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ABSTRACT
Social touch is an essential non-verbal channel whose great inter-
active potential can be realized by the ability to recognize ges-
tures performed on inviting surfaces. To assess impact on recog-
nition performance of sensor motion, substrate and coverings, we
collected gesture data from a low-cost multitouch fabric pressure-
location sensor while varying these factors. For six gestures most
relevant in a haptic social robot context plus a no-touch control,
we conducted two studies, with the sensor (1) stationary, varying
substrate and cover (n=10); and (2) attached to a robot under a fur
covering, flexing or stationary (n=16).

For a stationary sensor, a random forest model achieved 90.0%
recognition accuracy (chance 14.2%) when trained on all data, but
as high as 94.6% (mean 89.1%) when trained on the same individ-
ual. A curved, flexing surface achieved 79.4% overall but averaged
85.7% when trained and tested on the same individual. These re-
sults suggest that under realistic conditions, recognition with this
type of flexible sensor is sufficient for many applications of inter-
active social touch. We further found evidence that users exhibit
an idiosyncratic ‘touch signature’, with potential to identify the
toucher. Both findings enable varied contexts of affective or func-
tional touch communication, from physically interactive robots to
any touch-sensitive object.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND PRESENTATION]:
User Interfaces—Haptic I/O; I.5.2 [PATTERN RECOGNITION]:
Design Methodology—Classifier design and evaluation, Feature
evaluation and selection; I.5.4 [PATTERN RECOGNITION]: Ap-
plications—Signal Processing

General Terms
Gesture, Touch and Haptics; Affective Computing and Interaction;
Human-Robot Interaction; Non-verbal behaviors

Keywords
Haptics, tangible interaction, social touch, affective touch, flexible
touch sensor, pressure-location sensing, recognition techniques
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1. INTRODUCTION
Words can sometimes be inefficient for communicating instruc-
tions or affective content. In many contexts, touch may be the
best modality for conveying directive and emotion: imagine how
informing someone to get out of the way quickly and clearly with
one simple touch. To harness this communication channel, social
robots working in tandem with humans must recognize the same
haptic language that we use, of which gestures and affect are key
components.

We focus on exploring the range of touch gestures detectable
by a custom-built flexible fabric pressure sensor and evaluating the
added noise from curvature, motion and material cover. Using com-
mon machine learning techniques, we highlight salient features of
touch for recognizing both the type of gesture being performed,
and the person performing the gesture—both the ‘touch’ and the
‘toucher’.

Reliable gesture recognition is an important step towards further
research in the field of affective touch. A strong foundation of re-
search on gesture may allow us to detect the toucher’s emotional
state [14]. Until recently, this kind of research was difficult, as
touch sensors were not easily deformable nor cheap in both price
and computational resources. Our 10×10 sensor has 100 fingerpad-
scale taxels recording pressure and 2-D location data, and we use
a random forest classification method to approximate in situ recog-
nition rates.

We first collected touch data for a set of six validated touch ges-
tures [32] plus one control on a stationary sensor under a variety
of substrate stiffnesses and coverings. We then mounted the same
sensor on an actuated robot skeleton and collected similar data
while varying the sensor’s covering and motion (Fig. 1). Recogni-
tion rates were within 80–95% for all conditions we tested (chance
14.2%), a level of accuracy which will suffice for many purposes
and is enough to merit empirical comparison to human recognition
ability in future work. At the same time, we found individuals’
touch signatures were idiosyncratic enough to permit identification
of toucher within this sample, at an accuracy rate similar to that of
the gestures themselves.

1.1 Questions and Contributions
We wished to learn:

Q1: How accurate is our flexible fabric sensor in predicting ges-
ture and differentiating between users?;

Q2: How does sensor performance hold up under deformation
due to curvature and motion, such as that produced by a
zoomorphic social robot?; and
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Figure 1: (a) Top view of the CuddleBot skeleton. (b) Touch sensor, pinned to foam substrate wrapped around the skeleton and corresponding
to a No touch × No motion × No cover condition. (c) Full range of breathing motion used. (d) The fully-covered robot; a covering of nearly
identical material was used in the study to facilitate quick condition changes. (e) The fabric pressure sensor constructed out of EeonTex
conductive fabric <www.eeonyx.com>, wired to an Arduino microprocessor.

Q3: Is real-time gesture recognition computationally viable?

