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A pet cat or dog’s ability to respond to our emotional state opens an interaction channel with high visceral

impact, which social robots may also be able to access. Touch is a key but understudied element; here, we

explore its emotional content in the context of a furry robot pet. We asked participants to imagine feeling

nine emotions located in a 2-D arousal-valence affect space, then to express them by touching a lap-sized

robot prototype equipped with pressure sensors and accelerometer. We found overall correct classification

(Random Forests) within the 2-D grid of 36% (all participants combined) and 48% (average of participants

classified individually); chance 11%. Rates rose to 56% in the high arousal zone. To better understand classifier

performance, we defined and analyzed new metrics that better indicate closeness of the gestural expressions.

We also present a method to combine direct affect recognition with affect inferred from gesture recognition.

This analysis provides a unique first insight into the nature and quality of affective touch, with implications

as a design tool and for incorporating unintrusive affect sensing into deployed interactions.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

An interactive affective computing system requires automatic, re-

ltime recognition of affect. In the past decade, extensive research in

ffect recognition has focused on vision, speech, physiological mea-

urements, and their fusion [3,5,27]. However, the touch modality

as not been widely considered, despite evidence that it is a potent

eans for emotion communication [11,12,14].

Recognition of different aspects of affect via touch will enable a

ubstantially different approach to interactive applications, because

f its potential for unintrusive use. Meanwhile, situated in an object

ather than a space (as for vision), it can be built around interac-

ions rather than a viewpoint from a fixed space. Touch-based affect

ensing comprises a pipeline whose elements each impact ultimate

ecognition performance:

• the user’s actual emotional state, its typical manifestation, and

degree to which this is expressed in his/her touch;
• the object being touched, and the social and physical context of

the interaction, both of which impact the expressiveness of the

touch that is invited;
• data quality, namely the sensors used and their ability to detect

expressively informative touches;
✩ This paper has been recommended for acceptance by Friedhelm Schwenker.
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• recognition algorithm, delivering probabilities of a particular af-

fective user state;
• metrics used to incorporate a priori known risk of misclassification.

Recently, good results have been obtained in touch-based affect

ecognition [20], which captures one interesting path through this

arge design space (Section 1.1).

In the present work, we explore the premise of human interactions

ith a haptically inviting and expressive social robot. In this context,

nterpretation of affective touch originating from the human, usually

rom a combination of endogenous origins and response to robot

ehavior, can potentially support closed-loop responsiveness in social

uman-robot interaction (HRI) settings, for example for therapeutic,

aregiving and companionship applications with pet and humanoid

obots. Our studies employ the Haptic Creature (Fig. 1), a robot pet

hat mimics a small animal sitting on a person’s lap.

Approach: Our research, based on a robot pet platform that displays

s well as senses touch stimuli, utilizes a dimensional representation

f affect. The resulting structure should be helpful in robot sens-

ng of human affect, by mitigating the impact of ‘noisy’ classification

hrough a concept of ‘near misses’ and of natural, i.e. higher-likelihood

ransitional paths; and in robot rendering of its own affect display,

ia a topological map of coherent dynamic transitions. In a previ-

us study, participants performed a series of specified touch gestures

n the robot as they imagined feeling different emotions, and touch

ata were recorded using first-generation touch sensors. An analysis

f the visual and video observation of these gestures has been pub-

ished [26]. However, these methods come at a high cost of labor,

http://dx.doi.org/10.1016/j.patrec.2014.10.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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Fig. 1. The Haptic Creature, in experiment context.

e1 e2 e3

distressed aroused excited
e4 e5 e6

miserable neutral pleased
e7 e8 e9

depressed sleepy relaxed

Fig. 2. Emotion labels (from [16]) and their locations in the affect grid, as adapted by

Yohanan and MacLean [26].
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processing delay and the intrusiveness and privacy issues of video

recording.

Here, we use pattern recognition on this study’s unpublished touch

sensor data to assess feasibility and best methods for classifying the

gesture-giver’s affective state, and to generate requirements for next-

generation touch sensing. We consider two schemes: (1) recognizing

affect directly from touch data, and (2) identifying touch gestures and

inferring affect information from gesture, then combining these two

information sources.

1.1. Related work

1.1.1. Affective content in touch gestures

The first item in our pipeline indicates the central assumption that

the user’s touch is emotionally informative. Evidence that it can be

comes from multiple sources. Touch has long been observed in real

situations by social scientists to encode social meaning, albeit modi-

fied by factors such as relationship, hierarchy and context [13]; and

studies in nursing chronicle its use for healing, e.g., [1]. In controlled

environments, individuals asked to imagine feeling varying emotions

are observed to make different touch gestures [26], and those asked

to express different emotions to a human or mannequin arm make

gestures and touch patterns that can be distinguished and which cor-

relate to the instructed emotion [20].

It remains to validate identifiable information content in touches

made under authentic emotional circumstances. This effort will be

assisted in future by a system able to capture touch data automatically

along with other verifying context (e.g. voice prosody, caregivers’

reports). The present work is a step toward that end.

