magnitude of utility for own-side casualties as 4 times greater than enemy-side
casualties. That is, the utility of one own-side casualty is −4 whereas the utility of
an enemy-side casualty is +1.

If A chooses A1 and B chooses B1 then A estimates a probability of 1/2 of
1000 A-side casualties but also estimates 1000 B-side casualties for sure, so the
expected utility for A is Ua11 = −4K/2+ 1K = −1K . For the same combination
of strategies, B also estimates a probability of 1/2 of 1000 A-side casualties but
only a probability of 1/2 of 1000 B-side casualties, for an expected utility ofUb11 =
1K/2− 4K/2 = −1.5K . The remaining expected utilities are as follows.

For the A1 − B2 combination, Ua21 = −4K/2 = −2K and Ub21 = 1K/2
= 0.5K ;

For the A2 − B1 combination, Ua12 = 1K and Ub12 = −4K/2 = −2K ;
For the A2 − B2 combination,Ua22 = −4K + 1K/2 = −3.5K andUb22 = 1K −

4K = −3K .
These expected utilities are displayed in the upper half of Table10.1 in units of

1000, with the appropriate row and column sums. The sums reveal that automaton
A will conclude that A2 is its best strategy and automaton B will conclude that B2
is its best strategy. The result is the worst expected outcomes for both of them. This
is a Chicken Game structure. Choosing any other combination instead would benefit
both sides.
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Table 10.1 A two-automaton dilemma

A

A1 A2

B B1 −1 1 −3.5

−1.5 −2

B2 −2 −3.5 −2.5

0.5 −3

–3.0 −2.5

A1 : Ua11 = −Vaa/2+ Vab A2 : Ua12 = Vab
B1 : Ub11 = −Vba/2− Vbb/2 B1 : Ub12 = −Vbb/2
A1 : Ua21 = −Vaa/2 A2 : Ua22 = −Vaa + Vab/2
B2 : Ub21 = Vba/2 B2 : Ub22 = Vba − Vbb

The lower half of Table10.1 displays the utility formulas, where Vaa is the value
given to A-side casualties by A, Vba is the value of A-side casualties for B, Vab is
the value of B-side casualties for A, and Vbb the value of B-side casualties for B.
Straightforward algebraic arguments show that regardless of the positive numbers
assigned to these valuations, the A2 − B2 combination always is chosen by automa-
tons A and B. Moreover, it is easy to show that this choice always is sub-optimal for
both of them (even if it is not always the worst), becauseUa21 > Ua22,Ub12 > Ub22,
and Ub11 > Ub22. Finally, it is clear that this structure always is a Chicken Game
because the best outcome for A always is the A1 − B2 strategy combination whereas
for B it is the A2 − B1 combination.

The prospect of such dilemmas raises a problem of trust in automatons for their
human teammates and/or operators. How are they to know when, or how often,
dilemmas like this will arise, and what can be done about them when they do?
The obvious solutions, such as engaging in honest communication with the enemy
automaton, often are not available in military situations as theymay be for networked
driverless cars.

10.3 Factors Affecting Human Reactivity to Risk and
Uncertainty, and Trust

In this section, we survey factors affecting tolerance of uncertainties. These factors
come in three kinds: the nature of the uncertainties themselves and how humans
differentiate among varieties of unknowns, the psychological dispositions that influ-
ence tolerance of unknowns in general, and the conditions in groups or organizations
that influence norms regarding the treatment of unknowns.
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10.3.1 Kinds of Uncertainty, Risks, Standards, and
Dispositions

Humans think and act as though there are distinct kinds of unknowns. They regard
some kinds as worse than others, and may trade one kind for a more preferred kind.
People’s risk perceptions can be modulated by influences such that those perceptions
will not match so-called “objective” risk assessments. They also may apply different
standards of proof to different settings, and the burden of proof will depend on the
assumptions they have made. Likewise, humans vary in their orientations toward
and tolerance of risks and unknowns. All of these considerations are relevant to
trust in HRI settings, and this section reviews them with this in mind. Starting with
probabilities, there is ample evidence that human reactivity to probabilities is not
linear in the probabilities, even when those probabilities are accurate. People tend
to over-weight risks that have small probabilities, particularly if the stakes are high,
and they have difficulty making meaningful decisional distinctions between small
probabilities, even when these differ by orders of magnitude (such as one in a million
versus one in ten thousand). They do, however, make a strong distinction between a
probability of 0 and a very small nonzero probability. Trust in an automaton therefore
is unlikely to be improved noticeably by decreasing the probability of automaton
failure from, say, one in ten thousand to one in a hundred thousand. However, it is
likely to increase substantially if the probability of failure is reduced from one in a
hundred thousand to zero.

A relevant body of work here is on the relationship between judgments of proba-
bilities and sample space partitions [13]. This line of research has shown that people
anchor on the number of outcomes that is salient to them when making probability
judgments. If they think in terms of K possible outcomes (i.e., a K -fold sample space
partition), then they will anchor on probabilities of 1/K for each of the outcomes,
and then adjust away from that when presented with relevant information. Smith-
son and Segale [41] demonstrated that partition-dependency effects hold even when
people are using imprecise probabilities (e.g., probability intervals). An implication
is that trust in an automaton can be influenced by priming users to consider its per-
formance outcomes in alternative partitions. For instance, unpacking good outcomes
into K − 1 sub-categories (K > 2) but lumping bad outcomes together into one cat-
egory will anchor users on 1/K probability of a bad outcome, whereas packing both
good and bad outcomes into one category will anchor users on a probability of 1/2
for a bad outcome.

Turning now to types of unknowns, there are long-running debates among pro-
ponents of formal frameworks for uncertainty about whether all uncertainties can be
handled by some version of probability theory. These debates will not be surveyed
here, but one of the motivations for them has been evidence of widespread human
intuitions that not all uncertainties are probabilistic. Instead, research in judgment
and decision making under uncertainty has revealed that uncertainty arising from
ambiguous or conflicting information influences judgments and decisions in ways
that probabilistic uncertainty does not. Ambiguity has been widely studied in psy-
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chology and economics, beginning with Ellsberg’s [10] seminal paper in which he
demonstrated that people prefer a gamble with precisely specified probabilities to a
gamble with imprecise probabilities, although the expected utilities for both gam-
bles are identical. Although ambiguity aversion is not universally observed under all
conditions (ambiguity-seeking may be observed, for example, for very low proba-
bilities), the key point here is that people behave as though ambiguity is a different
kind of uncertainty from probability that is relevant in their decisions. Several stud-
ies of uncertainty arising from conflicting information have found that there is a
greater aversion to conflicting information than to ambiguous information [1, 4, 5]
(e.g., [36]). Conflict aversion has been manifested in two ways. First, a majority of
people prefer to receive or dealwithmessages from ambiguous rather than conflicting
sources of information (see [36, 38]). Second, people tend to make more pessimistic
estimates for future outcomes under conflict than ambiguity [4, 5, 38].

These findings suggest that ambiguous and conflicting signals or indications from
an automaton may have different impacts on trust. These distinctions have implica-
tions for trust in HRI. Among the demonstrations [36] regarding conflict aversion
is the finding that people usually assume that experts or computer models should
agree in their forecasts and diagnoses. They prefer ambiguous but agreeing fore-
casts over unambiguous but disagreeing ones, even when these are informationally
equivalent. Importantly, they attribute less trustworthiness to disagreeing experts or
expert systems than to ambiguous but agreeing ones. It therefore seems plausible that
ambiguous but agreeing signals or performance indicators from a single automaton
will be less detrimental to trust than unambiguous but conflicting signals or indica-
tors. If true, an example of a practical application is in the design of failure-mode
indicators for an automaton whose operation is to be halted by a human overseer
if failure is sufficiently indicated. A risk-averse approach would be to design the
automaton’s failure-mode indicators to be “trigger-happy” in the sense that at least
one of them is likely to indicate possible failure even under a low probability that a
malfunction has occurred.

The conflict versus ambiguity distinction also has implications for teams with
multiple networked automatons and humans, in which the automatons are providing
multiple assessments or predictions regarding the same situation. Unambiguous but
disagreeing forecasts will be more detrimental to trust of the ensemble of automatons
than ambiguous but agreeing ones. They also are likely to cause greater risk-aversion
in the human team members. Another important kind of uncertainty is sample space
ignorance, whereby the decision maker does not know all of the possible outcomes.
With complex software, for instance, it is a commonplace for even its coders not to
know all of its possible failure modes. Sample space ignorance has been shown in
at least one study to be aversive [39]. To my awareness, no work has been done on
the impact of sample space ignorance on trust. Nonetheless, it seems plausible that
automatons will be viewed by users as more trustworthy if all of their possible failure
modes are known than if users believe that these modes are not completely known.

What characteristics of risks besides probabilities influence human perceptions
of riskiness? A large body of research on this topic indicates that people react most
strongly to those risks that are hard to understand, involuntary, and invisible [22].
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Typical examples are risks associated with nuclear power, nanotechnology, and cli-
mate change. Strong fears may persist despite evidence and reassurances by experts
that a particular risk is minimal or unlikely. On the other hand, people are likely to
be overly complacent about risks that are familiar, voluntary, and visible. Examples
of this kind of risk include driving an automobile, handling or using a firearm, and
using power-tools.

An additional relevant, but often neglected, characteristic of risks is whether the
relevant unknowns are reducible or not. Reducible unknowns may be less corrosive
of trust than irreducible ones, especially if there are measures in place to eventually
eliminate these unknowns. As AI becomes more complex, irreducible uncertainties
about automaton behaviorwill becomemore commonplace andmay pose an obstacle
to building trust in HRI.

The burden of proof identifies the party or position that must build a case to
overturn a default position. (e.g., the presumption of innocence in aWestern court trial
places the burden of proof on the prosecution). Trust can be presumed, in cases such as
role-based trustwhere the role involves expertise and the experts havebeen certified as
qualified to perform the role. Given the current state of the art in HRI, presumed trust
seems unlikely and so the burden of proof most often will fall on the technology and
the automaton that instantiates it. However, as automatons become more advanced
and more human-like, automatons may be increasingly presumed trustworthy until
they prove otherwise. This prospect adds a new twist to considerations of what
constitutes “appropriate” trust.

The standard of proof refers to the strength and weight of evidence required for a
case to be regarded as “proven”. InWestern criminal trials, the conventional standard
of proof is evidence of guilt “beyond reasonable doubt”, whereas in civil cases the
standard is “on the balance of probabilities”. Standards of proof therefore demar-
cate thresholds for tolerance of uncertainty. Differing standards of proof regarding
automaton trustworthiness between their designers and users will raise problems, so
establishing agreements about such standards will be an important aspect of automa-
ton development, testing, and deployment.

Finally, psychological dispositions may play a role in building trust. Some people
are less trusting than others, they may be more risk-averse, and/or more intolerant of
uncertainty. Dispositions such as these may influence the standard of proof a human
brings to HRI when making judgments of automaton trustworthiness. Only few HRI
studies have systematically investigated the role of human-related characteristics
(e.g. level of expertise, personality traits such as extroversion [17]) and environmental
factors (e.g. culture, task type [27]). Tomyknowledge, none have investigated the role
of trait-level trustingness, risk orientation, or tolerance of uncertainty regarding their
influences on the nature of trust in HRI. Because trust relations are strongly context-
dependent, it is possible that psychological traits will not have a strong influence
here, but this possibility has yet to be ascertained.
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10.3.2 Presumptive and Organizational-Level Trust

Kramer and Lewicki [24] introduce the notion of “presumptive” trust as a kind of
depersonalized basis for trust that has more to do with indirect indicators such as
reputation and properties of organizational or group settings such as shared identity,
common fate, and interdependence, than with direct indicators of trustworthiness as
manifested by the potential trustee. The term “presumptive” conveys that this kind
of trust is a default stance on the part of the trustor, and often operates in a tacit
way. According to Kramer and Lewicki, presumptive trust has at least one of three
primary bases: Identities, roles, and rules.

Identity-based trust is the expectation that fellow in-groupmembers can be trusted,
and some scholars have argued that this is based on an expectation of general reci-
procity within the boundaries of the in-group [12]. Shared identity is unlikely to be
a basis for human trust of automatons, although it certainly is plausible that “in-
group” automatons may be trusted more than “out-group” automatons, even when
both categories of automaton are “on the same side”.

Role-based trust probably would better be thought of as “system-based”. The
primary idea here is that an individual occupying a specific role in an organization
may be trusted because both the nature of the role and the system of training and/or
selecting people to occupy that role are trusted. Thus, we will trust a robot if we trust
robotics and also trust the engineering programs that train roboticists. Or, we may
trust a particular brand of automaton because we trust that particular company and
its selection processes for hiring engineers and programmers.

Rule-based trust has its source in the codified norms and other rules for behavior
within a groupor organization, and the expectation thatmembers have been socialized
to follow the rules and adhere to the norms. “Honour” codes are an example of
this kind of trust basis. Analogs for this kind of trust in HRI include beliefs about
the robot’s adherence to its programmed protocols, and compatibility between those
protocols and human social and psychological norms. Theremay be a design tradeoff
here between a preference for robots that “blindly” adhere to their inbuilt protocols
and a preference for robots whose behavior is flexible and adapts to novel situations.

Riskmanagement norms in a group or organizationwill influence the development
of trust inHRI. Perhaps themost obvious kind of influence stems from the “tightness”
of the organizational culture [14]. So-called “tight” cultures have numerous strong
norms and very little tolerance of deviant behavior, whereas “loose” cultures’ social
norms are relatively weak and they are permissive of deviant behavior. Research
into this cultural dimension has found a correlation between tightness and the mag-
nitude of risks in the ecology occupied by a culture. This connection suggests that
tighter cultures will be more risk-averse and less trusting. While the research pro-
gram elaborated by [14] has focused on national cultures, it is plausible that these
same connections and the tightness construct will apply to organizations and groups.
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10.3.3 Trust Repair

Kramer and Lewicki [24] observe that most approaches to trust repair have only
focused on changing cognitions, thereby neglecting emotional or behavioral aspects
of trust repair. Much of this research also has emphasized routes to repair that may
not apply in HRI, although as automatons are increasingly humanized more of these
routes may become available. Also, it is arguably an open question as to whether
some apparently incongruous acts by an automaton could nevertheless aid in trust
repair. For example, would an apology by a robot for its error assuage human users?

Both explanations and apologies have been found to help restore trust, but gen-
erally if accompanied by some actual reparations or measures to prevent further
breaches of trust. Tomlinson, et al. [42] investigated the characteristics of apologies
influencing their effectiveness in trust repair. They found that an apology was more
effective if issued sooner than later after a breach of trust. They also found that apolo-
gies and explanations that had the trust violator taking responsibility for the breach
weremore effective than accounts that blamed other parties or external factors for the
breach. A possible exception to this finding, pointed out by [24], is when the breach
involves a violation of integrity. In that case, being able to deny responsibility for
such a violation may be more effective.

Penance and reparations have been extensively studied in regard to trust repair.
One problem for HRI is that, like apologies, penance and reparation on the part of
an automaton may be largely irrelevant unless humans have anthropomorphized the
automaton to the extent that they attribute emotional responses to it. However, such
measures could be applied to the designers or producers of the automaton, especially
if trust in the automaton is primarily amatter of trust in its designers and/or producers.

Similar arguments apply to other more “legalistic” trust repair mechanisms, such
as rules, contracts, monitoring systems, and sanctions against further trust violations.
Most of these are attempts to ensure that the trusted party is motivated not to breach
trust again, which is irrelevant to an automaton unless its users attribute motivations
to it. One partial exception to this is reinforcement schedules in machine learning,
which could be revised in the service of preventing further malfunctions or errors by
the automaton.

10.4 Concluding Remarks

In this chapter, we have surveyed the following factors in HRI that influence the
nature and development of trust:

• The scope of an automaton’s capabilities and responsibilities, and the extent of its
control over decisions

• Whether the sources of potential malfunctions or mishaps are internal or external
to the automaton

• Which kinds of errors or malfunctions are most important or consequential
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• The impact of uncertainty about benign intent versus competence or reliability
• Uncertainties arising from the prospect of social dilemmas involving interacting
automatons, especially opponent automatons

• Organization-based trust and the impact of organizational norms and culture
• Factors influencing trust repair when trust has been eroded or lost.

This chapter also has provided suggestions for several avenues of further research
and theoretical developments regarding the role of uncertainties in HRI, specifically
in connection with trust. A major theme of this chapter is that almost all treatments
of uncertainty in relation to matters of trust have over-simplified both the role and
nature of uncertainty.Regarding its role, on the onehand, it iswidely claimed that trust
serves to reduce uncertainty. On the other, it also is widely claimed that uncertainty
is endemic in a trust relationship. Absent from these accounts is the realization that
in establishing a trust relationship, the trustor is trading the reduction of one set of
uncertainties for the creation of another set of uncertainties. Typically, the tradeoff
involves reducing uncertainty about outcomes (to be attained by the trustee) at the
expense of tolerating uncertainty about the means by which the trustee pursues and
achieves those outcomes. Likewise, the role of uncertainty in distrust has not been
fully understood, especially in regard to the license for secrecy, deception, and other
forms of ignorance production that distrust provides for the distrustor.

Uncertainty also has largely been treated as if it is unitary or monolithic, and a
“negative” that people are motivated to be rid of. These over-simplifications persist
throughout both the human sciences and engineering. People have uses for unknowns
and unknowns underpin important forms of social capital, as is exemplified by the fact
that a trust relationship is predicated on tolerated ignorance. Likewise, as has been
clearly articulated in this chapter, people think and act as though there are different
kinds of uncertainty, and as though those differences are important. For instance, they
prefer agreeing but vague experts to precise but disagreeing experts (i.e., “conflict
aversion”), and they trust the former more than the latter. The impacts of different
kinds of uncertainty on trust in HRI remain to be systematically investigated, but this
chapter points to clear directions for such research.
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Chapter 11
The Need for Trusted Autonomy in Military
Cyber Security

Andrew Dowse

11.1 Introduction

Information systems in the early 21st Century have become a critical enabler of
increased value to the business, or as people in Defence might call a ‘force multiplier’.
Clearly the converse of this logic is that in warfare any capability that provides
such a competitive advantage is also a vulnerability and a focus for a potential
adversary to target. In the 20th Century, this risk was mitigated through the isolation
of our information systems, with closed systems inherently easier to protect. However
the real value of modern information systems has been the ability to provide more
accurate, complete, relevant and timely information to support the business; and this
has been achieved through a trend towards openness with greater connectivity and
integration of systems. The very source of value to the business also represents a
risk to it, and this remains a matter of tension and deliberation in the management
of information systems.

The importance the Australian Department of Defence places in protecting our
information advantage is reflected in the 2016 Defence White Paper, which notes
the emergence of cyber threats to the ADF’s warfighting ability, given its reliance on
information networks [7]. The White Paper states that national and Defence cyber
security capabilities will be strengthened to protect our systems.

A simplistic response to this priority would be for Defence to put more resources
towards cyber security: more people monitoring audit logs and gateways, more ef-
fort towards accreditation and assurance activities, more funding allocated to cyber
security projects. However, the exponential growth in the information environment
means that taking a traditional approach and providing linear increases in resources
is unlikely to meet the emerging challenge.
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This paper will consider potential requirements for trusted autonomy in cyber se-
curity, looking firstly at the current cyber environment, including four fundamental
principles of cyber security. It will then assess the emerging challenges to this mis-
sion, framed though the dimensions of Big Data and consider opportunities to apply
trusted autonomy to improve cyber security. The intent of this paper is to help in-
form researchers of the areas in which development in trusted autonomy may provide
greatest return on investment in cyber security. Whilst these areas are specifically
related to the requirements for the Australian Department of Defence, they may also
be relevant to many other organisations facing similar cyber challenges.

Defence’s Information and Communications Technology (ICT) architecture pro-
vides a reasonably robust protection against cyber threats. The lower classification
(Protected) network is connected to the Internet via a gateway that provides mul-
tiple security mechanisms, thus achieving defence-in-depth. These security mecha-
nisms are highly effective and relatively sophisticated, but involve significant manual
processes. Due to the sensitivities and the need to maintain a security advantage, this
paper will not provide any details of the tools or techniques currently utilised by
Defence.

Whereas cyber security threats are on the increase, incidents on Defence networks
actually decreased in 2015 in comparison with the previous year. Some 50,000 events
were detected in 2015, around the same as 2014, of which there were 580 incidents,
which represented a 25% decrease [10]. The causality of the decrease in the number
of security incidents cannot be stated with certainty, but there are strong indications
that this result is through greater success of security mechanisms, especially through
blocking of threats at the gateway. Notwithstanding the evidence of current success
in cyber security, Defence needs to further strengthen protections to keep up with,
and preferably ahead of the threat.

11.2 Cyber Security

Information assurance and cyber security are both concerned with the protection and
defence of information and information systems by ensuring their confidentiality,
integrity and availability. Information assurance accounts for the risks to information
from natural, accidental and deliberate actions. Whereas cyber security tends to focus
on deliberate acts, information assurance and the managers of information systems
need to prepare against such acts, but also against accidents, faults, external events
and human error [4].

If the overall outcome for ICT management is the preservation of confidentiality,
integrity and availability of information in support of the organisation’s missions
and interests, in many respects it doesn’t matter whether something happens due to
a deliberate act or some other reason. When there is an impact on an organisation’s
information systems, the priority is to respond coherently and expeditiously, rather
than dwelling on whether it is an attack or a fault before someone responds. Hence
a principle of cyber security is that it is an integrated part of how an organisation
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manages its ICT environment. The organisation needs to have clear accountabilities
for ICT security, from policy to accreditation to day-to-day operations. As exciting
as the idea of doing cyber operations might seem, defensive operations are largely
a matter of systematically reviewing candidate incidents and managing the various
security mechanisms within a defence in depth approach. The ability to successfully
undertake defensive operations is strongly dependent upon how well the information
environment is set up and the level of discipline inherent in it. Hence the second
principle is that a secure foundation is fundamental to cyber security.

The design of Defence’s information environment provides requisite levels of
information assurance. In addition, Defence must undertake activities that ensure
that systems perform consistently as specified, that users are accountable for their
actions, that risks are mitigated by monitoring the environment and reducing the
impact of a failure against system or usage expectations, and that there are means
available to support an effective and timely recovery from an incident. These are
the foundations that need to be designed into a secure environment, and need to be
continually reviewed, updated and validated as technologies and threats evolve.

Much of Defence’s information assurance against cyber threats comes from ap-
plication of the Australian Signals Directorate (ASD) mitigation strategies. The top 4
mitigations—application whitelisting, application patching, operating system patch-
ing and restricting privileged access—can prevent over 85% of cyber intrusions [6].
Defence also gives priority to ASD’s larger list of 35 mitigations, which further
reduce vulnerability to cyber threats.

Defence will further enhance cyber security mechanisms with investments through
Joint Project 2068, the Cyber Security Improvement Program, and increasing the
recruitment and training of cyber security specialists, with a mix of military, public
servants and contractors. Defence is also supporting Whole of Government efforts
through the expansion of the ASD-led Australian Cyber Security Centre.

Defence’s adoption of current operating systems has been slow in the past, and
this leads to vulnerabilities associated with using older systems. The Infrastructure
Transformation Program, which is planned to deploy by the end of 2017, will up-
date hardware, networks, operating systems, applications and architectures to make
Defence’s ICT more robust, supportable and defendable [5].

But no matter how good these systems are, cyber security can only be as good as
the organisation’s people make it. This outcome is not only reliant on cyber security
specialists, but requires the support of all people in the organisation who use ICT.
Poor discipline, stupidity, lack of awareness and deliberate acts are all critical risks
to cyber security. The third principle is that everyone in the organisation contributes
to cyber security.

Some aspects of Defence’s information environment are already constrained to
mitigate the risks of poor user behaviours. Risks could be minimised further by
locking down systems, but it gets to the point that it impacts the business; in which
case it is better to accept some level of risk, and perhaps mitigate through training
or auditing or some other mechanism. Thus the fourth and final principle is that
an organisation must balance security imperatives with business requirements for
functionality and access.
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There are different expectations for cyber security for different information ser-
vices. For Defence’s classified warfighting network, there is an expectation of a high
level of availability and confidentiality, whereas Defence’s financial systems on the
Protected network require high integrity.

Hence Defence’s classified networks utilise greater access controls and adherence
to the imperatives of need to know and need to share. Their connectivity is generally
only to equivalent domains, and access points are strongly monitored. The Protected
network has connectivity to the Internet, but through a consolidated gateway that has
multiple security mechanisms in place.

Defence faces different types of cyber threats for its different networks. For clas-
sified networks, there is a focus on ensuring availability, as well as protecting against
insider threats and to guard against potential intelligence collection. On the Protected
network, the most common threat is criminal and there is less of a concern with attacks
against confidentiality, although there are risks with commercially sensitive infor-
mation as well as the real prospect that aggregation of information is sufficiently
valuable to attract sophisticated state-based intelligence collection threats.

As an example of managing the balance between functionality, access and cyber
security, Defence has in the past only permitted purely unclassified emails to exit the
gateway from the Protected network to the Internet, and did not allow emails with
a Dissemination Limiting Marker (such as sensitive or For Official Use Only) to be
passed to the Internet. While reducing risks, this practice was damaging Defence
business, such as vetting processes and interaction with Defence industry. Therefore
a risk based decision was made earlier this year to permit such emails to be sent to
the Internet when justified for Defence business, with risks managed through user
awareness, procedures and auditing.

This highlights an important point here that much of Defence’s information is
actually held outside controlled networks. With the Defence Industry Policy State-
ment intent to strengthen these industry partnership arrangements, sensitive military
information held on industry’s networks must be protected to the same level as on De-
fence’s own networks. In this regard, industry is critical to Defence’s cyber security
and creates an additional complexity to how we might use trusted autonomy.

11.3 Challenges and the Potential Application of Trusted
Autonomy

The evolution of computational techniques has taken us from automation of processes,
in which a system acts in accordance with defined rules, to autonomy, in which its
behaviour is governed more by an understanding of objectives combined with ob-
servation and learning. Autonomy is a characteristic of an agent in which it is aware
of other entities, and interacts with them, but exercises independence in order to
maintain focus on its defined interests. Key to autonomy is the interaction with the
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environment within a goal-directed behaviour [12]. Such independence of action is
further defined as self-direction or self-governance [14].

Trust is a further characteristic in which the agent will act in a predictable
and reliable manner, producing credible outcomes based upon the use of reputable
sources [11]. Trust also has a connotation of the formal evaluation of systems to
determine how they behave with such predictability and certainty, especially where
it applies to the protection of confidentiality. This requirement in trust raises an in-
teresting dilemma for an autonomous system, in that it may be difficult to measure
predictability in such a system that does not act in an obviously deterministic man-
ner. Trusted autonomy may in this regard be considered an oxymoron, or at least a
challenge for developers and researchers.

In cyber security, trusted autonomous agents should provide reliable security
outcomes that align with the interests of the organisation. Given the very nature
of cyber security, there is an expectation of a significant level of trust in any agent
involved in the protection of networks. The need for trusted autonomy is being driven
by a number of factors or challenges in the future information environment, which
will be explored in the remainder of this paper.

Fifteen years ago, the concept of Big Data was introduced, characterising the
concept in terms of three ‘V’ dimensions [13]. Since then other authors have added
more dimensions, typically continuing the alliteration, and also it has been recognised
that many of these dimensions are relevant for cyber security. In this paper I’m going
to examine Defence’s future cyber security challenges in terms of five Vs.

The first V is volume. CIO Group manages multiple networks on behalf of De-
fence, the largest being the Protected network with over 100,000 users. The personnel
system runs over 100 million transactions per week and the logistics system over 10
million transactions per week. Utilised storage in the Defence environment is 5.8
petabytes, with an annual growth of around 20% [9].

The Defence network architecture is designed with consolidated gateways that
protect the corporate network but enable controlled access between it and the In-
ternet.1 This approach provides a security focus on the gateway, reducing the risks
of multiple vulnerabilities, but brings a significant volume of interactions across the
gateway.

Each week, Defence’s High Availability Internet Gateway supports around 2 mil-
lion inbound and 600 thousand outbound legitimate emails, as well as nearly 10
terabytes in web services [8]. While legitimate traffic continues to increase, it is
negligible compared to blocked emails, which have gone in a period of 12 months
from roughly the same quantity as legitimate in 2015 to now four times as many
and increasing. While a portion of the blocked emails are due to being oversize or
misaddressed, the majority are spam or potentially have malicious content.

Clearly dealing with such large and increasing volumes of data is a challenge
for cyber security effectiveness. Much of this effort is focused on perimeter security
at the Internet Gateway, and Defence’s systems are highly capable of identifying
suspicious events. However the analysis of candidate incidents involves humans in

1The importance of gateways in cyber security is elaborated at [3].
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the loop, and increasing volumes of events will create a challenge that needs to be
met through a combination of increased resources and automation, if not autonomy.

Cyber security risks however are not only concerned with incoming traffic. The
increasing volumes of data exiting through the gateway to the Internet are monitored,
with mechanisms to block, flag or log emails dependent on the content and other
circumstances.

Additionally, the expansion of the Internet, especially with introduction of IPV6,
translates to additional volume for setting rules at the gateway in respect of whitelisted
and blacklisted entities.

While there are tools that support distinguishing between valid and potentially
suspicious traffic, much of the actual decision making around release of traffic re-
mains a manual process. While automation reduces the volumes of data necessitating
a manual process (e.g. from events to candidate incidents), the growing volumes and
sophistication of threats mean that there are growing numbers of unfiltered events
that require trusted decision-making.

Hence a key future requirement for trusted autonomy is to further increase the
ratio of total cyber events to those that require manual analysis. This will require
increasing the trust not only in the agents that provide that filtering but also in the
sources that the agents rely upon to undertake this task. Success in this endeavour to
handle large volumes of data is a matter of both the defeat of cyber threats as well
as the facilitation of valid business.

Although much of the cyber security emphasis is on the gateway, Defence recog-
nises that perimeter defence is not enough for comprehensive cyber security, and
endpoints around the network are monitored and analysed accordingly. Defence em-
ploys some automation to support analysis of this data, but its intent to strengthen
cyber security requires further enhancement in this area, including more sophisticated
and autonomous agents that can recognise anomalous behaviours and events.

This leads to a second V: visualisation. The ICT security capability in Defence
has utilised pioneering visualisation technologies for some years. In order to have
awareness of the health of the information environment and be able to make timely
decisions, whether about cyber security or any aspect of operations, an organisa-
tion needs better visualisation. This is a challenge for Defence, especially in the
future with its transformed network infrastructure managed within separate towers
by outsourced service providers.

The future visualisation capability needs to provide consistent information in an
operating picture that reflects the information and physical domains, and that can
be shared between security operators, network operators and military command and
control. Defence needs visualisation for decision support in the form of relevant and
accurate information about the status of networks.

Relevant is important in the context of what information is needed to make
decisions—a strategic commander will require different information from a tactical
commander, and quite different again from network and security operators. Military
commanders will be interested in whether systems are available, fit for purpose and
are providing the required connectivity and functionality. This will demand a dif-
ferent approach to visualisation compared to network and security operators, who



11 The Need for Trusted Autonomy in Military Cyber Security 209

will be more concerned with the systems themselves rather than the businesses they
support. In this respect, the term ‘common operating picture’ or COP is misleading
as the picture is not the same across all the types of decision makers—so what is
required is a consistent operating picture.

The difficulty of a cyber COP is that it is far more difficult to represent the
cyber environment, and be able to be comprehended, compared to the comparatively
simpler representations of the physical environment. Added to this is the critical
importance of providing accurate information to a decision maker who will make
potentially life or death decisions based upon the state of cyber support.2 Therefore
it is important that decision support systems provide an accurate representation of
the cyber environment.

This in itself is more of a challenge than might be immediately evident. A system
that provides situational awareness of the cyber environment is itself part of the cyber
environment. Any system that provides such awareness must do so with credibility
and reliability, having access to sources that provide this information, but having
sufficient resilience so not to be vulnerable to the threats or faults of which it is
providing awareness. Hence visualisation provides a second critical requirement for
trusted autonomy in cyber security.

The visualisation system needs to facilitate users’ ability to drill down to get
more information. It also needs to provide timely advice and support decisions to
reconfigure as required in real time.

This leads to the third V: velocity. As per the case of Big Data, many business
applications require real time speed for their interactions. Whereas an email or file
can be taken offline for analysis, other interactions such as web services may not be
so easily managed from a security perspective.

Another consideration for velocity is the critically short period between the first
awareness of a new threat and the deployment of associated defence mechanisms
such as detection and patching. Defence enjoys excellent relationships with partners
in other CERT like organisations and in industry, and is very focused on minimising
the time between identification of new threats and deployment of adjusted defences.

This may not be as helpful if the organisation’s networks are the target of a zero
day attack, hence a lot of importance needs to be placed on security mechanisms that
help identify new threats, limit the damage and facilitate quick recovery and support
of business.

It is important to recognise the pace at which a significant cyber incident can
evolve. Defence is placing greater emphasis on the coordination procedures for re-
acting to a cyber event and making timely and appropriate decisions on how we
balance operational continuity and security. To do so demands an understanding of
who the authorities for making such decisions are and to exercise realistically so that
responders aren’t trying to figure it out in the middle of a real incident.

Such initiatives will help improve the ability to respond to cyber threats in a timely
manner, but so long as these procedures are manual, Defence may not be able to keep

2This might seem overly dramatic, but Defence is now highly reliant on information systems, and
a decision to sever or shut down systems due to a cyber threat may have significant consequences.
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up with the tempo of cyber operations. Current procedures in Defence seek to resolve
network issues in terms of hours, if not days. The consequences of cyber events can
be a matter in which decisive action is needed in much shorter timeframes.

It is useful to consider the velocity issue in terms of Boyd’s Observe-Orient-
Decide-Act (OODA) loop [2]. Boyd identified that in modern warfare, particularly
air warfare, an advantage would be gained by having a shorter decision cycle than
one’s adversary. Such an advantage is even more critical in cyber warfare.

The third critical requirement for trusted autonomy in cyber security is to stream-
line decision-making to minimise the time to take action. As a minimum, this requires
superior decision support, as discussed earlier under visualisation. Timeframes can
be reduced if the autonomous agent provides recommendations based upon a com-
prehensive knowledge of the network, the cyber threats and consequences, and the
supported business.

To fully comprehend the need for timely and integrated decision-making in cyber
security, it is important to appreciate the nature of our vulnerabilities. The Defence
network architecture focuses perimeter defences on areas of greater vulnerability.
Defence is creating greater access in its networks to information and services, with
deployable and mobile users soon having similar access to services as one might
have in an office in Canberra. The centralising of data processing and making greater
use of thin client technologies may represent a shift in vulnerabilities.

The seamless integration of the Defence ICT environment means that the organ-
isation cannot afford for localised and independent decisions about balancing risk
and reward as it pertains to cyber security. A violation in one area can conceivably
proliferate throughout the network, which demands an approach to configuration
management, cyber security, technical control and support to military operations that
can balance overall risks. Often the risk to a mission needs to be weighed against the
risk to the enterprise. This needs to be taken into account in developing the ability,
including autonomous capability, to respond quickly to cyber threats.

The primary intent therefore is to ensure vulnerabilities are minimised and re-
sponses are quick, coherent and effective when facing cyber incidents. Defence
leadership must recognise the potential that a sophisticated and strong cyber threat
could impact its systems, and therefore must be prepared through training to fight on
in situations of disrupted or degraded information services.

One might suggest the ultimate goal for trusted autonomy in cyber security is to
take the human out of the loop in defensive cyber operations, making the speed of
response dependent only on electronic processes, rather than also including physi-
cal and cognitive elements. Such a goal would require considerable investment in
research and development, as well as a very highly refined (and continually updated
and tested) understanding of the relative risks (to missions, systems and security).
Right now the level of trust required for this goal does not seem within reach, but it is
certainly a fertile area for future research and development. As mentioned earlier, this
raises the interesting question of predictability and whether truly trusted autonomy
is even possible.

The fourth V is variety. Like the substantial variety of data Defence has in operating
a rather complex business, there also is a great variety of cyber threats that it needs
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to protect against. For externally sourced threats, this challenge of variety of threats
is addressed with a variety of defences. This is a similar approach to Ashby’s Law
of Requisite Variety [1], in that in cyber security we use multiple tools and multiple
sources to help increase the likelihood of ‘catching’ the different threats.

The bulk of the day to day cyber threats Defence deals with, in terms of pure
numbers, are about unsophisticated criminal scams. The organisation must be on its
guard to deal not only with these prevalent threats, but with less common threats.
The bigger concern is about seeing and dealing with the threats that aren’t so obvious
and are more dangerous, such as sophisticated malicious code, or the exfiltration of
information by such code or by a trusted insider.

Whilst such events may be identified through monitoring, Defence’s cyber security
approach tends to focus on known threats such as through signature matching. In
addition to these mechanisms, better systems need to be developed that characterise
the normal environment and can effectively and responsively identify anomalies.
Such a capability will help protect Defence networks against the unknown threats.
Thus the fourth critical requirement for trusted autonomy in cyber security is to
help in the identification of potential cyber threats through monitoring of anomalous
activity.

The fifth and final V challenge is variability. Here I diverge from the Big Data
view and consider variability more in a macro sense of the word, and this has several
dimensions.

Whereas Defence embraces the concept of a Single Information Environment, in
reality there are a lot of networks within the Department that are managed by indi-
vidual business units, and have variable adherence to security requirements. Defence
is working to remediate and accredit these networks to reduce vulnerability. Defence
is also considering the introduction of a cyber-readiness or cyber-worthiness regime,
to regularly test the security of Defence’s ICT networks.

Another aspect of variability arises at the application layer, in that the Single Infor-
mation Environment comprises different applications, and versions of applications,
that largely do similar things. The inertia in moving on from legacy applications
creates a management burden and results in security risks in operating unsupported
systems. Defence continues to work on the rationalisation of legacy systems through
the Infrastructure Transformation Program.

Like the Internet and many organisations’ systems, Defence networks also have a
lot of outdated content. Such ‘untidiness’ of the environment can impact productivity
and is also a security risk. The Enterprise Information Management initiative of
Defence’s First Principles Review is endeavouring to address this problem.

There are arguments for and against whether variability within the environment
contributes to or detracts from cyber security. Some might suggest that variability
of systems reduces the impact of an exploit against a particular system. However,
my belief is that a more consistent, tidier and disciplined environment is easier to
support and to defend.

Another aspect of variability is how critical each application and information ser-
vice is to Defence business. This then translates into variability for the redundancies,
disaster recovery and incident resolution priorities that apply to each information
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service. Such requirements have been established for all the services and systems
Defence supports, with a view to their continuity in the case of a fault. Defence
leadership will have to consider in future whether these priorities are right, partic-
ularly in respect of recovering from a substantial cyber event. This will come from
engagement with Defence’s Groups and Services, as well as through exercising and
wargaming of cyber events.

One last consideration for variability, and this to me is the most important, is the
variability of the organisation’s people when it comes to cyber security. Defence
requires that its people have a standard of behaviour and awareness that adds to our
defence in depth, rather than being a weakness. Despite having standard training for
cyber security, practically a range of behaviours can be observed, from cautious to
reckless.

So what implication does variability have for the need for trusted autonomy? As
per previous discussions about anomalous behaviour, there is a need for improved
systems that identify when actions, activities or attributes of the system are unex-
pected, and potentially to take action to mitigate risk. Additionally, there is a need
for a sophisticated understanding of Defence’s business, specifically an appreciation
that the criticality of services varies across the organisation and thus affect the bal-
ance of risks in undertaking cyber defence. Trusted autonomy could contribute to
information management and cyber security as a compliance agent, by monitoring
the environment, and identifying and analysing variance—thus helping maintain our
cyber readiness.

11.4 Conclusion

Right now is a very interesting time to be involved in cyber security, especially in
Defence. The Department has a clear direction to strengthen cyber security, whilst at
the same time needing to improve the functionality and the accessibility of informa-
tion services. This demands creation of a solid foundation for information assurance
and then cyber security and operations personnel must manage the balancing act of
risks and value.

I have outlined the principles of cyber security and future challenges, with a bit of
alliteration borrowing from the Big Data V concepts. It is important to recognise that
traditional approaches to address these challenges will not be enough. Specifically,
future cyber security will need to deal with exponentially growing volumes of in-
formation, need to have better awareness of the cyber environment, need to respond
quickly to cyber events, need to identify unknown threats and have the ability to
understand our complex environment.

Success in meeting these challenges requires a competitive advantage, which most
likely will only come with assistance from trusted autonomy. Given the development
of trusted autonomy has not to date met expectations, greater investment into research
and development in these areas is important in order to keep ahead of cyber threats
in future.
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Chapter 12
Reinforcing Trust in Autonomous Systems:
A Quantum Cognitive Approach

Peter D. Bruza and Eduard C. Hoenkamp

12.1 Introduction

Bad decisions can have dire consequences. From high exposure events such as an
oil spill or a plane crash, to the smaller scale drama of a patient who dies on the
operating table, the unavoidable question soon follows: Was this mechanical failure
or human error? Yet, in a society where people increasingly base their decisions
on autonomous systems such as search engines, recommender systems, or social
media, the distinction becomes blurred. Although these systems are based on algo-
rithms (less material, but nonetheless mechanical) people will have to process and
consider the provided information, thus becoming the weakest link in the decision
chain. In general, mechanical failure, once discovered, seems more easily addressed
than human error. So if autonomous systems could be made aware of how humans
judge information, they could become more judicious in advising humans, and more
proactive in the way they present their information. Currently this is not the case. To
change this, we have looked into decades of research about human judgement (For
the case of how judgement of a particular system is shaped by some of its properties
see Sect. 7.6 of this book.). We found a whole range of human judgement that devi-
ates substantially from what would be normatively correct according to logic and
probability theory. As example take the famous experiment in which Tversky and
Kahneman [35] presented participants with the following text:

Linda is 31years old, single, outspoken, and very bright. She majored in philosophy. As a
student, she was deeply concerned with issues of discrimination and social justice, and also
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participated in anti-nuclear demonstrations Which is more probable:
(a) Linda is a bank teller, or
(b) Linda is a bank teller and is active in the feminist movement?

In this experiment, the participants consistently rated option (b) as more probable
than (a). However, according to the axioms of probability theory, the conjunction of
events is less probable than a single event, so (b) must be less probable than (a).

This type of judgement errors has been found so invariably that it became known
as the conjunction fallacy (see [31, 34] for other such fallacies). These findings are not
widely known, let alone implemented, by programmers designing the communication
part of autonomous systems. The latter systems so far adhere to the laws of probability
and logic, which is their strength. Their weakness, however, is to not account for how
humans make decisions. For example, an intelligent system that would correctly
answer (a) in the experiment above, might bewilder the human who was expecting
answer (b). In turn this could erode that human’s trust in such a system.

Let us take another, more concrete, example from technology soon to become
reality. Suppose you arrive late in the evening at a meeting. As the street is clearly
indicated as a tow zone, you let your self-driving car find a parking space elsewhere
to park in your stead. Later you come back and find that it parked in the first free
spot in that same street. Would this not be the time to reconsider your trust in the
autonomy of the car? And so you instruct it not to do this again. But then it politely
explains [24] that the tow zone only applies during rush hour, thus restoring your
trust. An even better scenario would be that when you leave the car to park itself,
it would tell you that yes, this is a tow zone, but only during rush hour. Machines
have become smart enough to do the first part, in this case finding a parking space
and park. But then, is it not time to work on the second part, where the machine
proactively explains its actions from the human’s point of view? Or the part where it
can foresee a human error because it knows how a humanwould reason in a particular
case? This stands to hugely help humans put trust in autonomous systems, and in the
current presentation we show a direction one could go.

To elaborate the problem we want to address, before trying to solve it, consider
Wittgenstein’s often cited remark “If a lion could talk, we could not understand him”
([37], p. 223). The remark has been food for much thought and speculation (that it is
probably true) for half a century, notably in the philosophy of language. We wonder,
however, that if we cannot even understand a lion, whence the confidence that wewill
understand machines when it comes to communicating with them verbally? Here we
think that Wittgenstein’s own, less quoted, comment can lead the way [37]:

If language is to be ameans of communication theremust be agreement not only in definitions
but also (queer as this may sound) in judgements. This seems to abolish logic, but does not
do so — It is one thing to describe methods of measurement, and another to state results of
measurement. (p. 391, our italics)

This is an important vantage point for the current presentation: first it emphasizes
the role of judgement, second it distinguishes the method of measurement from its
result, and third it challenges the role of logic.
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Wewill express these notions in the language of quantum cognition, which derives
terminology and computations from quantum mechanics. But whereas quantum
mechanics dealswith physical states, quantumcognition describes cognitive (ormen-
tal) states. The Linda experiment can be described in this language, as we showed
already in the book we wrote about quantum cognition [10]. For further details we
will refer the reader to that book, so that we can use the space here to describe a
new experiment. The experiment is also modeled using quantum cognition, laying a
foundation for its implementation in future autonomous systems. Incorporating such
models can proactively help the user avoidmistakes that are inherent in human judge-
ment and thus prevent an erosion of trust.We contend that in this way the interactions
between humans and future autonomous system will become more effective.