With 20-fold cross validation on random forest models, we con-
tribute initial results of:
• deployable accuracy in gesture recognition (6 gestures + con-

trol): 91.4% on a firm, flat surface, 90.3% on a foam, curved
surface, and 88.4% on a foam, curved, moving surface;
• differentiating toucher at 88.8% accuracy (n=26);
• factors underlying recognition performance;
• feasibility of real-time gesture recognition.

We also make our data and analysis publicly available1.
Our study compares gesture recognition performance across a

variety of conditions that approach real-time dynamic gesture recog-
nition. Toucher recognition accuracy shows promise for incorpo-
rating personalized responses to an individual touch signature.

1.2 Applications
Accurate gesture recognition on a fabric touch sensor opens up
gesture-based controls on any electronic device. For example, pa-
tients with limited speech could use a smart blanket with gesture
recognition capabilities for comfort or health-reporting purposes.
In the context of social robots, a sensor that can wrap around any ir-
regular form could be used as a touch-sensitive skin. Outside of ex-
plicit gesture recognition, pressure-sensitive hospital sheets could
alert caregivers of bedsore risk.

In a behavioural education context, a soft touch-sensing play-
mate capable of recognizing touch signatures may use this data to
interpret and influence emotional state [14]. Such a robot could
aid students testing on the autism spectrum by responding to anx-
ious or agitated strokes with slow, soothing, regulated breathing—a
behaviour shown to have calming benefits [23].

1.3 Detailed Requirements
Our sensing requirements are dictated by a zoomorphic robot, af-
fectionately dubbed the CuddleBot, that invites touch with a soft
furry body. Since a user will expect to interact with the CuddleBot
via touch, having a full-body sensor that deforms with robot motion
is required.

1All collected data and select analysis can be found at <www.cs.ubc.ca/labs/
spin/data>

Movement and elasticity: The sensor must be highly flexible,
somewhat elastic, and perform well while mounted on non-rigid
and/or actuated surfaces.

Pressure range: Based on a preliminary survey of these touch
pressures, we determined that our sensor needed to register touches
between 0.005 and 1 kg. This range is appropriate for light tickles
to heavy pats.

Multitouch: Multitouch capability allows us to compute varying
pressure over an area, differentiating touches like constant and pat
from tickle and scratch.

Resolution and computational cost: Taxel resolution, sampling
rate, and computational cost must be balanced to achieve usable
recognition accuracy. For real-time, our computational cost is dom-
inated by sensor polling and grows with the number of taxels per
grid edge. Our recognition tasks and feature selection explicitly
analyze the differences between frames. In this case, accuracy
plateaus with fingerpad-scale taxels, when sampled fast enough to
capture voluntary movement (peaking at 10Hz [25]). We must be
able to recognize changes in pressure and localized hand motions
up to this frequency.

Single-fingerpad resolution (≈2 taxels per inch) could capture
small fluctuations; however, our gestures (not including our con-
trol no touch) either involve the flat or palm of hand (constant, pat,
rub, stroke), or tend towards quickly crossing many taxels (tickle,
scratch). This suggests that using statistical features that empha-
sized the changes from frame to frame could be used to achieve
reasonable classification rates even at ≈1 inch taxels [7].

2. RELATED WORK
We situate our work in the context of social robotics and affect-
encoding social touch. Gestural touch has been identified as a key
component of human-robot cooperation [2]. However, the seman-
tics of that touch is conveyed through nuance. For example, the
same gesture could halt, contribute or modify another person’s be-
haviour [2] depending on the emotional content inferred from pres-
sure dynamics [14].

2.1 Social & Affective Touch Communication
In collaboration with human workers, robots employed in a labo-
ratory or workshop setting presupposes a lexicon of social touch
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for operational interactions [8]. To ensure safe and effective com-
munication, Gleeson et al identify the requirements of both a com-
prehensive gestural dictionary and lightweight sensing technology.
The intimate nature of collaborative robotic household help em-
phasizes the importance of affect detection for social robots in this
context [20, 1].

Previous work revealed correlations between gestural social touch
and emotional communication [11, 14]. Humans recognize the af-
fect encoded in gestural touch [12, 11], suggesting that machine
recognition of emotional state can be achieved with sufficient sens-
ing technology and clever feature extraction.

Much of the current work on social touch recognition uses a sen-
sor worn on a static human or robotic arm [14, 26, 15, 16]. The
collected data and signal processing procedures may not account
for the added deformation noise of a soft-tissue zoomorphic robotic
form in motion.

