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ABSTRACT
Advances in the field of touch recognition could open up
applications for touch-based interaction in areas such as
Human-Robot Interaction (HRI). We extended this chal-
lenge to the research community working on multimodal
interaction with the goal of sparking interest in the touch
modality and to promote exploration of the use of data pro-
cessing techniques from other more mature modalities for
touch recognition. Two data sets were made available con-
taining labeled pressure sensor data of social touch gestures
that were performed by touching a touch-sensitive surface
with the hand. Each set was collected from similar sensor
grids, but under conditions reflecting different application
orientations: CoST: Corpus of Social Touch and HAART:
The Human-Animal Affective Robot Touch gesture set. In
this paper we describe the challenge protocol and summa-
rize the results from the touch challenge hosted in conjunc-
tion with the 2015 ACM International Conference on Multi-
modal Interaction (ICMI). The most important outcomes of
the challenges were: (1) transferring techniques from other
modalities, such as image processing, speech, and human ac-
tion recognition provided valuable feature sets; (2) gesture
classification confusions were similar despite the various data
processing methods used.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Haptic I/O; I.5.2 [PATTERN
RECOGNITION]: Design Methodology—Classifier de-
sign and evaluation, Feature evaluation and selection; I.5.4
[PATTERN RECOGNITION]: Applications—Signal
processing

General Terms
Performance
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1. INTRODUCTION
Touch is an important non-verbal form of interpersonal so-
cial interaction; it is used to communicate emotions and
social messages [8]. In order to enable artificial social agents
such as robots to understand human touch input there is
a need for automatic recognition of different types of touch
[14]. Enabling touch-based interaction with robotic animals
(e.g., [15, 18]) and humanoid robots (e.g., [6, 13]) is of in-
terest for fields such as Human-Robot Interaction (HRI) [2].
As the recognition of touch behavior has received far less re-
search attention than recognition of behaviors in the visual
and auditory modalities (e.g., see [19]), we aimed to spark
interest into this relatively new field by organizing a touch
challenge.

This challenge focused on the recognition of touch ges-
tures with social meaning that were performed by hand on
a pressure-sensitive surface; we call these ‘social touch ges-
tures’. Touch data has been collected from subjects per-
forming different sets of touch gestures on different sur-
faces/embodiments (e.g., [1, 4, 5, 6, 7, 12, 13, 15]). Ap-
propriating methods developed in more mature fields such
as speech recognition and video analysis could be beneficial
for moving touch recognition forward. By publicizing two
distinct touch data sets, we allowed researchers with exper-
tise in other sensory modalities to try out their processing
techniques on our touch data.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the two provided touch data sets; Section 3
highlights the challenge protocol; an overview of the results
and discussions of the test set label submissions is in Sec-
tion 4; and we conclude with high-level findings in Section 5.

2. TOUCH DATA SETS
For the challenge, two data sets were made available con-
taining labeled pressure sensor data of social touch gestures.
Table 1 summarizes the data sets’ attributes.

2.1 CoST: Corpus of Social Touch
CoST [11, 12, 17] contains 14 touch gestures: grab, hit,
massage, pat, pinch, poke, press, rub, scratch, slap, squeeze,
stroke, tap, and tickle. These gestures were registered on
an 8×8 pressure sensor grid which was wrapped around a
mannequin arm. This corpus consists of the data from 31
subjects performing the 14 touch gestures in 3 variations:
gentle, normal, and rough. Subjects were restricted neither
in the amount of time taken for performing each gesture nor
the number of gesture repetitions performed in each cap-
ture. The data provided for this challenge consisted of the
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Table 1: Data set attributes as provided for the challenge.
Attribute CoST HAART
# of touch gestures 14 7
Sensor grid size 8×8 8×8a

Sensor sample rate 135 Hz 54 Hz
Sensor values 0–1023 0–1023
Gesture duration variable 8sb

Touch surface mannequin arm dependent on condition
Conditions gentle and normal variations substrates and covers
# of subjects 31 10
Train/test split 21/10 subjects 7/3 subjects
# of gesture captures 5,203 829
atrimmed from collected 10×10 grid, btrimmed from collected 10s capture

gentle gesture variation (2,601 captures) and the normal ges-
ture variation (2,602 captures). This data set was provided
in both CSV and MATLAB file formats and included seg-
mented gesture captures of varying length, sampled at 135
Hz, and containing pressure values of the 64 channels rang-
ing from 0 to 1023 (i.e. 10 bits). Labels consisted of touch
gesture type, gesture variation, and subject number.