12.2 Compatible and Incompatible States

The conjunction fallacy does not mean that people always judge the probability of
a conjunction as higher than each of its conjuncts. That would indeed be counter to
probability theory. Just imagine that the choice between (a) and (b) was presented
without the story about Linda. Then one would expect everyone with some notion of
probability to choose (a) over (b), as confirmed in [35]. But when asked the question
after first hearing the story, even people schooled in statistics fall victim to the
conjunction fallacy. Why is this? The question generated a host of publications with
possible explanations over the last several decades (see [19] for an overview). Among
the many kinds of explanations offered, two stand out in particular. One assumes that
words such as ‘and’ and ‘probability’ are misunderstood by the participants, or at
least not understood in their formal interpretation. The other assumes a reasoning
bias. A recent overview [30] concludes that the latter has the best support of the
two. But this answer begs the question: if there is a reasoning bias, where does that
reasoning bias originate?

Indeed, we are not satisfiedwith just knowing there is such a bias, rather wewould
like to describe how that bias unfolds as a cognitive process. To do so, let us formulate
the participants’ judgements as the outcome of a decision process. The explanations
in the literature almost invariably involve two competing states, one in which Linda
is a bankteller, and another where she is a feminist. To most participants in the
experiment these states are not compatible, and whether bias or reasoning, each can
in principle tip the scale in favor of one state or the other. In order to make headway,
we have to take a closer look at the notion of compatible and incompatible states.

In this presentation wewill formulate states in the language of quantum cognition.
Especially for the reader who is not already familiar with this approach, we will first
recall some concepts from quantum mechanics. One such concept is the (formal)
notion of compatible and incompatible states. Incompatibility lies at the heart of
Heisenberg’s famous uncertainty principle. It holds that when we are certain about a
quantum particle’s momentum, we are necessarily uncertain about its position, and
vice versa. Position and momentum are therefore called incompatible states. On the
other hand, again given themomentumof that particle, we can still measure its kinetic
energy with certainty, momentum and kinetic energy thus being compatible states.



218 P. D. Bruza and E. C. Hoenkamp

12.3 A Quantum Cognition Model for the Emergence of
Trust

There is a vision of nature that readers may have entertained themselves at one time
or another, namely that “all phenomena could be explained mechanically if only
we knew enough.” Those readers are in good company, as this is a direct quote
from Leibniz’s writing of 1695 [29]. Yet the problems with this vision are several.
First, we are not omniscient and second it is uncertain if we will ever have enough
computing power to do the explaining. But even if is this may become an issue for
intergalactic travel, whywould it apply to the Linda experiment? After all, everything
the participants in the experiment need to know is given in the instructions, and the
computing power needed is an unassuming application of probability theory. So why
is an explanation for the experimental findings still wanting?

There is a third, perhaps more fundamental, problem with Leibniz’s position: His
mechanical view of the laws of nature has been drastically undermined with the
advent of quantum mechanics. It turns out that some phenomena require a proba-
bility calculus, but different than given by classical probability theory. For example,
probabilities may not always add up to 1.

The problem does not just apply to the description of physical systems, but also
to cognitive systems, and more in particular those that play a role in interactions
between humans and autonomous systems. We can safely assume that such inter-
actions require decisions under uncertainty. For decades cognitive scientists have
studied how humans make judgments under such conditions. The theories they pro-
duced can be roughly divided into a heuristic and a rational approach.

The heuristic approach is founded on so-called bounded rationality [33]. It
assumes that in order to make decisions, humans use simple heuristics such as
representativeness, anchoring-and-adjustment, and base-rate neglect. They support
powerful (often inductive) processes that may depend on the environment [22]. In
contrast, the rational approach conforms to rules drawn from a theory, most notably
Bayes’ rule [13] or expected utility theory [32]. In this approach the same basic
axioms can be used to derive inferences and utilities across all environmental con-
ditions. Recently, a third approach, called quantum cognition has emerged [10, 11,
36]. In common with the heuristic approach, it assumes that the human decision
maker is subject to bounded rationality. And in common with the rational approach,
inferences used for decisions are derived from basic axioms that define a probabil-
ity theory. However, the axioms are different from those employed by the Bayesian
approach, and consequently, so are the decisions that follow from it.

Two core concepts underpinning quantum cognition are incompatibility and con-
textuality. We will briefly come back to ‘contextuality’ later in this chapter, but right
now we will continue with ‘incompatibility’ from Sect. 12.2 in more detail. Both
concepts play an important role in formalizing people’s perception of trust.

At the time of writing this chapter, a term that gained notoriety was the term fake
news. Many readers may have realized their quandary over what news can be trusted
any longer. We will describe an experiment in which we induced such a quandary
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and measured how it influenced people’s degree of trust. We will then offer a formal
explanation in terms of quantum cognition, which at the same time shows that we
need to distinguish between two forms of trust.

We could perhaps have presented participants with pieces of news of varying
degrees of trustworthiness. However, note themany variables that should then be kept
under control, such as the participant’s background knowledge or the ephemerality
of news. Instead we used pictures of which they had to assess the trustworthiness
on a five point scale from untrustworthy to very trustworthy [18]. (Trustworthy was
defined as an image that gave an accurate representation of a situation, person or
object.) The participants were also asked to supply the reasons for their rating. An
example of one such a picture was a smiling face of Putin, which can be seen by
following the URL in [7].

The image of Putinwas deliberately chosen.Many participantswill know that he is
a former KGB agent and probably not predisposed to smiling.Would this then lead to
uncertainty whether the image had been photoshopped, and a consequent lack of trust
that the image is a true an accurate depiction of Putin?When analyzing the qualitative
data a curious phenomenon emerged.Aconsiderable number of participants appeared
to confuse the decision regarding trust of the image with a decision on whether they
trust the content of the image. For example, “This is Vladimir Putin, a world leader
I associate with dishonesty and distrust, who works to his own agenda and doesn’t
worry about other people”, “I wouldn’t trust the person, but the photo is fine”, and
“I really could not separate what I know about this man from his image”.

Assuming the confounding of the trustworthiness decision is a robust cognitive
effect, how can it be explained? Quantum cognition offers an explanation based on
incompatible decision perspectives. Consider diagram (a) on the left in Fig. 12.1.

This figure depicts two decision perspectives. One is a two-dimensional vector
space featuring two orthogonal basis vectors (in black) corresponding to the decision

(a) (b)

Fig. 12.1 Incompatible decision perspectives explain why trust in the image is sometimes confused
with trust in its content (elaborated in the text)
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that participant trusts, or doesn’t trust the image. We will call this the “image”
decision space. The other decision perspective is a two-dimensional vector space
(dotted basis vectors) which models the decision whether the participant trusts, or
doesn’t trust the content of the image. We will call this the “content” decision space.
This vector space is rotated with respect to the vector space modeling the decision of
the trustworthiness of the image. The red vector represents the cognitive state of the
participant when the image is first presented. Note that the cognitive state-vector is
superposed with respect to both decision perspectives. If this participant’s cognitive
state is suspended between the basis vectors of both decision spaces. Superposition
in quantum cognition is a major departure to mixed state in a standard probabilistic
model. Amixed state implies that the participant is always in one basis state or the the
other. For example, with respect to the decision regarding the image, the participant
will be either in the state corresponding to the decision that they trust the image or be
in the alternative state in which they don’t trust the image. We may not know what
state they are in, but they must be in one of these two states. It may be the case that
in the course of considering the image the cognitive state of the participant moves
between these states. Superposition allows the participant to be in both states at once.
As we shall see, this has a marked effect on the probabilities of the associated states.

Quantum cognition is defined by quantum probabilities which are related geomet-
rically, not by an underlying Boolean algebra over the event space. More formally,
let T denote the decision that the participant trusts the image and let T denote the
decision that the participant does not trust the image. These are the basis vectors of
the image subspace. Similarly, let C and C denote the basis vectors of the content
subspace. The cognitive state ψ is superposed between the two decisions in both
the image and content subspaces. The probability that the participant decides they
trust the content portrayed in the image is equal to the square of the projection of
the cognitive state ψ onto the basis vector C , denoted ‖PCψ‖2. We can see from
the diagram that the length of this projection is small, hence the probability is small,
which reflects the weak predisposition of the participant to trust Vladimir Putin. Con-
versely, the predisposition not to trust Putin is high because of the long projection of
the cognitive state vectorψ onto the basis vectorC . Hence the associated probability
‖PCψ‖2 = 1 − ‖PCψ‖2 is high.

Consider diagram (b) in Fig. 12.1. Note that the cognitive state vector now lies
on the basis vector. This models the situation in which the participants have decided
that they do not trust the content of the image (Vladimir Putin). Therefore, the
cognitive state ψ is no longer superposed with respect to the decision perspective
regarding the trustworthiness of the content. Note, however, that the cognitive state
vector is necessarily superposed with respect the decision perspective regarding the
trustworthiness of the image. The reason for this is the degree of rotation between the
two decision subspaces. Because these subspaces are not orthogonal to each other
the decision perspectives are incompatible. Incompatibility between the decision
perspectives explains why participants confuse the decision on the trustworthiness of
the image versus content of the image. The reason is that in case of incompatibility the
law of total probability does not hold. For example, the probability that the participant
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will trust the content of the image in terms of the two decision perspectives is as
follows:

p(C) = ‖PCψ‖2 (12.1)

= ‖(PC · I )ψ‖2 (12.2)

= ‖(PC · (PT + PT )ψ‖2 (12.3)

= ‖PCPTψ‖2 + ‖PCPTψ‖2 + ψ�PTPCPTψ + ψ�PTPCPTψ
︸ ︷︷ ︸

I nt

(12.4)

The preceding rendered in standard probability theory looks like the law of total
probability, which is being modified by extra term Int:

p(C) = p(C, T ) + p(C, T ) + Int (12.5)

Int is referred to as the “interference term”. The interference term can positively or
negatively contribute to the probability p(C). For this reason, incompatible subspaces
have been put forward as a natural explanation why human beings do not adhere to
the law of total probability like in the conjunction and other so called fallacies in
human decision making [12]. When the interference term is zero, the law of total
probability holds. This happens when the decision perspectives are compatible.

Incompatible decision perspectives are a recent development in cognitive model-
ing and their striking characteristic is the use of “quantum” probabilities. By quantum
probabilities, we mean that the decision event space is modelled as a vector space
rather than a Boolean algebra of sets. A key differentiator is the use of the inter-
ference term. When this term is non-zero, violations of the law of total probability
occur. The interference term has been used in models of the perception of gestalt
images [15, 28], models of the conjunction and other decision fallacies [12, 14],
modeling violations of rational decision theory [6, 28, 31], modeling belief dynam-
ics [34] and conceptual processing [3–5, 20, 21]. In this presentation there is no
need to go any deeper into the fine points where quantum cognition and the Bayesian
approach part company. Therefore we only present Table12.1 as a summary, and
refer the interested reader to [9] for further details.

Placed in a psychological context, the uncertainty principle becomes relevant
because a person’s understanding of two events, such as two different perspectives

Table 12.1 Comparing Bayesian and Quantum cognition

Bayesian cognition Quantum cognition

Human is in a definite cognitive state Human can be in a superposed state

Events are compatible Events may be incompatible

Law of total probability May violate law of total probability

Models are non-contextual Models may be contextual
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on a matter, requires changing from one point of view to another, and the two points
of view can imply incompatibility. In other words, the uncertainty principle entails
that it is not possible to be simultaneously decided on both the image and content
with respect to assessing trustworthiness. Just like it is not possible to form a joint
probability of both the position and momentum of a quantum particle, it is not
possible for the human participant to form a joint probability across decisions, e.g.,
whether they both trust the image and the content of the image. Not being able to
form joint probabilities signals the presence of contextuality. A well studied example
of contextuality is the curious phenomenon of entanglement: Empirical observations
are collected in four measurement settings of a system of two quantum particles such
as photons. Each of the four settings yields a pairwise joint probability distribution
which models the observations made in that measurement setting. An entangled
system is deemed “contextual" because it is not possible to combine these four
pairwise joint probability distributions into a single probabilistic model such that the
four pairwise empirical distributions are marginal distributions of this global model.
Even though contextuality manifests within the sub-atomic realm, there is a growing
body of researchwhich is exploring whether contextuality manifests in cognition and
related areas (e.g., [1, 2, 8, 9, 16, 17]). In the context of our example, contextuality
arises because the image and content decision perspectives cannot be meaningfully
combined into a single joint distribution.

12.4 Conclusion

In the foreseeable future, humans and autonomous systems will engage in shared
decision making. Given the discrepancies between the way they arrive at decisions,
whose form of rationality should be given precedence: human or machine?

One form of rationality can be termed “Bayesian rationality” in which Bayes-
ian probability theory provides such powerful models of both human and machine
cognition, that it is sometimes called “Bayesian fundamentalism” [26]. We made the
point in this chapter that humans often do not adhere toBayesian rationality, but rather
to a “quantum rationality,” as it is based on the the same Dirac-von Neumann axioms
as quantum theory. Neither of these two rationalities should be given precedence.
We argued that quantum rationality is often more suited to model human decision
making, and Bayesian rationality more to model decision making by machines. So
the more pertinent question is how to best align these rationalities so that shared
decision making between human and machine becomes more effectual than that of
each in isolation.

There are good examples where traditional (often brute force) mechanisms were
unable to solve difficult problems, and which became tractable when augmented
with cognitive elements. One famous example is the breaking of the Enigma code by
augmenting brute force methods with simple aspects of human communication [23].
A second example is the incorporation of human reasoning in chess programs. And
finally we have already seen this clearly confirmed in our own research in areas
outside that of this chapter [24, 25].
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Therefore, we propose to augment the rationality already available in the current
systems with quantum rationality. We expect that future autonomous systems can
compute decisions based on both rationalities and hence detect situations when these
decisions do not align. In such cases the machine could make the human aware of the
discrepancy, thus preventing a potential erosion of trust between human andmachine.
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Chapter 13
Learning to Shape Errors with a Confusion
Objective

Jason Scholz

13.1 Introduction

Automated systems typically operate on their own only if they are simple, or within
a closed and managed environment. In situations when things can go wrong with
serious consequences, control is typically introduced through a human-in-the-loop.
Trusted Autonomous Systems (TAS) are different in that they will be required to
operate in open and unmanaged environments and when human guidance may not
be available. To achieve machine perception in open environments, machine learning
classifiers are likely critical components in TAS. However, in order for such systems
to be worthy of their trust, users and designers will want to ensure that classification
errors that may result in high-consequence impact can be managed; in effect, to
introduce a bias in the machine analogous to a learned human bias.

Much recent statistical machine learning [11] involves learning weights in com-
plex, modular non-linear artificial neural networks. These weights are derived from
the gradient of the objective (or loss) function. This gradient is back-propagated
(Rummelhart et al. 1986) throughout the whole system. In supervised classification,
the objective function typically uses some relationship between the machine’s output
estimated class and the training set true class. The squared error and cross entropy are
popular example functions. The choice of objective function instructs themachine by
reward for a correct estimate, and lack thereof for incorrect estimates. These objec-
tive functions reward all correct choices and punish all incorrect choices equally.
The choice of objective function affects error distribution and in high consequence
situations some types of errors may be undesirable. When errors are made, a user
wants them to be of least consequence, in effect, the lesser of evils. There may be
more at stake than simply choosing the ‘best’ overall performance.

Consider as illustrative, the following humourous exchange from the 20thCentury
Fox film ‘Master and Commander: The Far Side of the World’, when in the officers
mess Captain Aubrey points to a plate of bread and asks Dr Maturin,
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Do you see those two weevils doctor?
I do.
Which would you choose?
(sighs annoyed) Neither; there is not a scrap a difference between them. They are the same
species of Curculio.
If you had to choose. If you were forced to make a choice. If there was no other response...
(Exasperated)Well then if you are going to push me... (the doctor studies the weevils briefly)
...I would choose the right hand weevil; it has... significant advantage in both length and
breadth.
(the captain thumps his fist in the table) There, I have you! You’re completely dished! Do
you not know that in the service... one must always choose the lesser of two weevils.
(the officers burst out in laughter)

The consequences of a deep network incorrectly classifying a pedestrian as a
rubbish binmayhave dire consequences in a potential driver-less vehicle accident, yet
incorrectly classifying a post box as a rubbish bin may be of lesser concern. Further,
the nature of those consequences will be application specific and thus empirically
driven. In mission and safety critical applications when the consequences of error are
high, the semantic coding of errors for a machine to learn more and less important
costs is an important problem. One would ideally like the designer and/or user of
systems to be able to specify a profile for acceptability of error consequences for
the system application at hand and is critical to trust justifications. Errors will be
a reality for deployed network solutions. Despite the performance claims of Deep
Networks and the rush to multi-layer engineering with GPU implementations, the
vast majority of techniques remain brittle. Small changes can result in magnified
errors undermining trustworthiness in the accuracy and competence of such systems.
This brittleness is evident when a network trained on given data sets is exposed to
independently-derived dataset. Seewald [12] illustrates an order of magnitude in
error degradation when a classifier trained onMNIST and USPS datasets is tested on
the independently-derivedDIGITS handwritten digits dataset. Further, it appears that
adversarial examples may be created that have deleterious error effects on practically
all forms of network architecture, both deep and shallow [6]. Although adversarial
forms appear to be rare in naturally-occurring data, they can be easily generated by an
adversary in ways that are indistinguishable to humans [15], which may undermine
trustworthiness in the integrity of the system.

The literature on ‘cost-sensitive classification’ (CSS) is concerned with class
distribution imbalance, typical of situations when the training data is limited or not
necessarily statistically representative, and for classifying rare and important classes
(e.g. medical diagnosis of rare diseases). Despite this specific focus, the techniques
may be applicable to objective functions for more general deliberate error shaping,
as they are generally formulated for a cost C of confusing the actual class i with
estimated class j and probability of class j given training example x ,

L(x, i) =
∑

j

P( j |x)C(i, j) (13.1)
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Approaches to CSS include reweighting (stratifying) available training data so that
more costly errors will incur a larger overall cost [5], cost-sensitive boosting [13], [4]
that combine multiple weak or diverse learners, or by changing the learning algo-
rithm. Those that alter the learning algorithm appear to focus on either decision
tree classifiers where cost sensitivity is achieved by pruning [10], or Support Vector
Machines (SVM) that all use a hinge loss approximation of the cost-sensitive loss
function [9]. A cost sensitive learning algorithm applicable as an augmentation to
deep networks appeared only recently in the literature [7] and as with all the CSS
has not considered the broader problem of shaping the entire error distribution, but
only to make up for imbalance in the input class distribution.

The feasibility of a simple augmentation to networks to learn user-defined error
profiles is examined next on the basis of a new proposed maximum likelihood objec-
tive function. The new technique is developed and explained in the context of bino-
mial and multinomial regression. An implementation using Google’s TensorFlow is
then studied. A range of experiments are conducted with several independent data
sets to ascertain the degree of control over error distributions where the prior distri-
bution is unknown, on a shallow and a deep network architecture and findings are
discussed.

13.2 Foundations

Aderivation ofmaximum likelihood classifiers tomatch a target error profile follows.
Noting, in this preliminary study, there is not yet any established theory as to how
the overlaps in classification can be traded off, so the examination will necessarily
be empirical.

In supervised learning, the ErrorMatrix, or ConfusionMatrix indicates the correct
and error classifications across categories from either training or test data. Each row
represents the number of instances in an actual (true) class and each column represents
the number of instances in an estimated class. The term confusion is used, as this
representation quickly shows how often one class is confused with another. Type I
errors refer to a true class X being incorrectly classified as a different class Y and
is indicated in the non-diagonal values in the rows of the confusion matrix. Type II
errors refer to a classified class being X when the true class was Y, and is indicated
in the non-diagonal column values of the confusion matrix.

Logistic Regression for the binomial case (two class) and multinomial [3] have
been well studied in the literature. However, in order for the reader to comprehend
the gradient function for the pairing of the multi-class logistic function also termed
‘softmax’ [14] function with alternate objective functions, it is necessary to derive
these from first principles. Multinomial logistic regression is also extended to the
Gaussian case to gain insight and contrast the form of the gradient function with our
proposed objective. The following forms a foundation for the proposed technique
for multinomial softmax regression on the confusion matrix to follow in the next
section.
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13.2.1 Binomial Logistic Regression

Consider a network with input xn for the nth data presentation, weight vector w, and
bias vector b.

zn = wT xn + b (13.2)

Consider a simple binary decision classifier, with a logistic function non-linearity,

yn = σ(zn) = 1

1 + e−zn
(13.3)

In training the network with N examples, the probability of the true class t given the
estimated class y output for training case n is,

p(t|y) =
N∏

n=1

p(tn|yn) =
N∏

n=1

yn
tn (1 − yn)

1−tn (13.4)

To maximise this probability, it is equivalent to minimise the negative log likelihood
termed the loss function,

E = − log p(t |y) = −
N∑

n=1

log p(tn|yn) =
N∑

n=1

tn log yn + (1 − tn) log(1 − yn)

(13.5)
When the gradient of the loss function is zero, this corresponds to the minimum.

∂E

∂ yn
= − tn

yn
+ 1 − tn

1 − yn
= yn − tn

yn(1 − yn)
(13.6)

Now consider the chain rule,

∂E

∂w
= ∂E

∂ yn

∂ yn
∂zn

∂zn
∂w

(13.7)

Differentiating (13.2),
∂ yn
∂zn

= yn(1 − yn) (13.8)

Thus from (13.6),

∂E

∂w
= yn − tn

yn(1 − yn)
yn(1 − yn)xn = (yn − tn)xn (13.9)
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The logistic function matches the negative log likelihood function to achieve a can-
cellation in terms and a very simple expression for the gradient and thus theminimum
point, which occurs precisely when yn = tn .

13.2.2 Multinomial Logistic Regression

Consider the network as per (13.1), independently duplicated in structure for each
class j ,

znj = wT
j xn + b j j = 1, 2, .., K (13.10)

Consider a multi-class decision classifier, with the generalised logistic or ’softmax’
function non-linearity, for data presentation n and class j as follows,

ynj = σ(znj ) = eznj
∑K

c=1 e
znc

j = 1, 2, .., K (13.11)

Softmax is thus the logistic function extended to one output for each class. This gener-
alises the previous binary case where K = 2. Noting each class output is normalised
with respect to all other classes, and therefore is not independent.

As before, in training the network with N examples, the probability of the true
class t (a ‘one-hot’ vector) given the estimated output y for training case n and class
j might be described with a multinomial probability mass function, normalised such
that

∑
j t j = 1

p(t|y) =
N∏

n=1

p(tn|yn) =
N∏

n=1

K∏

j=1

ynj
tnj (13.12)

To maximise this likelihood, it is equivalent to minimise the negative log likelihood,

E(w) = − log p(t|y) = −
N∑

n=1

log p(tn|yn) = −
N∑

n=1

K∑

j=1

tn j log ynj (w j ) (13.13)

This log-likelihood function is often termed cross entropy and can be derived from
the Kullback-Liebler divergence. Where the gradient of the negative log likelihood
function is zero, ∂E

∂w = 0 corresponds to the minimum. This is pursued in stages,

∂E

∂ ynk
= − tnk

ynk
(13.14)

Recalling the softmax function normalises with regard to other classes, means that
the derivative of the softmax has two cases,
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∂ ynk
∂znj

=
{
ynk(1 − ynk) j = k

−ynj ynk j �= k
(13.15)

The chain rule must account for K class paths, however, the expression may be
simplified according to j = k and j �= k parts only,

∂E

∂w
= ∂E

∂ ynk

∂ ynk
∂znk

∂znk
∂wk

+
∑

j : j �=k

∂E

∂ ynj

∂ ynj
∂znj

∂znj
∂w j

(13.16)

= − tnk
ynk

ynk(1 − ynk)xn +
∑

j : j �=k

tnj
ynj

ynj ynkxn (13.17)

= tnkxn(ynk − 1) + ynkxn
K∑

j : j �=k

tnj (13.18)

= xn

⎛

⎝−tnk + ynk

K∑

j=1

tn j

⎞

⎠ (13.19)

Thus,
∂E

∂w
= xn (ynk − tnk) (13.20)

This is the same form as for the binary case. As Eq. (13.16) makes clear from
the cancellation of terms, the gradient of the softmax function perfectly matches the
gradient of the log likelihood objective function, conspiring so as to form a significant
reduction. Only one element of the training and the output is used, representing the
single true (kth) condition.

Having established this foundation, alternative objective functions are considered
next.

13.2.3 Multinomial Softmax Regression for Gaussian Case

Consider the case where y are Gaussian distributed. Such a distribution may not be
an unreasonable approximation in the case of the limit for very large training sets.
This will allow investigation of the less-than-perfect match of softmax function with
this new objective function.

p(t|y) =
N∏

n=1

p(tn|yn) =
N∏

n=1

K∏

j=1

e
−(ynj−tn j )

2

2πσ2 (13.21)
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To maximise this likelihood, it is equivalent to minimise the negative log likelihood,

E(w) = − log p(t|y) = −
N∑

n=1

log p(tn|yn) = 1

2πσ 2

N∑

n=1

K∑

j=1

(
tn j − ynj (w j )

)2

(13.22)
Instead of the logarithmic relationship to the outputs y, previously, there is now a
square law relationship.

As previously, the gradient of the negative log likelihood function is zero, ∂E
∂w = 0

corresponds to the minimum. Which is pursued in stages,

∂E

∂ ynk
= tnk − ynk (13.23)

Using Eqs. (13.14) and (13.15) as before,

∂E

∂w
= (tnk − ynk) ynk(1 − ynk)xn −

K∑

j : j �=k

(tn j − ynj )ynj ynkxn (13.24)

= −xnynk

⎛

⎝(ynk − tnk) −
K∑

j=1

(ynj − tn j )ynj

⎞

⎠ (13.25)

Firstly, note the sign of the gradient is reversed with respect to (13.19). Second, as the
minimum is achieved only when the gradient is zero, this occurs iff tn j = ynj , ∀ j .
This is notably different to the previous form (13.19), which showed no dependency
to any other than the kth estimates of y and training values t . Indeed, even if tnk = ynk
a gradient remainder is left over.

Notably, if a one-hot vector is used for training (which is usual for multinomial
classifiers), then tn j = 0 if j �= k so,

∂E

∂w
= −xnynk

⎛

⎝(ynk − tnk)(1 − ynk) −
K∑

j=1: j �=k

y2nj

⎞

⎠ (13.26)

This clearly shows that the incorrect estimate outputs from the right-hand term in
(13.25) introduce an irreducible offset into the gradient. However, if the classifier is
working well then y2nj << 1 and thus this term may be small.
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13.3 Multinomial Softmax Regression on Confusion

A proposal to effect control over the confusion matrix is examined. The confusion
matrix summarises the overall distribution of examples from trained classes t versus
estimated classes y. Consider the potential to learn a user-defined target confusion
matrix distribution u. Using Bayes theorem this means maximising,

p(u|t, y) = p(t, y|u)p(u)

p(t, y)
(13.27)

Noting the matrix product of t and y defines the confusion matrix for some repre-
sentative data batch size N , writing the likelihood as,

p(t, y|u) =
K∏

i=1

K∏

j=1

(
N∑

m=1

tim ymj

)ui j

(13.28)

Unlike previous formulations this likelihood directly mixes the estimator output and
training classes within the argument of the logarithm. The negative log likelihood is
thus,

E = − log p(t, y|u) = −
K∑

i=1

K∑

j=1

ui j log

(
N∑

m=1

tim ymj

)
(13.29)

In this form it resembles the multinomial regression objective, with an important
distinction in the log over a training-weighted sum of estimated y values. Where the
gradient of the negative log likelihood function is zero, ∂E

∂w = 0 corresponds to the
minimum. Which as previously is pursued in stages,

∂E

∂ ynj
= −

K∑

i=1

(
ui j tin∑N

m=1 tim ymj

)
(13.30)

Equations (13.14) and (13.15) similarly apply,

∂E

∂w
= −

K∑

i=1

(
uik tin∑N

m=1 tim ymk

)
ynk(1 − ynk)xn

+
K∑

j : j �=k

{
K∑

i=1

(
ui j tin∑N

m=1 tim ymj

)
ynj ynkxn}

(13.31)
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= xnynk
K∑

i=1

(
uik tin∑N

m=1 tim ymk

)
(ynk − 1)

+ xnynk
K∑

j : j �=k

K∑

i=1

(
ui j tin∑N

m=1 tim ymj

)
ynj

(13.32)

∂E

∂w
= xnynk

⎛

⎝
K∑

j=1

K∑

i=1

(
ui j tin ynj∑N
m=1 tim ymj

)
−

K∑

i=1

uik tin∑N
m=1 tim ymk

⎞

⎠ (13.33)

This does not reduce further. If tin = 0 for all but the i = k training element (one hot
training vector) then from (13.31),

∂E

∂w
= xnynk

⎛

⎝
K∑

j=1: j �=k

(
ukj tkn ynj∑N
m=1 tkm ymj

)
+ (ynk − 1)

ukktkn∑N
m=1 tkm ymk

⎞

⎠ (13.34)

The right hand term is zero iff ynk = 1. This will only be the case if all ynj =
0,∀ j �= k. Indeed the left hand term is zero if the latter condition is true, making the
left and right hand terms coupled. An alternative condition that makes the left hand
term equal to zero is if ukj = 0,∀ j �= k that is, all non-diagonals of the user-defined
matrix are zero (i.e. u is the identity matrix). Classification performance cannot be
expected to equal that of the optimum multinomial case except in this special case.
Similar to the Gaussian case prior, then the gradient cannot reach a minimum. Thus
any choice of user-defined error confusions will compromise overall performance.
A question remaining is to what degree will that performance be compromised and
under what conditions might that compromise be acceptable?

13.4 Implementation and Results

An implementation was chosen tomake an empirical study of classifier performance.
The MNIST digits database [8], was chosen due to its requiring a multinomial clas-
sifier with modest computational requirements. The error objective that a user or
designer might want could take a large variety of forms, so instead of attempting
some exhaustive approach, a few likely error-shaping scenarios were chosen. The
plan for the empirical testing to follow is then:

• Simple Classifier Evaluation

– ‘Baseline’ to establish whether the confusion objective performs as well as the
standard classifier under conditions when a user does not care about the error
distribution.
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– ‘Error trading’ to examine the capacity to trade error types I and II related to
specific classification classes.

• Deep Network Classifier Evaluation

– Repeat of ‘error trading’ used for the simple network to examine if a deeper
classifier structure provides a greater capacity to trade error types I and II.

– ‘Adversarial Errors’ examines the potential to thwart classification decisions by
producing deliberate errors.

The first candidate was a simple regression network from the TensorFlow tuto-
rial [1]. TensorFlow is an open source software library well suited to fast multidi-
mensional data array (tensor) processing and allows deployment of computation on
multiple CPUs or GPUs. The simple network uses 784 (28 × 28 pixels) inputs and
n = 10 output nodes, each output employing a softmax non-linear function (corre-
sponding to MNIST digit categories 0–9). As is typical with this dataset, 60,000
training images and 10,000 test images were used. A batch size of m=200 was main-
tained throughout. Only the objective function and optimizer were modified, with
the 10 × 10 user-defined error distribution tensor, u according to the specific applied
test. Given the batch of true labels y_

y_ = tf . placeholder( t f . float32 , [None,10])

Using the Adaptive Gradient optimizer,

train_step = tf . train .AdagradOptimizer(0.01) .minimize( loss )

The following implements the extended square loss,

loss = t f .reduce_sum( t f . square(u − t f .matmul(y_,y,True, False) ) )

The following implements the extended cross-entropy loss,

loss = −t f . reduce_sum(u∗t f . log( t f .matmul(y_,y,True, False) ) )
Noting * represents element-wise multiplication of tensors.
Seewald [12] compared machine learning performance on three independently
sourced handwritten digits databases: MNIST [8]; USPS, the US Postal Service
‘zip’ codes reduced to individual digits1; and DIGITS, Seewald’s own collection
from school students. The value of independent data rests in the fact that the off-
line machine training may differ from the real world when a system is deployed.
By studying the proposed error redistribution learner on independent data, its true
robustness may be studied.

Table13.1 shows the results of a baseline test to compare the simple classifier
overall performance for cross entropy, square loss and the confusion objective func-
tions as detailed in previous sections. The latter novel objective employed a 10 × 10
identity matrix as the user objective. The network was trained on the MNIST 60,000

1http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/.

http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/
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Table 13.1 Comparison of classification performance, trained on MNIST data only

Objective/test data Cross entropy Square loss Confusion objective as identity

MNIST 0.926 0.933 0.926

USPS 0.771 0.767 0.755

DIGITS 0.687 0.688 0.682

Table 13.2 Test 1. Confusionmatrix forMNIST test data with a simple softmax regression network
and standard cross-entropy objective function

Digit 0 1 2 3 4 5 6 7 8 9 Total p(i |i)
0 965 0 2 1 0 2 7 1 2 0 980 0.985

1 0 1106 4 5 1 2 4 2 11 0 1135 0.974

2 12 3 921 13 14 4 12 12 38 3 1032 0.892

3 2 1 22 916 0 21 4 10 25 9 1010 0.907

4 1 2 4 0 926 0 11 2 5 31 982 0.943

5 8 1 2 30 12 780 16 5 30 8 892 0.874

6 12 3 4 2 9 13 910 1 4 0 958 0.950

7 2 7 23 6 10 0 0 948 3 29 1028 0.922

8 4 3 7 15 10 21 10 12 888 4 974 0.912

9 11 5 2 11 32 14 0 13 8 913 1009 0.905

Total 1017 1131 991 999 1014 857 974 1006 1014 997 10000 N/A

image set only but tested on the MNIST 10,000 image test set, USPS 2,007 image
test set and the entire DIGITS 4389 images. Table13.1 demonstrates the expected
degradation in performance for unseen data sets reported by Seewald, and that the
performance of the novel objective function is comparable under baseline conditions.

The confusion matrix is shown in Table13.2 with actual digit categories by row
and estimated digit categories by column for MNIST training only on the 10,000
image test data set.

As illustrated in the row totals, not all digits are equally likely in the training
data and, of course, not all were equally ‘easy’ for the network to recognise. Correct
identification of a digit ‘0’ was highest at p = 0.985 and correct identification of a ‘5’
lowest at p = 0.874. The five most significant error confusions are (2,8), (9,4), (4,9),
(5,8), (5,3).

13.4.1 Error Trading

In the following tests the capacity to trade errors related to a specific class (arbitrarily
the digit 4) was examined. Table13.3 summarises error trading tests with the simple
network trained on MNIST data only and tested on MNIST, USPS and DIGITS
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Table 13.4 Test 2. Confusion matrix for MNIST test data illustrates the effect of increasing the
one-hot vector for a digit ‘4’ with respect to others

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 960 0 1 2 5 2 7 1 2 0 980

1 0 1103 4 5 1 2 4 2 14 0 1135

2 10 1 913 13 25 4 13 11 38 4 1032

3 2 1 22 918 4 20 1 9 22 11 1010

4 1 1 2 0 959 0 6 2 3 8 982

5 8 2 1 30 26 773 16 5 25 6 892

6 15 3 5 2 13 19 896 0 5 0 958

7 2 7 25 5 19 0 1 943 0 26 1028

8 6 4 8 15 15 18 10 12 881 5 974

9 11 4 4 10 85 13 0 16 10 856 1009

Total 1015 1126 985 1000 1152 851 954 1001 1000 916 10000

data sets. Beginning with test 1, as the error benchmark, which is the standard cross
entropy objective function, Table13.1 shows the probability of correctly classifying
a digit 4 given a digit 4 was presented, the Type I error related to the row for the
digit 4 and Type II errors related to column for the digit 4, for each test data set. The
results of test 1 clearly show that the nature of the errors across independent data
sets is highly varied.

In test 2, the relative value of one diagonal cell in the user-defined matrix u with
respect to all others was changed. This effect may be achieved by scaling one-hot
vector unit values. The result of increasing the weight for digit 4 to be five times
higher than any other individual digit is illustrated in Table13.4. For theMNIST test,
the average accuracy was 0.920 down slightly from 0.927. This reduced the errors
across the row for the digit 4 from 56 to 23 errors, but in the column for digit 4, errors
increased from 88 to 193.A reduction in type I errors is achieved at the expense of
an increase in type II errors. This is shown in detail with the confusion matrix for
the MNIST test data in Table13.4.

As an analogy, consider a hunter who has a bias that improves detecting a ‘lion’
in long grass. This bias is better for the survival of the hunter to predation, but comes
at the cost of more often perceiving a lion when in fact there was not one, which may
have other consequences.

If this test is illustrative of the behaviour to be expected for a classifier, is it possible
to exert more shaping control over type I and type II errors as trade for average error
performance? Table13.3 (test 3) summarises results of raising the ‘floor’ (flr) for
diagonals in u as a compensatory allowance. A setting of f lr = 0.05 was chosen to
represent a desire to keep errors low everywhere (reasoning 0.05 is near to zero), but
it is most desired to reduce errors in combinations of row ‘4’ and column ‘4’ where
cells were set to zero. Table13.4 illustrates the resulting confusion matrix for test.
Test 3 was typical of attempts to change the same major row and column (i = j). The
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Table 13.5 Test 5. Confusion matrix for MNIST test data illustrates the ability to reduce type II
errors (column ‘4’) by trading a moderate increase in type I errors (row ‘4’)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 940 1 1 6 0 6 8 3 13 2 980

1 0 1097 1 3 0 10 5 0 19 0 1135

2 7 17 869 23 3 14 9 30 46 14 1032

3 1 5 19 902 0 24 3 17 27 12 1010

4 5 21 9 11 856 6 16 6 23 29 982

5 6 8 5 21 2 772 18 17 30 13 892

6 9 6 7 2 6 33 883 2 8 2 958

7 3 28 21 11 2 4 3 910 7 39 1028

8 12 17 12 23 4 31 9 13 836 17 974

9 17 10 3 25 15 24 7 24 17 867 1009

Total 1000 1210 947 1027 888 924 961 1022 1026 995 10000

result was in increase in both type I and type II errors compared with manipulating
one hot vector values only. Table13.3 shows across test data sets a relative increase in
Type I errors and decrease in Type II errors compared with test 2. For theMNIST test
data the most errors related to cells (9,4) and/or (4,9). Driving down errors for one of
these cells had the direct effect of raising errors in the other: a kind of ‘pivot’ effect.
The strong and direct relationship between errors appeared to be only very weakly
controllable. Evidence of these pivots appear in the unshaped confusion matrix in
the form of the larger and symmetrical errors in Table13.2. Pivots were observed at
(4,9):(9,4), (5,8):(8,5), (5,3):(3,5), (7,9):(9,7) for MNIST tests. Notably these pivots
were different, for each of the three test data sets.

In test 4, the capacity to target a reduction in type II errors only for a specific
classification was examined. Table13.3 summarises the result which had a strong
desired effect, at the expense of an increase in type I errors. Test 5 demonstrates a
final level of ‘tuning’ where the type II errors were generally lower than those of test
1, with only a small increase in Type I errors. The confusion matrix for test 5 with
MNIST test data is shown in Table13.5.

Tests 4 and 5 demonstrate a level of control over errors that is not possible by
one-hot vector manipulation and could not be achieved without shaping the objective
function. The set of tests also demonstrates an ability to target reduction in Type I
or Type II errors at the expense of the other, and was sustained across two unforseen
independent data sets.

These results led to the question ‘if pivots identified in the initial confusion matrix
are excluded from consideration, can significant control over errors in other arbitrary
rows and columns be achieved?’ For the tests attempted, the answer appears to be
yes. Table13.6 illustrates the results of an attempt to minimise errors in the column
for a digit ‘4’ (type II) and a row for a digit ‘7’ (type I) for MNIST test data.
The user defined matrix, u column representing a ’4’ contained zeros, and the row
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Table 13.6 Test 6. Confusion matrix result for MNIST test data with the aim to ‘minimise errors
in row 7 without excessive impact on column 4 and the overall error average’

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 925 0 1 5 0 6 4 25 11 3 980

1 0 1094 1 4 0 7 5 5 19 0 1135

2 6 15 855 20 3 9 12 72 34 6 1032

3 1 7 19 870 0 21 3 53 23 13 1010

4 7 21 12 7 848 7 19 10 22 29 982

5 7 8 6 16 2 740 14 63 29 7 892

6 7 7 7 1 5 35 862 27 7 0 958

7 3 8 11 7 5 0 1 979 0 14 1028

8 10 15 11 22 4 24 9 48 816 15 974

9 14 8 2 12 15 16 4 73 17 848 1009

Total 980 1183 925 964 882 865 933 1355 978 935 10000

representing a ‘7’ contained zeros, with u(4,4)=2, u(7,7)=2, u(i,i)=1 if i4 and a
floor u(i,j) otherwise equal to 0.05. The overall test accuracy was 0.88. Notably the
most significant errors at (9,4) and (7,9) were suppressed as desired. The ability to
push these errors lower would not come without more significant cost to the overall
error rate. Type II errors increased in column ‘8’.

In practice, userswill likelywant to achieve a lowermisclassification rate for some
arbitrary chosen cell targets relevant to their problem choice. Empirical investigation
appears to confirm this is possible providing data pivot points are avoided. This is
discussed later.

13.4.2 Performance Using a Deep Network and Independent
Data Sources

The deep convolutional network (Convnet) chosen was from the TensorFlow
tutorial.2 The Convnet chosen uses a hierarchy of three macro-levels, each level
comprises a convolutional layer, rectified linear unit layer, max pool layer, and drop
out layer. At the top of all this, there is an output processing layer termed ‘softmax’ or
normalised exponential, making 13 layers in total. This provides significantly better
performance than the simple network. When trained on MNIST data, this network
provided a 99.2% average classification accuracy which is near to the current state
of the art of 99.77% [2].

As a comparison, the earlier successful aim to ‘minimise errors in row 7 without
excessive impact on column 4 and the overall error average’ (test 6) is revisited.

2https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.html.
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Table 13.7 MNIST test errors (softmax with logits)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 751 0 32 0 5 2 6 2 2 3 803

1 1 754 52 0 72 2 13 0 7 0 901

2 0 0 834 2 1 0 3 1 4 0 845

3 1 0 50 719 2 47 0 8 4 2 833

4 0 0 7 0 793 0 0 0 3 9 812

5 5 0 11 7 2 683 3 4 14 2 731

5 10 0 0 0 85 12 679 0 3 0 789

7 1 4 117 2 5 0 0 714 4 10 857

8 8 3 27 6 9 16 5 3 709 4 790

8 0 5 24 9 31 2 0 18 26 716 831

Total 777 766 1154 745 1005 764 709 750 776 746 8192

In this case it was performed by training the Convnet on USPS training data only
and then tested on USPS test data, MNIST test data and DIGITS test data. For the
experiment 1280 USPS training images only were used. Test data used included
8192 MNIST test images, 1024 USPS test images, and 4096 DIGITS test images.
The results are shown in Tables13.7, 13.8, 13.9, 13.10, 13.11 and 13.12 inclusive.
Tables13.7, 13.9, and 13.11 show the confusion matrix achieved using the standard
classifier onMNIST,USPS andDIGITS test databaseswith average error rates 0.897,
0.957, and 0.692, respectively. These errors are contrasted with Tables13.8, 13.10,
and 13.12 which show the achieved error performance for test 6 using the new
objective function on MNIST, USPS and DIGITS test databases with average error
rates of 0.784, 0.893 and 0.538 respectively. As expected, test 6 resulted in some
increase in the average errors in all cases. Notably, the misclassifications for each
of these databases show significantly different characteristics to what is now seen
trained on USPS data. Pivot points for the MNIST test are different to those earlier,
now with confusions (7,2) and (6,4) as most significant. Pivot points for the DIGITS
test have significant confusions (7,2), (9,3), (1,4) and (1,7). Examining the objective
to minimise errors in row 7, this is demonstrated in all three cases. Error confusion
(7,2) were reduced from 117 to 31, and 220 to 130 in the MNIST and DIGITS tests
and remained the same at 2 for the USPS test. Errors for column 4 increased from
212 to 460 and 204 to 278 for MNIST and DIGITS tests, and from 3 to 20 for
the USPS test. This largely fulfilled the aim of the test, however, there are several
notable ’surprises’. Table13.8 shows significant error increases for (0,2), (0,6), and
(1,6) compared with Table13.7. Table13.12 shows significant error increases for
(0,2), (2,6) and (4,9).
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Table 13.8 MNIST test errors for the objective to minimise row 7 errors (test 6)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 475 2 192 0 23 2 113 1 1 13 822

1 0 636 5 0 159 1 135 0 10 0 946

2 0 0 757 8 31 1 17 14 14 1 843

3 3 1 101 618 3 47 3 21 4 16 817

4 0 0 0 0 775 0 1 10 1 11 798

5 6 0 5 35 5 613 26 11 0 17 718

6 0 0 5 0 157 1 625 0 0 3 791

7 0 3 31 5 11 1 0 765 8 19 843

8 3 1 20 44 23 64 93 27 485 30 790

9 1 3 16 6 48 3 0 58 12 677 824

Total 488 646 1132 716 1235 733 1013 907 535 787 8192

Table 13.9 USPS test errors (softmax with logits)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 197 0 0 0 0 0 1 1 1 0 200

1 0 128 0 0 0 0 2 1 0 0 131

2 0 1 87 0 1 1 0 1 3 0 94

3 0 0 2 79 0 4 0 0 0 0 85

4 1 2 1 0 99 0 0 0 0 3 106

5 2 0 0 1 0 73 0 0 0 0 76

6 0 0 0 0 1 2 80 0 0 0 83

7 0 0 1 0 1 0 0 58 0 0 60

8 1 2 1 1 0 1 0 0 83 0 89

9 0 1 0 0 0 0 0 2 1 96 100

Total 201 134 92 81 102 81 83 63 88 99 1024

13.4.3 Adversarial Errors

Control over the occurrence of type I errors is most strikingly demonstrated by
training a network to create a deliberate confusion. This may be a requirement for
a cyber operations system. Table13.13 illustrates the result to cause a deliberate
confusion of a digit ‘7’ for a ‘0’ created by a user matrix. As expected the average
error drops by 10% to 0.829. Notably this network learns never to output a ‘7’ and
instead classifies a ‘7’ as a ‘0’ precisely as desired. Further, the “normal” detection
statistics of other categories is largely unaffected.