The use of animals [6] and interactive robots in animal form
(such as Sony’s pet-dog AIBO [3, 28], the seal-shaped PARO [31,
13, 18, 24]) suggest potential benefits in therapeutic use. Other
touchable social robots include the teddy bear-like Huggable [27];
and Probo [22], which does not have a recognizable animal ana-
logue. However, while real pets respond to complex touch com-
mands anywhere on the body, this has been difficult to achieve
without a generalized touch-sensitive skin.

In trying to establish zoomorphic robots as an emotional agent [7,
32], touch sensing strategies have included fur-level conductive
threads, extensive biometric data, gyroscopes and accelerometers,
to name a few. While this cavalcade of sensing produces encourag-
ing results for social gesture classification [7, 32], it is far from the
light-weight system required for automatic, real-time recognition.

An unexpected result emerging from social touch recognition is
the demonstrably higher accuracy results for within-subject classi-
fication over between-subject [7, 15]. Leveraging this result may
allow us to use touch behaviours to identify individuals and thus,
recognize the nuances of an individual’s “touch signature” to better
predict touch gestures and, eventually, basic emotional content.

2.2 Flexible Pressure-Location Sensors
Real-time classification of social touch gestures on a flexing, noisy
surface requires that we have manageable signal processing while
retaining the ability to represent pressure and location.

Here we examine the suitability of existing sensing technology
and recognize their influence on our custom build. We do not
present our sensor as a contribution.

While many highly accurate pressure-location sensors exist, such
as those developed for robot grippers used in dexterous manipula-
tion [21, 30], these tend to be insufficiently flexible, overkill in
terms of resolution, and considerably too expensive for the objec-
tives outlined here.

Other work has used Force-Sensing Resistors (FSRs) affixed to
a hard shell [32]. This reduces the need to calibrate for sensor drift
over continued use, however, the trade-off non-aesthetic tactility,
and difficulty in detecting touches between sensors—limiting ren-
dered motion [2, 4].

Stretch sensors designed for medical purposes by Vista Medical2

is the foremost inspiration for our custom sensor. However, Vista’s
sensors recognized only pressure without localization and did not
have multitouch capability.

Several multitouch, flexible fabric sensors are available [16]. How-
ever, flexibility alone does not afford a full range of motion; it must
be able to stretch and deform to approximate animal skin.

2Stretchable sensors can be purchased commercially from Vista Medical <www.
vista-medical.com/subsite/stretch.php>

The design and sensing capabilities described by Flagg et al [7]
informed many of our requirements and suggested that the bulk of
the recognition accuracy could be achieved by the “below surface”
sensor alone. However, Flagg’s study did not consider the full de-
sign space of a robot in motion including a non-sensing fur and
a variety of configurations. To evaluate how much information is
compromised under these conditions, we applied a variety of real-
istic use noise sources to the sensor, both directly and indirectly.

3. STUDIES
We hypothesized that:

H1: gesture recognition rates will decrease with noise-creating
factors—allowing us to rank these factors’ impact on recog-
nition performance, and their interactions therein.

H2: variability in gesture execution will be higher between sub-
jects than within subjects—giving rise to the potential of dif-
ferentiating individuals based on personal touch signatures.

3.1 Apparatus
We constructed a sensor by layering two squares of conductive
EeonTex3 Zebra fabric, aligned at 90 degrees, with a plastic stand-
off mesh separator and a sheet of EeonTex SLPA 20kΩ resistive
fabric. Resistance value across a given taxel drops when pressure
is applied, compressing the mesh separator so the conductive layers
more closely approach each other. A circuit is constructed using
an Arduino Mega microprocessor. Each fabric stripe is connected
to a single I/O pin: the top layer is connected to analog input pins,
and the bottom layer is connected to digital output pins (Fig. 1(e)).

The sensor is polled by sequentially sending a voltage through
the bottom layer’s digital pins. The analog pins read current; resis-
tance (and hence current) varies with pressure.

Preliminary testing of our sensor using stationary weights showed
that under ideal conditions, we were able to achieve a touch weight
range of 0.005–1kg using 1kΩ resistors. Under the most severe
conditions, lighter touches were lost in the dense fur; at the heavier
end, touches were equalized by the yielding foam substrate. For
Study 1, the curved-foam substrate with thick fur cover was the
most obscuring condition; for Study 2, this was the cover condition
with bot in motion.