2.2 HAART: Human-Animal Affective Robot
Touch

HAART [4] contains 7 touch gestures: pat, constant contact
without movement (press), rub, scratch, stroke, tickle, and
‘no touch’. These gestures were found to be the most often
used of those in Yohanan et al’s Touch Dictionary [18], gath-
ered to communicate emotion in human-animal interaction.
For the HAART data set (collected from 10 subjects), each
touch action was performed on a 10×10 pressure sensor [7]
for 10 seconds. To assess feature robustness under realis-
tic operating conditions when installed on a robotic animal,
each subject contributed gestures with the sensor mounted
on all permutations of 3 substrate conditions (firm and flat;
foam and flat; foam and curve) and 4 fabric cover conditions
(none; short minkee1; long minkee; synthetic fur). The re-
sulting data set includes 829 gesture captures (12 conditions
× 7 gestures × 10 subjects minus 11 erroneous capture in-
stances). Each capture is 10 seconds of a continuously re-
peated gesture, sampled at 54 Hz and trimmed to the middle
8s (432 frames); there are generally 10–15 gesture instances
per capture. This data set was provided as a CSV file and in-
cluded the center 8×8 frame (trimmed for consistency with
CoST) with pressure values ranging from 0 to 1023. Labels
consisted of touch gesture type, condition set, and subject
number.

3. CHALLENGE PROTOCOL
The aim of this challenge was to develop relevant features
and apply classification methods for recognizing social touch
gestures. Gesture classification was independent of the con-
dition (i.e. gesture variant, substrate and cover) for exam-
ple, ‘gentle stroke’ and ‘normal stroke’ were considered to be
part of the same class. Participants had the choice of work-
ing on one of the data sets or on both. For the train/test
sets, subjects were randomly split into 21 train, 10 test sub-
jects for CoST and 7 train, 3 test subjects for HAART. This

1Minkee (or minky) is a chenille-like fabric commonly used
for baby blankets and stuffed toys.

split ensured that for each of the two data sets, any one sub-
ject’s touch data belonged to either the training set or the
test set.

The training data for both the CoST and HAART data
set was made available to the registrants of the challenge.
We provided the test data sets without class labels a month
after initial publication. Participants were given 2 weeks to
process the test data. Any number of test label submissions
could be made up to a deadline (see Tables 2 and 3); once
this date had passed, we released the true test labels as well
as a summary of their results to the challenge participants.

4. TEST LABEL SUBMISSION RESULTS
Results of the test label submissions were reported in the
form of a confusion matrix and accuracy was used to measure
overall performance (see Tables 2 and 3).

4.1 Data pre-processing
There is not much standardization in the extraction of fea-
ture sets for touch data processing. This section discusses
the data pre-processing steps that were taken by the chal-
lenge participants consisting of data filtering, feature extrac-
tion, and feature selection.

The data that was provided for the challenge was previ-
ously filtered for erroneous entries and segmented into ges-
ture captures [12]. However, gesture captures of the CoST
data set are of variable duration and can contain a single
gesture instance or multiple repetitions. This increased the
difficulty of automatic segmentation based on pressure dif-
ferences over time. Ta et al. explored additional techniques
for automatic segmentation to further reduce the amount
of excess frames [16]. However, these methods for auto-
matic segmentation did not improve classification. The ges-
ture captures from the training set were then manually seg-
mented based on the shape and duration which offered little
to negative improvement (see Table 2) suggesting that clas-
sifiers are fairly robust to imprecise segmentation.

For the challenge, many interesting features were ex-
tracted but we describe only a couple of notable approaches
here. In previous literature (e.g., [1, 7, 12, 15]) as well as for
this challenge [3, 9, 10, 16] statistics were calculated from
the pressure sensor data such as the mean pressure over
time. Also, feature extraction methods were borrowed from
other domains: speech applications, human action recogni-
tion, and image analysis. Ta et al., for example, applied the
Sobel operator, an image processing technique used for edge
detection [16]. By sharpening the contrast, a second set of

388



Table 2: Results for the CoST data set.
Paper Classifier Accuracy
Ta et al. [16] random foresta 61.3%
Ta et al. [16] random forestb 60.8%
Ta et al. [16] SVMb 60.5%
Ta et al. [16] SVMa 59.9%
Gaus et al. [9] random forest 58.7%
Gaus et al. [9] multiboost 58.2%
Hughes et al. [10] logistic regression 47.2%
Balli Altugl et al. [3] random forest 26.0%
atrained on filtered data, btrain on all data

Table 3: Results for the HAART data set.
Paper Classifier Accuracy
Ta et al. [16] random forest 70.9%
Ta et al. [16] SVM 68.5%
Hughes et al. [10] logistic regression 67.7%
Gaus et al. [9] random forest 66.5%
Gaus et al. [9] multiboost 64.5%
Balli Altugl et al. [3] random forest 61.0%

data frames was constructed, garnering new values using the
same feature extraction procedures. Most features were ex-
tracted by feature engineering however, Hughes et al. also
included deep autoencoders for automatic feature extraction
using dimension reduction, these features were then used to
train Hidden Markov Models (HMMs) [10]. The CoST data
set was used to determine HMM likelihoods for class mem-
bership; these values were included in the feature sets for
both CoST and HAART data to examine the viability of
applying learned features from one data set to the other.