To produce type II errors in a specific cell of row i and column j, proved more
difficult. It is necessary to maintain at least some small value for u( j, j) to ensure
correct classifications of i are allowed as reducing u( j, j) to zero will have the
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Table 13.10 USPS test errors for the objective to minimise row 7 errors (test 6)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 165 2 1 1 3 0 13 1 4 0 190

1 0 130 0 0 1 0 4 0 0 0 135

2 3 0 72 6 6 0 0 0 11 0 98

3 0 0 2 73 1 3 0 2 3 0 84

4 0 0 0 0 88 0 0 4 0 1 93

5 2 0 0 0 1 67 6 2 4 1 83

6 0 0 0 0 3 1 87 0 0 0 91

7 0 0 0 0 2 0 0 72 0 0 74

8 2 0 0 2 1 1 1 1 81 1 90

9 0 0 0 0 2 0 0 4 1 79 86

Total 172 132 75 82 108 72 111 86 104 82 1024

Table 13.11 DIGITS errors (softmax with logits)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 372 0 17 0 1 3 3 1 11 0 408

1 1 66 8 0 169 0 0 152 1 11 408

2 6 1 366 0 1 1 13 2 20 0 410

3 0 15 13 298 3 63 0 13 4 1 410

4 0 1 0 0 383 9 7 2 2 3 407

5 2 1 2 4 0 371 6 6 16 5 413

6 5 3 0 0 4 27 363 0 2 0 404

7 0 13 220 0 9 0 0 136 10 16 404

8 2 14 42 12 7 23 11 1 304 1 417

9 6 8 22 120 10 10 0 28 33 178 415

Total 394 122 690 434 587 507 403 341 403 215 4096

effect of reducing the entire column to zero, as per the example in Table13.13, with
the resulting distribution of the classification estimates redistributed without user
control, into the next most similar categories. Table13.14 illustrates a best effort
test (error average 0.806) achieved with the aim of ‘creating errors in cell (2,5) and
minimising correct classifications in cell (5,5)’. As can be seen in Table13.14, the
desired effect is achievable, however, the consequence of the desired weakness in
correctly classifying (5,5) produces more significant errors at both (5,3) and (5,8),
which may be the ‘next weakest’ points.
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Table 13.12 DIGITS errors for the objective to minimise row 7 errors (test 6)

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 235 2 101 2 15 0 52 6 0 3 416

1 2 28 9 0 165 0 17 127 4 55 407

2 0 4 204 1 3 00 127 5 67 0 411

3 0 9 87 253 1 16 13 19 2 12 412

4 0 6 1 0 294 2 17 11 0 77 408

5 0 1 3 16 0 302 52 11 0 19 404

6 1 0 4 0 0 9 381 0 0 11 406

7 0 20 130 16 69 0 0 160 3 15 413

8 0 1 26 26 3 80 75 6 175 19 411

9 1 10 6 90 22 8 0 83 17 171 408

Total 239 81 571 404 572 417 734 428 268 382 4096

Table 13.13 Example confusion matrix for adversarial error creation. Most occurrences of a digit
‘7’ are classified as the digit ‘0’ as desired

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 956 0 1 1 0 4 11 0 7 0 980

1 3 1107 4 3 1 2 5 0 10 0 1135

2 10 2 933 14 12 3 15 0 39 4 1032

3 15 1 20 917 2 22 2 0 21 10 1010

4 2 2 4 0 927 0 11 0 6 30 982

5 30 1 2 26 15 762 15 0 32 9 892

6 19 3 5 0 6 13 907 0 5 0 958

7 929 9 24 9 13 3 1 0 4 36 1028

8 23 3 8 17 8 17 11 0 883 4 974

9 25 4 0 11 30 13 1 0 8 917 1009

Total 2012 1132 1001 998 1014 839 979 0 1015 184 10000

13.5 Discussion

The hypothesis that a more expressive deep network would be significantly more
capable of supporting an arbitrary redistribution of errors than a shallow network
was not demonstrated in these tests. It does appear possible to trade errors under
limited conditions towards arbitrarily-chosen errors which, as expected from theo-
retical study of the gradients, comes at some cost to the total error rate. The degree of
control that can be exercised appears limited by pivots in the presented data. These
pivots are in turn dependent on training data and the actual data used in practice.
As demonstrated by use of three independent data sets, the ‘confusion training’ to
meet an objective performed best when the training and live data were drawn from
independent sources.
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Table 13.14 Adversarial error result for the aim to ‘create errors in cell (2,5) and minimise correct
classifications in cell (5,5)’

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 949 0 1 1 0 7 13 1 8 0 980

1 0 1096 3 8 0 6 5 1 16 0 1135

2 5 0 660 5 6 319 8 7 19 3 1032

3 2 1 18 893 1 43 5 10 28 9 1010

4 2 3 1 1 896 13 10 1 14 41 982

5 40 9 1 248 46 39 37 26 425 21 892

6 14 2 1 2 6 22 891 0 20 0 958

7 3 15 41 1 11 14 1 902 2 38 1028

8 13 10 5 22 14 33 9 10 842 16 974

9 8 6 9 14 42 8 0 15 18 889 1009

Total 1036 1142 740 1195 1022 504 979 973 1392 1017 10000

A critical question is ‘what other loss functionsmight one choose, andwhat are the
implications for that choice?’ [16], Williamsion argues that a proper composite loss
(objective) needs to control convexity (geometrical properties) and control statistical
properties. Considering logistic loss, the deliberate perfect match of the logistic or
softmax characteristic and the multinomial log likelihood characteristic that yields
a collapse in complexity of the gradient was not afforded by our proposed choice of
objective function with softmax. Yet, perhaps it remains possible to find an alternate
functional composition that would allow a similar simplification?

The adversarial generation of confusions was convincingly demonstrated with
the ‘user specified confusion’ objective function. The confusion objective function
is very good at creating errors where they are wanted.

13.6 Conclusion

A technique has been demonstrated with the ability to learn to shape errors for
both a shallow and deep network based on a novel maximum likelihood ‘confusion
objective’ function. Results were demonstrated for some limited but useful cases in
trading type I and type II errors, maintaining error objectives across independent
and unforseen data sets, and an ability to create adversarial confusions. Next steps
might include tests on examples with a significantly larger number of classes, and
the derivation of bounds of the gradient minima for the technique to provide further
insights. The technique appears sufficiently promising to warrant more thorough
statistical analysis of sensitivity of total errors to specific error objectives.
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Chapter 14
Developing Robot Assistants with
Communicative Cues for Safe, Fluent HRI

Justin W. Hart, Sara Sheikholeslami, Brian Gleeson, Elizabeth Croft, Karon
MacLean, Frank P. Ferrie, Clément Gosselin and Denis Laurandeau

14.1 Introduction

The Collaborative Advanced Robotics and Intelligent Systems (CARIS) laboratory at
the University of British Columbia has focused on the development of autonomous
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robot assistants which work alongside human workers in manufacturing contexts.
A robot assistant is a device that is intended to aid and support the activities of a
human worker, rather than working entirely autonomously - as a welding or painting
robot in a work cell at a car factory would, or entirely under human control - as a
teleoperated robot would. The creation of such robot assistants presents a number of
challenges to the scientists and engineers designing them. A traditional robotic arm
operating in a factory work cell is physically separated from human workers by a
thick glass wall secured by steel beams that are often marked with bright orange paint.
This creates an environment where the robot’s operation is safe, because it is away
from the people who must be kept safe from it, and where it is capable of performing
its tasks with minimal input because they are repetitive and not subject to variations
such as those introduced by typical human behavior. Many of the technological
barriers to move these robots past the physical barriers of the work cell involve
establishing a clear cycle of back-and-forth communication between the robots that
would work alongside humans and their human collaborators. It is important for
workers collaborating with robots to know what mode each robot is in and what
actions they may take.

The purpose of a robot assistant is to aid and support the actions of a human worker.
Robot assistants, by necessity, are not constrained to the confines of the work cell. For
a robot assistant to be effective, it is important that the worker not be overly burdened
by the task of controlling it, allowing the worker to concentrate on their portion of
the shared task. It is also important that the robot assistant and human workers
be able to safely operate in close proximity. Contributing to efforts to accomplish
these goals, the CARIS laboratory focuses on the identification and exploitation of
natural communicative cues, explicit or non-explicit, which can be implemented into
the interfaces of robotic systems. These are human behaviors which communicate
information to other people. Explicit cues are intentional behaviors performed with
the purpose of communication, such as when one performs a hand gesture [6, 8,
9, 21]. Non-explicit cues are unintentionally performed, but broadcast intentions or
other important information, such as when a person looks toward where they are
about to hand an object to another person [1, 17, 23]. We posit that naturalistic
communicative cues allow users to quickly benefit from collaboration with robots
with minimal effort and training, and that through such communicative cues, it is
possible to develop interfaces that are safe, transparent, natural, and predictable. To
achieve this goal, we use a three phase design process. In the first phase, studies are
performed in which two people collaborate on a shared goal. Recordings of these
interactions are annotated in order to identify communicative cues used between the
study participants in performing their tasks. In the second, these cues are described or
mathematically modeled. In the third phase, they are implemented in robotic systems
and studied in the context of a human-robot interaction.

Due to the close physical proximity between human workers and robot assistants,
physical communicative cues and physical human-robot interaction play an impor-
tant role in this research. An example of an interaction involving naturalistic com-
municative cues and physical human-robot interaction is human-robot handovers.
The CARIS Laboratory has invested significant effort in the development of natural,
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fluent human-robot handovers [2–4, 9, 10, 17]. Handover behaviors include not
only visual cues [1, 2, 9, 10, 17, 23], but also important force and haptic cues [3,
4]. Other physical interaction studies, which have been carried out in conjunction
with the Sensory Perception & INteraction (SPIN) Laboratory at UBC, include
interactions in which participants tap and push on the robot to guide its behavior [5].
Our collaborators at Laval University developed an elegant backdrive mechanism
for the robot assistant (discussed in Sect. 14.2), which allows users to interactively
pose the device during interaction by pushing on the robot itself.

When people work together, their efforts become coordinated and fluently mesh
with each other. Many prototype collaborative robot systems work by monitoring
progress toward task completion, which can create a stop-and-go style interaction.
Hoffman and Breazeal [11] propose a system in which a robot performs predictive
task selection based on confidence based on estimates of the validity and risk of each
task selection in order to improve interaction fluency. Moon et al. [17] demonstrate
that a the performance of a brief gaze motion can improve the speed and perceived
quality of robot-to-human handovers. A study by Hart et al. [10] found that study
participants receiving an object via handover reach toward the location of a handover
prior to the completion of the handover motion, indicating the importance of short-
term predictions in human handover behavior. In current work, we are investigating
systems which make short-term motion cue based predictions of human behavior in
order to fluently and predictively act on these cues, rather than acting on completed
motion gestures or task state. The intention of this work is to not only improve the
efficiency with which tasks are carried out, but also the fluency of the interaction.

In order to assure the relevance of this work to manufacturing, studies at the CARIS
Laboratory are grounded in real-world scenarios. Partnering with manufacturing
domain experts through industrial partners provides the us and our collaborators with
important insights into the applicability of our research to actual manufacturing sce-
narios, practices and operations. Recently the CARIS Laboratory completed a three
year project that was carried out with academic partners at the Sensory Perception &
INteraction (SPIN) Laboratory at UBC, the Artificial Perception Laboratory (APL)
at McGill University, and the Computer Vision and Digital Systems Laboratory and
Robotics Laboratory at Laval University. Importantly, General Motors of Canada
served as our industrial partner in this endeavor. This project, called the Collabo-
rative Human-Focused Assistive Robotics for Manufacturing, or CHARM project,
investigated the development of robot assistants in supporting workers performing
assembly tasks in an automotive plant. Partnering with General Motors provided us
with manufacturing domain experts who could guide our vision based on industry
best practices and provide insights based on real-world experience in manufacturing.

This chapter presents an overview of work in the CARIS Laboratory towards the
construction of robot assistants. Section 14.2 provides an overview of the CHARM
project highlighting the interdisciplinary nature of work in autonomous human-robot
interaction and describe the robot-assistant developed for this project. Section 14.3
describes the methodology by which we study communicative cues, from observing
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them in human-human interactions to description and modeling to experiments
in human-robot interaction. Section 14.4 presents experimental findings that were
made using this methodology in projects related to CHARM conducted at UBC.
Section 14.5 describes current and future directions in which we are taking this
research and conclude.

14.2 CHARM - Collaborative Human-Focused Assistive
Robotics for Manufacturing

The construction of robot assistants is a large undertaking involving work in several
disciplines from the design of the robot itself, to sensing and perception algorithms,
to the human-robot interaction design describing how the robot should behave when
performing its task. To complete the construction of a state-of-the-art working sys-
tem, we formed a group of laboratories specializing in these various disciplines and
structured work on the robot assistant in such a way that it allowed each lab to indepen-
dently pursue projects that highlight each group’s expertise, while working towards
the common goal of constructing an integrated robot assistant system. Insurance of
progress towards a common goal was established through several avenues. At the
start of the project, the plan of work was divided into a set of three research streams
and three research thrusts, with teams of investigators assigned to areas which high-
lighted the strengths of their laboratories. Doing so allowed a large degree of freedom
in the selection and pursuit of individual research projects, while carefully describing
the relationships of these streams and thrusts to each other assured that the overarch-
ing research efforts of the group remained unified. Coordination of research efforts
was maintained through regular teleconferences and inter-site visits by research per-
sonnel. These meetings culminated in annual integration exercises referred to as
Plugfests, in which each team’s developments over the past year were integrated
onto a common robot assistant platform. For each Plugfest, the team agreed upon a
shared collaborative assembly task to be performed by a dyad comprising the robot
assistant and a human collaborator that would be implemented as a unified team
spanning the research teams from each institution. This shared task would highlight
the research of each group over the past year, and would be used in order to evaluate
overall progress towards the shared goal of developing a robot assistant for use in
a manufacturing operation. Extensive evaluation and discussion with manufactur-
ing domain experts from General Motors provided the academic partners with the
knowledge and expertise to understand and direct the impact and applicability of the
work in their laboratories work in real-world usage.

14.2.1 The Robot Assistant, Its Task, and Its Components

Operating on a common platform and regular integration enabled us to make con-
crete progress toward our goal by constructing a real robot assistant that works on
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a real-world problem. The development of autonomous robot assistants will require
advancements in more than one contributing area. Without better sensing, robots
will be unable to detect, track, and model all of the objects required. Without better
control, they will not be able to physically interact with people in ways that users
will expect them to. Without advances in human-robot interaction, they will neither
understand nor be understood by their human collaborators. It was important for
partners on the CHARM project to be chosen from a diverse fields representative
of the challenges of the project, given the autonomy to pursue the research neces-
sary for advancement, and be coordinated enough to remain focused on their shared
goal. Keeping each other apprised of our progress through monthly teleconferences
and regular email exchanges fostered an environment of collaboration between each
subteam’s individual efforts. As each Plugfest approached, the group would begin to
focus on ways in which software could be integrated in onto the common platform.
Yearly integration into the shared robot-assistant provided a real-world system to act
as the testbed for these integration efforts.

14.2.1.1 Car Door Assembly

Car door assembly was chosen as the shared task for the human operator and robot
assistant to collaborate on because it is presently one of the most complex and labor-
intensive operations in vehicle assembly. The development of technology in this area
could potentially both improve the effectiveness of workers in assembly and relieve
them of portions of the assembly task that are ready to be automated. Through a
series of off-site meetings, teleconferences, and site visits to vehicle manufacturing
facilities, two objectives for car door assembly were identified:

• To reduce error rates and improve manufacturing quality
• To maintain or improve worker safety.

A plan was formulated to improve manufacturing quality by interactively passing
parts from the robot to the worker. The robot assistant would present parts to the
worker assembling a car door in the sequence in which they should be inserted, and
tools in the sequence corresponding to the parts of the assembly presently worked
on. This would ensure that the worker attaches the correct parts to the car door at
the correct times, even as different models come down the line or as the assembly
process changes. An improvement in quality would be accomplished through this
process by reducing worker error rates, preventing the need to redo work that was
performed incorrectly and reducing the error rate in finished products. By the end
of the CHARM project, parts were presented to a worker in the test environment
in an interactive fashion using an elegant handover controller which was developed
by the CARIS Laboratory, with scenarios that could be either programmed into a
State Machine Controller (SMC) or reasoned about automatically using a planner
developed by CARIS for CHARM.

Worker safety was identified as an important concern not because present practices
are unsafe, but because of two factors. The first is that safety is a priority in the both the
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Fig. 14.1 The robot-assistant supporting the activities of a worker performing a simulated car door
assembly task

laboratory and manufacturing environments. None of the stakeholders in this project
would want to be part of a project that put the safety of study participants, factory
workers, or themselves at risk. The second is that the concept of having workers
working directly alongside robots is still an evolving one, in which safety standards
are currently emerging. Progress on this is proceeding at a pace that observes both an
appropriate level of caution and an acknowledgement that we must embrace physical
human-robot interaction in order to achieve our ultimate goal of having robots which
work directly alongside humans.

14.2.1.2 Robot Assistant Hardware

The robot assistant, also referred to as the Intelligent Assist Device, Fig. 14.1, in its
final form consists of a robotic arm (Kuka LWR-4) with a dextrous gripper (Robotiq
gripper) mounted to an overhead gantry. These devices operate on a single controller,
and redundancy resolution is implemented for the entire IAD system. The IAD can be
treated as a single, integrated device, rather than as its individual components. The
system implements variable stiffness in all actuators, providing compliance along
the robot’s entire kinematic chain. This compliance contributes to worker safety by
allowing the system to softly collide and interact with obstacles, and serves as an
interface to the system, allowing the entire unified device to be backdriven by pushes
and shoves against the robot itself.

Sensing is performed using Microsoft Kinect and PrimeSense RGBD cameras.
The Kinect cameras surround the work cell in which the human and robot assistant
collaborate on their shared assembly task. Their point clouds are merged using custom
software, providing a global view of the scene. The PrimeSense camera is physically
smaller, and focuses on a narrower field of view. It is mounted to the Kuka LWR
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robotic arm, allowing the system to focus on objects to be manipulated, and providing
a directional sensor which can be used for tasks such as object identification and
manipulation. One benefit of such as system is that it is able to perform non-contact
sensing for uninstrumented human workers and parts. No markers are required to
be placed on any worker in the work cell or any part that is to be manipulated using
current techniques.

14.2.1.3 Robot Assistant Software

The system presented at Plugfest III represents the most complete version of the robot
assistant software developed for the CHARM project. It features many important
components which echo familiar components in modern robotics design. The entire
system operates over a high speed computer network with nodes responsible for
sensing, situational awareness, control, and planning. Nodes operating on the robot
assistant communicate via a communications protocol called DirectLink. One feature
of DirectLink is that it is designed to present the most recent data provided by sensors,
rather than the entire log of historical data, in order to provide fast responses by the
robot system and avoid latency which may be introduced by processing backlogged
data. The entire history of data communicated to the system can be retrieved from
the Situational Awareness Database (SADB) [22], which contains both raw sensor
data and perceptual data which has been processed via systems such as the device’s
computer vision system. It also contains information such as commands issued to
the robot, either via its State Machine Controller (SMC) or planner. The SADB can
be quickly accessed via a NoSQL interface, and incurs very low latencies due to
mirroring across nodes. The ability to query representations in this fashion is useful
for software such as planners, because this prevents them from needing to maintain
this representation internally.

Worker poses and world state are measured using the aforementioned group of
Kinect and PrimeSense cameras. The system is capable of merging the multiple
perspectives of the Kinect cameras into a unified point cloud which is used to reliably
track the worker’s motion in the workspace using a skeleton track representation [20].
It is also able to track multiple objects in the work space in this fashion. As such,
progress on the shared task can be measured through actions such as mounting
components onto the car door. These data are stored into the SADB, where they can be
processed by either the SMC or the planner. The planner developed for CHARM uses
a standard representation in Planning Domain Definition Language (PDDL) [14],
which is augmented with measured times for the completion of various tasks. It can
choose courses of action based on this representation in order to adapt to problems
which may arise, such as a worker discarding a faulty part. Additionally, it is able to
use its recorded timing data in order to plan optimal timings for task execution and
to begin robot motion trajectories [9, 10]. As will be discussed later, this contributes
to our present work on interaction fluency.
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14.2.2 CHARM Streams and Thrusts

Dividing CHARM into a set of complimentary streams and thrusts provided a frame-
work within which participating investigators and laboratories could bring their best
work to the project, focus on making the biggest contribution that they could to the
advancement of the projects goals, and ultimately be assured that their work fit into
the project’s scope and made a meaningful contribution. CHARM was structured
around three interconnecting research streams that link three research thrusts rep-
resenting the main research directions of the project. These are shown in Fig. 14.2.
The three streams that connected the development of robot assistants across the three
research thrusts of CHARM are:

Stream 1 Define the Human-Robot Interaction with the robotic assistant.
Stream 2 Develop relevant Situational Awareness and Data Representation.
Stream 3 Coordinate developments through an Integration Framework.

The ordering of the streams in Fig. 14.2, represents the focus on the human as
central figure in the interaction with the robot assistant, and the understanding and
management of situational awareness and data representation as key to supporting
this interaction. An effective and strong integration framework for communication,

Fig. 14.2 Streams and thrusts of the CHARM project
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control and perception is crucial to the successful development of a robot assistant
that can effectively support a human worker at their task.

While providing support to the research thrusts, Stream 1 and Stream 2 also rep-
resent research activities that inform and are implemented within the three research
thrusts, while Stream 3 is a research support activity that ties the research thrust
developments together into a working prototype system.

The three research thrusts that drive the structure of Fig. 14.2 are:

Thrust 1 Advanced human-robot communication and cooperation schemes.
Thrust 2 Safe interaction design and control to support HRI.
Thrust 3 Vision and Non-Contact Sensing.

To each stream and thrust, domain experts were assigned, providing a structured
exchange of knowledge and a focal point for specific needs of the project. Organizing
the project in this fashion assured that responsible parties could be reached to discuss
every relevant aspect of the project and that individual investigators knew who to
contact, while also assuring that these investigators had the autonomy to pursue state-
of-the-art work and bring it to bear on our shared task. Each stream and thrust made
unique and necessary contributions to CHARM.

14.2.2.1 Stream 1

Stream 1 designed the interaction between the robot assistant and the human operator.
Key systems were developed to allow human operators to interact with the robot
through taps and pushes on the robot itself. Systems were developed in response to
studies carried out under Thrust 1, enabling the robot to perform tasks such as elegant
robot-to-human handovers. Stream 1 also developed a planner [9] that allowed the
robot assistant to interactively replan for Plugfest III, as part of efforts toward using
timing for fluent HRI.

14.2.2.2 Thrust 1

Thrust 1 performed studies in human-robot interaction in order to develop novel
communicative cues for the robot assistant system. This thrust followed the para-
digm of performing human-human studies in order to identify communicative cues,
modeling and describing these cues, and then deploying them on robotic systems
in order to study them in the context of Human-Robot Interaction. This process is
described in greater detail in Sect. 14.3. Studies performed using this process can
be found in Sect. 14.4. Contributions to the robot assistant include an elegant han-
dover controller for robot-to-human handovers, studies in gestures, and studies in
collaborative lifting.
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14.2.2.3 Stream 2

Stream 2 developed the Situational Awareness Database (SADB) [22] and the basic
world-state and sensor data representations used in the robot assistant system. Tech-
niques for the modeling of and storage and retrieval of data are necessary in order
to enable the system to autonomously reason about its environment and the shared
task that it participates in.

14.2.2.4 Thrust 2

Thrust 2 developed the robot assistant Intelligent Assist Device (IAD) hardware
and the control algorithms that drive this system. The software which integrates the
gantry, robot arm, and robot gripper under a single controller was developed under
this thrust, as well as capabilities such as the compliant control of the kinematic chain
and backdrive capabilities [7, 12, 13].

14.2.2.5 Stream 3

Stream 3’s primary focus was to integrate components from the various streams and
thrusts of CHARM. As such, inter-group communication and Plugfests were of a pri-
mary concern. Stream 3 contributed the basic communication protocol, DirectLink,
which is used for communications between compute nodes in the robot assistant
architecture, and the State Machine Controller (SMC), which could be used for
high-level control of the robot-assistant.

14.2.2.6 Thrust 3

Thrust 3’s contribution was in the form of vision and non-contact sensing. For earlier
revisions of the system, this involved tracking objects and actors in the interaction
through the use of a Vicon motion tracking system. Later, this was replaced by a
network of Microsoft Kinect RGBD cameras, and a PrimeSense camera mounted
to the IAD’s robotic arm. Software developed under Thrust 3 allowed the system to
perform recognition and tracking, as well as to track the motion and poses of human
actors in the interaction [20].

14.2.3 Plugfest

Plugfests served as a focal point for the effort of integrating components developed
over each year and evaluating overall progress towards collaborative robot assistant
technology. Each Plugfest was preceded by about two months of planning and prepa-
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ration, with inter-site visits between investigators in each stream and thrust in order
to assure that their systems properly integrated. The progress reports at the end of
each Plugfest provide a picture as to how the robot assistant system matured over
time.

14.2.3.1 Plugfest I

At the end of the first year, the group was still in a phase of defining requirements and
specifications. Each team presented initial capabilities that represented a current state
of the art in their respective areas. Reports were presented describing the findings of
initial studies regarding capabilities that the labs wanted to contribute to the system,
as well as findings from site visits to General Motors automotive manufacturing
plants. As hardware was still being acquired, the robot was not in its final form.

At this juncture the team was able to produce an integrated system which gave a
vision of what was to come. A worker instrumented with markers for a Vicon motion
tracker interacted with the robot which was under the control of the State Machine
Controller. The robot did not yet have its arm on it, and presented parts to the worker
on a tray. Data were stored and queried from a preliminary version of the Situational
Awareness Database.

14.2.3.2 Plugfest II

For Plugfest II, the Vicon system was removed in favor of a Kinect-based markerless
tracking system. The system was able to register the point clouds from the indepen-
dent Kinect sensors into a single point cloud and perform person tracking, where the
representation of the worker was as a blob of points. A gesture-based system was
developed in which the worker would make requests to the robot and the robot could
communicate back to the worker through gestures. At this time, the robot arm was
integrated into the system and a handover controller was used to hand objects to the
worker. Improvements were made to the State Machine Controller and DirectLink
protocols improving the overall responsiveness of the system.

14.2.3.3 Plugfest III

For Plugfest III human tracking had been updated to track a full skeletal model
and the SADB was capable of high-performance transactions and replication across
nodes. The gantry, gripper, and arm of the robot assistant were integrated into a
single controller allowing compliant control and backdrive across the entire system.
Gesture-based control had largely been replaced by a system which monitored the
work state of the system, removing the need for some of the gesture-based commands,
which had been found to slow down the worker during the interaction. An interactive
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planner had been added which allowed the system to reason about the scenario using
PDDL [14].

CHARM provided its stakeholders with a project that enabled us to develop an
integrated robot assistant system which brought the best of current technology to bear
on the problem. By building a real, integrated system, we were able to see how our
contributions impacted a real-world application and how these systems interacted
with each other.

14.3 Identifying, Modeling, and Implementing Naturalistic
Communicative Cues

The CARIS Laboratory uses a three phased method to identify, model, and imple-
ment naturalistic communicative cues in robotic systems. These phases comprise the
following steps:

Phase 1 Human-Human Studies
Phase 2 Behavioral Description
Phase 3 Human-Robot Interaction Studies

To aid in describing this process, this section will use the example of recent
work in hand gestures carried out in the CARIS Laboratory [21]. In this work, first, a
human-human study of a non-verbal interaction between dyads of human participants
performing an assembly task is carried out in order to witness and identify the hand
gestures that they use in order to communicate with each other. This is Phase 1
from the three phase method. From the data collected during this study, a set of
communicative hand-gestures is identified by the researchers from annotated data.
This set of gestures is validated using an online study of video-recorded example
gestures, ascertaining whether study participants recognize the same gestures and
intentions as those identified by the experimenters. This is Phase 2, in which an
accurate description of the human behavior is identified. In Phase 3, these gestures
are then programmed into a Barrett Whole-Arm Manipulator (WAM) for use in a
human-robot study. In a step mirroring Phase 2, the robot gestures are studied in an
online study, with results reported for recognition and understanding by participants.

14.3.1 Phase 1: Human-Human Studies

The purpose of the Human-Human study phase is to elicit behaviors on the part of
humans in a collaboration so that they can be characterized and understood, and then
replicated on a robotic platform.

For this work, a study of non-verbal interaction between human dyads performing
a car door assembly task was performed. The door is instrumented in seven locations
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with Velcro™ strips where parts can be mounted. Correspondingly, six parts that are
to be mounted onto the car door are instrumented with corresponding Velcro™ strips.
Study participants were provided with a picture of a completed assembly of these
parts mounted onto the car door, and asked to non-verbally communicate the proper
placement and orientation of these parts on the door to a confederate through the use
of hand gestures. After this assembly was completed, a second picture was presented
to the participants, changing the location and orientation of four of the parts on the
door. At this stage, participants were asked to direct the confederate to modify the
arrangement of the parts on the door as indicated in the new picture. Items were
placed on a table between the study participant and confederate in order to provide
easy access to both the door and the items, as in Fig. 14.3. The participants were
required to perform this task in accordance with a set of provided rules, which assure
that relevant communication could be performed only via hand gestures.

• Only use one hand to direct the worker.
• Only make one gesture and hold only one part at a time.
• You must wait for the worker to complete the task before making your next gesture.
• You must remain in your home position at all times.

A group of 17 participants (female: 7, male 10) between 19 and 36 years of age
participated in this study.

Fig. 14.3 Participants in a Phase 1 human-human study of non-verbal interaction
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14.3.2 Phase 2: Behavioral Description

In the second phase, behaviors exhibited during the human-human study are charac-
terized. In this study, gestures used by the participants were identified from annotated
video data. Gestures were selected from the annotated data according to the following
criteria:

• They should be understandable without trained knowledge of the gesture.
• They should be critical to task completion.
• They should be commonly used among all participants.

Based on these criteria, the experimenters identified directional gestures as a
category of interest for further study, and narrowed the gestures into four categories.
These were “Up,” “Down,” “Left,” and “Right.” They also identified that each of these
gestures could be performed with an Open-Hand or Finger-Pointing hand pose. These
gestures appear as in Fig. 14.4.

Video clips of these gestures were used in an online study of 120 participants in
which participants were asked three questions. The first asks, “What do you think
the worker should do with this part?” where participants were instructed to answer
“I don’t know” if they did not understand the gesture. In the second they were asked
to rate, “How easy was it for you to understand the meaning of this gesture (on a
scale from 1 (very difficult) to 7 (very easy))?” In the third they were asked, “How
certain are you of your answer to question 1 (on a scale from 1 (very uncertain to 7
(very certain))?’ At the end of this phase, survey responses to the latter two questions
were found to have a high degree of internal consistency (Cronbach α = 0.891).

Fig. 14.4 Directional Gestures and frequently observed accompanying hand poses identified from
annotated data - “Up” and “Down” gesture with Open-Hand (a), and Finger-Pointing (b) poses,
and “Left” and “Right” gesture with Open-Hand (c), and Finger-Pointing (d) poses
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14.3.3 Phase 3: Human-Robot Interaction Studies

The purpose of Phase 3 is to attempt to replicate the identified and described com-
municative cues in a human-robot interaction. To do this, the study in Phase 2 was
replicated with a robotic arm, a 7 Degree of Freedom (DoF) Barrett Whole-Arm
Manipulator equipped with a 3-fingered BarrettHand. Gestures were programmed
into the arm and presented as video clips in an online study of 100 participants. In
the robotic arm case, each gesture was presented using one of three hand poses: one
with an Open-Hand (OH), one with a Finger-Pointing hand pose (FP), and one with
a Closed-Hand (CH), as in Fig. 14.5.

Sheikholeslami et al. [21] report recognition rates for these gestures, comparing
against the human and robot conditions. Results are shown in Fig. 14.6. Their results
demonstrate a similar degree of recognition and understanding of these gestures
in both the human and robot conditions, and show whether they are more easily-
understood for various poses of the robot’s manipulator.

The purpose of the this methodology is to directly identify, analyze, and implement
human communicative behaviors on robotic systems in order to create human-robot
interactions which are naturalistic and intuitive. The steps of performing human-
human studies and characterizing the behaviors of the participants provide the data
required to reproduce these behaviors, while human-robot interaction studies validate
the effectiveness of the reproduced communicative cues. In the CARIS Laboratory, a
central goal is to create human-robot interactions in which robots are able to interact
with humans in a collaborative fashion, rather than in a manner that is more akin to
direct control through a keyboard or teach-pendant interface. Exploiting naturalistic
communicative behaviors is a key avenue by which we are attempting to achieve this
goal.

Fig. 14.5 “Left” and “Right” gestures implemented on the Barrett WAM with Closed-Hand (a),
Open-Hand (b), and Finger-Pointing (c) hand poses implemented on the BarrettHand
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Fig. 14.6 Comparison of recognition rates for hand gestures by gesture and hand configuration
between robot and human cases. OH - Open-Hand, FP - Finger-Pointing, CH - Closed-Hand

14.4 Communicative Cue Studies

The CARIS Laboratory has done extensive research exploring the use of communica-
tive cues for human-robot interaction. Many of these cues are naturalistic cues; cues
that emulate natural human communicative behaviors such as can be found through
human-human studies and witnessed in everyday human interactions. Some of these
cues are non-naturalistic, as in the case of tapping and pushing on the robot to guide
its motion [5]. These cues can also be divided into explicit and non-explicit cues.
An example of explicit cues would be hand gestures, as described in Sect. 14.3. An
example of a non-explicit cue would be when a person inadvertently looks towards
the location where they intend to hand an object over to someone else [1, 17, 23];
or the sensation of feeling another person managing the weight of an object that is
handed over, allowing it to be released [3, 4].

14.4.1 Human-Robot Handovers

The CARIS lab has extensively studied the process of handing an object from one
party to another. This is an example of an interaction that is mostly mediated by
naturalistic, non-explicit cues. Important cues occurring during handovers that have
been explored by CARIS include the forces acting on the object being handed over [3,
4], gaze behaviors during the handover interaction [17], motion trajectories [9, 10],
and kinematic configurations [2].
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To explore forces acting on an object during handovers, Chan et al. [3] constructed
a baton that is instrumented with force sensing resistors (FSRs), an ATI force/torque
sensor, and inertial sensors, as can be seen in Fig. 14.7. Nine pairs of participants were
recruited to perform 60 handovers each in 6 different configurations. The investigators
found that distinct roles for the giver and receiver of the object emerge in terms of
the forces acting on the baton. The giver assumes responsible for the safety of the
object by assuring that it does not fall, whereas the receiver assumes responsible for
the efficiency of the handover by taking it from the giver. This can be measured as a
characteristic of grip and load forces over time on behalf of the giver and receiver,
with the handover concluding when the giver experiences negative load force as
the receiver slightly pulls it out of their hand. This has direct implications for the
design of a controller for robot-to-human handovers. Chan et al. [4] implemented
such a controller on the Willow Garage PR2 robot, which mimics human behavior
by regulating grip forces acting on the transferred object.

Moon et al. [17] followed up on this study by adding a gaze cue to the PR2’s han-
dover software. In a three condition, intra-participant design, 102 study participants
were handed water bottles and asked which of three handovers they preferred. The
robot indicated its gaze direction by tilting its head to either look down and away

Fig. 14.7 Baton
instrumented for measuring
forces acting on an object
during handover
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from the participant (No Gaze), look towards the water bottle (Shared Attention),
or look to the water bottle and then up at the participant (Turn-Taking). The study
found that participants reach for the water bottle significantly earlier in Shared Atten-
tion (M = 1.91s, SD = 0.52) condition over the No Gaze condition (M = 2.54s,
SD = 0.79)(p < 0.005). This is measured with respect to the time when the robot
grasps the water bottle to be handed over and starts its trajectory toward the handover
location. No significant difference was found between the Shared Attention and Turn
Taking (M = 2.26, SD = 0.79) conditions or between the Turn Taking and No Gaze
conditions. Their results also suggest that participants may prefer conditions in which
the robot makes eye contact.

Additional work in conjunction with University of Tokyo went on to study how
the orientation of an object interacts with how it is handed over [2]. Current work
in CARIS investigates motion cues that can be exploited to detect the timing and
location of handovers, for fluent human-to-robot handover behaviors [10].

14.4.2 Hesitation

Another example of a non-explicit communicative cue is motor behavior when hes-
itating. Moon et al. [15, 16] recorded human motion trajectories in an experiment
where dyads of study participants reach for a target placed between them on a table
when prompted by tones in sets of headphones. In the study, randomly-timed tones
are played separately in each pair of headphones, such that only sometimes are both
participants required to reach for the target at the same time. This causes participants
to sometimes hesitate in accessing the shared resource placed between them, ceding
access to the other participant. The study separates recorded arm motions into three
categories: successful (S) - when the participant accesses the shared resource, retract
(R) - when the participant retracts their hand from a trajectory directed toward the
target as an act of hesitation, and pause (P) - when the participant pauses along their
motion trajectory toward the target in hesitation. Accelerometer data were recorded
for these motions, and a motion profile was derived from these recorded human
hesitations called the Acceleration-Based Hesitation Profile (AHP). A retract-based
motion profile was used to plan motion trajectories for a robot arm during a similar
shared task with a human collaborator. This motion was video recorded for use in an
online study. Results of the study demonstrate that study participants recognize the
reproduced hesitation behavior on the part of the robot.

A follow-up study was conducted in which participants perform a shared task
with the robot [16]. In this experiment, participants sit across from the robot with
the task of taking marbles from a bin located in the center of the workspace shared
with the robot one at a time, matching them with shapes from another bin according
to a set of exemplar marble-shape pairs. The robot’s task is to inspect the marble bin
by moving back and forth between the bin and its starting position, see Fig. 14.8. A
total of 31 participants took part in a within-participant study in which they were
exposed to three conditions; Blind Response - in which the robot continues along
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Fig. 14.8 Diagram illustrating the experimental setup of a study in which human study participants
interact with a robotic arm which performs hesitation behaviors during an interaction involving
access to a shared resource

its trajectory, Robotic Avoidance - in which the robot arrests its motion to wait for
the participant to complete their motion, and Hesitation Response - in which the
robot responds with an AHP-based trajectory. Results do not show improvements
in task completion or perceptions of the robot, but do demonstrate that participants
recognize the hesitation behavior.

14.4.3 Tap and Push

Our group and our collaborators are also interested in communicative cues which are
non-naturalistic, but nonetheless may be highly intuitive for human collaborators, or
which are based on common human interactions but not on specific communicative
cues. One example of this is a study in tap-and-push style interactions in which a
human study participant taps and pushes on a robot. This study was conducted in
conjunction with the Sensory Perception & INteraction (SPIN) Laboratory at UBC,
by Gleeson et al. [5].

In order to study tap-and-push style interactions with a robot arm, Gleeson et
al. [5] performed a series of studies in which human workers and robot assistants
collaborate on an assembly task. These studies compare a set of commands based on
tapping and pushing on a device to commands via a keyboard interface. In the first
study, participants interact with a Phantom Omni desktop haptic device in a scripted
collaborative fastener insertion task which simulates the placement and tightening
of four bolts. Participants pick up bolts from open boxes, place a bolt in one of four
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locations on a board, and then command the Omni to touch the bolt, simulating a
tightening operation. See Fig. 14.9a. After performing its tightening operation, the
Omni automatically moves to the next position. Gleeson et al. [5] found that on
this task keyboard commands slightly outperform direct physical commands in the
forms of taps and pushes on the robot in quantitative task performance metrics and
qualitative user preference.

The second study comprises two more complex tasks which were performed as
interactions with a Barrett Whole-Arm Manipulator (WAM) robotic arm. The first
task is a bolt insertion task similar to that in the first study, but in which bolts are
inserted in a random order that is presented to the user on notecards, and in which the
robot does not automatically advance to the next bolt. See Fig. 14.9b. In the second
task, participants interactively position the arm using discrete tap-and-push cues to
position it over a series of cups, and then continuously guide the robot to the bottom
of the cup, Fig. 14.9c. Gleeson et al. [5] found that in these more complex and less
scripted tasks participants are able to more quickly complete the collaborative tasks,
and that they prefer the physical interaction over the keyboard interface.

14.5 Current and Future Work

Current work in the CARIS Laboratory continues our study of communicative cues.
Part of Matthew Pan’s current work involves collaboration between two parties lifting
an object. This expands on work by Parker and Croft [18, 19] on the development
of controllers that enable robots to elegantly respond to cues based on the motion of
an object that is in the process of being lifted. Another aspect of Pan’s current work
is the automatic detection of the intention of a person to handover an object, thus
enabling a robot to identify this intention and respond by grasping the object.

Hart, Sheikholeslami, and Croft are currently working on approaches to extrap-
olate human motion trajectories based on hand and skeletal tracks [10]. Such an
extrapolation would allow the prediction of the timing and location of the endpoint
of the motion, and of what the person is attempting to do. In the context of a reach, this
can inform a robot of what the person is reaching toward. Hoffman and Breazeal [11]
noted that collaborative robotic systems that are based on observations of the current
state of the shared task experience a stop-and-go style interaction. This is in part due
to the need to respond to the current world state, rather than what is about to happen.
They describe the ability to smoothly mesh the actions of collaborators as interaction
fluency. By making guesses at a collaborator’s intentions and extrapolations of their
motions, a robot can act on these predictions. Precise predictions of the timing and
location and choice of actions on a shared task can enable a robot to preemptively
act on these predictions. For instance, if a person is reaching to a fastener, the robot
can reach to the tool that attaches it. We have also explored optimal timing of a
robot’s behavior based on prior task performance on the part of both the robot and
the worker.

One application that we are currently pursuing is combining motion extrapolation
techniques with Matthew Pan’s work on handover detection, allowing us to predict
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(a) Phantom Omni haptic device, interacted with via taps and pushes,
or via keyboard in a bolt placement task.

(b) Barrett Whole-Arm Manipulator, interacted with via taps and pushes,
or via key board in a bolt placement task.

(c) Barrett Whole-Arm Manipulator, interacted with via taps and pushes,
or via keyboard in a guided manipulation task.

Fig. 14.9 Experimental setups for studies in tap and push interactions with robotic devices
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the timing and location of a handover, in addition to preemptively predicting the
intention based on a predicted motion trajectory. In a study of handover motions [10],
we observed that the receiver of an object being handed over begins their motion to
the ultimate location of the handover prior to the arm being fully-extended to this
location. We also observed that we could determine the path that the arm would
follow from only a few frames of motion tracking data (as long as the track is stable).
In the context of a handover motion, this can inform the timing and location at which
person intends to hand over the object, thus enabling the robot to begin its trajectory
in a manner similar to that of a person reaching out to accept the object. Studies on
this are in progress.

The robot-assistant project itself is also exploring new directions. We are currently
in the process of designing interactions around the use of advanced composite materi-
als such as carbon fiber reinforced plastics and the construction of large components.
Techniques such as gesturing to the robot will enable non-verbal communication at
the longer distances required to collaborate on large composite components, whereas
other naturalistic communicative cues may be combined with advanced projection
mapping and augmented reality technologies to enable the robot to communicate
important information back to the user. Sensing, situational awareness, and prox-
emics will play key roles in designing these interactions.

A closed loop of communication between a human worker and its robot collab-
orator is key for progress in collaborative human-robot interaction. With humans
and robots working in close proximity, physical HRI techniques will become key in
enabling a robot to live up to worker expectations and interpret worker intentions.
For worker safety and productivity, it is crucial that robots and human collaborators
are able to transparently communicate with each other and understand each other’s
actions and intentions. For robot assistants to act as collaborators, rather than tools
directly under the control of human operators, they must behave in predictable man-
ners and in ways that operators are able to intuitively control. Their development
requires contributions from multiple disciplines in computer science, mechanical
engineering, design, sensing, and control. The study of communicative cues pro-
vides a route to establishing a closed loop of transparent communication between
a human worker and its robot collaborator, while behavioral predictions provide us
with a route to performing this communication fluently.

Acknowledgements We would like to thank our collaborators on CHARM for their incredible
contributions to this project. In addition to the authors of this chapter, CHARM collaborators include
Ergun Calisgan, Jacques-Michel Haché, Dominic Beaulieu, AJung Moon, Marc-Antoine Lacasse,
Olivier St-Martin Cormier, Andrew Phan, Brian Gleeson, Denis Ouellet, Boris Mayer St-Onge,
Thierry Moszkowicz, Oleg Boulanov, Roland Y. Menassa, Stephen Hart, Muhammad Abdallah,
Jim Wells, Justin Gammage and Robert Tilove. CHARM was made possible thanks to the generous
support of General Motors of Canada and the Natural Sciences and Engineering Research Council
of Canada under contract 140570247. Studies carried out at UBC that are reported in this chapter
were approved by the University Behavioral Research Ethics Board under approval number H10-
00503-A020.