Dynamic range is modulated through choice of resistor value.
We found that values greater than 1kΩ allowed our sensor to reg-
ister greater forces, but lost resolution; conversely, lower values
gave greater granularity in recognizing very fine touches, but were
too vulnerable to saturation at commonly applied force levels. The
same sensor and microprocessor set were used in all studies de-
scribed here.

3.2 Methods
Our two studies assessed how realistic conditions impacted sensor
data and hence recognition accuracy; gestures and data collection
procedures were unchanged.

3.2.1 Gestures and Sampling
We selected gestures from Yohanan et al’s touch dictionary [32],
choosing items most appropriate for human-animal interactions [7].
The sensor was placed on a table in front of a seated participant, a
reference sheet with very general definitions for six selected ges-
tures and one control was provided (Table 1). Participants were
instructed to interpret each gesture as they saw fit; no further per-
formance clarifications were provided.

3Sensor fabric purchased from <www.eeonyx.com>
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Table 1: Touch gesture instructions as provided to participants.

Gesture Suggested Definition
no touch no contact with the sensor (control)
constant touch contact without movement
pat quick & gentle touches with the flat of the hand
rub moving the hand to and fro with firm pressure
scratch rubbing with the fingertips
stroke moving hand repeatedly
tickle touching with light finger movements

A frame consisted of pressure data from all 100 taxels in the
10×10 grid. We collected 10 seconds of continuous hand touch
data at 54 frames per second for each combination of gesture and
condition, randomizing gestures and conditions wherever possible.

3.2.2 Study 1: Cover and Substrate on Static Robot
We first measured gesture recognition for the static (unmoving)
case, to assess impact of the sensor’s substrate stiffness, curvature
and covering thickness in absence of movement noise. This pro-
duced a factorial design of 4×3×7 (cover×substrate×gesture),
using gestures listed in Table 1.

Cover: The fabric’s pile or density varied from no cover (par-
ticipant touched sensor directly) to a very long, thick synthetic fur.
Minky (a short furry fabric generally used for baby blankets), and
a longer-furred fabric comprised intermediate variations.

Substrate: The material underneath the sensor consisted of a
firm, flat surface (sensor affixed by velcro to a table); a spongy
foam, flat surface; and a spongy foam, curved surface. In cases
with foam, the sensor was pinned directly to the foam substrate.

To minimize sensor reading disturbances due to transitions (i.e.,
unwrapping and replacing the sensor on/off the robot body), we
blocked our design on the cover × substrate conditions. Condi-
tion order was randomly generated for every participant, and ges-
ture order was further randomized over each condition set. All par-
ticipants completed all twelve masking conditions, with each gen-
erating 48 2s sample windows per gesture. A study session took
approximately 50 minutes to complete. 10 volunteers (4 female, 6
male) were compensated $10 for their time.

3.2.3 Study 2: Stationary vs Moving Robot
Our second study focused on the impact of the robot’s breathing
movement. We varied cover×motion× gesture, for a 2× 2× 7
factorial design. Factors consisted of cover = {cover, no cover},
motion = {breathing, not breathing}, and gesture = {set of seven
gestures}. Each participant performed each condition combination
twice in a randomly generated order.

In the breathing condition, the sensor was attached to the Cud-
dleBot, a cat-sized robot designed for therapeutic use. Fig. 1(a-b)
shows the naked skeleton and the sensor pinned to the foam inter-
mediary. The robot’s ‘breathing’ motion was created by extending
and contracting the paired rib assemblies in a 14◦ arc from the spine
at 0.5Hz (Fig. 1(c)). We draped and pinned fabric over the sensor,
approximating a full fur jacket for condition randomization while
limiting sensor disruption (Fig. 1(d)),

Each session began by asking the participant to interact freely
with the covered, moving robot for 1 minute to reduce novelty.
Each condition was then presented twice, in random order, for a
total of ((2×2×7) + 1) = 57 trials. 16 participants (10 female, 6
male) were compensated $5 for the 30 minute session, each pro-
viding 32 2s samples of each gesture for every condition.

Figure 2: Mean gesture prediction accuracy rates with added pres-
sure noise when (a) varying substrate or cover in Study 1 and
(b) varying motion and cover on the same curved structure as in
Study 2. Each bar represents an average accuracy rate over 10 tri-
als; error bars are omitted as ∆ across trials < 0.001% in each case.