1.1.2. Affective classification of touch gestures

Affect representations in use today generally take one of two

forms. A categorical approach models affective states as independent

classes; a dimensional approach organizes them with a systematic re-

lation [10]. Of the latter, the most well-known is Russell’s circumplex

model of affect [15], which locates emotions on dimensions of va-

lence (x-axis) and arousal (y-axis). Following the experiment design

under which our data were collected, fully motivated in [25], we use

a modification of the circumplex model known as the affect grid ([16],
ig. 2). Further discussion and review of continuous emotion models

an be found in [10], and in [9] in the context of affect recognition, and

e refer the reader to Silvera-Tawil et al. [20] for a comprehensive

eview on tactile HRI.

Past efforts have typically employed two steps to recognize af-

ect out of touch, first identifying the gestures and then attaching

n affective meaning to those gestures. For example, the robot seal

ARO [19] can sense if it is being stroked vs. hit through its touch

ensors. Huggable’s more sophisticated algorithm and structure dis-

inguishes nine touch gestures [21]. Probo defines three gestures at

higher level—a hug, scratch, or hurt [17]; AIBO detects only touch

ocation of touch [8]. All these robots employ some kind of gesture

ecognition as part of affective communication.

Most relevantly and recently, Silvera-Tawil et al. [20] asked sub-

ects to display specified emotion messages to a real human arm, and

o a mechanical proxy with touch sensors. Six emotion states were

ecognized with accuracy comparable to humans (47%–52%) repre-

enting to our knowledge a first instance of machine recognition of

ffective content in touch.

Our study, while sharing a general aim, differs throughout the

ecognition “pipeline”. We employed a human-pet paradigm: touch-

ng a nice-feeling animal proxy is socially very different from touching

human or its proxy. Rather than communicate a specific emotion,

ur subjects were instructed to imagine different emotional states,

nd to interact as if with a real pet companion; it is unclear at this

tage whether this makes the classification problem harder (display

s not explicit) or easier (more natural circumstance makes differ-

nces more clear). Sensing was accomplished with discrete transduc-

rs rather than a continuous sensed sheet, producing discontinuous

ata which likely impacted ultimate performance. Finally, we imple-

ented metrics based on a dimensional representation of emotion,

llowing us to apply distances to the topological connections between

ctual and detected affective states. To our knowledge, recognizing

nd classifying affective touch in such a setting is new.

.2. Research questions and contributions

his study aims to answer, in the context described above:

• How far can we push the limits of inexpensive sensors by applying

advanced machine learning methods to extract affect information

from touch?
• Is a dimensional (e.g., 2-D arousal/valence space) representation

informative for affective touch?
• What are good performance metrics for dimensional affect recog-

nition?
• Which emotion states of those examined here tend to be confused

by our algorithm and sensor?
• Is inferring affect directly from gestures more or less effective than

recognizing gestures then attaching emotional meaning to them,

for the conditions studied here?

ur original contributions are the following:

• Insights into the feasibility of classifying affect directly from touch

data, in the realistic case where the touch-giver is not explicitly

trying to communicate it.
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Fig. 3. Robot surface showing placements of 56 force sensing resistors (FSR) on robot

body. For any given gesture, data from the three most informative FSRs were used.
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• Metrics defined in affect space to evaluate and compare recogni-

tion performance for emotional states.
• A simple method to combine gesture recognition information with

affect recognition.

. Methodology

.1. Experimental setup

The Haptic Creature’s perception comes from a frame-mounted

ccelerometer and a network of 56 surface-mounted force sensing

esistors (FSR; Fig. 3). Its sensing capabilities are restricted by the

imited coverage of the FSRs, the best technology available at time

f construction (2008). Furthermore, FSRs are sensitive to forces nor-

al to the surface, whereas many touch gestures include tangential

shear) forces. The accelerometer can detect but not localize both

obot motion and the small vibrations associated with a touch.

Here we analyze touch and accelerometer data collected exper-

mentally, to get the most out of these inexpensive sensors using a

ophisticated machine learning algorithm. This in turn provides in-

ight into requirements for more adequate touch sensing. Details on

he mechatronic design of the Haptic Creature, including the specifi-

ations for the touch sensors can be found in [24].

.2. Experimental procedure

We analyzed previously unreported touch data collected from 31

articipants as part of the study fully reported in [26]; here, we briefly

ummarize the procedure. Consistently with previous Creature stud-

es, we used nine emotion labels representing a 3 × 3 affect grid

Fig. 2), where the horizontal axis is valence (negative to positive),

nd the vertical axis is arousal (low to high), with a neutral state at

he middle. The specific emotion labels used are distressed, aroused,

xcited, miserable, neutral, pleased, depressed, sleepy, and relaxed, and

ere ultimately derived from Russell’s circumplex labels [16].