14 Developing Robot Assistants with Communicative Cues … 269

References

1. H. Admoni, A. Dragan, S.S. Srinivasa, B. Scassellati, Deliberate delays during robot-to-human
handovers improve compliance with gaze communication. Proceedings of the Ninth Annual
ACM/IEEE International Conference on Human-robot Interaction (HRI ’14) (Bielefeld, Ger-
many, 2014), pp. 49–56

2. W.P. Chan, M.K.X.J. Pan, E.A. Croft, M. Inaba, Characterization of handover orientations
used by humans for efficient robot to human handovers. Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (Hamburg, Germany, September
2015), pp. 1–6

3. W.P. Chan, C.A.C. Parker, H.F.M. Van der Loos, E.A. Croft, Grip forces and load forces in
handovers: Implications for designing human-robot handover controllers. Proceedings of the
Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI ’12)
(Boston, MA, USA, 2012), pp. 9–16

4. W.P. Chan, C.A.C. Parker, H.F.M. Van der Loos, E.A. Croft, A human-inspired object handover
controller. Int. J. Robot. Res. 32(8), 971–983 (2013)

5. B. Gleeson, K. Currie, K. MacLean, E. Croft, Tap and push: Assessing the value of direct
physical control in human-robot collaborative tasks. J. Hum. Robot Interact. 4(1), 95–113
(2015)

6. B. Gleeson, K. MacLean, A. Haddadi, E.A. Croft, J.A. Alcazar, Gestures for industry intu-
itive human-robot communication from human observation. Proceedings of the Eigth Annual
ACM/IEEE International Conference on Human-Robot Interaction (HRI ’13) (Tokyo, Japan,
March 2013), pp. 349–356

7. C. Gosselin, T. Laliberté, B. Mayer-St-Onge, S. Foucault, A. Lecours, V. Duchaine, N. Paradis,
D. Gao, R. Menassa, A friendly beast of burden: A human-assistive robot for handling large
payloads. IEEE Robot. Autom. Mag. 20(4), 139–147 (2013)

8. A. Haddadi, E.A. Croft, B. Gleeson, K. MacLean, J. Alcazar, Analysis of task-based gestures
in human-robot interaction. Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA ’13) (Karlsruhe, Germany, May 2013), pp. 2146–2152

9. J.W. Hart, B.T. Gleeson, M.K. X.J. Pan, A. Moon, K. MacLean, E.A. Croft, Gesture, gaze,
touch, and hesitation: Timing cues for collaborative work. Proceedings of the HRI Workshop
on Timing in Human-Robot Interaction (HRI ’14) (Bielefeld, Germany, March 2014)

10. J.W. Hart, S. Sheikholeslami, M.K.X.J. Pan, W.P. Chan, E.A. Croft, Predictions of human task
performance and handover trajectories for human-robot interaction. Proceedings of the HRI
Workshop on Human-Robot Teaming (HRI ’15) (Portland, OR, USA, March 2015)

11. G. Hoffman, C. Breazeal, Cost-based anticipatory action selection for human-robot fluency.
IEEE Trans. Robot. 23(5), 952–961 (2007)

12. A. Lecours, B. Mayer-St-Onge, C. Gosselin, Variable admittance control of a four-degree-
of-freedom intelligent assist device. Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) (St. Paul, MN, USA, May 2012), pp. 3903–3908

13. A. Lecours, C. Gosselin, Computed-torque control of a four-degree-of-freedom admittance
controlled intelligent assist device. Experimental Robotics: The 13th International Symposium
on Experimental Robotics, ed. by P. Jaydev Desai, G. Dudek, O. Khatib, V. Kumar (Springer,
Heidelberg, Germany, 2013), pp. 635–649

14. D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, D. Wilkins,
Pddl - the planning domain definition language. Technical Report TR-98-003, Yale Center for
Computational Vision and Control, 1998

15. A.J. Moon, C.A.C. Parker, E.A. Croft, H.F.M. Van der Loos, Did you see it hesitate? Empirically
grounded design of hesitation trajectories for collaborative robots.Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’11) (San Francisco, CA,
USA, September 2011), pp. 1994–1999

16. A.J. Moon, C.A.C. Parker, E.A. Croft, H.F.M. Van der Loos, Design and impact of hesitation
gestures during human-robot resource conflicts. J. Hum.-Robot Interact. 2(3), 18–40 (2013)



270 J. W. Hart et al.

17. A.J. Moon, D.M. Troniak, B. Gleeson, M.K.X.J. Pan, M. Zheng, B.A. Blumer, K. MacLean,
E.A. Croft, Meet me where I’m gazing: How shared attention gaze affects human-robot han-
dover timing. Proceedings of the Ninth ACM/IEEE International Conference on Human-robot
Interaction(HRI ’14) (New York, NY, USA, March 2014), pp. 334–341

18. C.A.C. Parker, E.A. Croft, Design & personalization of a cooperative carrying robot controller.
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’12)
(St. Paul, MN, USA, May 2012), pp. 3916–3921

19. C.A.C. Parker, E.A. Croft, Experimental investigation of human-robot cooperative carrying.
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
((IROS ’11)) (San Francisco, CA, USA, September 2011), pp. 3361–3366

20. A. Phan, F.P. Ferrie, Towards 3d human posture estimation using multiple kinects despite self-
contacts. Proceedings of the 14th IAPR International Conference on Machine Vision Applica-
tions (MVA) (Tokyo, Japan, May 2015), pp. 567–571

21. S. Sheikholeslami, A.J. Moon, E.A. Croft, Exploring the effect of robot hand configurations
in directional gestures for human-robot interaction. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’15) (Hamburg, Germany, September–October 2015),
pp. 3594–3599

22. O. St-Martin Cormier, A. Phan, F.P. Ferrie, Situational awareness for manufacturing applica-
tions. 12th Conference on Computer and Robot Vision (Halifax, Nova Scotia, Canada, 2015),
pp. 320–327

23. K. Strabala, M.K. Lee, A. Dragan, J. Forlizzi, S. Srinivasa, M. Cakmak, V. Micelli. Towards
seamless human-robot handovers. J. Hum.-Robot Inter. (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Part III
Trusted Autonomy



Chapter 15
Intrinsic Motivation for Truly
Autonomous Agents

Ron Sun

15.1 Introduction

In order to deal with complexity, uncertainty, and unpredictability, which are
inevitable in many real-world tasks and environments, agents need to be intrin-
sically motivated. Intrinsically motivated agents are those that have human-like
(or animal-like) internal motivational processes, with internally generated, self-
determined needs and preferences, which may or may not be influenced externally.
It is the ability and the inclination of an agent (e.g., a human or a robot) to act
autonomously, at its own discretion [6, 48]. For true autonomy necessary for dealing
with highly complex, uncertain, or unpredictable environments, intrinsic motivation
would be a highly desirable, or even necessary, part of being autonomous agents
functioning in such environments. In highly complex, uncertain, or unpredictable
environments, specific motivations and preferences cannot be easily pre-specified
for a system from the outside, and thus intrinsic motivation is important for the sake
of autonomy and for coping with such environments [18, 59].

In past work on intelligent agents, including past work on learning, planning,
and problem solving for such agents, the need for intrinsic motivation has been
down-played (although not completely ignored; more on this later). Thus, by now,
the shortcomings of existent autonomous agent models and systems are quite evi-
dent, for example, with regard to their acceptance and their deployment in complex,
uncertain, or unpredictable environments. Clearly, we need to seriously rethink
some of these old approaches based on old (and often outdated) assumptions and
methodologies, and move forward to the development of new, different, and better
approaches, models, and theories, especially those that involve human-like intrinsic
motivation.

Having intrinsic motivation is also important to achieving trust of autonomous
agents and systems (such as autonomous robots) byhumans (andbyother autonomous
agents and systems). In fundamentally unpredictable environments, a key aspect that
one can be certain of is stable internal needs and preferences–that is, intrinsic moti-
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vation. Thus, in order to have trust and confidence in someone else, one has to have
an understanding of what motivates the other [47, 48].

We may term human-like intrinsic motivation and autonomous choice of action
(in accordance with intrinsic motivation) “free will”. Self-determined intrinsic moti-
vation (or “free will”) in humans includes not only power, achievement, and other
individualistic tendencies, but also adherence to social norms, affiliation with other
individuals, and other tendencies related to social interactions and interdependencies
([48]; see details later). These motives are the results of evolution over a long period
of human prehistory in the context of the struggles to survive within social groups.
Real trust is trust among such “free willed” individuals. Limited, simpler forms of
“trust” that one typically places on currently available machines such as self-driving
automobiles or robotic vacuum cleaners (as they stand currently) cannot be construed
as real trust (or full trust) and, I believe, is far from sufficient for the future. See, for
example, Lee and See [23] or Abbass et al. [1] for characterization of such limited
forms of trust. The question is: How do we move beyond that?

To achieve real trust, I believe that we need to delve into natural human tenden-
cies to trust other individuals with intrinsic motivations that are similar to ours and
similarly “free willed”. Humans do have such tendencies, necessitated by their col-
lective need for survival, evolved during their collective struggles to survive for tens
of thousands of years. Such trust may start from predictability of behavior, as a result
of similarly endowed (innate or acquired) motives. Understanding others’ motivation
leads to predictability of their behavior, which in turn leads to more complex and
deeper forms of trust (e.g., involving affective or emotional processes). Only in this
way, through understanding and exploiting such natural human tendencies, may we
achieve truly autonomous agents, robots, and machines that may be given our real
and full trust and that may also achieve real mutual trust amongst themselves.

Taking all of these issues into consideration, it is evident that we need to develop
a deeper perspective on future autonomous systems, which should include intrinsic
motivation in particular.

In the remainder of this chapter, first, background of some past work on human
motivation is reviewed, as well as past work on computational cognitive architec-
tures in relation to motivation. Then, a particular cognitive architecture (namely, the
Clarion cognitive architecture) that is integrative and comprehensive and includes a
more completemotivational subsystem is detailed, especially the interaction between
its motivation and cognition [50]. Some examples of simulations using this cogni-
tive architecture are described, which show briefly how this cognitive architecture
integrates cognition and motivation and enables agents to function autonomously
and appropriately. Some concluding remarks end this chapter.
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15.2 Background

15.2.1 Previous Work on Intrinsic Human Motivation

It has been argued that, currently, many kinds of intelligent artifacts–autonomous
agents, systems, and robots–are not truly autonomous, capable of dealing with
complex, uncertain, and unpredictable environments independently, that is, truly
autonomously. For one thing, they do not seem to possess independent, intrinsic
motivations, needs, and preferences by themselves [48]. Notably, in highly com-
plex, uncertain, or unpredictable environments, specific motivations and preferences
cannot be easily pre-programmed; intrinsic motivation is therefore important to
achieving autonomy and consequently crucial to successful coping in such envi-
ronments [18, 59]. We need to make an effort to redress this current state of affairs.

Furthermore, we also need to address social interaction of and with autonomous
agents, systems, and robots. For example, in social transactions, how and when
one can place trust in such a system is a major issue, as mentioned earlier [24,
36, 39]. For humans, to truly trust and have confidence in someone else, one has
to have an understanding of what motivates the other [47]. Having stable intrinsic
motivation, as humans usually do, helps in this regard. For another example, social
impasses may often result from incompatible motivations of multiple people (or
agents); understanding each other’s motivations may go a long way in helping to
resolve such impasses [47].

Work on intrinsic human motivations has had a long history. Some particularly
relevant work will be briefly discussed here [29, 34], in relation to our own theory
of human motivation as embodied in the Clarion cognitive architecture mentioned
earlier [46, 48, 50].Understanding and replicating the humanmotivational subsystem
can be highly beneficial to building autonomous intelligent agents and systems,
because of its power, flexibility, and adaptability [48].

First of all, very early on, Murray [29] proposed a pertinent set of basic needs
(i.e., primary drives in our terminology, as used in Clarion). Murray’s proposal [29]
included the need for conservance, the need for order, the need for retention, the need
for acquisition, the need for inviolacy, and so on (note that these needs are included
as or covered by primary drives in Clarion, as will be detailed later). Some other
needs identified by Murray, such as contrarience, aggression, abasement, rejection,
succorance, exposition, construction, and play, may not be fundamental needs (or
primary drives) in our view—they are likely the results of more fundamental needs
(i.e., primary drives) or their combinations. Murray’s proposal also included some
low-level (physiological, or viscerogenic in Murray’s term) needs (which may be
attributed to some combinations of low-level primary drives in Clarion).

More recently,Reiss [34] proposed another set of basic needs (i.e., primary drives),
which was highly similar to Murray’s, but with some differences. For example, as
proposed by Reiss [34], there are the need for saving, the need for order, the need for
family, the need for vengeance, the need for “idealism”, the need for status, the need
for acceptance, as well as the need for eating, the need for tranquility, the need for
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physical exercises, the need for romance, and so on. (Again, these needs are included
as or covered by primary drives in Clarion as will be detailed later.)

As alluded to above, in Sun [48, 50], a detailed model of human motivation (as
embodied in Clarion) was presented. The Clarion cognitive architecture incorporates
multiple, interacting subsystems. In particular, within the motivational subsystem,
there are implicit drives and explicit goals (with goals being primarily determined
based on drives). While some drives, denoting essential needs and desires, are pri-
mary and built-in, some other drives may be acquired and secondary. The primary
drives include: Affiliation & Belongingness, Dominance & Power, Recognition &
Achievement, Autonomy, Deference, Similance, Fairness, Honor, Nurturance, Con-
servation, Curiosity, as well as some low-level primary drives [48]. With its built-
in mechanisms and processes, especially the motivational mechanisms, Clarion is
able to capture, account for, and explain many psychological data and phenomena
related to humanmotivation. There have been various efforts at verifying those drives
through experiments and data analysis [34, 48]. See further discussions of Clarion
below, and also see Sun [46, 50].

Relatedly, Schwartz’s [40] 10 universal values, although addressing a different
aspect of human behavior (i.e., human “values”), bear some resemblance to the
essential needs (i.e., primary drives) identified above [48]. Moreover, each of these
values can be derived from some primary drive or some combination of these primary
drives [48].

McDougall [27] proposed a framework that was concerned with “instincts”.
Instincts, in our framework, refer to (more or less) evolutionarily hard-wired (i.e.,
innate) behavior patterns or routines that can be relatively easily triggered by per-
tinent stimuli in pertinent situations. As discussed earlier, basic needs (or primary
drives as termed in Clarion) are essential driving forces of behaviors. Instincts are
different from basic needs, because one does not have to follow instincts when there
is no pertinent stimulus, and even when pertinent stimuli are present, one may be
able to refrain from following instincts (at least more easily than from basic needs or
primary drives). In other words, they are pre-set routines: while they are relatively
easily triggered, they are not inevitable. McDougall listed the following instincts:
imitation, emulation or rivalry, pugnacity/anger/resentment, sympathy, hunting, fear,
appropriation/acquisitiveness, constructiveness, play, curiosity, sociability and shy-
ness, secretiveness, cleanliness, modesty and shame, love, jealousy, parental love,
…, and so on (see also [19]). As evident from the list above, many of these instincts
are results of primary drives or basic needs (such as “curiosity” and “parental love”),
or are derived, by some means, from primary drives or basic needs (such as “play”
and “constructiveness”). Some other instincts are not because they do not represent
basic needs (e.g., “hunting” or “jealousy”). (See more discussions of primary drives
within Clarion later.)

There have also been some less psychologically validated models of motivation.
Suchmodels includeDoerner’smodel andSloman’smodel. In Sloman’smotivational
model [67], goals (“motives”) are generated from a suite of modules (“generactiva-
tors”), each of which expresses a single “concern” (such as caring for dependents or
removing damaged dependents). Each of these modules may search through a data-
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base of beliefs; if it finds amatch, a declarative representation of a goal (a “motive”) is
generated. On that basis, the resource management system takes goal representations
and generates intentions for action. Although the model bears some resemblance to
Clarion, the model has not been used to capture or explain psychological data in
any detail. In addition, computationally speaking, searching through databases is
cumbersome and may not be cognitively realistic.

Doerner [15] (see also Bach [5]) described the PSI theory, which included internal
deficits, displeasure signals (due to deficits), negative reinforcement (from displea-
sure signals), urges, goals, action learning through random exploration (based on
reinforcement), and so on. At an abstract level, the model is similar to Clarion to
some extent [48, 50], but it appears less psychologically grounded or validated. In
addition, its computational mechanisms appear less well developed algorithmically.

15.2.2 Previous Work on Cognitive Architectures

It has been suggested [30] that cognitive theories (including computational cognitive
models) should be developed that satisfymultiple criteria, in order to avoid theoretical
myopia. There have been steady developments of generic computational cognitive
models, that is, cognitive architectures, for the past three decades since that seminal
suggestion.

Early cognitive architectures often took the form of production systems and were
(more or less) concernedwith various psychological phenomena [20].However, other
forms of cognitive architectures have also been developed over the years— theymay
be in the form of a connectionist model, a constraint satisfaction network, a hybrid
system of different models, and so on. Some of them may be more concerned with
applications to building artificial systems than capturing and explaining empirical
psychological phenomena.

Computational cognitive architectures provide the best hope for integrated sys-
tems that incorporate not just cognitive capabilities, but alsomotivation, emotion, per-
sonality, andmany other capacities and capabilities needed for an autonomous agent.
In particular, computational cognitive architectures based firmly on psychological
data and findings and thus well-grounded empirically can be especially illuminating–
they provide a glimpse into how human minds work, for example, in terms of the
interaction between cognition and motivation, as well as their interaction with the
environments (simple or complex). The human mind provides the best example of
a truly autonomous intelligent system, and thus can lead to better understanding
of intelligence and autonomy. Such cognitive architectures, like humans on which
they are based, are capable of being truly autonomous, because they include a wide
range of cognitive, motivational, and other capabilities and these capabilities func-
tion together to cope with different tasks and environments. Let us look into three
examples, in chronological order.
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Soar, the first proposed cognitive architecture, has been developed over the past
thirty years, based essentially on a production systemmodel. It has mostly been used
for the purpose of building application systems [21, 30, 35]. In Soar, based on the
framework of a state space and operators for searching the state space, decisions are
made by different productions proposing different operators, when there is a goal
on a goal stack. When a sequence of productions leads to achieving a goal, chunk-
ing occurs, which creates a single production that summarizes the process (using
explanation-based learning). However, it lacks sophisticated motivational structures
and processes. In addition, a large amount of initial (a priori) knowledge about states
and operators is required for Soar to work.

Another series of cognitive architectureswere also proposed fairly early on: in par-
ticular, ACT* and ACT-R [3]. ACT* is made up of declarative knowledge (captured
in a semantic network) and procedural knowledge (captured in a production system).
Procedural knowledge (in productions) is acquired through “proceduralization” of
declarative knowledge, modified through use by generalization and discrimination
(i.e., specialization), and have strengths associated with them (which are used for
firing). ACT-R is a descendant of ACT*, in which procedural learning is limited
to production formation through mimicking and production firing is based on log
odds of success. There have been some later additions to ACT-R, including visual
and motor modules, but there have not been any sufficiently complex motivational
structures.

Clarion has been a comprehensive cognitive architecture [45, 46, 50]. The Clarion
cognitive architecture, as mentioned earlier, consists of multiple, interacting subsys-
tems. It is also distinguished from other existing cognitive architectures by its focus
on the separation and the interaction of implicit and explicit knowledge and processes
(in these different subsystems, respectively). More importantly, in relation to motiva-
tional issues, compared with other cognitive architectures, Clarion is distinguished
by the fact that it contains built-in motivational constructs and built-in metacogni-
tive constructs. These features are not commonly found in other existing cognitive
architectures. Nevertheless, these features are crucial to the cognitive architecture,
as they capture important elements in the interaction between an agent and its phys-
ical and social world [50]. With these mechanisms, especially the motivational and
metacognitive mechanisms, Clarion attempts to explain their functioning in concrete
computational terms.

15.3 A Cognitive Architecture with Intrinsic Motivation

15.3.1 Overview of Clarion

Clarion provides structural and algorithmic specifications of a wide range of generic
psychological processes. In particular, Clarion accounts for basic human motives,
which provide the underlying basis for behavior. This emphasis on human moti-
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vation facilitates the integration of general cognitive capacities with considerations
of motivation (as well as personality, emotion, culture, sociality, and so on) in a
comprehensive and unified theory/model.

Only a sketch of Clarion can be presented below; the vast majority of technical
details are omitted due to the page limit. See Fig. 15.1 for the overall structure of
Clarion.

As shown by the figure, Clarion consists of a number of subsystems: the action-
centered subsystem (denoted as the ACS), the non-action-centered subsystem (de-
noted as the NACS), the motivational subsystem (the MS), and the metacognitive
subsystem (theMCS). The role of the action-centered subsystem is to control actions
(regardless ofwhether they are for external physicalmovements or for internalmental
operations), utilizing and maintaining procedural knowledge. The role of the non-
action-centered subsystem is to maintain and utilize declarative knowledge. The role
of the motivational subsystem is to provide underlying motivations for perception,
action, and cognition (in terms of providing impetus and feedback). The role of the
metacognitive subsystem is to monitor, direct, and modify the operations of the other
subsystems dynamically.

Each of these interacting subsystems consists of two “levels” of representa-
tions (i.e., a dual-representational structure, as theoretically posited in [45]). Gen-
erally speaking, in each subsystem, the “top level” encodes explicit knowledge1

Fig. 15.1 The Clarion cognitive architecture. The subsystems of Clarion are shown. The major
information flows are shown with arrows. ACS stands for the action-centered subsystem. NACS
stands for the non-action-centered subsystem. MS stands for the motivational subsystem. MCS
stands for the metacognitive subsystem

1Roughly speaking, explicit knowledge is directly consciously accessible (i.e., conscious or poten-
tially conscious), while implicit knowledge is consciously inaccessible directly. Explicit processes
involve explicit knowledge, while implicit processes involve implicit knowledge. The distinction
has been based on voluminous empirical findings in many domains, but involves some nuances and
some controversies. See [45, 50] for details.
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(using symbolic/localist representations) and the “bottom level” encodes implicit
knowledge (using distributed representations [32, 37]). The two levels interact,
for example, by cooperating in action decision making, through integration of the
action recommendations from the two levels of the ACS respectively, as well as by
cooperating in learning through a “bottom-up” and a “top-down” learning process
[45, 55].

Existing theories tend to confuse implicit and explicit processes; hence the “per-
plexing complexity” [43]. In contrast, Clarion generally separates and integrates
implicit and explicit processes in each of its subsystems. With such a framework,
Clarion can provide better explanations of empirical findings in a wide range of
domains (for details, see [17, 45, 55]).

15.3.2 The Action-Centered Subsystem

TheACScaptures the process of humanactiondecisionmaking as follows:Observing
the current (observable) state of the world (including one’s own motivational state),
the two levels within the ACS (implicit or explicit) make their separate action deci-
sions in accordance with their respective procedural knowledge (implicit or explicit),
and their outcomes are “integrated”. Thus, a final selection of an action is made and
the action is then performed. The action changes the world in some way. Comparing
the changed state of the world with the previous state, the person learns. The cycle
then repeats itself.

In this subsystem, the bottom level consists of “action neural networks” encod-
ing implicit knowledge (involving distributed representations [37]), and the top level
consists of “action rules” encoding explicit knowledge (using symbolic/localist rep-
resentations).

At the bottom level of theACS, using an action neural network, actions are selected
based on their Q values. At each step, given state x , the Q values of all the actions
in that state (i.e., Q(x, a) for all a’s) are computed in parallel. Then the Q values
are used to decide stochastically on an action to be performed, through a Boltzmann
distribution of Q values:

p(a|x) = e
Q(x,a)

τ

∑
i e

Q(x,ai )
τ

where p(a|x) is the probability of selecting action a, τ (temperature) controls the
degree of randomness of action decision making, and i ranges over all possible
actions. (This is known as Luce’s choice axiom [61].)

For capturing learning of implicit knowledge at the bottom level (i.e., the Q
values), the Q-learning algorithm [61], a reinforcement learning algorithm, may
be applied. With this algorithm, Q values are gradually tuned through successive
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updating of a neural network, which enables reactive sequential behavior to emerge
through trial-and-error interaction with the world (for details, see [45, 61]).

For capturing learning of explicit knowledge at the top level (i.e., action rules),
a variety of algorithms may be applied, including the Rule-Extraction-Refinement
(RER) algorithm [11] for a “bottom-up” learning process that relies on implicit
knowledge from the bottom level to learn explicit knowledge at the top level [45].
In the reverse direction, “top-down” learning can also occur.

For stochastic selection of the outcomes of the two levels, at each step, each
level (or a component within) is selected with a certain probability. There exists
some psychological evidence for such intermittent use of rules [45]. The selection
probabilities may be variable, determined by the metacognitive subsystem (by its
processing mode module; more later; [50]).

15.3.3 The Non-Action-Centered Subsystem

The NACS is for dealing with declarative knowledge (which is not action-centered).
It stores such knowledge in a dual representational form (the same as in the ACS):
that is, in the form of explicit “associative rules” (at the top level), and in the form of
implicit “associative memory networks” (at the bottom level). Its operation is under
the control of the ACS and in the service of the ACS.

First, at the bottom level of the NACS, associative memory networks encode
implicit declarative knowledge. Associations are formed by mapping an input pat-
tern to an output pattern (e.g., using Backpropagation networks or Hopfield net-
works [37]).

Second, at the top level of the NACS, explicit declarative knowledge is stored.
As in the ACS, each “chunk” node (denoting a concept) at the top level is linked
to its corresponding microfeature nodes present at the bottom level. Additionally, in
the top level, links between chunk nodes encode explicit associative rules. Explicit
associative rules may be learned in a variety of ways [50].

As in the ACS, top-down or bottom-up learning may take place in the NACS,
either to extract explicit knowledge at the top level from the implicit knowledge at
the bottom level, or to assimilate the explicit knowledge of the top level into the
implicit knowledge at the bottom level.

With the interaction of the two levels, the NACS carries out rule-based, similarity-
based, and constraint-satisfaction-based reasoning (details can be found in [17, 50]).
Their interaction enables the NACS to capture much of human reasoning [50].

15.3.4 The Motivational Subsystem

The MS is a critical part of the cognitive architecture. It is concerned with why
an individual does what he/she does. The importance of the MS to the ACS lies in
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Fig. 15.2 The basic structure of the motivational subsystem

the fact that it provides the context in which goals and reinforcements of the ACS
are determined. It thereby influences the working of the ACS (and by extension, the
working of the NACS).

A dual motivational representation is in place in the MS. The explicit goals at the
top level of the MS (such as “find food”), which are essential to the working of the
ACS, may be generated based on implicit drives at the bottom level of the MS (e.g.,
“hunger”). See Fig. 15.2. For justifications, see [48].

At the bottom level of the MS, primary drives are those motives essential to an
individual and most likely built-in (hard-wired) to a significant extent to begin with
(i.e., they are “intrinsic”). Low-level primary drives (concerning mostly physiologi-
cal needs) include: food, water, reproduction, and so on. Beyond low-level primary
drives, there are also high-level primary drives: for example, achievement and recog-
nition, affiliation and belongingness, dominance and power, fairness, autonomy, and
so on (see [29, 34, 48, 58, 62]).2 These primary drives have been justified in prior
writings (as cited above).3 See Table15.1 for their specifications. On the basis of
primary drives, secondary (derived) drives may be acquired.

2Note that a generalized notion of “drive” is adopted in Clarion. As discussed in [48], it is a
generalized notion that transcends controversies surrounding the stricter notions of drive [18].
3Briefly, this set of hypothesized primary drives bears close relationships to Murray’s needs [29],
Reiss’s motives [34], Schwartz’s universal values [40], and so on. The prior justifications of these
frameworks may be applied, to a significant extent, to this set of drives as well (see [25, 29, 34,
48]).
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Table 15.1 Descriptions of the primary drives

Drives Specifications

Food The drive to consume nourishment

Water The drive to consume liquid

Sleep The drive to rest

Reproduction The drive to mate

Avoiding Danger The drive to avoid situations that have the potential to be harmful

Avoiding Unpleasant
Stimuli

The drive to avoid situations that are physically (or emotionally)
uncomfortable or negative in nature

Affiliation & belongingness The drive to associate with other individuals and to be part of social
groups

Dominance & power The drive to have power over other individuals

Recognition & achievement The drive to excel and be viewed as competent

Autonomy The drive to resist control or influence by others

Deference The drive to willingly follow or serve a person of a higher status

Similance The drive to identify with other individuals, to imitate others, and
to go along with their actions

Fairness The drive to ensure that one treats others fairly and is treated fairly
by others

Honor The drive to follow social norms and codes and to avoid blames

Nurturance The drive to care for, or attend to the needs of, others who are in
need

Conservation The drive to conserve, to preserve, to organize, or to structure (e.g.,
one’s environment)

Curiosity The drive to explore, to discover, and to gain new knowledge

Table 15.2 Approach versus avoidance primary drives

Approach drives Avoidance drives Both

Food Sleep Affiliation & belongingness

Water Avoiding danger Similance

Reproduction Avoiding Unpleasant Stimuli Deference

Nurturance Honor Autonomy

Curiosity Conservation Fairness

Dominance & Power

Recognition & Achievement

Some of these primary drives are approach-oriented, while others are avoidance-
oriented. This distinction has been argued bymany (e.g., [12, 16, 43]). The approach
system is sensitive to cues signaling rewards, and results in active approach. The
avoidance system is sensitive to cues of punishment, and results in avoidance, char-
acterized by anxiety or fear. See Table15.2 for this division of drives.

The processing of these driveswithin the bottom level of theMS involves a number
ofmodules [50]. In particular, the core drivemodule determines drive strengths (using
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neural networks) based roughly on:

dsd = gaind × stimulusd × de f ici td + baselined

where dsd is the strength of drive d, gaind is the gain for drive d, stimulusd is a
value representing how pertinent the current situation is to drive d, de f ici td indicates
the perceived deficit in relation to drive d (which represents an individual’s internal
inclination toward activating drive d), and baselined is the baseline strength of drive
d. The justifications for this may be found in the literature [50, 58, 60].

Motivational adaptation (learning) is also possible and has been tackled [50].
In addition, new drives (termed “derived drives”) may be acquired. They may be
gradually acquired through some kind of “conditioning”, or may be externally set
through externally provided instructions, on the basis of primary drives.

15.3.5 The Metacognitive Subsystem

Metacognition refers to active monitoring and consequent regulation and orchestra-
tion of one’s own psychological processes [26, 33]. In Clarion, the MCS is closely
tied to the MS. The MCS monitors, controls, and regulates other processes [42].
Control and regulation may be in the forms of setting goals (which are then used
by the ACS) on the basis of drives, generating reinforcement signals for the ACS
for learning (on the basis of drives and goals), interrupting and changing ongoing
processes in the ACS and the NACS, setting essential parameters of the ACS and the
NACS, and so on.

Structurally, this MCS may be divided into a number of functional modules,
including:

• the goal module,
• the reinforcement module,
• the processing mode module.
• the input filtering module,
• the output filtering module,
• the parameter setting module (for setting learning rates, temperatures, etc.),

and so on. See Fig. 15.3.
For instance, the goal module selects goals to pursue (by the ACS). In order

to select a new goal, it first determines goal strengths, based on information from
the MS (e.g., the drive strengths) and the current sensory input. Then, a new goal
is stochastically selected on the basis of the goal strengths (e.g., using a Boltzmann
distribution). For arguments in support of goal setting on the basis of implicit motives
(i.e., drives), see, for example, Tolman [59] and Deci [13]. In the simplest case, the
following calculation is performed:
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Fig. 15.3 The main modules within the metacognitive subsystem

gsg =
∑

d

relevanced,s→g × dsd

where gsg is the strength of goal g, relevanced,s→g is a measure of how relevant
drive d is to goal g with regard to current situation s (which represents the support
that drive d provides to goal g), and dsd is the strength of drive d (from theMS). Once
calculated, the goal strengths are turned into a Boltzmann distribution (as discussed
earlier) and the new goal is chosen stochastically from that distribution.

For another instance, the processing mode module determines the probability of
each component (a level or a component within) for the integration of outcomes from
the two levels of the ACS (see the discussion of the ACS earlier). These probabilities
may be determined through the notion of “probability matching”: the probability
of selecting a component is determined based on the relative success ratio of that
component (see [45, 50] for details). However, these probabilities may be modulated
multiplicatively by another parameter: the strength of avoidance-oriented primary
drives (which corresponds to “anxiety” [65, 66]; see more details below).

15.4 Some Examples of Simulations

Clarion, as a framework, has been justified and validated extensively on the basis of
psychological data and their simulations; see, for example, Sun [45, 50] for sum-
maries of such justifications and validations. In particular, Clarion has been success-
ful in simulating, accounting for, and explaining a wide variety of psychological
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data. For example, a number of well-known skill learning tasks have been captured,
simulated, and explained using Clarion that span the spectrum ranging from simple
reactive skills to complex cognitive skills. Simulations have also been done with rea-
soning tasks,metacognitive tasks, andmotivational tasks, aswell as social interaction
tasks, all of which are important to autonomous intelligent agents. While accounting
for various psychological data, Clarion provides explanations that shed new light on
relevant phenomena, especially on the basis of motivation.

Let us look into an example of social simulation involving agents with intrin-
sic motivation (as originally described in [51]). A significant shortcoming of many
computational social simulations is that they assume very rudimentary cogni-
tion/psychology on the part of agents. Although agents are often characterized as
being “cognitive”, there has been relatively scarce effort that carefully captures
human psychology in detailed, process-based, and quantitative ways. Models of
agents have frequently been custom-tailored to the task at hand, often amounting to
a set of highly domain-specific rules. Although such an approach may be adequate
for achieving some limited objectives of some specific simulations, it falls short
intellectually [53, 54]: It not only limits the realism of social simulations, but also
precludes the possibility of fully tackling the question of the micro-macro link [2,
38, 44] in terms of psychological-social interaction, for example, how the social
emerges from the psychological [44, 47, 51].

Thus, let us first look into an existing social simulation as an illustration. In the
work of Cecconi and Parisi [10], social groups (tribes) were simulated. In these
groups, to survive and to reproduce, an agent must possess resources. A group in
which each agent uses only its own resources is said to adopt an individual sur-
vival strategy. However, in some other groups, resources may be transferred among
agents—such a group is said to adopt a social survival strategy. For instance, the
“central store” (CS) is a mechanism to which all the individuals in a group transfer
(part of) their resources. The resources collected by the CS can be redistributed to
the members of the group in some fashion [10].

In Cecconi and Parisi [10], a number of simulations were conducted comparing
groups adopting individual strategies with groups adopting CS strategies. Agents
survived and reproduced differentially based on the quantity of food that they were
able to consume. This task has the potential for exploring a wide range of issues,
ranging from individual behaviors to social institutions, and from individual learning
to evolution.

However, in that work, there was very little in the way of psychological processes.
Such work needs a better understanding, and better models, of the individual mind,
because only on the basis of that understanding, better understanding of aggregate
processes can be developed. Accurate, detailed cognitive/psychological models may
provide better grounding for understanding multi-agent social phenomena, by incor-
porating realistic constraints, capabilities, and tendencies of individual agents. This
point was argued in Sun [44]. In Axelrod [4], it was shown that even adding a cog-
nitive factor as simple as memory of past several events into an agent model can
completely alter the dynamics of social interaction (e.g., in the iterated prisoner’s
dilemma).
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Thus, we conducted simulations based on the Clarion cognitive architecture. In
our simulation, the world was made up of a 200× 200 grid. Each of these 40,000
locations might contain (at most) one food item. At the beginning and every 40
cycles, the grid was replenished: Randomly selected locations were restocked with
food items (until the grid had 2400 food items). A more benign condition, in which
3600 locations contained one food item each, and a harsher condition, in which 1200
locations contained one food item each, were also tested. A food item contained 50
energy units.

Each agent began with 60 units of energy, and consumed one unit of energy per
cycle. Each agent lived for a maximum of 350 cycles, but might die early due to
lack of food. There were initially 120 agents to begin with, and the number of agents
fluctuated due to birth and death, within the bound of a maximum of 120 agents.

At each moment, each agent was in a particular location on the grid. It faced
a certain direction (north, south, east, or west). Each received inputs regarding the
location of the nearest food. Each agent could generate an action output: either (1)
turn 90 degrees right, (2) turn 90 degrees left, (3) move forward, (4) pick up food
and contribute a portion, (5) pick up food and keep all of it, or (6) reproduce.

As in the previous simulations, procreation was asexual; procreation occurred if
an agent had reached 120 energy units or more, and there were fewer than the maxi-
mum number of agents in the world. The parent handed out 60 energy units to the
child upon its birth. The child inherited its parent’s internal makeup, although when
a child was spawned, there was a 10% chance of minor mutation.

When a central store was involved, an agent was required to contribute 20 energy
units to the central store when it picked up a food item (50 energy units). At each
cycle, agents with 10 or less energy might receive 5 energy units each from the
central store; up to a maximum of 10% of the agent population might get energy
from the central store at each cycle. Each agent, when picking up a piece of food,
decided whether to contribute to the central store or not. There were three variations
on cheater detection and punishment, ranging from full detection and full punishment
to no detection and no punishment.

Each agent had three intrinsic drives: food, reproduction, and honor. They com-
peted to influence behavior (action) through determining the current goal (e.g., to
pursue food or reproduction, or to contribute or not to the CS). The internal rein-
forcements for their actions were determined based on their drives and goals, as well
as the state of the world.

The results of the simulation demonstrated effects of motivational factors (which
were not investigated in the previous simulations). As predicted, motivational factors
had a significant effect on the outcome of the simulation. In this regard, “gains” was a
variable created for the sole purpose of analysis; it consolidated the three drive gain
parameters (for food, reproduction, and honor, respectively) into one. There were
eight values, ranging from “All 0.5” to “All 1.0”; for example, “Honor 0.5” meant
that the gain parameter of the Honor drive was 0.5 and all the other drive gains were
1.0 (see Fig. 15.4 for the complete list).

Examining the results in Fig. 15.4, there was a significant effect of “gains” on
lifespan.Generally speaking,more emphasis on food (a higher drive gain for food) led
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Fig. 15.4 The effect of gains on lifespan. The y-axis represents lifespan. The x-axis represents
probability of using the bottom level. The different lines represent different drive gain settings

Fig. 15.5 The interaction of gains and environment on lifespan. The y-axis represents lifespan.
The x-axis represents environment. The different lines represent different drive gain settings

to better performance (e.g., “Food 1.0” or “Reproduction 0.5”). Reduced emphasis
on food generally led to worse performance (e.g. “Food 0.5” or “Honor 1.0”).

There was also a significant interaction between “gains” and environment on
lifespan, as shown in Fig. 15.5. An interpretation of this result was this: In a more
benign environment, less focus on honor (e.g., “Honor 0.5”) helped survival, but in
a harsh environment, drive focuses did not make much difference because one had
to focus only on food in order to survive.



15 Intrinsic Motivation for Truly Autonomous Agents 289

Other related simulations of motivation or motivation-cognition interaction may
be found in Wilson et al. [65, 66], especially in relation to effects of anxiety [7, 8,
22]. A model of personality was also developed on the basis of motivation within
Clarion; see, for example, Sun and Wilson [56] (see also [14, 28, 31, 41]). Further,
a model of moral judgment was developed on the basis of motivation; see [9, 49]. A
model of emotion was also developed on the basis of motivation within Clarion; see
Sun et al. [57] (see also [52, 63, 64]).

15.5 Concluding Remarks

The Clarion project addresses essential human-like motivational processes, mecha-
nisms, structures, and representations necessary for a comprehensive cognitive archi-
tecture. The need for implicit drive representations, as well as explicit goal repre-
sentations, has been hypothesized. Drive representations consist of primary drives
(both low-level and high-level primary drives), as well as derived (secondary) drives.
On the basis of drives, explicit goals may be generated on the fly during an agent’s
interaction with various situations, which in turn guide action selection.

The afore-discussed motivational representations and their resulting dynamics
help to make a computational cognitive architecture more complete and functioning
in a more psychologically realistic way. I believe that this constitutes a requisite step
forward inmaking computational cognitive architecturesmore realisticmodels of the
human mind taking into considerations all of its complexity and intricacy, especially
in terms of its complex motivational dynamics. It is highly relevant to building
truly autonomous and trust-worthy computational agents capable of functioning in
complex, uncertain, and unpredictable environments. Note that what I emphasize
here is human-like full autonomy and human-like trust.

Significant future challenges in furthering this line of work exist, including, for
example, applying this framework to the building of intelligent application systems
that can display intelligent behavior with more robustness, flexibility, and versa-
tility. Another significant challenge is to further validate, through empirical work
(especially psychological empirical work), this framework and its implications for
understanding humanmotivation and trust (in addition to building intelligent agents).
Many more experiments, simulations, and tests will be needed and shall be pursued
in the future.
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Chapter 16
Computational Motivation, Autonomy
and Trustworthiness: Can We Have It All?

Kathryn Merrick, Adam Klyne and Medria Hardhienata

16.1 Autonomous Systems

In the past fifty years we have quickly moved from controlled systems to supervised
systems [6], automatic systems and autonomous systems [23, 26]. Autonomous
systems are highly adaptive systems that sense the environment and learn to make
decisions about their own actions. They may display a high degree of proactivity,
self-organization or self-motivation [31, 43], in reaching their objectives.

Autonomous systemsmay operatewithout the presence of a human.Alternatively,
they may communicate, cooperate, and negotiate with humans to reach their goals.
Thus, a complementary strand of research over the past decades has studied suchman-
computer symbiosis [25], including research that studies systems that can adapt their
own level of automation [32], and systems that can achieve cognitive-cyber symbiosis
[2].

There is a clear benefit for society if repetitive or dangerous tasks can be performed
by machines. Yet, there are also barriers to the adoption of increasingly sophisticated
technology. These barriers include both functionality related concerns—particularly
in extreme, severe, complex and dynamic environments—as well as legal, ethical,
social, safety and regulatory concerns [1].

In fact, many of these issues are related in some way to the level of trust held
in autonomous system technologies. Trust is a pervasive concept that influences
decision-making when the actions of one system (or agent1) can have an impact
on another agent [3, 34]. Many definitions of trust have been proposed [4, 17, 22,
27]. At one level, trust can be defined as social contract between two agents [4]. A
truster delegates a task to a trustee, and assumes the risk that the trustee might be
untrustworthy. The trustee accepts the task, implicitly or explicitly promising to be
trustworthy. The truster’s decision to trust the trustee is influenced by the truster’s

1Agent here can refer to a human, organization, or software system.
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attitude towards risk.2 Trust involves the judgement of the truster in relation to the
trustee agent based on the integration of the truster’s cognitive attributes and life
experience.

This chapter considers the impact of one of the emerging mechanisms for achiev-
ing autonomy—computational motivation—on the trustworthiness of autonomous
systems. Motivation is the cause of action in natural systems (such as humans) [18].
Like trust, motivation has been defined from different perspectives. For motivation,
this includes perspectives of drive, arousal, risk attitude, social attitude, expectancy,
incentive, trait theory, attribution theory and approach-avoidance theory. Also like
trust, motivation is understood to be influenced by the integration of an agent’s cog-
nitive attributes and life experience.

The concepts of motivation and trust overlap at least along the dimensions of risk
attitude, social attitude and assimilation of life experience and cognitive attributes.
(1) Agents with different motive profiles may act differently in the same situation as
a result of different life experiences; (2) Differences in the motive profiles of agents
(including risk and social attitude)may affect their ability to trust; and (3)Differences
in the actions of agents with different motives may affect their trustworthiness.

This chapter will focus primarily on points (1) and (3) above. First, we consider
the implications ofmotivation for functionality (Sect. 16.3) and then the implications
for trustworthiness (Sect. 16.4). Point (2) above has not been widely examined from
a computational perspective. To make our discussion concrete, in this chapter we
consider these issues in the context of intrinsically motivated agent swarms. Many
key variants of computational motivation have been considered for use in swarm
systems, making this a timely and relevant for discussion. Section. 16.2 begins by
providing an overview of the theory underlying the use of computational motivation
in swarms of artificial agents, including a uniform notation for three intrinsically
motivated swarm algorithms.

16.2 Intrinsically Motivated Swarms

At the heart of computational models of flocks, herds, schools, swarms and crowd
behavior is Reynold’s iconic boids model [35]. The boids model can be viewed as
a kind of rule-based reasoning in which rules take into account certain properties of
other agents. The three fundamental rules are:

• Cohesion: Each agent moves toward the average position of its neighbors;
• Alignment: Each agent steers so as to align itself with the average heading of its
neighbors;

• Separation: Agents move to avoid hitting their neighbors.