3.3 Analysis and Results
We discarded the first and last second of each 10s gesture capture
and divided the remaining 8s into four 2s windows. The 2s window
(at 54Hz) was chosen to allow each gesture some periodicity; all
gestures fit completely within 1s (Flagg [7]). Given the challenge
of determining gesture boundaries in a realistic, real-time setting
when a motion is steadily repeated, a 2s window allows capture of
at least 1 complete gesture cycle.

To account for translatory gestures, we also calculated a centroid
(average geometric centre) weighted by the pressure reading for
each frame. Centroids were defined by row Cx (Eq. 1) and column
position Cy (Eq. 1 with i and j indices reversed):

Cx =

∑10
i=1

∑10
j=1 i ∗ pressure(i, j)∑10

i=1

∑10
j=1 pressure(i, j)

(1)

We calculated weighted pressure by summing readings across each
row, multiplying by index, and dividing by the unweighted frame
sum (the sum of the full frame sensor reading). Repeated for each
column, this provided a tuple of frame sum and centroid per frame.

As a “baseline” for both studies, we sampled sensor frames in
the absence of gestures. In Study 1, each of the 12 (4 cover ×
3 substrate) condition sets contributed 4320 frames; in Study 2,
each of the 4 (2 motion×2 cover) condition sets contributed 6912
frames. To establish the effect of noise under each condition, we
ran MANOVA over three frame-level dependent variables: pres-
sure, Cx-coordinate, and Cy-coordinate. In all cases except one4,
all three variables showed significant differences at the p < 0.001
level. This indicates that the sensor is sensitive to changes in these
conditions.

The data fails the Shapiro-Wilks test of normality; however, vi-
sual inspections of residual Q-Q plots did not reveal any systematic
patterns. Together with our large sample size (n>4000 frames / con-
dition), we proceeded with the normality assumption, alert to risk
of inflated Type I error.

The six gestures (omitting no-touch data) were then compared
with each other under the conditions of each study. MANOVA over
the same three metrics (pressure, Cx, Cy) showed that gesture and
participant combinations were statistically significant (p < 0.001).
Differences in participant touch were detectable at frame level.

4For Study 2, the condition of with-cover×with-motion under no touch did not show
statistically significant differences in Cx data.
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Figure 3: A modified Hinton confusion matrix for gesture clas-
sification. Horizontal (row) gestures are classified as the vertical
(column) gesture. Saturation in non-diagonal squares represents
number of misclassifications.

We calculated seven features across these three dimensions (frame
value, Cx, Cy) for each 2s window for a total of 21 features. For
each dimension, features are {maximum, minimum, mean, median,
variance across all frames, total variance within the 2s window,
area under the curve}. Condition variables (curvature, fur) or
(cover, motion) make up the other features. Participant labels
were included for gesture predictions and vice versa.

Each capture produced four 2s windows, providing repetition for
training. Pairwise comparisons of all within- and between- capture
windows generated two binomial distributions for statistically sig-
nificant pairs using two-sample Kolmogorov-Smirnov (KS) tests.
Permutation testing [9] using the KS test statistic did not detect a
statistically significant difference (p = 0.214) between the distri-
butions. This is consistent with our observations of participants
varying touch behaviour both between and within captures.

We used Weka, an open-source machine learning application to
classify gestures [10]. Flagg’s comparison of random forest and a
number of other algorithms showed that random forest performed
best in gesture recognition of this kind [7]. We ran k-fold Cross
Validation (CV) on Study 1 participant data for k = {5, 10, 20,
100} and found less than 1% improvement between 20- and 100-
folds. While this CV technique does ensure that any one instance
is included in the test or training set and not both, it cannot promise
subject-independent classification. Running Leave-One-Out clas-
sification yielded slightly improved results but we were cautious
to the inflated bias [17]. All reported classification performance is
therefore based on the slightly conservative 20-fold cross validation
of random forest models. Accuracy is defined as the percentage of
data instances that are correctly classified.

3.3.1 Gesture Classification by Condition
H1: Gesture recognition rates will decrease with increase in
noise-creating factors—accepted.
Comparing classification under Study 1 conditions (static surface),
we found highest recognition accuracy with no cover on the firm,
flat substrate case. Lowest performers were dense fur and curved,
foam substrate. In Study 2 (dynamic surface, heavy versus no
cover), conditioning across each of surface and motion factors had
minor effect recognition rates (all ≈88%).

With models trained on individual, Study 1 showed little change
in gesture prediction rate compared to all-data models. Study 2

individually-trained results are more similar to other studies, which
also report training on single-condition data [7, 16, 19, 29].