Feature selection was performed by evaluating the perfor-
mance of different features or feature sets as a whole on the
training set. Relevant features selected using random for-
est [16] or sequential floating forward search [3] were found
to improve the accuracy on the test set. Others compared
the accuracies of different feature sets as a whole. Using
this approach, the combination of all feature sets yielded the
best results [9, 10]. Identifying a small number of highly dis-
criminating features can benefit applications in which com-
putational power is costly, such as on-board real-time touch
recognition. Balli Altuglu and Altun [3] showed that a small
feature set (number of features < 10) could perform well on
the HAART data set.

4.2 Social Touch Classification
Random forest was found to be the most popular classi-
fication method [3, 9, 16] and has been used in previous
work on touch gesture recognition [1, 7]. Other classification
methods that were explored were Support Vector Machines
(SVMs) [16], also used by [6, 11, 12], multiboost [9] (a differ-
ent boosting algorithm was used by [13]), and simple logistic
regression [10].

Accuracies reported for the challenge ranged from 26.0%–
61.3% for the CoST data set and from 61.0%–70.9% for
the HAART data set (see Tables 2 and 3). Previously re-
ported accuracies for the CoST data set were up to 54.0%
for the rough gesture variants using leave-one-subject-out
cross-validation [12] and up to 64.6% when using 10-fold
cross-validation [17]. For the whole CoST data set, clas-
sification independent and without knowledge of the ges-

ture variant yielded accuracies up to 52.6% using leave-one-
subject-out cross-validation [12]. For the HAART data set,
accuracies up to 90.3% were reported using 20-fold cross-
validation when subject and condition labels were included
as features [4]. However, direct comparisons between the
accuracies reported for the challenge [3, 9, 10, 16] and ac-
curacies reported by the authors of CoST [11, 12, 17] and
HAART [4] are not meaningful because of the differences in
data division and use of condition and/or subject informa-
tion as labels.

As accuracy rates alone provide little information we
looked at the confusion matrices for notable patterns. Fre-
quent confusions between touch gestures for the CoST data
set reported by the challenge participants were: ‘grab-
squeeze’, ‘hit-pat-slap-tap’, ‘rub-stroke’, and ‘scratch-tickle’
[3, 9, 10, 16]. The touch gestures were difficult to distinguish
across approaches for data pre-processing and classification
algorithms. Previous work on the CoST data set, although
using different parts and splits of data set, found similar
confusions [11, 12, 17]. For the HAART data, rub and tickle
were the hardest to correctly classify across challenge partic-
ipant approaches [3, 9, 10, 16]. Often misclassified was rub
as scratch or stroke and tickle as scratch, while the reverse
(e.g., misclassification of scratch as rub) was less common.
Cang et al. also found that rub and tickle were hardest to
classify correctly even while using a extended version of the
HAART data set [4]. Compared to the challenge results,
their confusion matrices showed more symmetry, indicating
there were frequent confusions among certain gesture pairs.
Rub was also one of the most difficult to correctly classify
for the CoST data set [3, 9, 10, 11, 12, 16, 17].

Based on observations from the recording of the HAART
data set, similarities were observed in how subjects per-
formed the touch gestures which may help to explain cer-
tain confusions. Scratch and tickle both followed a similar
motion trajectory and tended to have fluttery finger move-
ments. Rub and stroke again have analogous motions where
the flat of the hand exerts pressure along a roughly linear
path. Confusions between touch gestures on the CoST data
set could also be explained by gestures showing similarities
on characteristics such as duration, contact area, repetition
probability, and frequency of direction changes [12].

5. CONCLUSION
The challenge outcomes are encouraging; participants’ vari-
ous approaches open up further avenues for exploring data
processing of social touch. Comparing the results from
these different approaches also provided us the opportunity
to pinpoint the difficulties that need to be addressed to
increase the reliability of touch gesture recognition.

Feature extraction from touch data
The challenge provided insights on how techniques for fea-
ture extraction that are prominent for other modalities may
be applied to touch data. Interestingly enough, many of
these techniques were reasonably transferable to touch ges-
ture data without much modification.

Future Work : While we have seen commonalities in
feature sets used by challenge participants, developing a
standard would help ease the feature engineering process.
This challenge has allowed for the field of touch recogni-
tion to ‘pick up a few tips and tricks’ from data processing
techniques used for more mature modalities, presenting an
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opportunity for customizing these methods to meet the par-
ticular needs of touch data.

Difficulties in touch gesture recognition
Despite the use of different data pre-processing techniques
and classification algorithms, we observed consistent classi-
fication confusions between specific gesture pairs. It is yet
unclear if these classification difficulties can be resolved by
finer-grained feature extraction or if the problem is actually
our discretization of touch gestures. For instance, scratch
and tickle could be regarded as the same gesture class.

Future Work : We suggest considering the implications of
collapsing certain commonly confused gesture pairs: what
defines a ‘good’ gesture set; how many gestures should com-
prise it; and which ones? There is a lot more to determining
touch semantics and intent than performing gesture recog-
nition, that is, the same touch gesture can be used to convey
distinct social message in a different contexts. Multimodal
cues could add to contextual understanding of touch data.
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