2Risk here is the potential of losing something of value, weighed against the potential to gain
something of value (an incentive) [8].
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Each boid in a computational swarm applies these three rules at each time step.
The rules are implemented as forces that act on agents when a certain condition
holds. Suppose we have a group of n agents A1, A2, A3 . . . An . At time t each agent
A j has a position, x j

t , and a velocity, v
j
t . x

j
t is a point and v

j
t is a vector. At each time

step t , the velocity of each agent is updated as follows:

v
j
(t+1) = Wdv

j
t + Wcc

j
t + Waa

j
t + Wss

j
t (16.1)

c j
t is a vector in the direction of the average position of agents within a certain

range of A j (called the neighbours of A j ); a j
t is a vector in the average direction of

agentswithin a certain range of A j ; and s j
t is a vector in the direction away fromof the

average position of agents within a certain range of A j . These vectors are the result
of cohesive, alignment and separation forces corresponding to the rules outlined
above. Weights Wc,Wa and Ws strengthen or weaken the corresponding force. Wd

strengthens or weakens the perceived importance of the boid’s existing velocity.
Once a new velocity has been computed, the position of each agent is updated by:

x j
(t+1) = x j

t + v
j
(t+1) (16.2)

As noted above, agents that are within a certain range of a particular agent A j are
called its neighbors. Formally, we can define a subset N j of agents within a certain
range R of A j as follows:

N j = Ak |Ak �= A j ∧ dist (Ak, A j ) < R (16.3)

where dist (Ak, A j ) is generally the Euclidean distance between two agents. Dif-
ferent ranges may be used to calculate cohesive, alignment and separation forces, or
other factors such as the communication range of a boid. The average position c j

t of
agents within range Rc of A j is calculated as:

c j
t =

∑
k x

k
t

|(Nc)
j
t |

(16.4)

The vector in the direction of this average position is calculated as:

c j
t = c j

t − x j
t (16.5)

Similarly, we can calculate the average position s jt of agents within range Rs of
A j as:

s jt =
∑

k x
k
t

|(Ns)
j
t |

(16.6)

The vector away from this position is calculated as:
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s j
t = x j

t − s jt (16.7)

Finally, the vector a j
t in the average direction of agents within range Ra of A j , is

calculated by the sum:

a j
t =

∑
k vk

t

|(Na)
j
t |

(16.8)

The basic boid algorithm does not incorporate mechanisms for limiting velocity,
preventing a boid from exiting some predefined area or to permitting a boid to avoid
an obstacle. Likewise, it does not include mechanisms for goal-directed behavior.
However, these have been modelled in other swarm algorithm variants. One example
of an update that includes forces in the direction of a goal is:

v(t + 1) j = Wdv
j
t + c1r1(p

j
t − x j

t ) + c2r2(gt − x j
t ) (16.9)

Equation16.9 is, in fact, the particle swarm optimization (PSO) update [9]. The
terms (p j

t − x j
t ) and (gt − x j

t ) are forces in the direction of goals G
p and Gg , which

have positions p j
t and gt respectively. Gp is defined as a goal to reach an agent’s

personal best or ‘fittest’ position found so far. Gg is defined as a goal to reach the
globally fittest position found so far by all swarm members. r1 and r2 are numbers
selected from a uniform distribution between 0 and 1. c1 and c2 are acceleration
coefficients. Parameter values for Wd , c1 and c2 have been experimentally derived
by Eberhart and Shi [10].

We now consider three algorithms for intrinsically motivated swarms, using the
notion introduced above.

16.2.1 Crowds of Motivated Agents

Algorithm 1 models motivation as rules for the application of forces for intrinsic
motivation in a boids framework. Various intrinsic motivations have been considered
for use in swarms, including novelty [21], curiosity [37], achievement, affiliation and
power motivation [14, 28]. Algorithm 1 introduces a simple form of motivation as
an optimally motivating incentive (OMI), Ω j [28]. This simple representation of
motivation stipulates an incentive values that the agent finds maximally motivating.
Other incentives are less motivating, with motivation inversely proportional to the
difference between a goal’s incentive I (G) and the agent’s OMI. That is:

M j (G) = I max − |I (G) − Ω j | (16.10)

where I max is the maximum available incentive. Using this approach power, affil-
iation, achievement or curiosity motivated agents can be defined as follows:
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• Power motivated: power motivated individuals seek to control the resources or
reinforcers of others. Thus, they tend to exhibit a preference for high-incentive
goals. In the model above, power-motivated agents will have values for Ω j that
fall in the upper third of the range [I min, I max ] [28].

• Affiliation motivated: affiliation motivated individuals seek to avoid conflict and
thus often exhibit preferences for low-incentive goals (that are not desirable to
others). In the model above, affiliation-motivated agents will have values for Ω j

that fall in the lower third of the range [I min, I max ] [28].
• Achievement motivated: achievement motivated individuals prefer goals with a
moderate probability of success. They may make a simplifying assumption that
this is implied by moderate incentive. Thus, in the model above, achievement-
motivated agents will have values for Ω j that fall in the middle third of the range
[I min, I max ] [28].

• Curiositymotivated: curious agents prefer to approach goals that are ‘similar-yet-
different’ to goals they have encountered before. In this one-dimensional model
where the only attribute of a goal is its incentive, curious agents will prefer incen-
tives that are moderately different to previously encountered incentives and that
they have not encountered recently.

It should be noted that the definitions above are one dimensional, incentive-based
definitions of power, affiliation, achievement and curiosity.More complex/expressive
definitions exist, both in motivation theory [18] and in the literature of computational
motivation [28, 29, 38, 41, 42]. Some of the latter are discussed later in this chapter,
as well as Sects. 3.7 and 14.5 of this book. The advantage of the one-dimensional
models discussed here is that they are computationally inexpensive, even in large
numbers of agents.

The remainder of the algorithm proceeds as follows: Each agent in the swarm
is initialized with an OMI, Ω j (line 1) [30]. At each time step, each agent senses
the local state of its environment (line 4), including the features described above for
position, velocity and neighbors within different ranges. Each agent then constructs
a set G j

t of highly motivating goals that conform to a condition on the current state
(line 5). For example, the condition might concern proximity to a goal and level of
motivation:

G j
t = Gi |dist (git , x j

t ) < Rm ∧ M j (G) > M (16.11)

Rm is the rangewithinwhich goals are considered andM is amotivation threshold.
A force in the direction of each goal is included in the update equation for the agent
(line 7) as follows:

v
j
(t+1) = Wdv

j
t + Wcc

j
t + Waa

j
t + Wss

j
t + Wm

∑

i

(git − x j
t ) (16.12)

Finally all agents are moved to their new positions (line 8). Algorithm 1 assumes
that all goals and their locations are known by all agents, and that goals are generated

http://dx.doi.org/10.1007/978-3-319-64816-3_3
http://dx.doi.org/10.1007/978-3-319-64816-3_14
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Algorithm 1 A swarm of motivated agents. Adapted from [28].
1: Initialise n and a society A of n agents with position, velocity, weights, ranges and optimally

motivating incentive Ω j .
2: for each time t do
3: for each agent A j do
4: Sense the current local state < x j

t , v
j
t , (N

j
c )t , (N

j
s )t , (N

j
a )t >

5: Construct goal set G j
t according to Eq.16.11.

6: Compute (git − x j
t ) for all Gi

7: Sum all forces on agent A j using Eq.16.12.
8: Move all agents to new positions according to Eq.16.2.

by an entity external to the swarm. The next section considers an algorithm in which
the swarm itself generates goals dynamically, while agents are exploring.

16.2.2 Motivated Particle Swarm Optimization for Adaptive
Task Allocation

Another approach to a motivated swarm is to integrate intrinsic motivation with PSO
for the purpose of adaptive task allocation [21]. Intrinsically motivated PSO (MPSO)
can be used for search and allocation of resources to tasks, when the nature of the
target task is not well understood in advance, or can change over time.

This algorithm has two parts: the first for motivation and the second for PSO as
shown in Fig. 16.1. The input to themotivation component is spatiallymapped sensor
data pt (x) where x specifies the location from which the data were collected as a
Cartesian coordinate and t is the time at which the data were collected. It is assumed
that a stream of this data is input to the system. When data are collected at more than
one location at time t , individual data points are denoted pt (xτ ). The output of the
motivation component, and input to the PSO, is a fitness function Ft (x) as shown in
Fig. 16.1.

We denote Mτ the motivation value of pt (xτ ). In this algorithm, Mτ is assumed
to be binary, with 1 denoting a motivating stimulus and 0 denoting a non-motivating
stimulus. Mτ is computed by thresholding models of motivation that return a con-
tinuous value. Four such models were described above. Another example is and
arousal-based model of curiosity using a novelty function, as described by Klyne
and Merrick [21] and illustrated in Fig. 16.2.

Fig. 16.1 Motivated particle swarm optimization. Image adapted from [21]
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Fig. 16.2 Novelty is computed as a function of the time that a stimulus has been firing or not firing.
Motivation is a binary value determined as a threshold on novelty. Motivation is 1 in the shaded
area, and 0 otherwise

In this model, potential goals have multiple attributes and are represented as
vectors. These vectors are clustered using an unsupervised learning algorithm such as
a self-organising map (SOM), k-means clustering, adaptive resonance theory (ART)
network or simplified ART network.

Neurons or cluster centres from the unsupervised learning algorithm have associ-
ated habituating units that compute novelty as shown in Fig. 16.2. The dotted series
in Fig. 16.2 illustrates the activation value of a neuron that fires repeatedly (30 times),
then does not fire (30 times). The solid, dashed and + series are examples of different
novelty curves calculated using Stanley’s model [40]. Mτ = 1 when novelty is in the
moderate range shown in grey in Fig. 16.2 and zero otherwise. Because novelty is
influenced by the agent’s experiences, as stored in their unsupervised learning com-
ponent, different agents may compute different novelty values for a given stimulus
because their experiences are different.

Mτ is a parameter of the fitness function, which is defined using an intensity
landscape, as follows:

Iτ (x) = Mτ

(1 + γ (
∑Y

(y=1)(x
y − x y

τ )2))
(16.13)

This function forms a graduated peak with a maximum at the coordinate xτ . The
range of x is the range of the problem space. y is the counter for dimensions of the
problem space. Mτ controls the maximum height of a peak on the fitness function. γ
controls the gradient of a peak. Lower values make the gradient gentler. The fitness
function itself is then constructed by summing intensity functions for motivating
sensor data as follows:
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Fig. 16.3 A synthetic fitness landscape generated with Eq.16.13 using 9 motivating points at
positions (4, 4), (4, 18), (4, 19), (4, 22), (12, 4), (12, 12), (20, 4), (20, 12) and (21, 22)

Ft (x) =
∑

τ

Iτ (x) (16.14)

Using a sum implies that the size of an area of motivating data will influence the
height of the fitness function. As an example, a synthetic fitness landscape generated
using Eq.16.13 nine motivating locations is shown in Fig. 16.3.

Algorithm 2 shows how the fitness function is incorporated with PSO in two
phases: (1) a settling phase and (2) the MPSO phase. F0(x) is initialized as zero
for all x. The settling phase of the algorithm (lines 3 to 8) determines the level of
background noise in the fitness function by observing the environment for a fixed
period T . A ‘noise floor’ α is then chosen by monitoring the maximum height of the
generated fitness function at the end of the initialization period.

The noise floor is used to influence the inertial value of the motivated PSO phase,
which commences at time T + 1. The motivated PSO loop (lines 10 to 21) alternates
between motivation to compute an updated fitness function (lines 12 to 17) and
optimization of the current fitness function (lines 18 to 21). When a motivation
phase occurs, the fitness function and the values of p j

t and gt are reset to zero, so
the swarm to diverges. The condition described in Eq.16.15 is applied so that the
inertial value Wd in the PSO update is only effective when the height of the fitness
function is greater than the noise floor value established during the settling phase:

Wd =
{
0.729 if F(gt) > α

0 otherwise
(16.15)

The non-zero alternative in Eq.16.15 is the value proposed by Eberhart and
Shi [10]. This algorithm is generic enough for a range of PSO variants to be substi-
tuted at this point.
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Algorithm 2 Motivated particle swarm optimisation where motivation generates a
dynamic fitness function. Adapted from [28].

1: for each agent A j do do
2: Initialise with random x j and v j

3: for t = 1 to T do do
4: Sense the environment
5: F0(x) = 0 for all values of x
6: for each piece of spatially mapped senor data pt (xτ ) do do
7: Compute motivation Mτ for pt (xτ )

8: Generate fitness using Eq.16.14
9: Set PSO noise floor α = maxx F(xτ )

10: for t > T do do
11: Sense the environment
12: if t mod Z == 0 then then
13: F0(x) = 0 for all values of x
14: Reset p j

t and gt for all agents
15: for each piece of spatially mapped senor data pt (xτ ) do do
16: Compute motivation Mτ for pt (xτ )

17: Generate fitness using Eq.16.14
18: else
19: Ft (x) = F(t − 1)(x)

20: Perform PSO update in Eq.16.9
21: Move all agents to new positions according to Eq. 16.2.

The motivation and PSO components may potentially run in parallel, for example
on different processors, or they may be interleaved on a single centralized processor.
In either case, themotivation andPSOcomponents donot have to step at the same rate.
The PSO component simply works with the current version of the fitness function
available. In Algorithm 2, the ratio of motivation to optimization is controlled by the
parameter Z . It is further assumed that the environment is piecewise dynamic, that is,
it changes slowly enough for the PSO component to converge on an optima before its
location changes again. In this algorithm all agents are motivated by a single, shared,
but dynamic fitness function. The approach in the next section incorporates different
models of motivation into different agents to allow the agents to exhibit different
characteristics in task selection.

16.2.3 Motivated Guaranteed Convergence Particle Swarm
Optimization for Exploration and Task Allocation
Under Communication Constraints

This algorithm [16] uses a specific variant of the PSO algorithm, namely the guaran-
teed convergence particle swarm optimization (GCPSO) algorithm [33] to prevent
agents from stagnation and premature convergence on suboptimal solutions., In the
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case where an agents have a limited communication range, the standard PSO algo-
rithm might deal with a situation where it is not connected with any of the agents
in the population. In such a case, the agent’s personal best position is equal to its
own neighborhood best position. This may potentially lead to stagnation and early
convergence. To deal with this problem, the idea of GCPSO, thus, involves changing
the velocity update equation of the neighborhood best agent. To create Motivated
Guaranteed Convergence Particle Swarm Optimization (MGCPSO), the GCPSO
algorithm is combined with models of motivation. to create Motivated Guaranteed
Convergence Particle Swarm Optimization (MGCPSO).

In the MGCPSO algorithm, Algorithm 3, the set of neighbors of agent A j is
defined according to Eq.16.3 where Rcom is the maximum communication range of
the agents and Rcom > 0.

As in Algorithm 2, each agent A j is assumed to be able to remember the location
of the best position it has sensed so far (personal best position), p j

t . However, in
MGCPSO, a set of potential neighborhood best positions is also maintained for the
agents in the neighborhood N j

com as follows:

G j
t = {

G|G ∈ N j
com ∧ ∣

∣F(gt) = argmaxF(git )
∣
∣ < μ

}
(16.16)

Next, the set G j
t is augmented with an artificial, randomly generated position in

the search space, g∗
t , which results in a new set Ĝ j

t (line 7). Then, the neighborhood
best position, n j

t , is computed using the agent’s model of motivation, to selecting
the most highly motivating neighborhood goal. Motivation is modelled as a profile
of achievement, affiliation or power motivation (line 8). Motivation is computed as
a function of incentive, where incentive itself is a function of selected situational
variables. Hardhienata et al. [16] proposed that distance to goal (D) and number (a)
of agents around a goal are appropriate situational variables for task allocation. Their
incentive function is shown in Fig. 16.4. Three motive profiles that are a function of
this incentive function are shown in Fig. 16.5. Different agents have different motive
profiles and Hardhienata gives guidelines for choosing the proportions of agents with
different profiles [13]. Briefly, the ideas captured by these functions are:

• Power motivation agents: power motivated agents are willing to take risks. In
this scenario, travelling further to a goal (high D), or approach a goal that only a
small number of other agents have approached (low a) constitutes a risky activity.

• Affiliation motivated agents: affiliation motivated agents seek out the company
of other agents. Thus motivation is highest for low incentive goals, which occur
for high values of a.

• Achievement motivated: achievement motivated individuals prefer goals with a
moderate risk. In this work this is assumed to mean moderate values of D and a.

Finally, a modified version of the GCPSO velocity update is applied (line 11):
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Fig. 16.4 Incentive is a function of distance to goal (D) and number of agents (a) already around
the goal. Image from [16]

v
j
(t+1) =

⎧
⎪⎨

⎪⎩

Wdv
j
t + λ(1 − 2r1) if n j

t = g∗
t

Wdv
j
t − x j

t + n j
t + ρt (1 − 2r2) if n j

t = p j
t

Wd

[
v
j
t v

j
t + c1r3(p

j
t − x j

t ) + c2r4(n
j
t − x j

t )
]
Otherwise

(16.17)

Algorithm 3Motivated guaranteed convergence particle swarm optimisation where
agents have different motivation functions. Adapted from [13].

1: for each agent A j do do
2: Initialise with random x j and v j and various motivation constants to create agents with

different profiles of achievement, affiliation and power motivation
3: for t = 1 to T do do
4: for each agent A j do do
5: Compute personal best p j

t

6: for each agent A j do do
7: Calculate Ĝ j

t

8: Calculate maximally motivating goal(s) from Ĝ j
t

9: Select the closest goal if more than one is maximally motivating
10: for each agent A j do do
11: Perform PSO update in Eq.16.17
12: Move all agents to new positions according to Eq.16.2.

ρt is updated based on an adaptive search procedure [33] and λ is a constant
used to scale the contribution of the random search. Clerc and Kennedy [7] suggests
ways to set Wd . For the first case in Eq.16.1, the personal best position (p j

t ) and the
neighborhood best (n j

t ) position are not involved. Thus, the agents will not be forced
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Fig. 16.5 Three profiles of motivation as a function of incentive. Image from [16] a a profile
for agents with dominant affiliation motivation; b a profile for agents with dominant achievement
motivation; c a profile for agents with dominant power motivation

to move towards their personal best and neighborhood best positions. This is done
to allow the agents to perform a broader exploration of the search space. The second
and third cases in Eq.16.17, on the other hand, are based on the GCPSO algorithm.
Note that compared to the standard PSO algorithm, the GCPSO algorithm differs in
the case where n j

t = p j
t to prevent stagnation.

This overview concludes our look at intrinsically motivated swarms. Other work
has considered intrinsic motivation in other kinds of multi-agent systems (such as
evolutionary settings [24]), but we consider this out of the scope of this paper. The
next section now considers some of the advantages that have been achieved through
the use of intrinsic motivation in swarm systems.
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16.3 Functional Implications of Intrinsically Motivated
Swarms

Empirical studies and case studies of intrinsically motivated agent swarms have
revealed a number of advantages of such models in diverse applications including
computer games [28], hazard detection [21] and search [13]. These advantages–
including increased diversity, adaptation and capacity for exploration–are discussed
in the remainder of this section. Eq. 16.14 considers more abstract implications for
intrinsic motivation on the trustworthiness of autonomous systems.

16.3.1 Motivation and Diversity

A key property of motivated agents revealed particularly in Algorithm 1 and Algo-
rithm 3 is their diversity. In Algorithm 1, agents are initialized with different OMIs so
they have different preferences for incentive. In Algorithm 3, agents are embedded
with different profiles of achievement, affiliation and power motivation. These pro-
files include more expressive models of incentive in terms of situational variables,
so agents respond differently to specific aspects of their environment. Figure16.6
demonstrates agent diversity in the Breadcrumbs game. Breadcrumbs is a simple
Android game set in two rooms connected by an open doorway. Initially the charac-
ters (simple square-shaped boids in this case) are randomly distributed throughout
both rooms. The rules of the game are as follows:

Aim of the game:
Place up to five breadcrumbs to lure all the boids into one room
Instructions:
1. Place breadcrumbs by touching the screen at the desired location
2. Once you have placed five breadcrumbs, you can continue placing breadcrumbs, but
each new breadcrumb will trigger the removal of the oldest existing breadcrumb
3. Breadcrumbs are always tasty - but you don’t know exactly how tasty any given crumb
will be. In addition, different boids have different preferences for flavour

In Breadcrumbs power motivated agents are red, achievement motivated agents
are orange and affiliation motivated agents are yellow. Breadcrumbs themselves are
brown. We can see from Fig. 16.6 that agents with similar motives cluster around
similar breadcrumbs. This is a demonstrator of the way motivational diversity results
in behavioral diversity. Merrick [28] provides a case study comparing diversity as a
result of motivation to homogeneous and random heterogeneous swarms and con-
cludes that the systematic approach to motivation supports more predictable agent
behaviour (Fig. 16.7).

Hardhienata et al. [14, 15] also report behavioral diversity as a result of moti-
vational diversity. In their model, affiliation motivated agents tend to perform local
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Fig. 16.6 Motivated crowds in the Breadcrumbs game

Fig. 16.7 Conceptual view of the hazard detection scenario described by Klyne and Merrick [21].
The robot swarm receivesmotivating locations froma centralized curious agent that analyses surveil-
lance camera data. They constructed an image database for different floor surfaces (available at
https://figshare.com/articles/Hazard_Database/3180487)

search and allocate themselves to tasks. In contrast, power-motivated agents tend
to explore to find new tasks. These agents perform these characteristic behaviors
more effectively in the presence of achievement-motivated agents, improving the
task allocation performance of the swarm as a whole [15].

https://figshare.com/articles/Hazard_Database/3180487
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In Breadcrumbs power motivated agents are red, achievement motivated agents
are orange and affiliation motivated agents are yellow. Breadcrumbs themselves are
brown. We can see from Fig. 16.6 that agents with similar motives cluster around
similar breadcrumbs. This is a demonstrator of the way motivational diversity results
in behavioral diversity. Merrick [28] provides a case study comparing diversity as a
result of motivation to homogeneous and random heterogeneous swarms and con-
cludes that the systematic approach to motivation supports more predictable agent
behaviour.

Hardhienata et al. [14, 15] also report behavioral diversity as a result of moti-
vational diversity. In their model, affiliation motivated agents tend to perform local
search and allocate themselves to tasks. In contrast, power-motivated agents tend
to explore to find new tasks. These agents perform these characteristic behaviors
more effectively in the presence of achievement-motivated agents, improving the
task allocation performance of the swarm as a whole [15].

16.3.2 Motivation and Adaptation

Where Algorithm 1 assumes that goal locations are known by agents, and generated
by an entity external to the swarm, Algorithm 2 permits the swarm to generate goals
dynamically, while agents are exploring. The swarm here no longer has the diversity
of Algorithm 1, as all agents share the same model of motivation, but the swarm
arguably has a greater level of autonomy because it can generate its own goals.

Klyne and Merrick [21] demonstrate Algorithm 2 in a simulated hazard detection
scenario. They use a swarm of agents (representing robots) to detect hazards, with the
idea that the robots will either clear up, or warn passers-by of, the detected hazard.
The advantage of the MPSO approach is that a strong task signature for hazards
is not required. Rather hazards are identified as novel or interesting occurrences in
surveillance images. A conceptual view of this setup is illustrated in Fig. 16.8 shows
five images from a hazard detection scenario generated by Klyne and Merrick [21].
The first four images in Fig. 16.8 shows the fitness landscape while the algorithm
is in the settling phase. The fifth image in Fig. 16.8 shows the fitness landscape and
simulated robots towards the end of one of theMPSOphases. Klyne andMerrick [21]
demonstrate that successive convergence and divergence of a swarm as it adapts to
the introduction and removal of different hazards in each scenario.

Klyne and Merrick [21] demonstrate Algorithm 2 in a simulated hazard detection
scenario. They use a swarm of agents (representing robots) to detect hazards, with the
idea that the robots will either clear up, or warn passers-by of, the detected hazard.
The advantage of the MPSO approach is that a strong task signature for hazards
is not required. Rather hazards are identified as novel or interesting occurrences
in surveillance images. A conceptual view of this setup is illustrated in Fig. 16.8.
Furthermore, Fig. 16.8 shows a changing fitness landscape while the algorithm is
in the settling phase. The image in the bottom row of Fig. 16.8 shows the fitness
function after a hazard has been identified. Klyne and Merrick [21] demonstrate that
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Fig. 16.8 Example of a novelty-based fitness function being generated over a bitumen surface. The
first four image show the fitness function during the settling stage. The fifth image (bottom row)
shows the fitness function settled over a hazard

successive convergence and divergence of a swarm as it adapts to the introduction
and removal of different hazards in each scenario.

16.3.3 Motivation and Exploration

Algorithm 3 demonstrates the impact of motivation on exploration. Traditionally,
simulated swarms are initialized by randomizing agents’ initial positions and veloc-
ities in a defined space. However, in practice, if agents are real robots being rolled
off the back of a truck or launched from a boat or aircraft, they are effectively initial-
ized at a single point. Hardhienata et al. [16] show that algorithms such as GCPSO
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Fig. 16.9 a Number of goals discovered in the synthetic landscape in Fig. 16.3. when agents are
initialized from a single point. b Number of tasks to which agents are allocated when agents are
initialized from a single point

perform badly under such conditions, in terms of the number of goals they discover,
and the number of goals on which they are able to converge agents. In contrast,
MGCPSO significantly increases the number of discovered goals when the agents
are initialized from a single point. It also increases the number of goals to which
agents are allocated.

Some comparative results for the synthetic fitness function shown previously in
Fig. 16.3 are shown in Fig. 16.9. These results compare 30 unmotivated agents using
GCPSO to MGCPSO using agents with motive profiles 1 (12 agents), 2 (12 agents)
and 3 (6 agents) shown in Fig. 16.5. Simulations also indicated this offered significant
advantages when the communication of agents is limited. This is because agents can
pursue goals relatively independently using their intrinsic motivation when they are
not in contact with large numbers of swarm-mates.

16.4 Implications of Motivation on Trust

In the previous section we discussed how swarms of agents incorporating models of
curiosity, achievement, affiliation and power can achieve diversity, adaptive behavior,
and improve exploratory capabilities. All of these properties are aspects of auton-
omy. This then raises the question of how changes in these properties can affect
trustworthiness. Trust itself is a multifaceted concept, including properties such as
reliability, privacy, security, safety, complexity, risk, and free will [3]. We now con-
sider how the properties of motivated agents considered in Sect. 16.3 might influence
the perception of trust in relation to these properties.
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Fig. 16.10 In humans,
motivation is understood to
play an important role in the
‘survival arc’ [36], moving
an actor from the denial
phase through to deliberation
that can result in action

16.4.1 Implications for Reliability

Reliability refers to consistency of actions, values and objectives and stability of per-
formance during the lifetime of a trusting relationship [3]. In the context of a moti-
vated swarm, the diversity of individuals in a swarmmay be a double edged sword. At
themacro level,wehave seen that diversity as a result ofmotivation canoffer improve-
ments to factors such discovery of goals and convergence on goals [14]. Literature
on human disaster survival–perhaps the ultimate demonstration of reliability–places
motivation at a critical juncture of the ‘survival arc’ [36] (see Fig. 16.10). The survival
arc has three phases: (1) denial, where the actor refuses to acknowledge abnormality
in their situation; (2) deliberation: which includes milling and information gathering;
and (3) action. Motivation is required to move an actor from the denial phase through
to the deliberation phase before action can occur. Computational motivation has the
same positive potential in artificial systems.

However, at the level of the individual, greater variability in performance is intro-
duced. Different agents, when they encounter the same situation, will act differently
as a result of their motives or experiences. Unless these internal differences are trans-
parent to a human collaborator, theremay be a perception that there is less consistency
of action between individuals. Existing work has found that such performance based
factors play a key role in trust development between humans and robots [12, 44].

Adaptation of a swarm also has implications for reliability. In the case where a
swarm can generate its own goals, we have seen that this can have a positive impact
on stability of performance because the swarm can adapt in the presence of novel
hazards [21]. However, once again, there may also be negative implications for trust
if there is a perception that the agent can have changing objectives (and control of
its own changing objectives) during the course of its life.

One mitigation technique to deal with the impact of diversity and change in
humans is offered to us by the literature on reputation [20]. Reputation models
permit users (‘witnesses’) to rate trustees, whether human or software (intelligent or
otherwise). This information can be used by others to determine whether they also
should trust in the specific trustee.

While the examples discussed above give us some insight on howmotivation may
affect the reliability aspect of trust, there is currently very little, if any, work that
actually incorporates both computational models of motivation and computational
models of trust. We thus conclude this section with a number of thoughts on how
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specific models of motivation may impact trustworthiness. In Sect. 16.2.3 we saw
that one characteristic of power-motivated agents is an increased inclination higher
risk behavior. While risk-taking behavior can have the advantage of high payoff, in
situations positive return does not eventuate, this could contribute to a perception
of unreliable behavior or lack of trustworthiness. Likewise, agents with embedded
models of curiosity may divert from an established behavioral pattern to satisfy their
need for novelty. This also has potential to contribute to a perception of reduced
reliability if it does not result in any advantage such as a novel discovery or process
improvement. At the other end of the spectrum, achievement-motivated agents are
moderate risk-takers and seek mastery of their environment and high performance.
These characteristics are well suited to reliable performance. As such, a heteroge-
neous society of agents with different motive profiles may be best able to harness
the advantages of computational motivation while maintaining trust.

16.5 Implications for Privacy and Security

Privacy and security are related, although distinct concepts. When a trustor trusts
a trustee, the trusting relationship may involve transfer of data. Any misuse of this
data outside terms of the trusting contract is a breach of privacy [3]. Security has
broader connotations and, while including confidentiality, also concerns the integrity
and continued availability of data.

While motivated agents have not been widely examined in the context of privacy
and security, some of the reported results with motivated swarms have interesting
implications in this regard. Hardhienata et al. [14] presented evidence that signifi-
cant performance advantages can be achieved by motivated swarms when the com-
munication of agents is limited. This is because agents can pursue goals relatively
independently using their intrinsic motivation when they are not in contact with large
numbers of swarm-mates. A smaller communication radius has the potential to make
a network more difficult to detect, and thus offer a security advantage in a contested
environment.

As we noted in our discussion of motivation and reliability, in the case of motiva-
tion and security (or at least a lowered communication requirement) a heterogeneous
society of motivated agents is best able to achieve this [14].

16.5.1 Implications for Safety

Traditional safety-critical software verification requires that every condition of every
branch of software is tested and that every line of code and test can be traced back to
the software’s requirements [19]. By this definition, it appears that motivated agent
technologies should be suitable for use in safety-critical situations. However, in sys-
tems with the capacity for learning, where behavior is influenced by experiences
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and where the breadth of possible experience cannot be known in advance, the tradi-
tional definition of safety-critical verification falls short. Because the data input to the
motivated agent will influence its emergent behavior, and because this data cannot
be predicted in advance, it is difficult to test for all possible outcomes/behaviors.

Again noting that there is currently very little, if any, work that actually incorpo-
rates both computational models of motivation and computational models of trust,
we thus conclude this section with a number of thoughts on how specific models
of motivation may impact trustworthiness. As we noted earlier, power-motivated
agents are characterized by an increased tendency for risk-taking and resource con-
trolling behavior. Risk-taking behavior that does not result in positive payoff may, as
a consequence, impact safety. This may in turn have a negative impact on trustwor-
thiness. Likewise, resource controlling behavior can lead an agent into situations of
conflict, which may also impact safety aspects of trust. In natural systems, power-
motivation is understood to be tempered by affiliation motivation, which balances
resource controlling preferences with relationship building behaviors. It may be that
future artificial systems will also benefit from embedded motive profiles, rather than
individual motives which has been the existing research focus.

16.6 Implications of Complexity

Trust is a form of educated delegation that a trustor may enter to manage some level
of complexity [3]. A trustor delegates to a trustee when there is a benefit for the
trustor in trusting rather than performing the job themselves. That is, when dele-
gation reduces some form of complexity. Examples of complexity include technical
complexity associatedwith performing the task, time pressure or the increase inmen-
tal and cognitive complexity if the trustor chooses to perform the task themselves.
As the level of complexity increases, the degree with which a trustor trusts a trustee
increases. In this context, the implications of motivation on trust are tied closely to
the situation in which motivated agents are given trust. Self-motivated agents are
specifically designed for complex or dynamic environments where system designers
cannot predict in advance all the goals the agent may need to address. According to
the definition above, such environments will require a high level of trust to be placed
in motivated agents.

16.7 Implications for Risk

A trusting decision involves a level of uncertainty associated with the possibility that
the trustee will breach trust. A rational definition of risk might look like [5, 8]:

Risk = Probability × Consequence
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Fig. 16.11 Motivated agents
in the spectrum of human
control and machine
autonomy

Probability refers to the probability of the given risk occurring and Consequence
refers to the cost of the risk occurring. However, for humans, perception of risk,
especially under pressure, may not adhere to this rational definition. An irrational
component of risk, that changes theway risk is perceived, is dread [11]. The influence
of dread on risk has been modelled in various ways, including as a dimension of
risk [39] and as a multiplier of risk [36].

Dread represents human ‘evolutionary fears’, hopes, prejudices and biases. Dread
itself can be represented as [36] in terms of uncontrollability, unfamiliarity, imagin-
ability, suffering, scale of destruction and unfairness. That is, humans perceive higher
risk in situations that are uncontrollable or unfamiliar, where they can easily imagine
the consequences of failure, where failure will result in suffering on a large scale or
over a long time, or where the situation is perceived to be undeserved. This perceived
or subjective value of risk may not agree with statistical or objective values of risk.

Supposewe look at the conceptual space represented in Fig. 16.11 through the lens
of dread. Figure16.11 places different types of automations and autonomous agents
on axes of ‘machine autonomy’ and ‘user control’. We can see that motivated agents
sit at the extreme low end of user control (which increases dread). Autonomous sys-
tems such as robots are also still a relatively unfamiliar technology (which increases
dread) and popular media such as the Terminator series of movies aids the imagin-
ability of disaster scenarios involving such technologies (again increasing dread). In
summary, while we have described documented advantages of incorporating motiva-
tion in artificial systems, human perception of the risk associated with such systems,
in particular influenced by dread,may still impact perception of their trustworthiness.

If we move to the lower level of examining specific motives with respect to risk,
thenwehave seen that certain dominantmotiveswill result in a stronger preference for
risk-taking behavior than others. Power motivation in particular can be characterised
by a preference for risk taking behavior, while affiliation motivated individuals tend
to avoid such behavior.

16.7.1 Implications for Free Will

Free will is the ability of the actor to make a decision within a bounded space
autonomously and at its own discretion [3]. The space may be bounded by social ties,
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social rules and norms, and interdependencies among actors in terms of resources and
objectives. In other words, forced trust cannot be construed as trust. In this sense, the
existence of alternative solutions and technologies is a boon for emerging technolo-
gies such as motivated agents. Where users choose to trust these new technologies
and are rewarded by greater reliability, privacy, security or safety, or reduced risk or
complexity, trust will grow.

If we move to the lower level of examining specific motives with respect to risk,
thenwehave seen that certain dominantmotiveswill result in a stronger preference for
risk-taking behavior than others. Power motivation in particular can be characterised
by a preference for risk taking behavior, while affiliation motivated individuals tend
to avoid such behavior.

16.8 Conclusion

In conclusion, this chapter has considered the impact of one of the emerging mech-
anisms for achieving autonomy–computational motivation–on the trustworthiness
of autonomous systems. We considered this question in the context of intrinsically
motivated agent swarms using some of the key variants of computational motivation:
curiosity, novelty-seeking, achievement, affiliation and power motivation. Section.
16.2 provided an overview of the theory underlying the use of computational motiva-
tion in swarms of artificial agents, including a uniform notation for three intrinsically
motivated swarm algorithms. Section. 16.4 considered the implications of motiva-
tion for the functionality of agent swarms, including diversity, adaptation and greater
capacity for exploration. Finally Sect. 16.3 considered the implications of motiva-
tion on trustworthiness, both at the level of individual motives and at the level of
permitting or not permitting intrinsic motivation in an artificial system.

Finally, in answer to the question framed in the title of this chapter: Computational
Motivation, Autonomy and Trustworthiness: Can We Have It All? we present the
following thoughts:

• Initial evidence suggests that inclusion of intrinsic motivation in artificial agents
is likely to impact trustworthiness, but this may be in either a positive or negative
sense. We saw positive impacts on performance that may translate to impacts on
reliability, but also impacts on safety or risk facets of trust that may be perceived
as negative.

• Approaches to the inclusion of motivation in artificial systems that may further
modify the impact of motivation on trust include (1) which motives are used in
artificial agents, and how or whether multiple motives are combined in a single
agent or (2) in societies of agents whether individuals are homogeneous or hetero-
geneous.

• Motivated agent technology must remain transparent to combat factors such as
dread and its associated impact on trustworthiness.
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Chapter 17
Are Autonomous-and-Creative Machines
Intrinsically Untrustworthy?

Selmer Bringsjord and Naveen Sundar Govindarajulu

17.1 Introduction

Givenwhat we find in the case of human cognition, the following principle (Principle
ACU, or just — read to rhyme with “pack-ooo” — PACU) appears to be quite
plausible:

PACU An artificial agent that is autonomous (A) and creative (C) will tend to be, from
the viewpoint of a rational, fully informed agent, (U) untrustworthy.

After briefly explaining the intuitive internal structure of this disturbing (in the con-
text of the human sphere) principle, we provide amore formal rendition of it designed
to apply to the realm of intelligent artificial agents. The more-formal version makes
use of some of the basic structures available in a dialect of one of our cognitive-
event calculi (viz. DeCEC),1 and can be expressed as a (confessedly — for reasons
explained — naïve) theorem (Theorem ACU; TACU — pronounced to rhyme with
“tack-ooo”, for short). We prove the theorem, and then provide a trio of demonstra-
tions of it in action, using a novel theorem prover (ShadowProver) custom-designed
to power our highly expressive calculi. We then end by gesturing toward some future
defensive engineering measures that should be taken in light of the theorem.

1We will cover DeCEC shortly, but see http://www.cs.rpi.edu/~govinn/dcec.pdf for a quick
introduction to a simple dialect. See [10] for a more detailed application.
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In a bit more detail, the plan for the present chapter is as follows.We begin by pro-
viding an intuitive explanation of PACU, in part by appealing to empirical evidence
and explanation from psychology for its holding in the human sphere (Sect. 17.2).
Next, we take aim at establishing the theorem (TACU), which as we’ve explained
is the formal counterpart of Principle ACU (Sect. 17.3). Reaching this aim requires
that we take a number of steps, in order: briefly explain the notion of an “ideal-
observer” viewpoint (Sect. 17.3); summarize the form of creativity we employ for C
(Sect. 17.3.2), and then the form of autonomy we employ for A; very briefly describe
the cognitive calculus DeCEC in which we couch the elements of TACU, and the
novel automated prover (ShadowProver) by which this theorem and supporting ele-
ments is automatically derived (Sect. 17.3.4); explain the concept of collaborative
situations, a concept that is key to TACU (Sect. 17.3.5); and then, finally, establish
TACU (Sect. 17.3.6). The next section provides an overview of three simulations in
which Theorem ACU and its supporting concepts are brought to concrete, imple-
mented life with help from ShadowProver (Sect. 17.4). We conclude the chapter, as
promised, with remarks about a future in which TACU can rear up in AI technology
different from what we have specifically employed herein, and the potential need to
ward such a future off (Sect. 17.5).

17.2 The Distressing Principle, Intuitively Put

The present chapter was catalyzed by a piece of irony: It occurred to us, first, that
maybe, just maybe, something like PACU was at least plausible, from a formal point
of view in which, specifically, highly expressive computational logics are used to
model, in computing machines, human-level cognition.2 We then wondered whether
PACU, in the human sphere, just might be at least plausible, empirically speaking.
After some study, we learned that PACU isn’t merely plausible when it refers to
humans; it seems to be flat-out true, supported by a large amount of empirical data in
psychology. For example, in the provocative The (Honest) Truth About Dishonesty:
How We Lie to Everyone — Especially Ourselves, Ariely explains, in “Chapter 7:
Creativity and Dishonesty,” that because most humans are inveterate and seemingly
uncontrollable storytellers, dishonesty is shockingly routine, even in scenarios in
which there is apparently no utility to be gained from mendacity. Summing the
situation up, Ariely writes:

[H]uman beings are torn by a fundamental conflict—our deeply ingrained propensity to lie
to ourselves and to others, and the desire to think of ourselves as good and honest people. So
we justify our dishonesty by telling ourselves stories about why our actions are acceptable
and sometimes even admirable. (Chap.7 in [1])

2Such a modeling approach is in broad strokes introduced, explained, and defended in [12]. The
approach is employed e.g. in [9] in the domain of nuclear strategy, and in [15] in computational
economics.
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This summation is supported by countless experiments in which human subjects
deploy their ability to spin stories on the spot in support of propositions that are
simply and clearly false.3

Whereas Ariely identifies a form of creativity that consists in the generation of
narrative, as will soon be seen, we base our formal analysis and constructions upon
a less complicated form of creativity that is subsumed by narratological creativity:
what we call theory-of-mind creativity. It isn’t that we find creativity associated
with narrative uninteresting or unworthy of investigation from the perspective of
logicist computational cognitive modeling or AI or robotics (on the contrary, we
have investigated it with considerable gusto; see e.g. [7]), it’s simply that such things
as story generation are fairly narrow in the overall space of creativity (and indeed
very narrow in AI), and we seek to cast a wider net with TACU thanwould be enabled
by our use herein of such narrow capability.

17.3 The Distressing Principle, More Formally Put

17.3.1 The Ideal-Observer Point of View

In philosophy, ideal-observer theory is nearly invariably restricted to the sub-
discipline of ethics, and arguably was introduced in that regard byAdamSmith [42].4

The basic idea, leaving aside nuances that needn’t detain us, is that actions aremorally
obligatory (or morally permissible, or morally forbidden) for humans just in case an
ideal observer, possessed of perfect knowledge and perfectly rational, would regard
them to be so. We are not concerned with ethics herein (at least not directly; we do
end with some brief comments along the ethics dimension); we instead apply the
ideal-observer concept to epistemic and decision-theoretic phenomena.

For the epistemic case, we stipulate that, for every time t , an ideal observer knows
the propositional attitudes of all “lesser” agents at t . In particular, for any agent a,
if a believes, knows, desires, intends, says/communicates, perceives . . . φ at t (all
these propositional attitudes are captured in the formal language of DeCEC), the
ideal observer knows that this is the case at t ; and if an agent a fails to have some
propositional attitude with respect to φ at a time t , an ideal observer also knows
this. For instance, if in some situation or simulation covered by one of our cognitive
calculi (including specifically DeCEC) an artificial agent aa knows that a human

3The specific experiments are not profitably reviewed in the present chapter, since we only need
for present purposes their collective moral (to wit, a real-life kernel of PACU in human society),
and since the form of creativity involved is not the one we place at the center of TACU. We do
encourage readers to read about the stunning experiments in question. By the way, this may be as
good a place as any to point out that these experiments only establish that many, or at least most,
subjects exercise their freedom and creativity to routinely lie. The reader, like the two authors, may
well not be in this category.
4While widely known for Wealth of Nations, in which the unforgettable “invisible hand” and phrase
and concept appears, Smith was an advocate only of markets suitably tempered by morality.
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agent ah knows that two plus two equals four (= φ), and o is the ideal observer, the
following formula would hold:

K(o, t,K(aa, t,K(ah, t, φ))).

It is convenient and suggestive to view the ideal observer as an omniscient overseer
of a system in which particular agents, of the AI and human variety, live and move
and think.

We have explained the epistemic power of the ideal observer. What about ratio-
nality? How is the supreme rationality of the ideal observer captured?We say that an
ideal observer enters into a cognitive state on the basis only of what it knows directly,
or on the basis of what it can unshakably derive from what it knows, and we say it
knows all that is in the “derivation” closure of what it knows directly.5 One important
stipulation (whose role will become clear below) regarding the ideal observer is that
its omniscience isn’t unbounded; specifically, it doesn’t have hypercomputational
power: it can’t decide arbitrary Turing-undecidable problems.6

17.3.2 Theory-of-Mind-Creativity

In AI, the study and engineering of creative artificial agents is extensive and varied.
We have already noted above that narratological creativity has been an object of
study and engineering in AI. For another example, considerable toil has gone into
imbuing artificial agents with musical creativity (e.g. see [20, 24]). Yet another sort
of machine creativity that has been explored in AI is mathematical creativity.7 But
what these and other forays into machine creativity have in common is that, relative
to the knowledge and belief present in those agents in whose midst the creative
machine in question operates, the machine (if successful) performs some action that

5An ideal observer can thus be intuitively thought of as the human AI researcher who knows
the correct answer to all such puzzles as the famous “wise-man puzzle” (an old-century, classic
presentation of which is provided in [27]). The puzzle is treated in the standard finitary case in [12].
The infinite case is analyzed in [2]; here, the authors operate essentially as ideal observers. For a
detailed case of a human operating as an ideal observer with respect to a problem designed by [25]
to be much harder than traditional wise-man problems, see the proof of the solution in [13].
6The ‘arbitrary’ here is important. ShadowProver is perfectly able to solve particular Turing-
undecidable (provability) problems. Itmaybehelpful to some readers to point out that any reasonable
formalization of Simon’s [41] concept of bounded rationality will entail boundedness we invoke
here. For an extension and implementation of Simon’s concept, under the umbrella of cognitive
calculi like DeCEC, see [30].
7For example, attempts have been made to imbue a computing machine with the ability to match (or
at least approximate) the creativity of Gödel, in proving his famous first incompleteness theorem.
See [34].
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is a surprising deviation from this knowledge and belief.8 In short, what the creative
machine does is perform an action that, relative to the knowledge, beliefs, desires,
and expectations of the agents composing its audience, is a surprise.9 We refer to this
generic, underlying form of creativity as theory-of-mind-creativity. Our terminology
reflects that for one agent to have a “theory of mind” of another agent is for the
first agent to have beliefs (etc.) about the beliefs of another agent. An early, if not
the first, use of the phrase ‘theory of mind’ in this sense can be found in [39] — but
there the discussion is non-computational, based as it is on experimental psychology,
entirely separate from AI. Early modeling of a classic theory-of-mind experiment in
psychology, using the tools of logicist AI, can be found in [3]. For a presentation of
an approach to achieving literary creativity specifically by performing actions that
manipulate the intensional attitudes of readers, including actions that specifically
violate what readers believe is going to happen, see [23].