Cover-substrate-motion: Fig. 2 shows overall gesture recogni-
tion accuracy by study and condition set.

We assessed relative noise levels by calculating effect sizes of
significant conditions. Cohen’s d reveals a large effect (|d| ≥ 0.8 [5])
with the introduction of curvature (vs no substrate) and fur and
short minky (vs no cover) in Study 1. Large effects (|d| ≥ 0.8 [5])
from Study 2 were from introducing the cover (regardless of mo-
tion), and from the combination of having motion and cover. Inter-
estingly enough, adding motion by itself produced a very low ef-
fect (d ≤ 0.08). Further investigation into the interaction between
cover and motion on pressure readings included Tukey’s HSD of
adjusted p-values to clarify the significance of stratified factors.
While all other combinations remained significant at p < 0.05,
the case of varying motion in the presence of a cover was alone
insignificant at p.adj = 0.7.

A confusion matrix (Fig. 3) indicates how gestures were misclas-
sified. In both studies, the most-misclassified was tickle.

Participant: We classified gestures with models trained by par-
ticipant. In Study 1, mean accuracy was 89.1% (max=94.6%)5.
Models trained on all Study 1 data were accurate at 90.0%, i.e.
within 1% of the mean accuracy of the individual-trained models.
This indicated that training on participants did not improve recog-
nition when data was not conditioned on noise-creating factors.

For Study 2 (fewer noise factors) we found a greater effect for
models trained on participants (mean=86.5%, max=97.3%)6. Train-
ing across all data gave 82.1% accuracy.

The motion × cover condition had an overall 79.4% recogni-
tion rate. Training on the subset of data with the most challenging
conditions (in-motion, with-cover) still produced a higher recog-
nition rate when using individual-trained models (mean=85.7%,
min=73.7%, max=95.1%).

We compared mean pressure of gesture behaviours by individual
versus that of the entire pool (i.e. how P1 performed scratch ver-
sus how all participants performed scratch). All incidences were
significant at p < 0.05 (Cohen’s d effect sizes reported in Fig. 4).

3.3.2 Toucher Recognition
H2: Variability in gesture execution will be higher between sub-
jects than within subjects—partially accepted, for the case of
data compared within the same noise conditions.
The ability to recognize toucher may have great impact on read-
ing emotional state. We compared performance in participant clas-
sification for models trained across the entire dataset, with those
trained on the 6 meaningful gestures of our gesture set (omitting
no touch). We also look at accuracy rates on data collected in the
most realistic condition (in-motion, with-cover).

Recognition rate by study: We compare recognition rate by study
and gesture in Fig. 5. Study 1 achieves an overall accuracy rate of
78.5% (chance 10%), but for models trained by gesture, a mean
of 87.9%. The highest contributing gesture is constant at 92.7%,
followed by pat at 88.9%.

Using all Study 2 data, participant recognition was 80.3%. Train-
ing by gesture again showed recognition improvement; constant
was best at 93.8%, followed by pat at 89.8% (mean, all 6 gestures:
85.4%).

Conditioning on only the in-motion, with cover factor, referred
to in Fig. 5 as Study 2b, average recognition rates of participants
5Study 1 gesture recognition accuracy by participant: P1-93.0%, P2-83.8%, P3-
85.0%, P4-92.6%, P5-93.2%, P6-88.0%, P7-94.6%, P8-91.7%, P9-86.0%, P10-83.4%
6Study 2 gesture recognition accuracy by participant: P1-90.2%, P2-86.6%, P3-
86.6%, P4-91.1%, P5-81.3%, P6-86.1%, P7-84.8%, P8-79.5%, P9-95.5%, P10-
79.5%, P11-90.2%, P12-93.8%, P13-97.3%, P14-83.0%, P15-79.5%, P16-79.5%
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Figure 4: Cohen’s d effect sizes of participant by gesture for each
study.

are 89.8%. Further splitting data to additionally train models by
gesture does not provide additional improvement in mean perfor-
mance (85.2%); this time pat is the highest performer (93.8%) and
constant a close second (90.6%).

We again refer to effect sizes (Fig. 4) to consider the role of pres-
sure in participant recognition; individuals making different ges-
tures exhibit considerable variation in pressure patterns.

4. DISCUSSION
We discuss our findings in direct response to questions posed in
Section 1.1.

Q1a: Potential accuracy of sensor in gesture recognition
Unsurprisingly, we found the highest recognition rate (94.8%) for
the case of no covering and a flat, stiff, stationary surface (Study 1);
these are the least demanding conditions and the ones we expected
to perform the best.