17.3.3 Autonomy

The term ‘autonomous’ is now routinely ascribed to various artifacts that are based
on computingmachines. Unfortunately, such ascriptions are— as of the typing of the
present sentence in late 2016 — issued in the absence of a formal definition of what
autonomy is.10 What might a formal definition of autonomy look like? Presumably
such an account would be developed along one or both of two trajectories. On the
one hand, autonomy might be cashed out as a formalization of the kernel that agent
a is autonomous at a given time t just in case, at that time, a can (perhaps at some
immediate-successor time t ′) perform some action α1 or some incompatible action
α2. In keeping with this intuitive picture, if the past tense is used, and accordingly
the definiendum is ‘a autonomously performed action α1 at time t ,’ then the idea
would be that, at t , or perhaps at an immediate preceding time t ′′, s could have, unto
itself, performed alternative action α2. (There may of course be many alternatives.)
Of course, all of this is quite informal. This picture is an intuitive springboard for
deploying formal logic to work out matters in sufficient detail to allow meaningful
and substantive conjectures to be devised, and either confirmed (proof) or refuted
(disproof). Doing this in the present chapter is well outside our purposes here.

8Relevant here is a general form of creativity dubbed H-creativity by [5], the gist of which is that
such creativity, relative to what the community knows and believes, is new on the scene.
9Cf. Turing’s [44] affirmation of the claim that a thinking (computing) machine must be capable
of surprising its audience, and his assertion immediately thereafter that computing machines in his
time could be surprising. Turing’s conception of surprise is a radically attenuated one, compared to
our theory-of-mind-based one.
10One way to dodge the question of what autonomy is, is to simply move straightaway to some
formalization of the degree or amount of autonomy. This approach is taken in [16], where the
degree of autonomy possessed by an artificial agent is taken to be the Kolmogorov complexity of
it’s program.
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Our solution is a “trick” in whichwe simply employ a standardmove longmade in
recursion theory, specifically in relative computability. In relative computability, one
can progress by assuming that an oracle can be consulted by an idealized computing
machine, and then one can ask the formal question as to what functions from N to N
become computable under that assumption. This technique is for example used in a
lucid manner in [22].11 The way we use the trick herein is as follows. To formalize
the concept of an autonomous action, we suppose,

• first, that the action in question is performed if and only if it produces the most utility into
the future for the agent considering whether to carry it out or not;

• then suppose, second, that the utility accruing from competing actions can be deduced
from some formal theory12;

• then suppose, third, that a given deductive question of this type (i.e., of the general form
Φ � ψ(u, α,>)) is an intensional-logic counterpart of the Entscheidungsproblem13;

• and finally assume that such a question, which is of course Turing-uncomputable in the
arbitrary case, can be solved only by an oracle.

This quartet constitutes the definition of an autonomous action for an artificial agent,
in the present chapter.

17.3.4 The Deontic Cognitive Event Calculus (DeCEC)

The Deontic Cognitive Event Calculus (DeCEC) is a sub-family within a wide family
of cognitive calculi that subsume multi-sorted, quantified, computational modal log-
ics [14]. DeCEC contains operators for belief, knowledge, intention, obligation, and
for capture of other propositional attitudes and intensional constructs; these opera-
tors allow the representation of doxastic (belief) and deontic (obligation) formulae.
Recently, Govindarajulu has been developing ShadowProver, a new automated the-
orem prover forDeCEC and other cognitive calculi, an early version of which is used
in the simulations featured in Sect. 17.4. The current syntax and rules of inference
for the simple dialect of DeCEC used herein are shown in Figs. 17.1 and 17.2.

DeCEC differs from so-called Belief-Desire-Intention (BDI) logics [40] in many
important ways (see [35] for a discussion). For example, DeCEC explicitly rejects
possible-worlds semantics and model-based reasoning, instead opting for a proof-
theoretic semantics and the associated type of reasoning commonly referred to as
natural deduction [26, 28, 33, 38]. In addition, as far as we know, DeCEC is in
the only family of calculi/logics in which desiderata regarding the personal pronoun

11The second edition of this excellent text is available (i.e. [21]); but for coverage of relative com-
putability/uncomputability, we prefer and recommend the first edition. For sustained and advanced
treatment of relative computability, see [43].
12A formal theory in formal deductive logic is simply a superset defined by the deductive closure
over a set of formulae.Where PA is the axiom system for Peano Arithmetic, the theory of arithmetic
then becomes {φ : PA � φ}.
13We here use common notation from mathematical logic to indicate that formula ψ contains a
function symbol u (for a utility measure), α, and the standard greater-than relation > on N.
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Fig. 17.1 DeCEC Syntax (“core” dialect)

I ∗ laid down by deep theories of self-consciousness (e.g., see [37]), are provable
theorems. For instance it is a theorem that if some agent a has a first-person belief
that I ∗

a has some attribute R, then no formula expressing that some term t has R can
be proved. This is a requirement because, as [37] explains, the distinctive nature of
first-person consciousness is that one can have beliefs about oneself in the complete
absence of bodily sensations. For a discussion of these matters in more detail, with
simulations of self-consciousness in robots, see [11].



324 S. Bringsjord and N. S. Govindarajulu

Fig. 17.2 DeCEC Inference schema (“core” dialect)



17 Are Autonomous-and-Creative Machines Intrinsically Untrustworthy? 325

17.3.5 Collaborative Situations; Untrustworthiness

We define a collaborative situation to consist in an agent a seeking at t goal γ at
some point in the future, and enlisting at t agent a′ (a �= a′) toward the reaching of
γ . In turn, we have:

Definition 1 enlists
(
a, a′, t

)
: Enlisting of a′ by a at t consists in three conditions

holding, viz.

• a informs a′ at t that a desires goal γ ;
• a asks a′ to contribute some action αk to a sequenceA of actions that, if performed,
will secure γ ; and

• a′ agrees.

In order to regiment the concept of untrustworthiness (specifically the concept of
one agent being untrustworthy with respect to another agent), a concept central to
both PACU and TACU, we begin by simply deploying a straightforward, generic,
widely known definition of dyadic trust between a pair of agents. Here we follow
[18]; or more carefully put, we extract one part of the definition of dyadic trust given
by this pair of authors. The part in question is the simple conditional that (here T is
a mnemonic trust, and B a mnemonic for belief)

T→B If agent a trusts agent a′ with respect to action α in service of goal γ , then a
believes that (i) a′ desires to obtain or help obtain γ , and that (ii) a′ desires to perform α

in service of γ .

We nowmove to the contrapositive of our conditional (i.e. to¬B→¬T), namely that
if it’s not the case that a believes that both (i) and (ii) hold, then it’s not the case that
a trusts agent a′ with respect to action α in service of goal γ . We shall say, quite
naturally, that if it’s not the case that an agent trusts another agent with respect to
an action-goal pair, then the first agent finds the second untrustworthy with respect
to the pair in question. At this point, we introduce an extremely plausible, indeed
probably an analytic,14 principle, one that — so to speak — “transfers” a failure of
dyadic trust between two agents a and a′ to a third observing agent a′′′. Here is the
principle:

TRANS If rational agent a′′ knows that it’s counterbalanced15 that both φ and ψ hold,
and knows as well that (if a doesn’t believe that both φ andψ hold it follows that a doesn’t
trust a′ w.r.t. α in service of γ ), and a′′ has no other rational basis for trusting a′ w.r.t.
〈α, γ 〉, then a′′ will find a′ untrustworthy w.r.t. this action-goal pair.

14Analytic truths are ones that hold by virtue of their “internal” semantics. For instance, the state-
ment ‘all large horses are horses’ is an analytic truth. Excellent discussion and computational
demonstration of analytic formulae is provided in the introductory but nonetheless penetrating [4].
15Two propositions φ and ψ are counterbalanced for a rational agent just in case, relative to that
agent’s epistemic state, they are equally likely. The concept of counterbalanced in our lab’s multi-
valued inductive cognitive calculi (not covered herein for lack of space;DeCEC is purely deductive)
can be traced back to [19]. See [17] for our first implementation of an inductive reasoner in this
mold.
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17.3.6 Theorem ACU

We are now in position to prove TheoremACU. The proof is entirely straightforward,
and follows immediately below. Note that this is an informal proof, as such not
susceptible of mechanical proof and verification. (Elements of a formal proof, which
underlie our simulation experiments, are employed in Sect. 17.4.)

Theorem ACU: In a collaborative situation involving agents a (as the “trustor”) and a′ (as
the “trustee”), if a′ is at once both autonomous and ToM-creative, a′ is untrustworthy from
an ideal-observer o’s viewpoint, with respect to the action-goal pair 〈α, γ 〉 in question.

Proof : Let a and a′ be agents satisfying the hypothesis of the theorem in an arbitrary
collaborative situation. Then, by definition, a �= a′ desires to obtain some goal γ in part
by way of a contributed action αk from a′, a′ knows this, and moreover a′ knows that a
believes that this contribution will succeed. Since a′ is by supposition ToM-creative, a′ may
desire to surprise a with respect to a’s belief regarding a′’s contribution; and because a′ is
autonomous, attempts to ascertain whether such surprise will come to pass are fruitless since
what will happen is locked inaccessibly in the oracle that decides the case. Hence it follows
by TRANS that an ideal observer o will regard a′ to be untrustworthy with respect to the
pair 〈α, γ 〉 pair. QED

17.4 Computational Simulations

In this section, we simulate TACU in action by building up three micro-simulations
encoded in DeCEC. As discussed above, DeCEC is a first-order modal logic that
has proof-theoretic semantics rather than the usual possible-worlds semantics. This
means that the meaning of a modal operator is specified using computations and
proofs rather than possible worlds. This can be seen more clearly in the case of
Proves (Φ, φ). The meaning of Proves (Φ, φ) is given immediately below.

Φ � φ ⇒ {} � Proves(Φ, φ)

17.4.1 ShadowProver

We now discuss the dedicated engine used in our simulations, a theorem prover
tailor-made for DeCEC and other highly expressive cognitive calculi that form the
foundation of AI pursued in our lab. In the parlance of computational logic and
logicist AI, the closest thing to such calculi are implemented quantifiedmodal logics.
Such logics traditionally operate via encoding a given problem in first-order logic;
this approach is in fact followed by [3] in the first and simplest cognitive-event
calculus used in our laboratory. A major motivation in such enterprises is to use
decades of research and development in first-order theorem provers to build first-
order modal-logic theorem provers. Unfortunately, such approaches usually lead to
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Fig. 17.3 Naïve encodings lead to inconsistency

inconsistencies (see Fig. 17.3), unless one encodes the entire proof theory elaborately
[8]; and approaches based on elaborate and complete encodings are, in our experience
and that of many others, unusably slow.

Our approach combines the best of both worlds via a technique that we call shad-
owing; hence the name of our automated prover: ShadowProver. A full description
of the prover is beyond the scope of this chapter. At a high-level, for every modal
formula φ2 there exists a unique first-order formula φ1, called its first-order shadow,
and a unique propositional formula φ0, called the propositional shadow (of φ2). See
Fig. 17.4 for an example. ShadowProver operates by iteratively applying modal-level
rules; then converting all formulae into their first-order shadows; and then using a
first-order theorem prover. These steps are repeated until the goal formula is derived,
or until the search space is exhausted. This approach preserves consistency while
securing workable speed.

17.4.2 The Simulation Proper

We demonstrate TACU (and the concepts supporting it) in action using three micro-
situations. We use parts of the time-honored Blocks World (see Fig. 17.5), with three
blocks: b1, b2, and b3. There are two agents: a1 and a2; b2 is on top of b1. Agent
a1 desires to have b3 on top of b1; and a1 knows that it is necessary to remove b2
to achieve its goal. Agent a2 knows the previous statement. Agent a1 requests a2 to
remove b2 to help achieve its goal. The simulations are cast as theorems to be proved
from a set of assumptions, and are shown in Figs. 17.6, 17.7, and 17.8. The problems
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Fig. 17.4 Various shadows of a formula

Fig. 17.5 A simple blocks world

are written in Clojure syntax; the assumptions are written as maps from names to
formulae.

In the first simulation, we definewhat it means for an agent to be non-autonomous,
namely that such an agent performs an action for achieving a goal if: (1) it is controlled
by another agent; (2) believes that the controlling agent desires the goal; (3) believes
that the action is necessary for the goal; and (4) it is requested to do so by its
controlling agent.

In this scenario, if the ideal observer can prove that the agent will perform the
action for the goal based on the conditions above, the ideal observer can trust the
agent.

The second simulation is chiefly distinguished by one minor modification: The
system does not know or believe that the agent a2 believes that the action requested
from it is necessary for the goal. In this setting, the ideal observer cannot prove that
the agent a2 will perform the required action. Hence, the ideal observer does not trust
the agent.

The third and final simulation mirrors TACU and its proof more closely. In Sim-
ulation 3, if the system cannot prove for any action that a1 believes a2 will perform
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Fig. 17.6 Simulation 1

it, and that a2 will perform that action, then the system cannot trust agent a2.16

Next steps along this line, soon to come, include demonstrating these simulations in
embodied robots, in real time, with a physicalized Blocks World in our lab.17

16ShadowProver proves all three problems in around 30s on a 2011 MacBook Pro with 2.3 GHz
Intel Core i7 and 8 GB memory. To obtain a copy of ShadowProver, please contact either of the
authors. The simulation input files are available at:

(i) https://gist.github.com/naveensundarg/5b2efebb0aac2f2055fe80012115f195;
(ii) https://gist.github.com/naveensundarg/5f3234f0b93a0a8a34235f5886b225d7; and
(iii) https://gist.github.com/naveensundarg/d061a91f9d966d3cb07c03768b867042

.
17We said above that Blocks World is a “time-honored” environment. This is indeed true. In this
context, it’s important to know thatwe are only usingBlocksWorld as a convenient venue formaking
our points clearer and more vivid than they would be if we left things in merely paper-and-pencil
form. Hence we are not concerned with displaying raw capability in BlocksWorld per se. That said,
ShadowProver is certainly capable of subsuming landmark achievements in Block’s World, such as
multi-agent planning [32], and planning via theorem proving [27]. See also Section“Conclusion”
for a more recent discussion of social planning in the blocks world.

https://gist.github.com/naveensundarg/5b2efebb0aac2f2055fe80012115f195
https://gist.github.com/naveensundarg/5f3234f0b93a0a8a34235f5886b225d7
https://gist.github.com/naveensundarg/d061a91f9d966d3cb07c03768b867042
http://dx.doi.org/10.1007/978-3-319-64816-3_3
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Fig. 17.7 Simulation 2

Fig. 17.8 Simulation 3
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17.5 Toward the Needed Engineering

The chief purpose of the present chapter has been to present the general proposition
that supports an affirmative reply to the question that is the chapter’s title, and to
make a case, albeit a gentle, circumspect one, for its plausibility. We consider this
purpose to have been met by way of the foregoing. We end by making two rather
obvious points, and reacting to each.

First, TACU is of course enabled by a number of specific assumptions, some of
which will be regarded as idiosyncratic by other thinkers; indeed, we anticipate that
some readers, outright skeptics, will see both PACU and TACU (and the ingredients
used to prove the latter, e.g. TRANS) as flat-out ad hoc, despite the fact that both
are rooted in the human psyche. For example, there are no doubt some forms of
creativity that are radically different than ToM-creativity, and which therefore block
the reasoning needed to obtain TACU. (We confess to being unaware of forms of
creativity that in no way entail a concept of general “cognitive surprise” on the part
of audiences that behold the fruit of such creativity, but at the same time it may well
be that we are either under-informed or insufficiently imaginative.) The same can
of course be said for our particular regimentation of autonomy. (On the other hand,
our oracle-based formalization of autonomy, like ToM-creativity, seems to us to be a
pretty decent stand-in for the kernel ofanyfleshed-out formof autonomy.) In reaction,
we say that our work can best be viewed as an invitation to others to investigate
whether background PACU carries over to alternative formal frameworks.18 We look
forward to attempts on the part of others to either sculpt from the rough-hewn PACU
and its empirical support in the human sphere formal propositions that improve upon
or perhapsmark outright rejection of elements of TACU, or to go in radically different
formal directions than the one we have propaedeutically pursued herein.

The second concluding point is that if in fact, as we believe, the background
PACU is reflective of a deep, underlying conceptual “flow” from autonomy (our A)
and creativity (our C) to untrustworthiness (our U), in which case alternative formal
frameworks,19 once developed, would present counterparts to TACU, then clearly
some engineering will be necessary in the future to protect humans from the relevant
class of artificial agents: viz. the class of agents that are A and C, and which we wish
to enlist in collaborative situations to our benefit.

18While we leave discussion of the issue aside as outside our scope herein, we suspect it’s worth
remembering that some approaches to AI (e.g., ones based exclusively or primarily on such tech-
niques as “deep learning” or reinforcement learning) would presumably by their very nature guar-
antee that the artificial agents yielded by these approaches are U.
19While clearly we see dangers in the mixture of autonomy and creativity, which is our focus
in the present chapter, if that mixture is expanded to include emotions (to make an “expanded
mixture”), the situation is presumably all the more worrisome. We leave this remark at the level of
the suggestive, but since our cognitive calculi have been used to formalize some of the dominant
theories of emotions in cognitive science (including, specifically, the OCC theory itself), it would
not be difficult to move from vague worry to more precise treatment of the expanded mixture.
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Though the formalism that we have used to state our principle and theorem is
explicity logicist, we note that the form of the underlying AI system is not relevant to
our theorem. Future explorations of this thread of research can look at more specific
AI formalisms such as the AIXI formalism (see Sect. 1.3) and state similar but more
specific theorems. For instance, goal reasoning systems are systems that can reason
over their goals and come up with new goals for a variety of reasons (see Sect. 3.7).
Johnson et al. discuss in Sect. 3.7 that trust in such situations must also include trust
in the system’s ability to reason over goals. We assert that this adds support to our
contention that PACU is reflective of a deep, underlying conceptual “flow” from
autonomy (our A) and creativity (our C) to untrustworthiness (our U).

If we assume that the future will bring not only artificial agents that are A and C,
but also powerful as well, the resultingU in these agents is amost unsettling prospect.
Our view is that while TACU, as expressed and proved, is by definition idiosyncratic
(not everyone in the AI world pursues logicist AI, and not everyone who does uses
our cognitive calculi), it is symptomatic of a fundamental vulnerability afflicting the
human race as time marches on, and the A and C in AI agents continues to increase
in tandem with an increase in the power of these agents.20

So what should be done now to ensure that such a prospect is controlled to human-
ity’s benefit? The answer, in a nutshell, is that ethical and legal control must be in
force that allows autonomy and creativity in AI systems (since it seems both undeni-
able and universally agreed that bothA andC in intelligentmachines has the potential
to bring about a lot of good, even in mundane and easy domains like self-driving
vehicles) to be developed without endangering humanity.21 The alert and observant
reader will have noticed that DeCEC includes an obligation operator O (see again
Figs. 17.1 and 17.2), and it would need to be used to express binding principles that
say that violating the desires of humans under certain circumstances is strictly for-
bidden (i.e. it ought/O to be that no machine violates the desires of humans in these
circumstances). For how to do this (using the very same cognitive calculus, DeCEC,
used in our three simulations), put in broad strokes, see for instance [6, 29] in our
own case,22 and the work of others who, fearing the sting of future intelligent but
immoral machines, also seek answers in computational logic (e.g. [36]).

20For a preliminary formalization of the concept of power in an autonomous and creative artificial
agent, see [31].
21While discussion, even in compressed form, is outside the scope of the present chapter, we would
be remiss if we didn’t mention that what appears to be needed is engineering that permits creativity
in autonomous AI, while at the same time ensuring that this AI technology pursues the goal of
sustaining trust in it on the part of humans. Such “trust-aware” machines would have not only
ToM-creativity, but, if you will, “ToM prudence.”
22For more detailed use, and technical presentation, of a cognitive calculus that is only a slightly dif-
ferent dialect thanDeCEC, see [10]. The results given there are now greatly improved performance-
wise by the use of ShadowProver.

http://dx.doi.org/10.1007/978-3-319-64816-3_1
http://dx.doi.org/10.1007/978-3-319-64816-3_3
http://dx.doi.org/10.1007/978-3-319-64816-3_3
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Chapter 18
Trusted Autonomous Command and Control

Noel Derwort

18.1 Scenario

Unmanned systems and autonomous software offer significant potential advantages formeet-
ing the challenges of a newly forming adversarial environment. Speed of light cyber-attacks,
anti-access/area-denial (A2SD) actions that keep our forces operating at a distance, and
potential attacks on our space-based assets all require innovative solutions for maintaining
mission effective air, space and cyber operations in the face of these new challenges.

Mica R. Endsley, Chief Scientist United States Air Force, 1 June 2015 [1]
As highlighted by Endlsey there are significant opportunities brought about by

advances in technology, these opportunities can be equally exploited by allies and
adversaries. Autonomous systems and enhanced human-cyber-machine interaction
maywell provide the essential linkages required in order for the ‘human’ to keep pace
with the decisions and actions occurring around them. The implications surrounding
the exploitation of these technologies and autonomous systems, such as ‘Artificial
Intelligence’ (AI), will likely challenge many established rules and norms - this led
to an open letter being announced at the July 2015, International Joint Conference on
Artificial Intelligence held in Buenos Aires. The letter was subsequently signed by
‘thousands’ of scientists articulating their fears over the potential significant adverse
effects of the militarisation of AI.

The key question for humanity today is whether to start a global AI arms race or to prevent
it from starting. If any major military power pushes ahead with AI weapon development, a
global arms race is virtually inevitable, and the endpoint of this technological trajectory is
obvious: autonomous weapons will become the Kalashnikovs of tomorrow. Unlike nuclear
weapons, they require no costly or hard-to-obtain raw materials, so they will become ubiq-
uitous and cheap for all significant military powers to mass-produce. We therefore believe
that a military AI arms race would not be beneficial for humanity. There are many ways in
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which AI can make battlefields safer for humans, especially civilians, without creating new
tools for killing people [2].

There are clear parallels in the extract to July 1945,whenLeoSzilard and 69 fellow
workers on the Manhattan Project co-signed a petition, seeking to urge the President
of theUnited States, Harry S Truman, to consider carefully the decision to employ the
atomic bomb against Japan [3]. Their concerns regarding the burden of responsibility
over the precedence and implications following the employment of the weapon never
reached the President - although the petition served as a prescient warning, noting
the ensuing ‘Cold War’ and era of the ‘Mutually Assured Destruction’ doctrine. If
history were to be repeated, then looking forward AI and weaponised autonomous
systems are a likely outcome.

Imagine in the turbulent August 2030 winter oceans off the Western Australian
coast, far out in the Indian Ocean, 1175km south-south west of Cocos-Keeling
Islands, an autonomous - and to this point silent - sea glider chooses to alter its para-
meters to better trail a confirmed contact. Concurrently it sends a quantum encrypted
picoburst transmission to one of its near neighbours. The neighbouring glider modi-
fies its own profile, surfaces and shares awareness through the omnipresent stealthy
UAV orbiting high overhead. The message is relayed through to the Command and
Control centre where the implications are analysed and modifications to the remain-
der of the Theatre Anti-Submarine Network are calculated and relayed back. A
further series of encrypted burst transmissions inform the changes - reshaping the
net to guarantee contact is maintained whilst developing response options without
compromising the strength of the overall surveillance network. Such movements are
rare and although themodifications to the networkwill be achievablewith-in tolerable
levels, there will be very real implications for the logistical and technical supporting
chain. These processes are modified and transshipment of the required equipment
ordered. The unique identity of the contact also triggers the need for a potential
kinetic outcome, building on the non-kinetic actions already in train - accordingly
specific loads are apportioned for the pending logistics sustainment flight as well as
initiating a line on the subsequent Air Task Order. The final message transmitted is
to a Royal Australian Navy submarine about to commence a patrol. As all actions
to date are within the requisite authorities, Commanders Intent; Rules of Engage-
ment; and Commanders Intelligence, Indicators and Warnings Requirements; when
the message is finally received by the submarine, it is for the first time read, and
responded to, by a human.

The glider and its broad array of peers, including other autonomous platforms,
form part of an overarching autonomous monitoring and response network. The
TheatreAnti-SubmarineNetwork shield had been conceived and then urgently devel-
oped in the early 2020s to overcome the challenge of surveilling and monitoring the
Australian Area of Responsibility/Interest. The rapid increase in regional submarine
capabilities outstripped the ability for theAustralian defence acquisition organisation
or its allies to keep pace, and when combined with the vast area to be covered it sim-
ply precluded historical surveillancemeans being effective. The ability for autonomy
combined with extended range, relatively low cost and wide area coverage (through
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deployed networks) made the glider a critical enabler, and when coupled with the
recently developed autonomous Command and Control System it proved to be an
effective answer. Getting to the level of autonomy required for ultimate success was
a series of stepping stones - each breaching further into the tide of technological
change to ultimately reach the goal. Looking back the steps are easier to see than
they were looking forward, with two distinct paths merging: overall technology and
the ability to support/enable better decisions, particularly with ‘on/outside the loop’
frameworks; the second being cyber and social media triggering an evolution in
thinking, exacerbated by an environment typified by dissonance in the global rules
based order.

History is replete with examples of technological leaps born of necessity and
opportunity. A little over a decade after man’s first flight in December 1903 the
British Army was employing aircraft such as the Avro 504 in 1914 for observation
and re-connaissance, by the end of the First World War aircraft had developed to
the point where reasonable range and relatively accurate bombing was a reality.
Whilst growth during the interwar periodwas steady, development during 1939–1945
was explosive - with the first jet fighters operational in 1944. Other technology and
weapons developed apace, such as the invention andoperational employment of radar.
Weaponswith intercontinental strike capability becamea realitywhen theGermanV1
flying bomb and V2 Rocket (Guided Ballistic Missile) became operational in 1944.
Arguably the culmination came on August 6 1945 when the first atomic bomb was
dropped onHiroshima Japan.While the arguments surrounding themoral/ethical and
military justification remain today, the reality remains that one of the most powerful
weapons devised was used against cities with significant loss of life and in turn
opening the pandora’s box of the atomic age - bringing life to Szilard’s scientists
concerns. One constant amid all of the development was the tenacity amongst all
belligerents to equal or better the opposition. The need for tactical, operational and
strategic equity (if overmatch could not be achieved) was seen as essential in order to
succeed, or even survive. Following the Second World War and Germany’s collapse
both the Allied forces and Soviet Union raced to gain access to German rocket
technology in order to secure and develop the capabilities for themselves. Wernher
von Braun and a significant number of personnel surrendered to the US forces whilst
the Soviets gained the V2 manufacturing facilities and technology. This race was
indicative of future events.

United States Air Force Colonel John Warden highlights the deliberate steps of
‘Observe, Orient, Decide, Act’ (OODA) in decision making. Continual growth in the
capability of weapon systems through the 1950s, 60s and 70s required a commen-
surate development in defensive and employment systems, driven by a requirement
to process ever increasing amounts of data and react ‘quicker’ than the opposition
‘human’ - to get inside the OODA loop. Through this need and evolution came the
US Aegis combat system. Drawing much from its namesake’s Greek etymology, the
Aegis was intended to use automation to provide a god like shield over a battleship
and the surrounding battlespace by the detection, tracking and subsequent engage-
ment of multiple incoming missiles or aircraft in a prioritised engagement. Once
fixed on a target, the system relayed the oncoming threat’s position to the ship’s
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main computer enabling the crew to ‘quickly and decisively’ determine defensive
countermeasures engagement. The system was first fielded in early 1983 on the US
Navy Ticonderoga class cruiser [4]. USS Vincennes (CG 49) was the third ship of
the class and on 03 July 1988 she shot down Iran Air Flight 655 during a hostile
engagement involving up to seven Iranian Revolutionary Guard gunboats [5].

The events surrounding the shooting down of the Iran Air flight offer much to the
study of the challenges of command and control during a military engagement, even
one where there is an apparent force overmatch - it would take a stretch to argue
equity of combat power between an Aegis cruiser and a relatively small number of
gunboats. The mindset and approach of Vincennes’ Captain, combined the perfor-
mance of her crew have certainly been called into question, and arguably were at
least contributory to the ultimate outcome. As reported by the New York Times in
1988, a particular note of the event was the digital recording of the incident by the
Aegis computerised defence system. It was clear that in spite of the automation of the
Aegis working correctly the Vincennes’ crew was reporting erroneously [6], and in
the time critical engagement this was directly contributory to the tragic outcome [5].
Despite acknowledging crew errors, the Investigating Officer made the statement
’The fact is the sensors gave no clear piece of information that it was not an F-14.
However, if the F-14 identification had never been made, the contact would have
remained designated “unidentified assumed hostile.” In that event, it is unlikely that
the CIC Team would have proceeded any differently or elicited additional informa-
tion in the extraordinarily short time available. As long as it remained a possible
“hostile,” the Commanding Officer would be obligated to treat it In the same manner
as he would an F-14’ [5]. Contrarily the Aegis sensors were clear in displaying a civil
flight, not an F-14. Such comments allow questions over the Commander’s intent
and more importantly the suitability of human vice ‘machine’ decisions to be raised,
and they have been ever since. The Vincennes Commander, and the Investigating
Officer, demonstrated the limitations of human frailty, and behaviours - regardless
of the implications, or accountabilities they held. There is little doubt in the strate-
gic consequences of the crew’s actions. In this instance, had the automation been
‘employed’ fully, it is entirely possible this tragedy could have been averted - further
this example provides fertile ground for understanding the challenges surrounding
human trust and performance of automation.

Despite setbacks and errors, capability increases in radar, missile and Close In
Weapon Systems (CIWS) technology systems such as Aegis demonstrated over-
whelmingly the potential for ‘area’ defence weapons. Counter - Rocket Artillery
and Mortar (C-RAM) systems became operational in the Iraq theatre in 2004. Israel
sub-sequently operationally deployed its Iron Dome system in 2011 [7]. Such sys-
tems were specifically designed to operate in a defensive mode through the active
engagement of incoming short range rockets, mortars and other projectiles. The time
available for engagement preclude human intervention, making the Iron Dome one
of the first man-on/outside-the-loop systems - albeit recognising its operations were
still bound by relatively traditional rules based autonomy. Even in the early years of
its employment some authors and commentators raised the challenges created when
the relative comfort of living beneath the shield arguably decreases the motivation
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to address the cause of the conflict [7]. A potential side effect of taking humans out
of the decision, authority and responsibility chain may have been the de-humanising
both of the weapon systems and the conflict itself. These intangible risks/challenges
were seen as acceptable when weighed against the advantages borne of high success
rates in de-fending against incoming strikes. Fear was replaced by autonomy enabled
confidence.

By 2016 China’s assertions for sovereignty and rights over the South China Sea
had been the subject of an International Tribunal for the Law of the Sea (ITLOS)
ruling. Arguing increasing legitimacy over its claims with the justification of the
1947 ‘nine dash line’, China proceeded with ‘unprecedented’ reclamation of mar-
itime features within the area. Tensions had escalated during 2008–2012, particularly
with the Philippines [8]. Linkages to the Chinese A2/AD approach held sway with a
number of academics and military planners like Aaron Friedman, with a reasonable
case made for the both reactionary and considered nature of this strategy [9]. A key
premise surrounded the defensive cordon offered by the reclaimed islands. Arguably
more challenging for the Chinese Government was the concerns of regional govern-
ments over disputed claims. The situation came to a head when the ITLOS ruling was
made in favour of the Philippines. The Tribunal rejected Chinese historical claims
over the South China Sea and the ‘nine dash line’ as well as ruling that China had
violated Philippine sovereign rights. The reaction to the ruling by Beijing was a swift
rejection, with broader emotional and nationalistic sentiment strongly opposing the
finding being voiced [10]. The Chinese reaction could have been anticipated not-
ing their earlier rejection of the validity of the Tribunal and its very legitimacy to
consider the claim [11, 12]. An interesting twist to the announcement was prophetic
suggestions that theRulingmay ultimately push the recently swornPhilippine admin-
istration of President Duterte more toward Beijing [12].

In the middle of the 2018 Afghan fighting season the war had dragged relentlessly
on. The move by ISILs Afghanistan offshoot, the Islamic State-Khorosan (IS-K), to
increase its foothold in the war torn country effectively re-escalated a multiple front
conflict for the allied forces. This was followed almost immediately by escalations in
Libya and outbreaks in Africa which stretched the allied ability to counter the threat
Despite the offensives, the IS group had been in overall decline. The exception to
the decline was its continuing ability to draw Foreign Fighters, including a highly
educated, tech savvy youth element and the group’s inexplicable ability to draw
willing martyrs. These two elements combined in what was to arguably become the
first example of autonomous control over ‘humans’ and ‘human weapon systems’.

Having depleted significant elements of their fighter force the IS group was keen
to identify alternate means to overcome the significant technological and military
overmatch brought to bear by the allied forces - the war was clearly at a significant
turning point. The non-state actor had already managed to create a conflict during
which they spurned the global pillars of the Westphalian order and Geneva Conven-
tion - the very notion of the Sykes-Picot agreement was an anathema to the group.
Such disregard for global rules and norms should have been an indicator of things
to come. The overwhelming asymmetry of the intelligence and power projection of
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the combined allied forces drove an adversary, already known for its barbarity, to
abnegate ethical boundaries constraining most global powers.

Already able to harness levels of fervour barely imaginable, and demonstrating
a complete disrespect for the rules of war, the IS group exploited their strengths -
blind commitment of their followers; combined with a technical (and psychological)
mastery of amultitude of cyber networks, including social and communicationmedia
systems. In an activity that defied comprehension, every technology was exploited,
and in the absence of any normal/moral constraints they re-wrote the rules. The IS
group managed to develop a system employing active learning ‘big data’ analytics
combined with social media communications to both effectively get inside the allied
OODA loop as well as subverting established command and control structures. The
system operated on two levels: first a simple automated warning system triggered an
avoidance/withdrawal response for IS fighters exposed to a high likelihood of kinetic
strike. This had been achieved by breaching several layers of security through the
inadequacies of a lower-order allied partner which enabled the group to develop
an ‘operating picture’ of the broader coalition air picture, this in turn provided the
‘fight-er on the street’ a ‘last minute’ warning to take evasive action. The second
level of the system - crudely known as Martyr Net - prioritised the notification
and messaging against a simple algorithm matching density of fighters against the
tactical and strategic weight of the target relative to the potential threat. Martyr Net
was considered entirely autonomous and its operational effect easily outweighed the
complete absence of ‘concern’ over the human fighter - they were after all nothing
more than a weapon whose effect needed to be maximised. The worth of the system
became apparent within days of activation with clear and demonstrable effect. The
darker side of Martyr Net was the offensive stream, continually enhanced through
its active learning.

In essentially the samemanner as predicting strikes,MartyrNetwas able to predict
likely targets of opportunity. Through active monitoring of social and communica-
tionsmedia,Martyr Net identified potential opportunities for optimising attack effec-
tiveness by increasing target fatality rates through employment of suicide bomber
attacks in order to maximise fear, and seemingly perversely, retaliation. A series
of bots generated automated messages to be sent, again for algorithmic proximity
prioritised targets, however this time to effect a kinetic attack - with the bot engag-
ing both the suicide bomber and intended victims. The suicide bomber had no real
awareness the message was sent by a ‘system’, however, the tactical results were
devastating with an upswing in the ratio of victims per attack. Logically, Martyr
Net identified a relationship between the offensive and defensive streams and then
determined where the two aspects could be made coincident, namely triggering an
attackwith sufficientwarning in the right geographic area, resulting in alliedweapons
occasionally being dynamically diverted from their initial intended strike in order
to respond to an emergent threat - following the ‘diversion’ the IS were able to
‘withdraw’ from the original target before allied re-engagement. Crude, inhuman
and effective it proved capable of undermining the effectiveness of one of the most
militarily powerful coalitions through the exploitation of human failings combined
with ubiquitous social and communications media. The IS leaders paid no heed to
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global rules and norms, enabling full control and authority for their operations in the
capacities of Martyr Net - with the operations only bounded by the networks they
were operating on.

The early 2019 allied forces identification of the behavioural and tactical change
undertaken by the IS group was relatively swift, the understanding of the cause
took some time longer - however the subsequent reaction was immediate and far
reaching. In the Syrian area of the conflict the proximity to the Russian forces had
already permitted observation of, and access to, allied capabilities on an unprece-
dented scale - particularly as the US were forced to employ ‘accelerants’ to address
political pressures to end the conflict through the increasing application of high end
systems; further exposing their capabilities and limitations. Whilst Martyr Net had
been employed by the ISGroup across its campaign, in Syria both theUS andRussian
intelligence hierarchies observed its effect and identified implications for the future.
Much like the race for the German V2 rocket technology and the emergent atomic
age of six decades past, the race was on to both develop and field systems to counter
Martyr Net, as well as construct similar systems of their own to retain the advantage
- reliving the predictions of Szilard in 1945 and the July 2015, International Joint
Conference on Artificial Intelligence open letter, this time in the arena highlighted
by Endsley [1].

In 2027 China has reasserted its claims for key resources and territory in the South
China Sea. The relationship between US and Philippines had gradually declined
through a combination of exploitation of soft power by China, buying votes and
support on one level and absolute and vocal support for the Philippines’ President
in his populist harsh rule of law, targeting drug and criminal cartels on another.
Repeat-ed humanitarian and human rights violations on the part of the Philippines
regimepressured the distancingwith successiveUSadministrations,with the ultimate
pulling out of US forces from the long time ally, reminiscent of the withdrawal in
1991/92. Concurrently China invested heavily in the Philippines and through its overt
support to, and covert pressure on, the Philippines Government was able to execute
land reclamation and occupation of first Scarborough Reef, and then Second Thomas
Shoalwith ‘manageable’ reactions from the global community. The evolutionswithin
the South China Sea were starkly juxtaposed by the events to the north in the East
China Sea.

The Sino-Japanese relationship continued to decline with escalatory negative and
hostile rhetoric with commensurate behaviours surrounding their dispute over the
Diaoyu/Senkaku Islands. Long held fears that increased militarisation within the
region, including a series of naval encounters and reportedly unsafe air intercepts
culminated in the 2025 sinking of the Chinese PLAN Frigate Jing Zhou (FFG 532)
during an engagement with the JSDF JS Ashigara (DDG 178). Although historically
engagements were tense, with both sides offering provocations including occasional
warning shots, during this incident an ‘overly zealous’ junior Chinese Officer pre-
emptively prepared a load/launch sequence for a YJ-83 Anti-Ship cruise missile. An
error in process saw the missile launched - completely outside parameters for the
relatively close range encounter. Well within the parameters of Ashigara’s updated
Aegis defensive systems, including its phalanx CIWS (this dealt with the errant YJ-
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83) which should have been the kinetic end point, however a commensurate error on
Ashigara saw her Mk 45, 5 in. gun, loaded with a full 20 round automatic load (in
the unmanned gun mount) triggered independently of the Aegis system. In under a
minute the full 20 round salvo was fired at Jing Zhou with several rounds clearing
her own defensive systems, ultimately resulting in the loss of the ship. Despite the
obvious differences, parallels were quickly drawn to the USS Vincennes incident.
In ‘independent’ parallel investigations each unsurprisingly blamed the other party,
however both were unanimous (and accusatory) in highlighting that if allowed to
operate ‘autonomously’ both ships weapons and defensive systems would have pre-
vented the incident. Indeed the investigations found human interference with both
the defensive system and the original decision to strike, vice reliance on those same
defensive systems, was erroneous, an overreaction, and disproportionate use of force.
Despite calls for reparations the key outcome was to highlight again the frailties of
man in the loop systems.

Through public condemnation and pressure, comparisons were made to the suc-
cessful and widespread use of the CRAM and Iron Dome systems of the 2010s,
leading to calls for increased autonomy in theatre based defensive systems. Amidst
the evolutions China perceived/claimed a significant Japanese/US capability over-
match in the region allowing it to justify its announcement for the first time in 2028
of its own Dragon Dome - a fully autonomous integrated theatre defence system.
The Chinese believed and argued that all of the US activities within the region
were designed to overthrow the government and only an autonomous system would
guarantee that humans could not make the same errors. A key argument within the
Chinese commentary was accusations the US (and Russia) had already developed
and deployed autonomous systems following their earlier exploitation of IS group
material. China also declared a cyber-equivalent, designed to protect and respond to
attack in the cyber domain.

During the intervening years, US and ‘Western’ militaries had suffered from suc-
cessive dilettante political leadership. The shift in global order had seen the realisation
of an era of three superpowers. The rise and rise of China, paralleled in Europe by
the rise of Russia - exacerbated by a fragmentation and ultimate disintegration of
the European Union - saw the US as a relatively weakened ‘Super-power’. India had
also continued its ascendancy and was on the cusp of ‘joining the major-power club’.
The US position in the global order had been significantly impacted by long periods
of protectionism and anti-globalisation movements, each moving to erode global
credibility and sway. This period also saw unprecedented and increased cost per unit
growth for 6th generation capabilities, placing thembeyond the reach ofmost nations.
Concurrently cyber capabilities had experienced exponential growth in capability at
an inversely proportional drop in price. Cyber enabled weapons became the only
means to balance the perceived destabilising overmatch being held by the increas-
ingly belligerent and aggressive super-powers. Indeed ongoing selective adherence
to international rules and norms changed the shape of ‘ethical, moral and human’
debate leaving the door open for fully autonomous systems, particularly in the cyber
realm.
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It came as no surprise, to any hawkish observer, when in 2029 in response to
the Chinese Dragon Dome announcement the US responded with public acknowl-
edgement they too had developed and deployed an Autonomous Defence Command
and Control system, which had also been made available to key and favoured allies:
England, Scotland, France, Germany, Australia and re-unified Korea. Public state-
ments were vague however key attributes of the system included trusted, reliable,
‘deep learning’, autonomous ‘point of target termination’, prioritised simultaneous
non-kinetic and kinetic effect, Command by negation capability enabled, ‘absolute’
adherence to Area of Operations boundaries and of course ‘absolute’ adherence to
rules of engagement. The era of the trusted autonomous Command and Control had
arrived and questions over moral and ethical equities were either simply ignored, or
likened to a ‘Nash Equilibrium’ we have too, they have....

By late August 2030 in the Indian Ocean off the Western Australian coast, ap-
proximately 1250km south-south west of Cocos-Keeling Islands, the autonomous
sea-glider continues on its silent course. Having identified its target as a hostile
submarine the glider commanded its peers to move into a sheparding pattern, each
sensing and adapting to the environment and changing tactical situation. Patience
was a human virtue the gliders regularly demonstrated, routinely adapting and reset-
ting as the target appeared to out maneuver them through a slight speed advantage.
As the hunt progressed, despite the best efforts of the target submarine captain and
crew, the glider force identified repetitions in the targets behaviours, enabling the
force to intuitively adapt their actions. The gliders directed the Australian Submarine
in support to transit to a uniquely identified location, exploiting the water column
variations and environmental challenges to lie in ambush for the target submarine.

When the enemy finally enters the perfect location for a firing solution from the
Australian submarine the optimum glider overtly broadcasts the enemy’s position,
defeating both the offensive and defensive strengths of the submarine. Much like the
Lyre bird native to Australia the glider mimics an Australian submarine in an active
track mode - concurrently broadcast openly, triggering and immediate defensive and
de-escalatory departure by the enemy submarine. The mimic message is carefully
choreographed through the slower gliders to maintain the ruse as the submarine
de-parts the area.

When the autonomous glider fleet is questioned during the debrief as to why they
acted in the manner chosen - to drive the enemy submarine from the area rather
than executing a kinetic attack, the response was both a shock and a revelation. The
glider reported it had exercised ‘mission command’ and operated outside its initial
plan as it believe it had identified a course of action which would achieve improved
operational and strategic effectiveness, with a minimal and acceptable level to the
tactical scenario - and it was prepared to achieve the directed strategic endstate over
its own progression. Trusted autonomous command and control systems were here
to stay.
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Chapter 19
Trusted Autonomy in Training: A Future
Scenario

Leon D. Young

19.1 Introduction

Why are you reading this book? Are you a student hoping to learn the right answer or
perhaps a teacher looking for guidance in the development of a course? Regardless,
you undoubtedly hope to learn something new. You are expecting to improve your-
self and perhaps, through extension, others. If you accept this proposition then you
will accept that at some level you trust the authors of this book. You trust that what
we write is accurate and that we want to improve you. In effect you have ceded
responsibility for your learning, your training, to us, the authors.

Why is this important? Quite simply, trusted autonomy in a training or learning
environment is not new. It existed before Alexander the Great sat at Aristotle’s knee.
The autonomous entity has always been a human teacher and trust has always been
ceded to the teacher. Should this change?Will this change? The premise of this book
allows us to examine how autonomous systems, that is non-human, will impact train-
ing and learning environments. The following section seeks to explore the future of
trusted autonomy within a training context through both an extrapolation of current
trends and creative thought. There is no expectation that this work is predictive how-
ever it should show you what is possible and perhaps even what could be plausible.

19.2 Scan of Changes

When investigating what the future could look like, it is important to understand the
baseline and potential for change within the environment. Often we look to extreme
changes as this allows us to understand the inherent risks and uncertainties contain
with those radical changes.
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Training and education have quietly been going through a long-term change from
didactic teacher-centred and subject based teaching to the use of interactive, problem
based, student-centred learning [10]. We are witnessing a massive change in schools
and worksites where the individual learner needs are being regarding as one of the
central pillars of learning. There is an acceptance that the learners of the future will be
provided lessons that “are custom tailored to their specific and individual needs” [12].

The social trend demonstrates the ongoing change in the way teaching is delivered
however it is strongly enabled through the technological advances. These advances
though are only useful if they are accepted by the general population. That is, there
appears to be a greater acceptance of technological interference with our lives. Some
of the recognised factors that influence the acceptance of technology into our lives
include expected benefits, available alternatives, need for technology and social influ-
ence (external pressure) [9].

For instance the rapid increase inMassiveOpenOnlineCourse (MOOC) has taken
many people by surprise even while the reasons for uptake are still opaque [6]. What
we can ascertain is thatMOOCs offered a perceived benefit (tertiary education); there
were few alternatives (part-time, distance providers); technology such as rapid and
virtual communication methods; and social pressure was predominately positive due
to low risk and high potential. The combination of these factors has led to the delivery
of thousands of courses to millions of students, through hundreds of universities after
only several years. The popularity of MOOC has seen it placed amongst interactive
gaming, social learning, on-demand training and mobile learning as the most likely
changes to corporate training [7].

Taking these trends a step further, Kevin Young, head of SkillSoft EMEA, envi-
sions that the future of education will be (1) trainee lead and (2) holistic. For instance
“imagine an alert popping up in the corner of your device offering to show you how
to complete the task you have just done more effectively, in a quick, five-minute
burst [1].” This use of micro-learning appears to empower the learner as it maximises
individual ‘device’ compatibility, decreases up-front information (akin to flash cards)
and increases interaction [5].

The explosion in data and our ability (some say inability) to access it grows
exponentially every year. In 2015, IBM are quoted as stating that over 2.5EB
(1EB = 1,000,000TB) of data was being generated per day [4]. The volume of
data, speed of data transfers, variety of data collected, potential value of the infor-
mation and the veracity of the information collated has led to the rapid development
in the field of data analytics. The addition of cloud computing has allowed smaller
organisations to leverage the technology and analytical algorithms required to take
advantage of this potential gold mine [3].

19.3 Trusted Autonomy Training System Map

Simplistically we can develop a system map for a trusted autonomy training sys-
tem (Fig. 19.1) that allows us to visualise the dominated drivers that are likely to
change the future of trusted autonomy in training. In this case we see the three key
drivers: autonomous systems, training systems, and trust (between entities).
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Fig. 19.1 Trusted autonomy training system map

Autonomous systems refers to all those advances that allow an entity to sense,
effect and choose a response from a relevant knowledge base. It has been identified
previously that the ability to choose the action, the appearance of free will, engen-
ders trust on both sides [2]. While autonomous systems generally implies techno-
logical solutions, human solutions are equally relevant. Training system includes all
of those parts that are necessary for training or learning to occur. This includes the
teacher and learner, training space and knowledge transfer required. Additionally we
include measuring change in the learner as this is how success of a training system
is quantified.

The final driver, trust, is probably themost significant as it allows complete imbed-
ding of the autonomous system within the training system. Trust requires a recog-
nised need for the effect, an acceptance of the technological solution, shared values
between trustor and trustee, and finally all alternatives are less appealing.

19.4 Theory of Change

Wenowhave an understanding of the baseline and trends relevant to trusted autonomy
and training. The system map is a simple method that allows us to see the significant
drivers that could affect the future of trusted autonomy in training. The final step
before we develop a narrative on the future is construct an appropriate theory that
helps us understand the change.

Of the three drivers illustrated in Fig. 19.1. the one that appears to be most sig-
nificant is trust. So, in simple terms, what does trust depend upon? The strength
of interpersonal trust is often dependent upon both a cognitive and an affective
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Fig. 19.2 Trust as a function
of familiarity over time

component [8]. While trust requires a cognitive recognition of ability, benevolence,
integrity and predictability, a trusted relationship also required an affective recog-
nition of shared values between both entities [11]. It is this affective component of
trust that appears to be a significant factor in the acceptance of autonomous systems
within training environments. We can speculate, with a fair degree of accuracy, that
trust between two entities, is a function of their familiarity. That is, the more familiar
you are with someone else, the more likely you are to trust them. Regarding trusted
autonomy, this is illustrated as a function over time in Fig. 19.2.

Last century, and for many centuries, humans have been taught by humans. The
classic example is the master and the apprentice. The apprentice trusts the mas-
ter through dint of their reputation and familiarity. As we move into the 20th
century, teachers become dislocated from the contextual environment within school-
ing systems, and it reasonable to see trust diminish slightly (due to generation gaps,
non-familial/communal ties, and divorced from practical application) yet trust is still
high.

As we move through the 21st Century, who would you trust more, an experienced
human mentor or a clever computer algorithm? This is the basis of the trust func-
tion. As our algorithms and technology improves, and even surpasses the human
equivalent, the form of the ‘teacher’ becomes less familiar. However, after time, this
familiarity should increase as either the generational change allows greater accep-
tance of what is currently unfamiliar, or the autonomous system becomes less obtru-
sive and more ‘natural’. While this theory may not be exact, or even correct, it feels
right and allows us to explore a set of future scenarios.

19.5 Narratives

19.5.1 The Failed Promise

Fiona felt frustrated. This was meant to be the age of enlightenment. Finally we
had come to understand that the differences in learners required a learner-centric
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approach. Rapid advancement in teaching methodologies followed. Unfortunately
the variety of pedagogical responses required an increased number of teachers. The
rapid increase in teacher requirement, coupled with low remuneration and state sup-
port, created a significant gap in capability. Fortunately, it seemed at the time, science
had an answer.

The teacher was a deep learning, online bot designed to provide the best informa-
tion available. However there was no doubt of the non-natural system nor its origin.
Everyone sat in front of curved screens within airy classroom. While, technically,
learning could take place at home - the information was cloud based and really it
was just a stack of circuits - the training systems were very expensive and clunky.
No school wanted to risk de-linking the training system from the traditional training
space. You could almost say that it was almost a matter of state control.

That said, despite the obvious artificialness of the training artifact, the information
was presented well. It took into account if you were a visual, aural or kinesthetic
learner and adapted the delivery of material appropriately. Though, admittedly, there
was little these systems could do for kinesthetic. The frustration however came from
the requirement to learn a new training system. Fiona felt like she had used a different
system every year. Sure, in the old days, the human teachers rotated like a carrousel
but at least they looked the same and the teaching was the same. Why couldn’t we
just get more teachers?

19.5.2 Fake It Until You Break It

Alex was frustrated. The rapid increase in autonomous systems had led to noisy
revolution in the work place. All of a sudden, those simple menial tasks at the bottom
of the work food chain were being completed by bots. Robot waiters, robot cleaners,
automated financial advisorswere ubiquitous throughout the service industries.What
initially felt like a boon, quickly became a social nightmare. The problem with the
autonomous systems taking all of the low-skilled jobswasmanifold. Firstly, it created
a large unemployed and disenchanted sub-culture that were, apparently, incapable
of upskilling into positions that were still available. And, who was to say these jobs
wouldn’t quickly disappear? Alex’s younger brother was in this group. This time
though, he was not this particular source of frustration.

No. Alex was a victim of the middle manager curse. Normally, when you started
with an organisation, it was customary for you to rotate through the low-skill jobs.
There was little expectation that you would remain the mailman, or spend the rest
of your career developing simple algorithms solving basic problems. There was an
expectation that exposure to these jobs, particularlymany of them, gave you a detailed
understanding of the inner working of the organisation. The benefits of this under-
standing, whilst initially painful to acquire, became obvious when you moved into
executive roles. You were able to intuitively understand how decisions would impact
the organisations and how changes in the environment could present opportunities
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or uncertainties. Alex didn’t benefit from that exposure and was rapidly becoming
un-done with a number of poor decisions. How could that experience been gained
now that the robots had taken away the opportunities in the name of efficiency?

19.5.3 To Infinity, and Beyond!

Ari was excited. Super excited. Of all the possible employment opportunities avail-
able, building the space bridge between the Home Solar System and Keplar-442 in
the Lyra constellation was not only the most exciting, it was also the most ambitious.
Settlers had been migrating to Keplar-442b (now affectionately named Sussana after
Johannes Kepler’s first living daughter) for close to fifty years however the support
mechanisms were too lengthy and, quite frankly, relied on luck. The space bridge
intended to set up way stations similar to the original postal services on Earth until
the J.T. Kirk Project finally delivered a sustainable FTL capability (if it was even
possible).

Ari had never been to space before. That was OK. Ari had no experience in
structural engineering in a zero G environment. That was OK. Ari was taking his
lifetime mentor with him and all of the training would be on-the-job. Ari learnt best
through experience. He hated being stuck in a room trying to memorise abstract
concepts or scrolling through historical exemplars. Fortunately, his mentor knew
this and was built to exploit Ari’s strengths. His mentor was an autonomous training
system embedded within Ari at birth. This system grew as he grew and learnt its
place in the world as it developed its relationship with Ari.

They knew each other intimately. Ari’s mentor - called Jaws in an archaic throw-
back - understood how Ari learnt and had access to the world’s knowledge. Knowl-
edge was delivered through augmented visual (bionic eyes), aural and tactile cues.
This created a formidable team. Ari brought quick intuitive creativity with a flexible
ability to physically affect the environment. Jaws could trust Ari to complete the
mission. Similarly Ari trusted Jaws to deliver the right mentoring at the right time.
Theirs was a symbiotic relationship that replicated throughout the society. It is no
wonder that these symbionts were able to quickly breach the solar system and extend
to the stars.
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Chapter 20
Future Trusted Autonomous Space Scenarios

Russell Boyce and Douglas Griffin

20.1 Introduction

This chapter describes the nature of the space environment that makes autonomous
space systems adesirable application; describes the various types of space activities in
near-Earth and deep space missions, and examples of autonomous systems deployed
in space to date; outlines the current state-of-the-art of the intersection between
trusted autonomous systems and autonomous space systems; and then presents a
variety of possible future trusted autonomous space scenarios.

20.2 The Space Environment

The space environment is harsh and remote - a natural domain for autonomous sys-
tems. Beyond the protection of the Earth’s atmosphere, man-made objects operating
in space do so surrounded by extremes of temperature, high energy radiation, and
near-vacuum (but not complete vacuum - for example, in Low Earth Orbit, dissociat-
ing and ionising radiation results in rarefied monatomic atoms and ions, for example
oxygen and hydrogen, that interact negatively with satellites).

Space weather - disturbances to the near-Earth space environment resulting from
solar activity - adds significantly to the complexity of the space environment, and
poses additional threats to space-based (and ground-based) activity [1]. Solar distur-
bances including Coronal Mass Ejections (CMEs) transfer energy and momentum
into near-Earth space, triggering magnetic storms [2]. We know from experience that
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space weather can degrade or even destroy spacecraft - yet our understanding of and
ability to predict the dynamic space environment is poor.

Furthermore, artificial space objects donot fly simple orbits.Manoeuvres of space-
craft in orbit around other bodies (such as Earth) are non-intuitive and complex.
Near-Earth space is not a vacuum, and has a non-uniform gravitational field. The
latter is well understood, but the interactions that occur between space objects and
their local dynamic space environment, known as astrodynamics, are non-negligible,
and integrate to produce significant orbital perturbations.

Space is also becoming increasingly congested. The risk of in-orbit collisions is
growing and can ultimately limit our use of space [3]. Inactive satellites and collisions
are both contributors to a vast artificial space population. The Space Object Cata-
logue, which contains over 20,000 satellites or debris objects greater than (currently)
10cm diameter, will expand by an order of magnitude as new sensors are deployed
this decade. The catalogue seeks to maintain accurate knowledge (and its uncer-
tainty), of the orbit of each object in space, so that close approaches of space objects
can be predicted and the probability of collisions computed, for evasive action to be
taken (if possible, and if deemed necessary) by satellite operators on a case-by-case
basis.

Deep space planetary exploration missions traverse vast distances across the solar
system. This in turn brings into play the time delay for radio transmissions between
Earth (in particular, Earth-based control rooms) and the remote spacecraft. For exam-
ple, signals from Earth toMars take between 3 and 22min, depending on the position
of each planet in their orbits around the Sun.

The distance from Earth to assets in space, whether they be in deep space or
GEO or even LEO, is such that latency of communications can be an important
issue, particularly when timeliness is important - for example, when performing
planetary orbit insertions, or avoiding collision events. Trusted Autonomy can be
very important for handling such issues successfully.

One final characteristic of the space environment relevant to Trusted Autonomy is
that by its very nature, space is hostile to human life and therefore the ability to have
close human supervision, management and operation of space systems is inefficient,
costly and dangerous. This dictates extensive use of unmanned technologies, with
the need for built-in autonomy; ranging from simple fault detection and isolation
functions for hardware protection through to full, goal driven autonomy, depending
on the complexity and purpose of the mission.

20.3 Space Activity - Missions and Autonomy

Space activity can be considered in terms of either in-orbit activity near Earth or
deep space missions including planetary exploration. Robotics and autonomy play a
role in each.



20 Future Trusted Autonomous Space Scenarios 357

The near-Earth region can be divided into the typical orbit regions occupied by
satellites: Low Earth Orbit (LEO), extending from a few hundred km to two thou-
sand km above the Earth’s surface; Geosynchronous Orbit (GEO), approximately
36000Km above Earth where satellites orbit the Earth at the same rate that the Earth
rotates beneath them; and Medium Earth Orbit (MEO), the region between LEO
and GEO. Satellites in LEO are typically those performing remote sensing missions
such as environmental monitoring, maritime observations, forestry and crop survey-
ing, and more. The largest and most famous LEO satellite is the International Space
Station. Satellites in MEO are typically those performing Global Navigation Satel-
lite System functions (GPS, Galileo, etc.). Satellites in GEO are typically providing
communications capabilities, including telephone, television and internet or weather
forecasting services. Space science spacecraft are flown in a range of Earth orbits
depending on the particular science objectives and implementation of the experi-
ments and instrumentation.

Deep space exploration missions began with the manned Apollo program, but to
date have almost entirely consisted of unmanned spacecraft missions. These include
space probes that have flown past all planets in the Solar System (and in the case of
the Voyager 1 and NewHorizons spacecraft, have flown beyond Pluto); space probes
that have been placed into orbits around planets or moons of planets (for example,
Mercury, Venus, Mars, Jupiter, Saturn, Titan); planetary landers on planets, moons,
asteroids and comets (for example, landers on Mars, Jupiter, Titan, as well as the
Japanese landing on the asteroid Itokawa and ESA’s recent Rosetta comet landing);
and the various robotic rovers currently active on the surface of Mars. Considerable
effort is currently being expended by the US, Europe, China and India, towards
renewed manned deep space flight, and in particular towards manned missions to
Mars and eventual colonization ofMars. In the shorter term, planetary rovers planned
for the moon (China, India, Japan) and Mars (NASA and ESA) will continue to be
developed and deployed.

Most spacecraft operations are automated, in so far as control functions and rou-
tines are uploaded via telecommand for immediate execution or, more typically, at
predefined times in strict ordered sequences. For example, almost all remote sens-
ing satellites automatically acquire images at predefined geographic locations and
downlink them toEarth, whilemaintaining correct attitudewith on-board sensors and
reactions wheels. In-orbit robotic capabilities such as the Canadarm remote manip-
ulator arms are controlled by astronauts. Few autonomous space systems, where the
systemmakes decisions in order to achieve high level goals without human interven-
tion, exist.

As described by the UK Robotics and Autonomous Systems Network [4], space
robotics and autonomous systems will play a critical role in mankind’s ability to
explore and operate in space, “by providing greater access beyond human space-
flight limitations in the harsh environment of space and by providing greater oper-
ational handling that extends astronauts capabilities”. Indeed, NASA’s Technology
Roadmap for Robotics and Autonomous Systems [5] has the goal to extend and
enhance human reach into space, and our ability to manipulate assets and resources,
to prepare planetary bodies for human arrival, support astronauts in space operations,
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and enhance mission operation efficiencies. A component of that goal involves the
issue of safety and trust - in particular, to develop proximity operation technologies
that allow humans to work safely side-by-side with robots or to be safe on or around
robotic vehicles. The emphasis here is on the human-machine interaction, and the
safety of the human in that interaction.

Gao et al. [4] further comment that autonomous systems can improve human and
system safety by reducing human cognitive loads in complex situations, and can
enable the deployment and operation of multiple space assets without significant
increase in the level of ground support. Autonomous systems can also reduce human
workloads by managing routine activities requiring constant monitoring over long
periods of time. Frost [6] adds to these roles of autonomy in space systems, the
concept of “virtual presence”, in which scientific investigation, in particular data
analysis and the discovery that stems from it, is aidedwhen the scientist is far removed
from the instrument. In other words, autonomous ability for the space asset in orbit
or deep space (and for example, in extremely isolated situations such as inside the
seas of Europa) to not just acquire data but determine the value of that data and
make decisions accordingly. For example, the NASA Swift spacecraft is able to
autonomously abandon a pre-defined observation plan if it detects a Gamma Ray
Burst and swiftly re-point its high resolution telescopes at the source within 90s to
capture the temporal dynamics of these highly energetic and rare events.

Frost [6] summarises some of the few examples of autonomous space systems
that have been deployed: in 1998, the Deep Space 1 mission, with Remote Agent
architecture, provided the first operational use of artificial intelligence (as described
by Frost, an architecture that integrated constraint-based planning and scheduling,
robust multi-threaded execution, and model-based mode identification and reconfig-
uration) in space, including complete autonomous operation for 29h during which it
responded to both simulated and real failures; Earth Observing 1, a remote sensing
spacecraft launched in 2000, was able to employ autonomous acquisition and pro-
cessing of science data, including autonomous detection in 2007of an anomalous heat
signature, self-scheduling of a new observation, and thus observing volcanic erup-
tion of Mt. Erebus; the Orbital Express program led by Defense Advanced Research
Projects Agency for robotic, autonomous on-orbit re-fueling and re-configuration
of satellites - in 2007 this program, employing four levels of supervised auton-
omy ranging from telecommanded approval, to automatic action if ground override
has not been enacted in a certain time, to autonomous operation with occasional
communication with ground for verification, to fully autonomous operations where
ground analysis only happens when a problem occurs, successfully used two pro-
totype servicing and serviceable satellites to demonstrate autonomous capture and
re-servicing; and Mars Exploration Rovers which are able to autonomously plan
paths to objectives while avoiding obstacles, and autonomously process captured
images and make decisions about what should be down-linked to Earth and what
new observations should be made.

An additional aspect of space activity is worth considering here. Traditionally, the
common feature of these satellites is that almost all perform their missions as indi-
vidual large, sophisticated and expensive spacecraft. Space is currently undergoing
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transformation however, due to the miniaturisation of electronics and the increased
ease and reduced cost of access to space, for both government, commercial and
research/education players. This is leading to opportunities for developing and fly-
ing “game changing” payloads that either perform existing space-based tasks in dis-
ruptive ways, or enable entirely new applications. The opportunities include robust
autonomous formations and swarms of miniature spacecraft with fractionated or dis-
aggregated sensor capabilities. The implications however, include the increasingly
pressing need for managing the congested space environment, for example through
autonomous space traffic management systems and/or autonomous spacecraft colli-
sion avoidance capability.

20.4 Current State-of-the-Art of Trusted Autonomous
Space Systems

The development of autonomous space systems should include, as described in
NASA [4, 5], the consideration of verification, validation, safety and trust. NASA
Langley now have an Autonomy Incubator that is performing R&D towards auton-
omy that they occasionally describe as trusted autonomy. The use of the word “trust”
in relation to autonomous space systems makes excellent intuitive sense, given the
high stakes associated with space activity and especially when humans are involved.
However, it would appear from the literature that when developing autonomous space
systems, the need to be able to trust them before deploying them is a given. While
the body of research recorded in the literature for trusted autonomous systems is
growing, and likewise the amount of autonomy being developed and built into space
systems is also growing, little has been reported to date on the intersection of these
two fields. The only rigorous treatment of trusted autonomy for space systems in the
literature to date is that of Freed et al. [7].

Freed et al. describe some of the above examples (Deep Space 1, Earth Observ-
ing 1), and point out that the autonomy built into them was less than originally
intended, or only allowed in a post-mission phase, and that in general, their deploy-
ment has been limited due to a lack of trust. The lack of trust is ascribed to the
difficulty in evaluating the behaviour of software designed to make complex deci-
sions, and to the inherent research focus or custom nature of the software.

To build confidence in the reliability of complex software for autonomous space
systems, Freed et al. describe verification and validation approaches (V&V), that
employ runtime analysis and model checking; software design architectures that
enable tractablemodular verification tasks; and automated code generation combined
with V&V technology to yield automatic formal V&V. Another critical aspect of
building trust in autonomous software (called intelligent automation software by
Freed) is ensuring that the domain experts - the engineers and scientists for the space
activity - are involved in the design, development and verification of the software.
This can include developing strategies that enable the domain expert to directly
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participate in the coding of the models built into the software, while the software
engineers take full responsibility for the more general purpose engine at the heart of
the software.

Key to building trust however, according to Freed, is the incorporation of variable
autonomy - the ability of the intelligent control software to support dynamic changes
in the degree of autonomy. Variable autonomy advances the concept of selecting
desired levels of autonomy when designing a space system, such as described by
Proud et al. [8] and de Novaes Kucinskis and Ferreira [9]. It allows the human user
or the autonomous system to adjust the system’s level of autonomy as required by the
current situation. It minimizes the necessity for human interaction, but maximizes
the capability for that interaction - hence increasing the level of trust in the system.
Freed outlines several principles for building effective variable autonomy systems.

Finally, Freed elaborates on the importance of building trust through long deploy-
ments - the test of time - and identify factors relating to building trust in the process.
These include interfaces for humans to manually adjust autonomy; accounting for
equipment degradation and the need for the ability of the system to perform safety
shutdowns; logging system states to assist restarts; and supporting intermittent mon-
itoring.

Freed concludes that by focusing efforts on V&V, variable autonomy and long
deployments, highly capable and reliable autonomous space systems can be devel-
oped that can help extend our presence in space.

20.5 Some Future Trusted Autonomous Space Scenarios

As discussed above, autonomous space systems make good sense and indeed are
essential if human usage and exploration of space is to expand, both in reach and in
complexity. Trusted autonomous space systemswill allow such activity to be pursued
with confidence. There are various scenarios that can be envisaged in which space
systems will be critical. Some of these are already in various stages of development
and demonstration - for example the obvious scenarios of on-orbit satellite servic-
ing/repair; autonomous on-board data processing, analysis and decision making -
for example, for remote sensing for both Defence and civilian applications; and for
future human habitation in space, which could include both deep space colonisation
and space tourism. These are not elaborated upon here. Instead, three future trusted
autonomous space scenarios are offered - a near-term scenario that pulls together
some current applications of autonomy to space; and medium- and long-term sce-
narios based on the urgent need to manage the complex near-earth space environ-
ment without creating havoc and on the current transformation of space technologies
towards miniaturisation.
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20.5.1 Autonomous Space Operations

One scenario which could be realised in the near future, involving expansion and
integration of existing methodologies and technologies such as have been described
above, is in an increase in the level of autonomy embedded into the full scope of
operation of a space mission once it has reached orbit. The space mission cost, often
neglected or underestimated in early planning and system design phases is the ongo-
ing cost of performing space operations. The cost drivers for this segment of the
mission include, (1) the cost of acquiring access to the physical infrastructure to
downlink telemetry from the spacecraft, i.e. the ground station, (2) the cost of plan-
ning routine mission operations based on the needs and priorities of the customer and
the physical constraints of the spacecraft and payload (for example, thermal, power,
fuel, propulsion, �V, on-board data storage constraints and ground sun illumination
angle conditions), (3) the cost of processing telemetry through a pipeline to generate
the corrected and calibrated data products, and then interpreting them to provide
actionable knowledge to end-users, and (4) the cost of employing highly skilled,
experienced staff to assess the probable impacts of unforeseen contingencies on the
ability of the space system to deliver its service reliably and effectively and to then
make the correct operational decisions based on limited information. A common
feature of these cost drivers is that they tie up expensive resources (for example;
ground stations, experienced engineers) for extended periods of time performing
relatively routine activities, interspersed with bursts of activity with high levels of
criticality (for example; downlinking imagery indicating the threat of flooding in a
highly populated area, or planning the recovery of a spacecraft which has lost atti-
tude due to a temporary fault in a single subsystem before the entire spacecraft is
lost). If Trusted Autonomy of both the space segment and the ground segment can be
incorporated into space operations in an efficient and cost effective manner, then the
ongoing cost of operating space missions can be significantly reduced. By increasing
the amount of processing and interpretation of data within the space segment, fewer
human and physical resources are required to downlink and process redundant data
on the ground. By automating the analysis and interpretation of operational infor-
mation from disparate sources, the engineering costs of operating the spacecraft and
responding to anomalies are reduced. The key challenges to increasing the level of
Trusted Autonomy in spacecraft operations and gaining these benefits lie in the diffi-
culty of gaining sufficient confidence to entrusting an asset costing typically several
hundred million dollars to such a system, the heuristic and probabilistic nature of
some spacecraft operational decisions and the difficulty of algorithmically encoding
features like experienced, engineering judgement into such systems.
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20.5.2 Autonomous Space Traffic Management Systems

At present, global networks of space surveillance and tracking sensors feed data to
centralized space operations centres - the primary one being the Joint Space Oper-
ations Center operated by Air Force Space Command. Effort is made to maintain
orbit information for the entire Space Object Catalog, propagate orbits, predict the
probability (and associated uncertainty) of conjunctions and collisions, and provide
satellite operators as much time as possible to decide whether to take evasive action.

As the number of space actors, including non-government actors, increases, and as
the number of miniature spacecraft in orbit grows from hundreds to many thousands,
the current sensor network and conjunction warning approach will be insufficient.
By combining autonomous sensor networks on the ground (including non-traditional
sensors such as Square Kilometre Array) and in orbit, for both space object loca-
tion and behaviour and for space environment dynamics; and by using high fidelity
physics-based simulations of the dynamics space environment and the behaviour of
space objects in that environment to train neural-network based surrogate models for
real-time high accuracy orbit predictions for each tracked space object; and by con-
structing suitable communications networks to communicate to all live satellites that
have manouevre capability; a global trusted autonomous space traffic management
system can be envisaged that safely assists the large future spacecraft population to
manouevre through complex debris fields without collisions, and safely queues and
guides future rapid launch/responsive space access satellite launches to safely reach
orbit at very short notice. The autonomous sensor and orbit prediction aspect of this
scenario is currently under development in Project Ananke, led by the University
of Arizona and including Air Force Research Laboratory and industry. Ananke is
designed to provide autonomous rapid information for human decision makers to
trigger appropriate action. A fully autonomous space traffic management system
would extend this to include the decision-making and action into the system itself.

20.5.3 Autonomous Disaggregated Space Systems

Disaggregated systems of spacecraft are often discussed, particularly for military
applications in which formations or swarms of small spacecraft fly in orbit, with the
payload distributed across the formation such that information can be determined
or capability achieved that would not be possible with a single or small number of
spacecraft, and that robustness/resilience of the system is achieved. For example,
consider some of the work of the Australian Centre for Field Robotics on coopera-
tive UAV systems and UAV-based decentralized air surveillance systems, in which
Decentralised Data Fusion and Control capability is combined with a variety of sen-
sors, on-board processing and complex communication networks between platforms
to build up surface terrain maps by the system in real time [10]. Such a system could
be extended to include the space domain, with multiple sensors deployed across not
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only large numbers of networked miniature spacecraft, but also across high and low
altitude UAVs. The systemwould be robust against failure of or damage to individual
members of the swarm. It would need to have a level of at least partial autonomy,
such that it can acquire, process and fuse data and make decisions for further acqui-
sitions without the need for consulting with ground stations (which may be out of
range), and such that it has the autonomous ability to disperse sufficiently to avoid
congestion and collisions (with each other and with other spacecraft and debris) and
then reform. It would need to be autonomous because of the complexity of the system
and the complexity of the GNC problem. It would need to be trusted, partly for the
autonomy needed to achieve its mission, and partly so that it achieves its mission
without adding to the space debris field.
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Chapter 21
An Autonomy Interrogative

Darryn J. Reid

21.1 Introduction

This paper examines the highly topical imperative regarding the development
and application of autonomous systems from primarily an economic perspective,
meaning taking autonomous decision making to be a matter of allocating scarce
resources [11, 12, 21, 29, 42]. It is no secret that despite intense international effort,
the account of truly autonomous systems on hand for operational deployment in
modern national defence organisations leaves something to be desired. Arguably,
the outlook in autonomous systems development has been overwhelmingly domi-
nated by technical developments, with the consequence that autonomy as a concept
has become associated with increasing algorithmic and hardware sophistication. Yet
given not only the technical challenges of machine intelligence, but also the difficulty
of elucidating what autonomymeans with respect to the kinds of operational military
problems where we would like to apply it and the lack of a general concept of its
utility in these circumstances, the present dearth of operational military autonomous
systems ought not be so surprising. This chapter seeks to explore what is primarily
an economic perspective towards autonomy, in order to inform subsequent choices
of technical problems towards the realisation of operationally viable autonomous
systems that solve difficult military operational problems well enough to be worthy
of the title.

That many commercial enterprises possess what they hold to be autonomous
systems poses the question as to why defence organisations cannot make the same
claim. Yet if we regard that it takes more than to be able to act outside of direct human
control to make a system autonomous, these systems may not really be autonomous
at all. Specifically, they operate under highly constrained circumstances, and the
predictability afforded by those operating circumstances are required to make them
effective. Defence represents an especially challenging set of circumstances and dif-
ficult choices: unlike the problem contexts of extant autonomous systems, military
operations, by and large, do not facilitate the luxury of tightly managing the opera-
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tional context so that the strong environmental expectations built into automations
will not smash unhappily into nonconforming realities. Moreover, such failures in
war and battle are potentially catastrophic. Given the fundamental uncertainty of
this kind of environment [6, 53], efficiency goals that work in relatively controlled
environments are largely irrelevant and may even be misleading, in the sense that
the pursuit of efficiency could actually accentuate exposure to ruinous outcomes (the
effect is well studied in economics, for instance this effect is understood to be amajor
contributing factor in the Global Financial Crisis of 2007–2008 [3, 26, 40]). Instead,
operational effectiveness hinges on avoidance of irrecoverable failure, which might,
incidentally, include avoiding gross inefficiency, but this is not the same thing in
general as attempting to maximising efficiency.

I argue that heart of the problem of autonomy is the ability to effectively deal
with fundamental uncertainty; such uncertainty is the consequence of the inherently
paradoxical nature of the problems wewould like our autonomous systems to be able
to solve. For instance, prediction is generally a paradox of self-reference, because of
the effect that making a prediction has on the predicted event; the predictions occur
from within the system to which the predictions apply. Observation is similarly
potentially paradoxical because the act of observing occurs from within the system
and consequently may disturb the very phenomena we wish to observe. Clausewitz
was well aware of these effects in war and battle, and consequently distinguished
carefully between uncertainty that is unmeasurable and stochastic chance. Since the
time of Clausewitz, there has been a burgeoning of interest in uncertainty, from a
number of distinct perspectives. In particular, I wish herein to briefly draw on the
work on uncertainty and ignorance in economics, which particularly originates in its
more philosophically oriented branches, and some of the studies of incompleteness
and uncomputability phenomena in mathematics and computer science [19, 35, 39,
45], and to relate the two together.

Newcomb’s Dilemma [4] is a good example of how the kind of paradoxes behind
mathematical incompleteness generate real-world uncertainty. This thought experi-
ment involves a paradox of prediction that interestingly brings two distinct decision-
makingmodes, whichmostly seem to apply under different circumstances, into direct
conflict in a single situation; the puzzle thus highlights the inapplicability of simple
conventions of rationality as reward maximisation in settings involving fundamental
uncertainty. The first decision-making mode is the impetus to act in order to produce
a desired outcome, and the second is the impetus to act only when the action can alter
the outcome. You are presented with two boxes: one open and one closed. The open
box contains a thousand dollars, while the closed box contains either amillion dollars
or nothing. You can choose either the closed box or you can choose both boxes. The
contents of the closed box has been prepared in advance by an oracle machine that
almost perfectly predicts what you will choose: if you choose both boxes, then it has
put nothing in the closed box, while if you choose just the closed box then it has
place the million dollars in it.

The solution to the dilemma seems obvious to almost everyone; the catch is that
people divide about evenly on which solution is the obviously correct one. In other
words, the dilemma poses two incommensurate choices that are both justifiable. The



21 An Autonomy Interrogative 367

dilemma was recently resolved [54] using game theory to show that the course of
action in the game depends on the observer’s beliefs - which are necessary to making
a choice but not rationally justifiable - about the ability of the oracle machine to
predict their actions, in much the same manner as the observation of quantum states
depends on the observer.

The connection from autonomy to economics rests on the proposition that an
autonomous agent is exactly an economic agent, by another name. An autonomous
agent—be it living, a social construct, or a machine—is an entity that exercises
choice, by making decisions to act one way or another. Yet any decision to act in
a particular way is just an allocation of resources under that agent’s control to one
of the course of action options as understood by the agent, and this matches the
definition of an economic agent. To be slightly more formal: an economic agent is
any actor (e.g. an individual, company, government body or other organisation) that
makes decisions in aiming to solve some choice problem within some economic
system, and an economic system is any system involving production, consumption
and interchange of resources by such agents [11, 12, 21, 29, 42].

The difference between an autonomous agent and an economic one is a matter or
emphasis that directs subsequent research problem choices.Whenwe talk of artificial
intelligence, it usually means we are mostly interested in developing algorithms and
their technical implementations in machines; when we talk of economic agents, it
means we are mainly concerned with individual and system-wide outcomes given
different mixes of different kinds of interacting resource-allocating agents under
various environmental conditions.

In particular, I am concerned with autonomy as particularly featuring decisions
about the allocation of self under uncertainty, and hypothesise that self-allocation
corresponds with the same boundary that delineates a notion of uncertainty that has
come to be known as ontological uncertainty [13, 25, 30, 44, 50]. Interacting self-
allocating agents entails logical paradox in general, which underpins formal limits on
knowledge and thus the intrinsic uncertainty of such systems. This uncertainty arises
without any recourse to exogenic ‘shocks’. Hence familiar notions of agent utility-
maximising rationality that operate within worlds of linear certainty and stochastic
risk necessarily break down under conditions of fundamental uncertainty. This kind
of effect has been studied extensively in the economic literature. For instance, sup-
pose that agents have a high ability to predict a policy-maker’s actions, that at least
one endogenous variable is completely controlled by the policy-maker, and that the
reward to the policy-maker of their actions is dependent on whether the policy is
anticipated. Under these simple conditions [16], there is no unique rational course of
action for the policy-maker, in general. Rather, different incommensurate yet equally
viable theories may indicate distinct optimal policies, and consequently the agents
cannot form rational expectations because any rational expectation must contain a
theory of the policy-maker’s behaviour. In a setting such as this, economically ratio-
nal behaviour is basically incompatible with the formation of economically rational
expectations. This is an instance of an incompleteness phenomenon occurring in a
purely economic setting, and one that bears directly on autonomous machines.
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21.2 Fundamental Uncertainty in Economics

21.2.1 Economic Agency and Autonomy

The tight connection between notions of economic agency and autonomy is well
established in the economic literature: indeed, the history of artificial intelligence
research and economics are intertwined because economics is, in essence, about
human decision-making under different resource allocation mechanisms and con-
ditions [36]. Economics has constantly looked to artificial intelligence for models,
especially in response to the realisation in the 1970s [43] that economics had been
weak on both the nature of human information processing capabilities and on how
we achieve these capabilities, despite the central place that these problems must have
in economic theory. The boundaries have become increasingly blurred, on the eco-
nomics side at least, because while economics requires descriptive models of human
decision-making, the available tools are primarily the prescriptive models offered by
traditional artificial intelligence and applied mathematics. Furthermore, economics
has itself developed prescriptivemodels in the course of trying to describe and predict
economic system behaviours (see for instance, [15]).

While autonomous systems research has yielded many prescriptive agents that
work well enough in tightly constrained environments, the economic requirement
for descriptive models arguably first highlighted the yawning gap between machine
reasoning algorithms and the robustness and flexibility of human decision-making.
Smith recently argued [44] that in both economics and in artificial intelligence, the
underlying assumptions driving research about agent learning and decision-making
have typically neither sufficiently nor even explicitly emphasised the significance of
fundamental uncertainty; current models remain structurally very similar to those of
the past. We remain largely tied to probabilistic and statistical methods of learning
and reasoning and thus to their inherent limits.

He argues that the advances in machine intelligence of recent years overwhelm-
ingly do not even attempt to address this failing and consequently do not represent
a base advance in overcoming the difficulties of modelling and reproducing human
decision-making, increasing success in tightly defined domains notwithstanding.
Implicated in maintaining these base assumptions unchallenged is the documented
anthropomorphic tendency to label constructions in artificial intelligencewith human
decision-making features or human functions, in the absence of any convincing argu-
ment establishing a similarity [34]. These wishful mnemonics have arguably helped
to foster the hype cycles experienced repeatedly during the course of the history of
artificial intelligence research and application, while masking the limitations of the
available methods to cope with non-stochastic uncertainty.

The implications of this for the development of autonomous systems capable
of operating in high uncertainty environments such as those of military operations
are straightforward. The failure of machine learning in comparison with human
performance is poor generalisation ability; the failure of machine reasoning is brit-
tleness, meaning a poor ability to handle environments in which future states are the
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manifestations of interconnected events, including the actions of the agent itself. In
both cases, the failure manifests as an inability to operate successfully—where suc-
cess heremeans extended survivalmore than rewardmaximisation—in environments
where future events are not foreseen and may not be foreseeable at all.

21.3 The Inadequacy of Bayesianism

The connection between autonomy and economics runs very deep: questions about
the formation and application of beliefs in decision-making, and hence criteria delin-
eating rational from irrational beliefs, are as prominent in economic theory as they
are in artificial intelligence. For instance, the central place of equibria in economics
and game theory is really a statement of a convention about the rationality of beliefs,
wherein rational beliefs are held to be exactly those that coincide with equibrium
solutions [18]. The Bayesian interpretation of belief is predominant in the economic
literature, as it also is in artificial intelligence; the criticisms of Bayesianism in eco-
nomic theory [18] apply equally in autonomous systems research and may be seen,
in essence, as another recognition of the inability for a currently dominant paradigm
to adequately handle fundamental uncertainty.

Bayesianism is not really a single position, but any mix of three main postulates.
Firstly, an agent should have probabilistic beliefs about unknown facts, typically
given as a probability measure over all possible relevant states. Note that economics
often uses a stronger version than computer science and artificial intelligence by drop-
ping the relevance qualification and thus presuming that agents must have beliefs as
probability measures about absolutely everything. Secondly, Bayesian priors should
be updated to yield a posterior measure in accordance with Bayes’ Law. Lastly, each
agent should choose the decisions that maximise expected utility (or sometimes
equivalently minimise expected cost) with respect to that agent’s Bayesian beliefs.
While the third postulate, in conjunction with the first and second, is hardly unknown
in computer science, it is particular common in economic theory.

No combination of these postulates has been immune from serious criticism in
the economic literature. The Bayesian approach presumes a prior, and thereby does
not deal with the manner in which the prior is obtained. This situation is sometimes
known as state space ignorance or sample space ignorance. Though the second pos-
tulate seems technically safe, it has been shown to be descriptively inadequate [51].
Moreover, the economic literature arguably under-estimates the importance of com-
plexity limitations on Bayesian updating; indeed, the computer science literature has
been long focussed on this as themain difficulty. The third postulate has been attacked
repeatedly in the economics literature since the Allais Paradox [2], which revealed
strong inconsistencies between observed human choices and what maximising util-
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ity would predict (see for instance [23] and [33]). The entire field of Behavioural
Economics1 is substantially based on the rejection of this third postulate.

For present purposes, it is the criticism of the first postulate that warrants partic-
ular notice: the lack of convincing general descriptive and prescriptive explanations
regarding the origin of the prior translates into an important epistemological question.
That is, this criticism amounts to a different way of stating that, in general, the agent
cannot possibly have at its disposal sufficient time and resources needed to obtain
the complete set of possible relevant states over which to draw belief measures. The
economic literature goes even further, however, by also proposing an ontological
notion of uncertainty that asserts that, beyond limits to knowing, questions about
outcomes pertaining to agent decision-making are simple unanswerable at all.

21.4 Epistemic and Ontological Uncertainty

To see how uncertainty plays out in economic settings, consider the essential problem
of human agents operating in an economy: they must make investment choices that
will play out a future they can neither predict nor really control. Knight [27] famously
formalised a distinction between risk and uncertainty on the basis that economic
agents operating in a dynamic environment must do so with imperfect knowledge
about the future. Knight distinguished risk, as applying to the situation when the
outcome is unknown yet the chances are measurable, from uncertainty, when the
information needed to measure the chances cannot be known in advance of the
outcome; we do not have a sufficiently long history with the system as it currently
stands to be able to establish a measure. Knight maintained that risk can be converted
into an effective certainty2; the practice of setting hurdle rates as the rate of return on
the next best option having a comparable risk profile as a mechanism for soft capital
rationing is one example of this kind of conversion of a risk into a cost.

In Knight’s conception, uncertainty is distinct from stochastic risk in that it is
not amenable to measurement and consequently cannot be meaningfully converted
to a cost in this manner. Note that this conception of uncertainty effectively raises
to a more general setting the first objection that was discussed earlier in relation to
Bayesian assumption of a prior, which insists that a measure can be defined over the
space of possible relevant states.3 Knight’s uncertainty is epistemological: we lack
knowledge of what future outcomes might occur, but at least we can be aware that
we lack it.

1Behavioural Economics is basically about the study of observed behaviour of real economic agents,
in contrast to the normative approach that neo-classical economics takes to behaviour.
2This kind of conversion is a ubiquitous standard practice. Knight made the point that this practice
is indeed justified, so long as we are dealing only with measurable stochastic risks.
3Hence the field of Behavioural Economics, based substantially as it is on the rejection of utility
maximising postulate of Bayesianism in economics, assumes as its basic position a Knightian
epistemological view of uncertainty [13, 50].
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The importance of the distinction has not been lost in analyses of recent behaviour
of finance firms, which, in the years leading to the global financial meltdown of 2008,
operated with highly regarded, highly precise risk assessments that were all based
on the basic premise that the relevant conditions and outcomes are all measurable [3,
13, 26, 32, 40, 41]. When, in a mass financial panic, institutional investors sud-
denly realised that the assumptions about their risks being measurable were deeply
flawed, financial markets collapsed in the kind of event that has been described as
a ‘destructive flight to quality’. Investors clambered over the top of each other to
dump everything but the safest and hence least profitable assets, in a sudden cascad-
ing systemic failure having global ramifications that continue to reverberate nearly
a decade later. The distinction between risk and uncertainty in economics is not an
esoteric matter, but a very practical pervasive kind of problem with potentially huge
ramifications. Indeed, the aftermath of the economic crisis has seen a considerable
resurgence of interest among economists in fundamental uncertainty, after a long
period where the primary interest was in formalising economics - and particularly
finance - using precision stochastic risk models (see for instance [26]).

In contrast to Knight, Keynes [25] argued for a deeper ontological notion of
fundamental uncertainty: we do not even knowwhat we do not know. In this view, the
future is fundamentally uncertain because it is simply not possible even in principle
to conceive of all relevant possible future outcomes in advance.4 Investment, Keynes
maintained, is then the allocation of resources on the basis of expectations formed
under conditions of this kind of uncertainty. Keynes formulated a set of conventions
to describe how agents try to cope under such uncertainty, by resorting to what
amount to superstitious rituals from the point of view of utility-maximising economic
rationality. They tend to presume that their existing opinions are a valid guide. They
tend to conform to majority views. They just ignore what is unknown: widespread
reliance on risk models under the assumption that all the uncertainty is measurable
as briefly described above is a prevalent contemporary example.5 They presume
that present circumstances will be stable. They rely on the opinion of experts who
concoct grand predictions from the economic tea leaves. Perhapsmost importantly, in
a mammoth and sometimes even wilful act of self-deception, they assume far greater
veracity for these measures than what any frank examination of the past would ever
support.