In evaluating the degree to which noise factors degraded perfor-
mance, we expected the noisiest conditions to be in Study 2: mov-
ing, curved, springy surface under a heavy fur cover. This achieved
88.6% recognition rate of our 6 gestures and ‘no touch’, among
the lowest we observed. However, at just under 90%, this value
is still usably high. Further work is required to assess the impact
of nonuniform motion, as well as unknown gesture segmentation
boundaries in lesser controlled conditions.

Q1b: Potential accuracy of sensor in user differentiation
Our studies show that the ability to pick a particular ‘toucher’ out of
a known group varies by gesture. A priori knowledge of a condition
also improves prediction accuracy, jumping from 80.3% trained
over all data to 89.8% when trained on in-motion, with-cover, the
noisiest condition. To see how this may change over the various

Figure 5: Mean subject recognition rates by gesture and study over
10 trials; error bars omitted as ∆ across trials < 0.01% in each
case. Study 2b refers to the ‘in-motion, with cover’ condition.

gestures, we refer to Fig. 5 which ranks constant and pat as most
identifiable. Fig. 4, which compares the effect size of pressure read-
ing by participant and gesture, reveals that there are many large
effects for constant gesture. This focus on pressure suggests that
there may be revealing variations in individual ‘heaviness of hand’.

Q2a: Impact on accuracy due to cover, substrate and motion
Over our two studies, we examined variations in cover thickness,
substrate stiffness and curvature, and motion. Summarized in Fig. 2,
we now discuss the impact of these factors individually.

Cover: The effect of a cover on classification performance is
significant; more so than the underlying motion (as noted by Sec-
tion 3.3.1). Fig. 2 further illustrates this. Regardless of whether
we partition our data by cover on/off or motion present/absent,
we achieve gesture recognition of at least 88.1%, 6% higher than
training overall (82.1%).

The pressure applied over a denser, heavier fur cover may muf-
fle some of the lighter touches and degrade transmission of touch
pressure and/or location, thus confusing some gestures.

Another possible explanation could be from added familiarity
that the cover affords. For example, according to one subject, “When
it had the fur on, I had a more pleasant experience...Without the
fur, I found it difficult to touch it.” (S7) This opinion was expressed
in some form by 10 of 16 Study 2 participants. More research is
needed to determine if the fur invited more naturalistic touching.

Substrate: Compared to a flat, hard surface, a flat foam sub-
strate decreased recognition accuracy by about 1% (Fig. 2a). It
had slightly less impact than curvature or, comparing to Study 2,
than motion. Given the sensor’s piezoresistive construction, we an-
ticipated the effect of firmly compliant backing to be small; this
finding confirms that a somewhat springy underlying surface (help-
ful for conveying the sense of an animal body as well as a pleasant
tactility) is feasible under a large-body touch sensor.

Motion: The relatively small effect size of motion in raw frame
data is unexpected. However, in the context of Tukey’s HSD results
(with a cover, the motion effect is insignificant), we gain some fur-
ther insight into just how small the effect of regular periodic motion
is, and we confidently rank motion noise behind that of a cover.

This is very promising for the larger premise of reliable touch
sensing on a flexing surface.

Interaction of motion and cover: There is a large effect size
for the interaction between cover and motion, which is absent in
recognition performance conditioned on added noise factors (Fig. 2).
This consistent improvement over training on all data (overall at
82.1%) suggests that these large effect sizes of noise interference
have little effect on recognition as long as we train and test on the
same condition.
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Figure 6: Top features as selected by Weka for each study. Clas-
sification tasks are Gesture and Subject, by Location (Cx,Cy) and
Pressure features. Features selected at under 25% frequency in 20-
fold cross validation are omitted.

Q2b: Gesture Recognizability:
Gesture confusion patterns reveal a considerable range of misclas-
sification (the more saturated cells in Fig. 3). In Study 1, the most
commonly misclassified gesture is rub as tickle; in Study 2 scratch
is most misclassified as rub. Both pairs are commonly executed as
quick back-and-forth motions. This may be related to relative ges-
ture pressure by individual: gestures like constant, generally more
stationary, are predicted consistently and also indicate a larger ef-
fect size by pressure (Fig. 4). Quick motions being lost in the heav-
ier covering may also contribute to these errors.