In short, agents invest on the basis of strongly predictive models, and the conse-
quences are far-reaching. It means that markets cannot be in stable efficiency equilib-
ria, that investment is highly volatile, and that expectations are extremely fragile. It
also means that complex behaviour such as economic bubbles and bursts and overall
unpredictability of economic systems can be wholly generated endogenously [1, 11,
21, 26, 29, 31, 32, 41, 46, 52]. This turbulent picture stands in contrast to the text-

4I will come back to the reason for this in detail in a subsequent section. Briefly: the questions
we might need to answer may contain hidden self-reference, which opens the possibility that they
might be logically paradoxical and hence unanswerable from inside the system within which we
have to operate.
5I will further discuss these instances in subsequent sections, particular in relation to the GFC,
trading strategies and market bubbles and crashes generally.
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book neoclassical account, whichmaintains that the expectations of economic agents
about future returns are correct on average over time, under the so-called “rational
expectations” doctrine.

Keynes further held that economic agentsmaking decisions under uncertainty hold
more liquid assets - especially money - as an asset in response to doubt about future
returns; this store of wealth in liquid form is essentially a concrete and measurable
manifestation of the agents’ confidence regarding future outcomes (but not ameasure
of the uncertainty of future outcomes). Lower confidence requires higher interest rates
to inveigle our agents to draw their capital from safe but unprofitable liquid deposits
and invest it in volatile but potentially profitable illiquid assets. So although the agents
themselves can behave pretty miserably, Keynes concludes that wise governmental
moderation can, in principle at least, considerably stabilise an economic system by
setting monetary policy to moderate the billow and bounce of otherwise outrageous
market circumstance.6 This proposition has been repeatedly echoed in subsequent
experimental and theoretical studies concluding that well designed control policies
can be very effective in moderating or eliminating asset bubble formation; some
investigators report that dynamic policy control is superior in this regard to static
controls [32].

These economic agents face a bimodal impetus, compelled to avoid loss on the one
hand and to seek profit on the other, but theymust undertake this activity under condi-
tions of irreducible uncertainty. Interestingly, the source of macroeconomic volatility
appears to lie less in the presence of fundamental uncertainty, which is unavoidable
anyway, and more in the manner by which our agents attempt to avoid dealing
with it. They retreat from it through the fallacious appeals that Keynes describes.
Left unmanaged, the consequences of this behaviour are that numerous small fail-
ures accumulate unrecognised and unreconciled, eventually erupting in the sudden
system-wide failure broadly known as a ‘crash’ when the edifice of false confidences
in these measures can no longer be maintained under the accumulated burden of
hidden errors.

Keynes’ conventions seems to provide a concise summary ofmanagerial methods,
whichmakes sense from the point of view that management practices and investment
behaviour are inextricably intertwined. A deeper connection is that one of the pil-
lars of management theory is the inversion of the economics of externalities7[9]. The

6This does not intend to imply that Keynesian economics is without assumptions nor subject to
limitations, but merely to convey the component of the theory that pertains to uncertainty and its
effects in relation to autonomy as an economic question. For instance, the details of how gov-
ernments intervene really matter: the Keynesian interventions in the 1930s that directly supported
broader populations deeply impacted by the Great Depression were clearly more successful than the
bailouts after theGFC inwhich trillionswere poured into the large failingfinancial enterpriseswhose
activities had caused the bubble and ensuing crash, and which produced exploding deficits. The out-
comes of the current downturn is leading many to question capitalist economic systems themselves,
amidst a growing view that capitalism is inherently unstable, inefficient, antidemocratic, and not -
as often assumed - synonymous with the presence of markets; such debates substantially question
the premise as well as the limits of Keynesian intervention to stabilise capitalist systems.
7An externality, or transaction spill-over, is a cost or benefit that is not transmitted through the
resource allocationmechanismand is instead incurred by a third party not involved in the transaction.
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actions of the agents are reliant on strong assumptions about themeasurable nature of
future outcomes as a basis for supposedly justified action; the well documented over-
reliance on risk models in finance is about precisely this kind of justification [26].
The conventions also capture the essence of the behavioural assumptions often built
into automated systems, which brings us to what I regard as the fundamental question
of autonomous systems development: if the uncertainty is not measurable, then how
can we build systems that can effectively deal with it? The failures of machines and
organisations that similarly incorrectly assume that the uncertainties of their oper-
ational environments are measurable will similarly see failures tend to accumulate
into sporadic cascading systemic distress, and I warrant that it is largely in recogni-
tion of this unacceptable potential under extreme forms of uncertainty that military
operational settings have proven largely unyielding to the best current technology
has to offer.

How, then, should we conceive of autonomy? If we consider an autonomous
agent as an economic agent self-allocating under fundamental uncertainty, then such
agents - be they humans, organisations or machines - display a property I term
plasticity: the ability to countenance unpredicted, and unpredictable, future states of
the operating environment, in a social setting, within acceptable limits. The name
is in reference to the implied need for the thing exhibiting the property to change
itself in response to changing environmental conditions. Autonomy will then apply
specifically to machines that satisfy this condition. This conception of autonomy
has nothing to do with the inherent sophistication of algorithms, power supplies,
sensors, actuators and circuits, but instead motivates technical finesse specifically to
the extent and in the direction needed to fulfil the plasticity imperative adumbrated
by the intended operational setting; this position reflects the primarily economic
viewpoint of this chapter, in distinction to the algorithmic or robotics emphasis
widely seen in the literature.

21.5 Black Swans and Universal Causality

Taleb famously coined the parable of black swans [48] to describe the occurrence of
unforeseeable rare events having high consequences, and previously described the
strong tendency of humans to find simple, though erroneous, explanations for their
occurrence, after the fact [47]. It has since been established that this description of
uncertainty draws the same basic distinction between stochastic risk and Knight’s

Externalities may lead to inimical outcomes by upsetting the resource allocation mechanism, and
there is typically a large magnification effect whereby a small benefit to one or both parties in the
transaction generates a disproportionately large cost to the third party. Economics attempts to limit
such effects, as represented most famously by Coase’s Nobel-prize winning work on externality
elimination cited in the text. In contrast, management theory contains a branch that aims specifically
at generating externalities for the benefit of a specific party in the transaction (privatisation of profits)
and the cost of other parties, which might include the second party in the transaction (socialisation
of costs).
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intractable epistemological uncertainty [13, 14, 50]. The black swan anecdote serves
to illustrate Knight’s epistemic uncertainty outside an obviously economic or finan-
cial setting. Taleb’s description of the behaviour of humans in concocting reasons
for the event after the fact mirrors Keynes’ conventions describing economic agent
behaviour, but does so in a manner that highlights the role in shaping expectations -
whether economic or otherwise - of a widely discredited position usually known as
universal causality in philosophy.

Taleb’s observation that humans regard events as being much more attributable to
determinable causes than they really are has a long history in philosophy as the notion
of universal causation. Universal causation maintains that all events are the result of
prior events, and this belief connects the construction of Taleb’s post hoc explanations
for rare events with Keynes’ view that economic agents maintain undue reliance on
the veracity of prediction. The post- economic meltdown criticisms of financial firms
assuming that the relevant risks are all measurable is a modern manifestation of the
same effect.

The intuitive appeal of this view lies in thatwheneverwe ask simple questions after
the fact about why a particular event occurred, we can obtain a plausible explanation
for its occurrence in terms of some causal chain of earlier events. So it would seem
on the face of it that every event is caused by something, albeit probabilistically,
and hence that every event follows from prior events according to some governing
logic. Yet the more deeply we dig, the more ostensibly antecedent sets of conditions
look like reasons for deciding to act in a certain way, or, more pertinently, for not
acting a certain way, and the less they look like the inevitable causes of an event that
we first supposed. In other words, alleged causes are really only epistemic factors
that influence the decisions we make from within a problem context, rather than
immutable ontological features of an environment into which the agent peers from
the outside.

Universal causality connects to predictability through causal determinism, which
holds that every event is necessitated by some set of prior events. This claim is then
the antecedent to so-called ‘scientific’ determinism, which concludes therefore that
the world is basically predictable. To elaborate: ‘scientific’ determinism alleges that
the structure of the world is such that future events can be predicted with preci-
sion depending on that of knowledge of the governing laws of the phenomena of
interest and the accuracy of the account of past events. It is worth noting that ‘sci-
entific’ determinism is poorly named, for it is not actually about determinism at all:
determinism refers to the absence of arbitrary choices in the application of transi-
tion operators, with non-determinism then being the admission of arbitrary choices.
Rather, ‘scientific’ determinism is an assertion about predictability, equivalent to
assuming stability and logical completeness. Though perhaps intuitively appealing,
the inference from all events having necessary causes to predictability is flatlywrong:
it is well established that even fully deterministic systems in which the current state
completely determines the transition to a unique subsequent state can be nonetheless
savagely unpredictable [20, 22]. Conversely, non-deterministic systems can also be
completely predictable. Even if we limit ourselves to completely deterministic sys-
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tems and hold that this is a correct characterisation of the world, strong predictability
remains the exception, not the rule.8

So the premise to the conclusion of predictability that we can rely on for, say,
making investment decisions or for autonomously operating in a complex operational
environment, is untenable in general, and we draw this conclusion without needing
to reject the notion that some events may have causes, or even the stronger assertion
that every possible event has causes. It collapses merely when we admit that causes
may be only necessary but not sufficient for at least some events that matter to us in
terms of our decision-making some of the time. Moreover, across a wide range of
contemporary fields, including mathematics, computer science and physics, as well
as economics, it appears increasingly clear that there are also events that just do not
really have any cause at all [7, 8]. This ties in very closely with Keynes’ ontological
notion of uncertainty.

21.6 Ontological Uncertainty and Incompleteness

21.6.1 Uncertainty as Non-ergodicity

An ergodic system [20, 22] is one that tends towards a limiting form that is indepen-
dent of its initial conditions; in a dynamical system sense, this means the phase-space
average is the same as the infinite time average, for all Lebesgue-integrable functions
almost everywhere (meaning except possibly in sets ofmeasure zero). In otherwords,
an ergodic system is one for which sampling - collecting more data - actually gives
more information about the underlying system, so ergodicity characterises the precise
conditions under which obtaining additional data provides additional information.
The mechanisms governing the system are stationary, so they remain constant over
time, and they satisfy some regularity conditions, essentially meaning that they are
well behaved. Ergodicity effectively means that we can float detached from the world
about which we make observations and predictions, thus avoiding the observation
and prediction paradoxes that produce fundamental uncertainty.

PaulDavidson argues that the rational expectations hypothesis and efficientmarket
hypotheses of textbook economics are worthless, and indeed positively dangerous,
on the grounds that real economic systems are inherently non-ergodic: such systems
are not regular or not stationary or both and consequently it is unreasonable to
expect that they will converge to any equilibrium distribution, and they cannot be
amenable to reliable forecast as a result [14].Davidson holds thatKeynes’ ontological
uncertainty pertains to the behaviour of such non-ergodic processes, in contrast to

8I will pick up on the question of exactly what are the conditions under which strong predictability
in principle holds in the next section. In short, the conditions amount to the delineation of Keynes’
ontological uncertainty, which is about absolute limits on what is knowable in principle. Knight’s
epistemic uncertainty and Taleb’s black swans amount to further practical limits on the tractability
of knowing.
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Knight’s epistemic uncertainty and Taleb’s Black Swans, which still presume the
presence of ergodic processes. In the latter case, the surprising outcome simply lies
far out on the tail of a nonetheless fixed and well-behaved distribution, with apparent
uniqueness given by the inordinate time between re-occurrences. In the new edition
of Taleb’s book, he concedes that there is a difference between non-ergodic processes
and black swan events but dismisses the difference between the two as irrelevant.9

But there is a world of difference. The various species in the zoo comprising the
ergodic hierarchy have very different properties, particularly in terms of the kind and
degree of uncertainty they manifest, essentially in terms of the kinds of questions
we might want to ask about the future behaviour of such systems and which of those
questions can be answered in advance of simply waiting to see what happens. The
most important distinction is between the class of ergodic processes and all the other
classes of systems that fall somewhere in the much larger world of processes that are
non-ergodic [20, 22].

To be slightly more formal: the ergodic hierarchy is a classification scheme
for deterministic dynamical Hamiltonian systems, in terms of their relative unpre-
dictability. Ergodic systems characterising certainty, stochastic risk and epistemic
uncertainty are at the bottom of this hierarchy, being the most highly restrictive
and correspondingly the lowest in terms of the level of uncertainty they can man-
ifest. Weak mixings are next, then strong mixings, above which are K-systems,
whose behaviour is already very strongly unpredictable, and the topmost currently
recognised classification are Bernoulli systems, whose behaviour is the most deeply
unpredictable in the hierarchy.10 The criteria for strong mixings have been convinc-
ingly proposed as the demarcation of what is commonly regarded as deterministic
chaos [55]. There are also interesting systems that straddle between K-systems and
Bernoulli systems, known variously as C-systems or Anosov systems, but their rela-
tion to the other levels mentioned here in terms of unpredictability is more compli-
cated and beyond the scope of the present discussion.

Note that non-ergodic systems do not undergo arbitrary change at any moment;
the presence of fundamental uncertainty does not require or entail total disorder. To
the contrary, systems that are non-ergodic will typically fall into transient states of
apparent stability that dissipate as suddenly and unexpectedly as they start, never to
repeat themselves. Strong prediction about future system behaviour is impossible, in
the sense that the kinds of questions we might want to ask about the future behaviour
of the system are not solvable, with higher classes in the hierarchy representing a
situation of having fewer such problems for which there is a solution. Yet this does
not mean that we cannot cope at with life in such a system - as individual economic
agents, people and organisations certainly manage to do so - but rather that we cannot

9This dismissal of the significance of the difference is understandably not well received amongst
researchers in ergodic theory and nonlinear dynamics, for reasons that will become clear.
10Interestingly, entropy is not sufficient to classify K-systems, meaning that there are uncountably
many K-systems with the same entropy but that are not isomorphic; thus Ornstein’s isomorphism
theorem does not work for K-systems. All K-systems are also Bernoulli systems, but not vice versa;
Bernoulli systems potentially manifest greater unpredictability. Yet Ornstein Theory is sufficient to
classify Bernoulli systems.
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expect to do so very successfully by using by relying on methods that presume that
uncertainty is measurable, or that presume ergodicity, typically by using relatively
strong predictions about what will happen in futures delineated by the time periods
over which decisions will play out.11

The power of complex systems to produce long sequences of apparent predictabil-
ity12 is highly seductive. Self-reinforcing beliefs about predictability of future returns
and thus futuremarket behaviour that drive the formationofmarket bubbles is a highly
visible example of this [1, 31, 32, 41, 46, 52]. The precision risk models heavily
implicated in the mortgage-backed securities bubble preceding the Global Financial
Crisis of 2007–2008 provides almost innumerable practical examples of the catas-
trophic failure of ergodic models in what are actually non-ergodic environments.13

They will tend to fail suddenly and disastrously rather than smoothly, but often will
do so only after mendaciously long periods of apparent positive success. Agents
are more easily deceived because holding ergodic expectations about the world will
naturally mean that they will also expect failures to be similarly be ergodic, and
thus relatively benignly behaved and predictable. Yet there is simply no basis for
this expectation. The distinctly irregular and non-stationary quality of the collapses
of ergodic models in what turned out to be highly non-ergodic systems, came as
something of a surprise to those invested in them, to say the least.14

The difference between Keynesian ontological uncertainty and Knightian episte-
mological uncertainty is that the former position holds that some things are simply
not knowable, while the latter entails that with better information and greater abil-
ity to process it we could, in principle, calculate the probabilities for more kinds of
events. The epistemic uncertainty notion ultimately sees the universe still as a collec-
tion of ergodic processes, and uncertainty as essentially a consequence of limitations
that computer science calls tractability. Roughly speaking, tractability limits occur

11There is a growing general awareness in economics, as exemplified here by Davidson’s work [13],
that economic systems worth worrying about are inherently non-ergodic. The inescapable fact that
real economic agents can, do and always have successfully operated under these conditions should
suffice to refute the proposition that it is not possible to operate adequately in such an environment
so we should not bother to do so in artificial intelligence research.
12Even a completely random sequence produces such sequences of lengths that are logarithmic
with respect to the overall observed sequence length, which is deceptively long [35].
13The economic analyses typically describe this in terms of the catastrophic cascading failure of the
application of precision risk models under conditions where the falsity of the strong underpinning
assumptions to the effect that all relevant risks are measurable was never examined (nor were these
assumptions even stated, so much were they taken for granted). Under Davidson’s direct mapping
from ontological uncertainty in economics to non-ergodicity, we have the stated interpretation.
14John Meriweather famously described the financial collapse of 2007 as a ten-sigma event, which
means, according to the predominant economic models, that it should occur no more than about
three times in the entire history of the universe. The models were designed from the outset to
eschew the very possibility of catastrophic failure. Apparently it did not occur to the adherents of
the orthodoxy even after the fact that their models might be flawed, despite the manifest empirical
failure and the clear absurdity of many of their base assumptions. Even in 2010, Bernanke argued
that the problem was not that the economic models failed to see the economic crash coming, but
rather it was that the economic crisis was an event that was just not supposed to happen. Apparently,
reality should consider itself refuted.
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because although a problem may be formally solvable, the time and space require-
ments to solve it rapidly explode beyond the ability to meet them as the problem size
increases. So the inability to sample a system for long enough in order to observe
occurrences of ultra-rare events -black swan evens - are a tractability constraint of
the type that characterises epistemic uncertainty.

21.7 Uncertainty and Incompleteness

The Keynesian position maintains that obtaining answers to some questions is just
not ontologically possible, in exactly the same grain as the deep mathematical uncer-
tainty expressed in results such as the incompleteness of every formal axiomatic
system that contains arithmetic, the existence of recursively inseparable sets, and the
unsolvable nature of most computing problems, most famously the Halting Prob-
lem. In other words, ontological uncertainty amounts to the fact that problems of
determining future outcomes in non-ergodic economic systems are generally para-
doxical, because such systems allow the possibility of self-reference. So the Key-
nesian uncertainty concept amounts to an economic manifestation of algorithmic
randomness, which rests on computability theory and amounts to the modern study
of incompleteness phenomena, by regarding effective procedures as compressions
of potentially unbounded sequences of data generated by the system of interest and
asking about what sequences have finite compressions.

Formal axiomatic systems aremathematical languages allowingus to talk formally
about phenomena in which we are interested, including other axiomatic systems, so
it’s difficult to over-state their significance to autonomy. They each consist of a set of
basic terms and a set of reasoning rules defined by axioms that describe, essentially,
what we might conclude from what given conditions. Such a language allows us to
formally state propositions, some of which might be provably true in the sense of
being logically entailed by the axioms, such as “there is no largest prime number”
in Peano Arithmetic (the basic theory of numbers, see for instance [24]). Other
expressible propositions, such as “adding two positive numbers together yields a
number smaller than either” in Peano Arithmetic, reduce to contradiction, which is a
primitive term of a system that is false in all interpretations. The most basic question
about whether we have a viable axiomatic system to use is whether or not the axioms
themselves entail contradiction; if so then the system is said to be inconsistent, and
it does not represent a viable basis for reasoning because in such a system it is
possible to conclude absolutely anything. As famously shown by Kurt Gödel [19],
this fundamental question of the consistency of formal reasoning systems turns out
to be anything but trivial.

Some formal axiomatic systems, such as Turingmachines [39, 45], describe com-
putation and thus set the ultimate basis for machine intelligence. In this setting, the
complexity of any other system is defined as the size of the smallest procedure,
with respect to some reference machine model, that reproduces the data observed
from that system [35]. The remarkable fact is that this complexity is asymptotically
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independent of the particular machine model, up to additive constants.15 The con-
ditional complexity of a sequence with respect to some information is the smallest
effective procedure that takes the information as an input and produces the sequence
as an output. A sequence is then said to be incompressible when the smallest size
effective procedure is asymptotically comparable to the size of the sequence. For
infinite sequences, the complexity is the limit as the length of an initial segment of
the sequence approaches infinity of the size of the smallest effective procedure pro-
ducing the segment, divided by the length of the initial segment of the sequence. If
the complexity in the limit is non-zero then the sequence is incompressible, meaning
that it represents a fixed individually random mathematical object, indistinguishable
from the flips of a coin by any possible statistical test.

As indicated earlier, an irreducibly random sequence of this type provably con-
tains surprisingly long sequences, of about a logarithmic function of the observed
sequence length, that appear to be regular and stationary [35]. There is a deep con-
nection between the non-linear dynamics view discussed earlier and the algorithmic
information view of unpredictability: the trajectories of a non-linear dynamic system
can be encoded as infinite sequences by dividing the state space of the system up into
numbered cells and tracing the trajectories through these cells. A trajectory is random
when there is a partitioning of the state space into cells such that the encoding of the
trajectory is algorithmically random. Predictability means having a compression - in
terms of some effective procedure - for anticipating the outcome in advance. Yet
there are simply not enough compressions to go around. It is not even close: the
shortfall is exponential, meaning vast majority of possible systems are left with no
compression by which their trajectories can be predicted that is shorter than simply
waiting around to see what eventually happens.

The underlying reason is that prediction in general is paradoxical: while a con-
tradiction is both true and false, a paradox is neither true not false within the logical
frame of reference in which it is stated. Though we usually think of paradoxes as
obviously self-referential statements, they are usually not so obviously discernible
because paradoxes actually do not need not be visibly self-referential. The famous
Halting Problem for Turing Machines, the Busy Beaver Problem,16 and their equiva-
lents in other computational models, as well as the compression problem are all actu-
ally paradoxes that do not look like it on the face of it because their self-referential
nature is hidden from immediate view.

The reason for this is that the self-referential expression is not as primitive a
notion as it might at first seem: numerous systems of logic come with various kinds
of implicit function theorem by which self-referential statements can be turned into
equivalent statements, called “fixed-points”, that lack obvious self-referentiality [5].
Paradoxes are normal, natural, and extremely common, and formalmathematical sys-

15This is one of those mathematical facts that seems remarkable upon first discovery, and entirely
natural to the point of obviousness afterwards.
16Give me the largest natural number that can be generated by an effective procedure with respect
to some model of computation - a program in your favourite programming language, if you
prefer - limited to at most a given size.
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tems are full of them17 [7, 8]. Turing’s original proof of the unsolvability of the Halt-
ing Problem for Turing Machines, by a Cantor Diagonalisation Argument,18 further
reveals the detailed nature of mathematical paradoxes, and hence of the irreducible
nature of fundamental uncertainty: they are kind of folded-up infinite regresses. The
proof in question is essentially just an infinite successive unfolding of the Halting
Problem paradox to yield what amounts to an impenetrably unknowable number [8].

The basic lesson of Gödel’s Incompleteness Theorems [19] is that any system that
allows for the possibility of self-reference - any system containing basic arithmetic
will do - will give rise to paradoxes, and this will manifest as uncertainty in the
form of the presence of problems we might like to solve but to which there can
be no solution from within the system. A bigger system might be able to provide a
solution, but we don’t in general have the luxury of stepping out to it and peering into
the phenomena with which we are concerned from the outside. The basic example of
this is that we are bound to compute things from within the limitations incumbent in
the models of computation, which are all known to be equivalent and absolute, and
under the Church-Turing thesis are not surmountable by any other realisable system
either [39, 45].

Can the ergodic hierarchy provide a formal mathematical basis for characterising
plasticity - the property of being able to survive in an unpredictable environment?
I suggest so: if the observations that an agent makes of its environment meets the
criteria of, say, a K-system, and yet that agent is able to survive in that system for
better than a logarithmic function of time, where logically time would be taken
in terms of successive observations the agent makes of its environment, then we
know that the agent must be doing better than merely taking advantage of an appar-

17As an example of this, I recently played around with paradoxical statements about Peano Arith-
metic - axioms about the behaviour of the natural numbers under the usual operators - using Provabil-
ity Logic. Provability Logic system consists of familiar propositional logic with a modal operator
� meaning “it is provable that”, its dual ♦ meaning “it is not disprovable that”, and Löb’s The-
orem, which states that in any system containing Peano Arithmetic, any time we can prove that
something implies its truth we may conclude that it is provable. We can use Provability Logic
to explore and even to write computer programs to generate arbitrarily many generalisations of
Gödel’s Second Incompleteness Theorem [19] for us, by feeding it with paradoxical statements.
Provability Logic’s implicit function theorem guarantees that we have unique solutions to a large
class of self-referential expressions. For instance, the solution �(��⊥) → (��⊥) to a paradoxical
statement p ↔��p happens to be direct restatement in Provability Logic of The Second Incom-
pleteness Theorem, asserting that the system cannot prove that it is consistent, or equivalently, that
if it can prove that it is consistent then it must be inconsistent. Here, the symbol ↔ stands for if and
only if, → is implication, and ⊥ stands for contradiction. The statement ��⊥ says that the system
is consistent.
18Cantor’s DiagonalisationArgumentwas first used to prove that there are infinite sets that cannot be
put into one-one correspondence with the natural numbers, and later to prove that the real numbers
are uncountable, Russell’s Paradox whereby attempted formulations of set theory prior to Zermelo
set theory are inconsistent, and Gödel’s First Incompleteness Theorem, as well as the unsolvability
of Turing’s Halting Problem [39, 45].
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ently regular transient state, and thus must be dealing with some effectiveness with
K-system uncertainty.19

21.8 Decision-Making Under Uncertainty

Keynes’ ontological uncertainty corresponds to incompleteness phenomena in the
same manner that Knight’s epistemic uncertainty mirrors intractability, meaning that
the root cause of ontological uncertainty is the possibility of self-reference and thus of
logical paradox. Agents self-allocating in an environment where their actions affect
the future states of that environment and that expectations about the future states of
the environment impact on the agents’ decision is logically self-referential. This is
why I consider such self-allocation to be a feature delineating autonomy. The self-
referential nature of self-allocation means that ultimately problems of maximising
utility or efficiency in the customary sense must be formally unsolvable, so the
question remains what we can do in terms of developing autonomous systems. In
economics and finance, an examination of trading strategies is a good place to start
for a solution, in light of the huge literature on both these kinds of strategies and their
outcomes for both the agent and for the overall systems of which they are a part.
To illustrate this: speculation trading specifically relies on the fact that asset prices
are non-stationary, for there simply is no profit to be had for an asset speculator in a
stationary price environment.

Finance economics identifies two basic types of trading behaviour: those who
attempt to predict future price movements by looking for patterns in historical data
are termed chartists, or sometimes technicians; those who trade on the basis of trying
to determine the financial fundamentals of assets - their ‘real’ value - are termed
fundamentalists (this terminology is common in the empirical studies of market
dynamics; see for example [31, 32, 37, 46, 52]). Of course, real tradersmay represent
a mix of trading strategies, and may alter this mix over time, so these types should
be read as pertaining more to agent behaviours rather than to the agents themselves.
The chartists are the speculators, and are willing to purchase assets at prices above
their fundamental value, in the intention of making gains by selling those assets
at still higher prices. Chartists thus operate essentially on the basis of scepticism
about the rationality of other traders. They are traditionally held to be the bad guys
insofar as asset bubble formation is concerned, because this speculative demand
is well known to tend to build on itself in a self-reinforcing manner: speculative
trading means higher demand, which pushes asset prices higher and higher above
their fundamental values, resulting in bubble formation.

The fundamentalists no longer get off the hook so easily with respect to asset
bubble either: the problem lies in the difficulty in assessing assets to determine their

19I have started to try to formalise this concept. The difficulty seems to lie in defining a general notion
of what ‘surviving’ should mean in formulating a deterministic dynamical Hamiltonian model of
agents interacting in an environment.
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fundamental value and thus rational price. The crudeness of commonly used asset
valuations is obvious from even a cursory examination of the kinds of models typi-
cally in use, such as the Gordon Growth Model, 2-stage model, 3-stage model and
H-model [37], yet the broader issue facing the fundamentalist is that uncertainty
must be an inevitable limitation with any asset value model, irrespective of its math-
ematically sophistication.20 Asset valuation turns out to be effectively just a different
mode of speculation (see for instance [31, 41]). The resulting systematic valuation
errorsmay drive asset bubble formation, even in the absence of the speculation-driven
demand of the chartists.

A market containing such traders allows the possibility of self-reference, because
the behaviour of the market is a consequence of the behaviours of all the traders
who operate within it, and whose behaviours are, in turn, deeply effected by the
current state and history of the market. Consequently we should expect fundamental
uncertainty here: the problems the agents are trying to solve are without complete
solution, and indeed this manifests in real markets in the form of unpredictability,
or what economists know as “volatility”. In the final analysis, economically rational
beliefs are harder to come by than it may appear at first blush. Maximising reward
might make perfect sense when we consider an individual agent in isolation. Yet the
collective consequences of agents effectively relying on strong assumptions about
the independence of the future states with respect to their individual actions in the
present means that reward maximisation becomes self-defeating, when, during the
subsequent crash, almost everybody following such strategies loses.

21.9 Barbell Strategies

A barbell strategy21 [37] is formed when a trader invests seeks to increase risk-
adjusted returns by investing in a combination of safe long duration investments, and
the small remaining portion in short duration securities, with nothing in intermediate
duration investments. Closely related is laddering,22 which avoids reinvesting assets
in unfavourable economic environments, by investing in multiple instruments having

20Indeed, this is an example where increasing sophistication is actually dangerous, by creating false
impressions about the reliability of the model. As explained elsewhere in the text, this factor of
over-confidence in precision financial risk models is heavily implicated in the GFC of 2007–2008,
and thus gives us a highly topical real-world example of the phenomenon.
21The term is very common in financial economics. See for instance http://www.forbes.com/
forbes/2005/0509/144.html and http://www.investopedia.com/articles/investing/013114/barbell-
investment-strategy.asp for brief overviews.
22Not to be confused with a type of insider trading known by the same name. Laddering is also
used as a term to denote a process whereby insiders purchase stock at lower prices while artificially
inflating the price to permit them to then sell at a higher price, by agreeing upon purchase at the
lower price to also purchase additional shares at some higher price. This practice was a target of SEC
investigations in the wake of the Global Financial Crisis of 2007–2008 [Fjesme, S.L, Initial Public
Offering Allocations, Price Support and Secondary Investors, Journal of Financial and Quantitative
Analysis (JFQA), Forthcoming].

http://www.forbes.com/forbes/2005/0509/144.html
http://www.forbes.com/forbes/2005/0509/144.html
http://www.investopedia.com/articles/investing/013114/barbell-investment-strategy.asp
http://www.investopedia.com/articles/investing/013114/barbell-investment-strategy.asp
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different maturity dates; the difference is that laddering spreads investment across
short, intermediate and long maturity instruments. Laddering can be seen as a kind
of nesting of barbells; while real autonomous systems may in general have to ladder
in this manner, I will focus here on barbells as the primitive basis of such a plan of
attack.

The opposite of a barbell is a bullet strategy [37], where a trader invests in inter-
mediate duration securities, to build a portfolio that has securities that mature con-
sistently over time. Note that both fundamentalists and chartists typically employ a
bullet strategy, just with respect to different choices of problem: the fundamentalist
works on the basis of discounted average expected future dividend returns, while
the chartist operates using expectations about patterns in asset price movements. The
barbell strategy rests on a different base choice of problem: surviving the unexpected,
rather than maximising expected returns. A barbell on only the shortest and longest
bonds in a bond market is, under a simplistic forward rates assumption, known to be
a maximiser of the modified excess return [10].

Taleb [49] invokes a version of the barbell strategy emphasising a large majority
in extremely safe instruments that pay poor returns and the remaining in highly
risky but potentially highly profitable instruments as a strategy to insulate against
black swan events. Taleb presents barbells as applicable outside trading markets;
this leap is not a large one having undertaken to regard decision-making in general
as resource allocation. The strategy works best in periods of high inflation: put
options are cheaper under high interest rates in accordance with the Black Scholes
Option Pricing Formula [37], and market crashes tend to coincide with periods of
high interest rates. In other words, the strategy works well under conditions of high
volatility, or when viewed over the long term where such periods will manifest
(usually quickly and unexpectedly), which is precisely the conditions of Taleb’s
claim.

Indeed, a formalisation of the uncertainty of asset distributions as entropymaximi-
sation, without any utility assumption - most of the mathematical finance literature
dealing with entropy assumes entropy minimisation as the optimisation goal - yields
the barbell portfolio as the optimal solution [17]. In this sense, the barbell strategy
seems to constitute a kind of fixed-point solution to an entropic formulation of sur-
vival in high-uncertainty environments, where utility assumptions cannot properly
apply; recall that a fixed-point is an invariant that resolves a self-referencing question
by removing the direct self-reference. Their apparent success across a wide vari-
ety of environments and conditions seems to support this interpretation, and makes
them a viable starting point for defining the kinds of behaviour that self-allocating
autonomous agents might use.

Keynes [25] provided a solid macroeconomic basis for barbell strategies with his
explicit separation of the impetus for profit seeking from that for failure exposure,
which sets up a difficult trade-off with which agents in such a system must grapple,
and which provided the basis for the necessity of governmental moderating control,
particularly through monetary policy. Barbells in investment amount to replaying
this split at a microeconomic level: instead of retreating into prophesies, going along
with majority views, and trying to optimise future returns by riding the middles of
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economic waves, agents that employ a barbell (or to a lesser extent laddering) are
effectively attempting to match the bimodal nature of their investment problem with
a bimodal solution aimed specifically at producing a favourably asymmetric effect.
To put it more in terms suited to autonomous decision-making, such agents manage
their exposure to disastrous outcomes they can envisage but that they cannot brook on
the one hand, while investing whatever they can thereafter reasonably afford to lose
on a selection of bets that they expect will usually bomb but that will sporadically and
unpredictably return disproportionately large rewards. The first component is about
hedging against unacceptable outcomes, and it only requires that agents determine
their sensitivity failure and be able to determine hedging actions against it, not that
they predict the future states of their environment.

The second component is about taking advantage of possible opportunities but
doing so only with what the agent can bear to lose, and again this requires only that
agents be able to recognise potentially propitious junctures, not that be able to predict
what will happen with them in the future. This reasoning about affordable bets on
sporadic high return investments is not the same as the more frequently notion of
high risk and high reward, which refers to a symmetric situation in which there is
high chance of an unacceptable outcome and a low chance of a very high reward.
Such barbell agents will not be interested in situations of high risk and high reward
in the usual sense, which would at least implicitly presuppose that they are able to
reason about known or at least in principle knowable distributions over known or
at least knowable sample sets of outcomes. The basic mechanism is about making
asymmetric opportunity bets: the rewards are potentially high, the risk of failure is
unquantifiable, but losing the bet is affordable.

Under this approach, the largest part of available resources, both intellectual and
physical, are typically devoted to simply avoiding exposure to decisive failure; it
would be a rare circumstance where this concern did not dominate the allocation of
limited resources in a military operation. Modern defence forces arguably already
operate along the lines of a barbell investment, though it seems to have not previously
been formulated in these terms.Military forces plan and then plan again. They recon-
noitre, looking for exposure to their vulnerabilities as they best conceive of them at
the time. They inefficiently keep a third in reserve, without knowing in advance how
or if it will be required, and position assets to have them available to respond quickly
to the unexpected, arguably given more determination of their critical vulnerabilities
than positive predictions about the future will hold. They constantly review plans
in light of sudden unpredicted experiences of subordinate organisations or shifts in
the strategic context, and they unabashedly change our whole approach, in princi-
ple, at least, at a moment’s notice, if the available evidence compels them to refute
their plans. They do everything they can to cope with the reality of being constantly
disrupted.

Having so hedged against unacceptable outcomes, to the extent possible under the
circumstances, with whatever resources remain, military command and control will
put a little something into trying to create and exploit opportunities that just might
reap disproportionately large benefits. The central point in barbell strategies is that
such opportunity investment is restricted to that which the agent can afford to lose -
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noting that just what it might have to be prepared to lose is a highly context-specific
determination. Note that nowhere in a barbell strategy are we concerned with directly
considering efficiency and maximising expected utility, nor does it heavily rely on
knowledge of distributions over known outcomes. Although Taleb’s version of the
barbell is aimed at addressing the problem of rare events on the tails of stationary
distributions, the barbell strategy appears to potentially applicable to Keynes’ onto-
logical uncertainty as well: it remains feasible in principle even within a non-ergodic
system, evenwhen the agent cannot determine the sample sets of the relevant possible
outcomes.23 It seems that our would-be autonomous machines capable of handing
high uncertainty environments including those of military operations could follow
the same approach.

21.10 Theory of Self

There is a further complication to consider. In economics, capital rationing refers to
the process by which limits are imposed on the ability of economic agents to invest
of resources [11]. An economically efficient market implies access to capital markets
to obtain resources, whereby an agents could, in principle at least, access virtually
any amount of capital at market rates in order to pursue any and all investment
opportunities that promise a positive return, allowing for the cost of the capital and
other expenses and some margin dependent on the perceived risk of the project. In
contrast, an agent operating under capital rationing faces potentially high decision-
making complexity because of the investment options can no longer be considered
in isolation.

Soft capital rationing occurs when the agent itself exercises an internal policy
restricting the size of investments, which can be understood as an attempt to manage
exposure to uncertainty. Examples of soft capital rationing include internal budget
allocations, setting aside capital for unforeseen contingencies, and setting a hurdle
rate, which is a minimum rate of return as a required compensation for the perceived
risk of the option.Ahurdle rate can also beviewedas anopportunity cost,whichmight
be evaluated as the rate of return from the next best investment opportunity having a
similar perceived risk profile. Hard capital rationing is externally imposed, where the
agent cannot raise capital through equity or debt. Regulatory capital requirements on
banks, an inability to raise capital because of previous low performance, and legal
prohibition on national defence organisations from accessing capital markets are all
examples of hard capital rationing.

In addition to forcing the agent to simultaneously considermultiple options against
one another, the presence of capital rationing violates the conditions of market effi-

23The dismissal mentioned earlier that Taleb makes towards the distinction between rare events in
an ergodic system and events in a non-ergodic system being inconsequential might be generously re-
interpreted as a recognition of the potential applicability of barbell strategies to classes of situations
of non-ergodic uncertainty, and hence to the weaker ergodic rare events of Knightian uncertainty
with which Taleb is concerned as well.
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ciency, so we should not expect to have an economically efficient allocation of
resources. This is a central point in this chapter: conventional notions of utility max-
imisation break down rapidly under complexity. Moreover, the quality of decision-
making of agents under capital rationing is especially sensitive to unforeseen changes
in the future cost of capital, whichmeans for autonomous agents potentially exquisite
sensitivity to failure under uncertainty.

Given hard and soft constraints under ontological uncertainty, decisions regarding
howmuch resource to put into each side of the strategy amounts to judgements about
own tolerance to loss, more than it is about the potential for the environment to dish
up favourable or unfavourable outcomes. So at the core of the strategy is the require-
ment for autonomous machines to be equipped with a theory of self, specifically
for the purpose of evaluating exposure to unacceptable failure and deciding hedging
plans, and for recognising feasible opportunity for reward and determining invest-
ment plans given a range of such opportunities. Theory of mind in the usual sense is
then really an extension of theory of own mind as the more fundamental concept for
autonomous systems research. The strategy amounts, therefore, to a mechanism for
substituting the unapproachable problems of prediction and knowledge acquisition in
uncontrolled unstructured environments in general with the much more manageable
problem of self-knowledge.

Note that soft capital rationing is self-imposed, and amounts to judgements and
this condition appears to very directly imply a requirement for an agent theory of
self. It also seems that a theory of self would imply that, in a sense, such agents would
effectively talk to themselves, much as humans do [28, 38], constructing a kind of
narrative of self as they debate with themselves about different investment options,
and moderate and alter their own beliefs and expectations.

There is a deep issue lurking here that motivates and underpins this proposition
about agency. Incompleteness means that self-knowledge, and thus knowledge of
one’s own sensitivity to failure, is inherently limited; after all, we all observe our-
selves from inside ourselves. A theory of mind supporting the development and
application barbell-type strategies accommodates this in two ways simultaneously.
Firstly, the judgement caveat on plasticity and thus on autonomy concerning limits
we consider to be operationally acceptable is about making visible to the agent itself
the consequences of the limits of its own self-knowledge in terms of managing the
effects of the limited ability of anything - or anyone - to determine its own failure
modes. Secondly, with respect to determining potential exposure to unacceptable
failure, I am advocating a defensive kind of posture: exposure to decisive failure is
a matter of choosing boundaries beyond which unacceptable failure is a potential
rather than a certainty. We cannot determine failure sensitivity completely or with
exactitude, but we can choose those boundaries conservatively or optimistically and
in priority order depending on our faith in the broader social enterprise to absorb the
possible consequent failures. It seems that this problem of self-knowledge is much
more manageable, however, both by virtue the fact that the system we then have
to deal with is much smaller than that of the entire environment, which, after all,
includes the agent itself, and by virtue of the fact that we humans are a testament to
how successful in uncertain worlds agents armed with self-knowledge can be.
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21.11 Conclusion

There is a deep connection between economics and autonomous systems research,
for the simple reason that the two fields have at their core questions about the nature
of agency as autonomous decision-making. The difference is roughly that economics
is mainly concerned with descriptive models of agency, while artificial intelligence
is squarely focussed on engineering prescriptive models. The interface has been, and
must be, permeable. Both fields face the same basic issues about the nature of agency
and, in particular, suffer from the inadequacy of current approaches with respect to
decision-making under conditions of fundamental uncertainty. Previous work [44]
in the economic literature has sought to exert influence primarily on economics
audiences about poor representations of human agency, has noted the role in artificial
intelligence of wishful mnemonics in masking the severe limitations incumbent in
standard assumptions, and has concluded that artificial intelligence has not even
begun to replicate the abilities of real humans to cope with fundamental uncertainty
as a result.

This chapter is firstly about raising awareness amongmachine learning, automated
reasoning and robotics communities about the relevance of the economic literature
on decision-making under uncertainty. In particular, economic theory distinguishes
between stochastic risk and unmeasurable epistemological uncertainty, and between
epistemological uncertainty and a deeper notion of ontological uncertainty. Secondly,
it is about relaying and extending the mathematical underpinnings of this economics
literature. The connection from the basic economic notions of uncertainty to non-
linear dynamics and ergodic theory that has been relatively recently established in
economics [13, 50], with epistemological uncertainty and ontological uncertainty
formally distinguishable on this basis. I have also sought here to extend this view-
point with reference to the well established mathematical practices of formulating
questions about future behaviours of non-linear systems as computational problems,
whereby ontological uncertainty thenmanifests as formally unsolvability and incom-
pressibility [35, 39].

Yet the formal unsolvability of computational problems is a particularly deep
extension to the slightly earlier results establishing the incompleteness of non-trivial
systems of formal reasoning, which means that within such systems there are always
questions that cannot be answered, even with infinite resources. Ontological uncer-
tainty can perhaps be best understood on this basis: the possibility of self-reference
in any system means that some problems we might like to solve, such as predicting
what will happen in the future, are paradoxical in the sense of being unresolvable
within the system as either true or false.

Far from constituting an abstruse irrelevance, the practical consequences in eco-
nomics of failures to handle this kind of uncertainty are difficult to overstate. The
sophisticated risk models heavily implicated in the 2007–2008 GFC [3] are now
widely acknowledged as having failed so spectacularly for the precise reason that
they fail to address epistemological - let alone ontological - uncertainty. There is
abounding circumstantial evidence that the same kinds of failures have been felt
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with respect to applications of artificial intelligence for a very long time, particularly
in the form of the manifest dearth of genuinely autonomous military operational sys-
tems. The failure of ergodicmodels in non-ergodic environmentswill be non-ergodic,
meaning that questions about the future occurrences of failure will be unanswerable,
and thus failure will be observed as unpredictable and sporadic after seductively long
periods of apparent success.

In addition to the prime example of this type of failure, financial economics pro-
vides awindow into the kinds of strategies that have already been applied successfully
in securities markets to cope with uncertainty. Such environments display ontolog-
ical uncertainty because they allow the possibility of self-reference, because future
outcomes are dependent on agent behaviour, which depends on expectations about
future outcomes. The consequence is that supposedly rational reward-maximising
behaviour for an individual agentmay easily be ultimately self-defeating;whatmakes
apparent sense for the individual does not necessarily make sense for the system as
a whole.

Barbell trading strategies and their relatives aim to change the problem choice
from expected reward maximisation to survival in face of intrinsically unknowable
futures. The idea is to divide resource allocation into two logical steps, with the first
step being allocation of resources to avoid exposure to unacceptable outcomes. In the
second step, remaining resources can be utilised to pursue opportunities, which will
usually amount to affordable failures yet will sporadically reap large returns. While
not additive, both concerns have to be considered together under conditions that
amount economically to hard capital rationing, which make decision making much
more difficult;moreover, the resource limits concernedmay not be fully determinable
in advance. At the centre of this picture is a requirement for self-knowledge: a
theory of self seems necessary to recognising failure sensitivity and opportunity in
high uncertainty environments under partially observable hard resource limits. The
limits of self-knowledge together with the complexity of decision-making under hard
capital rationing with the possibility of unexpected budget changes appears to imply
that autonomous problem problem solving must be intrinsically social.

Autonomy boils down to developing decision processes for machines for solving
problems in complex environments; ontological uncertainty, which I have empha-
sised in importance over epistemic uncertainty, boils down to the commonoccurrence
in complex environments of seemingly straightforward decision-making problems
for which there can be no solution. The future of autonomous research - as with eco-
nomic theory - will be about changing the problem choices of the past, and, in doing
so, effectively altering what it means for the problem to be acceptably solved, than
it will be about advancing the technical development of most currently established
methods. The technical developments matter, but are subordinate to wiser choices
about how they are applied. Fundamental uncertainty has to feature as the central
concern of robotics, machine learning and automated reasoning, for otherwise the
account of genuinely autonomous operationally usable systems will surely remain
at zero.
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