Q3a: Feature Utility
Making computational economy is the key to real-time recognition.
Prioritized feature selection allows us to focus on high-performing
dimensions. To help understand relative feature utility in our recog-
nition tasks, we used Weka’s Attribute Evaluator function to find
the highest-weighted features for the random forest model (Fig. 6).

The feature set with the greatest ability to differentiate gestures
related to pressure variance; meanwhile, location variance facili-
tated toucher recognition. People’s touch signatures may vary more
in physical location range, but, a gesture may be better character-
ized using pressure when toucher is known (Fig. 4).

These results suggest that using a subset of the features described
here could increase computational efficiency, depending on the pri-
ority of recognition task needed and the variance exhibited by an
actual data pool. Meanwhile, evaluating the performance of a re-
duced feature set is difficult due to the lack of a benchmark for
comparing accuracy rates [15].

Q3b: Computational viability of real-time gesture recognition
The conditions evaluated here approached realism in some respects,
specifically that of sensor covering, substrate, and underlying mo-
tion. Our post-hoc analysis indicated that a modern microprocessor
could keep up with both sampling and recognition.

Our setup fell short of realism in at least one important fac-
tor: people are unlikely to perform distinct, discrete gestures with
well-defined boundaries. A different computational architecture
will be required to handle this problem (a topic of ongoing work).
However at present, computational load is dominated by sampling
rather than recognition, an overhead cost that will not necessarily
change with real-time use (unless more selective sampling can be
employed based on observed patterns of touching). It is thus quite
likely that a more capable recognition engine will also be feasible
with comparable computational resources. In situ real-time recog-
nition may be better approximated by speaker-independent Leave-
One-Out (LOO) sliding window. Our work uses k-fold CV as the
more conservative accuracy rate (as compared to LOO), as we do

expect a calibration process in which speaker behaviour is learned.
Until we optimize, the best window size is unknown.

5. CONCLUSIONS
The results described here represent an initial feasibility assess-
ment of the impact of flexing surfaces on gesture recognition per-
formance. We found recognition rates from 80–95% for optimal
to noisy conditions when distinguishing between social touch ges-
tures relevant to interacting with a small touch-centric robotic en-
tity. We further found an ability to distinguish individual toucher
at a rate of 78.5% and 80.3% in Study 1 and Study 2 respectively.
In the noisiest case (also the most realistic), training by condition
increased participant recognition accuracy to 89.8%. The next step
is evaluating more comprehensive sets of movement conditions.

The implication of a sensing system able to detect both individu-
ality touch and toucher is considerable. For example, a sensor able
to differentiate between users could provide a personalized set of
experiences or controls.

Further, identifying the touch brings us closer to differentiating
affective intent [14]; identifying toucher may allow us to qualify
their touch behaviour. A sensor loaded with a personal touch profile
could determine how far an individual deviates from that profile on
a given day, and infer emotional status. To build such a profile, it
will be important to establish the dimensions of a touch signature.

6. FUTURE WORK
We foresee many ways in which to extend this work.

More extensive movement conditions: The present study employed
steady periodic motion of an underlying surface for a flexible sen-
sor. A more general, and potentially challenging, environment will
include irregular and unexpected motions.

Continuous gestures: The single-gesture samples of this study re-
moved the need to segment data in pre-processing. In future, an
algorithm will not know of gesture boundaries or length a priori,
and will need to handle the case of seamlessly transitioning ges-
tures.

One approach is to run several sampling windows of different
length to search for varying touch activations at the cost of in-
creased computational load. Future work needs to explore this and
other architecture to determine a strategy to optimize for computa-
tional efficiency.

Pragmatic gestures: In this study, participants were instructed to
perform a particular named touch gesture, but not with communica-
tive intent or emotion context. The semantics of a “natural” touch
will be dependent on context of situation and the user’s own state;
to determine communicative intent, it may be necessary to observe
other factors as well.

Our participants often varied in how they interpreted a given
gesture, both between participants, and individually between and
within conditions. For the latter, we suspect users may have per-
formed more authentic gestures on the moving, fur-covered robot
than when it was flat, stationary and/or uncovered. We also ob-
served differing touch behaviour from the beginning through the
end of one capture, but our sensing mechanisms are unable to dis-
tinguish these cases.

Gesture stabilization and system interactivity: Finally, with more
efficient algorithms deployable in realistic conditions, we plan a
longitudinal study of long-term interactions in natural settings to
investigate how individual gestures change over time as a toucher
learns to interact with the sensing system.
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