The experiments were conducted in a room with a desktop com-

uter and a video camera observing the participant. The Haptic Crea-

ure was placed on the participant’s lap initially; but she was free to

djust its position throughout the study. The experiment facilitator

as not present in the room with the participant; the instructions

ere displayed and the data were collected by the computer. At the

tart of the experiment, the participant was presented with brief in-

ormation about the Haptic Creature, such as how it moves and how it

enses the surroundings through touch. She was instructed to “imag-

ne the Haptic Creature to be [her] pet, one with which [she has] a close

nd comfortable relationship.” She was further instructed that the robot

ill be passive and will not react in any way. Then, the participant was
resented with emotion labels in random order, and for each emotion

abel, she was asked to rate the likelihood of performing 30 different

estures selected from Yohanan’s gesture library [26]. The rating scale

as defined in the range: 1 (Very Unlikely) to 5 (Very Likely). Then,

or gestures reported with a likelihood of 4 or 5, the participant was

sked to perform that gesture on the Haptic Creature, imagining that

he was feeling that emotion. Each gesture was captured through

ideo, and force and acceleration data were recorded by the robot’s

SRs and accelerometer. Video analysis results are reported in [26].

ere, we analyze touch and accelerometer data alone, and use sur-

ey results to estimate prior probabilities in combining the gesture

ecognition information with affect recognition (Section 2.4). We use

6 gestures; the four least likely gestures were discarded because of

nsufficient performance data. More details about the experimental

rocedure can be found in [23].

.3. Data processing and feature extraction

Instead of working with raw time series data (average duration

.8 s, σ = 4.8 s), we calculated several features which have proven

ffective for touch gesture recognition [7]. These comprised the time

eries’ mean, median, variance, minimum, maximum, and total varia-

ion. In addition, we calculate the series’ Fourier transform and use its

eak and the corresponding frequency as features. Thus, we calculate

ight features per signal. No normalization is applied to the signals or

he features.

We found that for most of the data only a few FSRs activated; this

ay have been due to both actual participant activity, and limited

orce sensing capabilities. For each gesture, we therefore calculated

he variances of the FSR signals and discarded all but the three with

he largest variance for that gesture; this produced (3 × 8 = 24) FSR

eatures. Position of the active sensors was not used in the feature,

eaning our features were location-independent. For example, if two

eople perform the exact same gesture but at different locations on

he robot, the features that we calculate will exactly be the same.

While this is essential for gesture recognition, one might argue

hat some information is lost for emotion recognition, since emotion

nd touch location are correlated. This might be the case in human-

uman(oid) interaction, but in our case of human-pet interaction,

ssociating touch locations with emotional states has not been re-

orted before, to our knowledge. Our case is inherently different; in

uman-human touch interaction, the primary aim usually is to convey

ome emotional information to the recipient. However, in human-pet

nteraction, humans rather interact with the pet in a more relaxed

anner and do not try to convey an emotion. This arguably could

ender touch location in human-pet interactions less important. In

ur experiments, we observed that introducing location feature did

ot improve the results so we disregarded the location data.

The three-axis accelerometer provided another three channels

rom which we computed the same features as for the FSRs, or

3 × 8 = 24). This resulted in 48 features in total.

.4. Classification

We use Random Forests (RF) as the classifier in this study [2], a

ethod based on combining classification results from multiple deci-

ion trees. It gives the best results among the other classifiers that we

onsidered (Fisher linear discriminant, naive Bayes, k-nearest neigh-

or, decision tree, multilayer perceptron). Furthermore, this method

as proven most effective among many alternatives considered for

esture recognition [6] and gait classification [18].

We use the RF classifier to recognize affect from sensor data, i.e., to

enerate a probability distribution (PD) that the sensor data belongs to

given emotion class ei. In the following, we denote this PD obtained

or direct affect recognition by PE(RF)(ei|x), where x represents the
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Fig. 4. Combining gesture recognition information with affect recognition.
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Fig. 5. Euclidean distances for (a) e1, (b) e2, and (c) e5 in the affect grid.
data. After this PD is obtained, x can be assigned the class with the

highest probability.

We now consider the relation between gesture and emotional

states, and how to exploit it for affect recognition. Silvera-Tawil et al.

[20] relate their touch gestures (“touch modalities”) to the messages

that subjects have been instructed to convey. In our study, the ges-

tures are performed freely by participants in an imagined emotional

state. Here, we introduce a way to integrate the gesture information

into affect recognition and analyze the contribution of gestures to the

perceived emotional state.

Assume (Fig. 4) that a prior PD over emotional states for each

given gesture gj is available. Let PE|G(ei|gj) denote the probability of

feeling emotion ei given that gesture gj is performed. This probability

is not related to the collected gesture/affect sensor data, but is simply

prior information that we assume we know before analyzing (or even

collecting) the data.

If the prior probabilities are known, gesture recognition can pro-

vide information about the emotional state. Therefore, we also run

the RF algorithm for gesture recognition, without regard to emotional

state (“RF gesture recognizer” block in Fig. 4). Let PG(gj|x) be the out-

put of the RF classifier indicating the probability that data x belongs

to gesture class gj, obtained by normalizing the number of votes for

each class. Then, affect can be inferred from this information:

PE(G)(ei|x) =
26∑
j=1

PE|G(ei|gj)PG(gj|x) (1)

where PE(G)(ei|x) is the PD of the emotional state inferred from ges-

ture information (“integrate gesture information” block in Fig. 4). We

denote this distribution by PE(G)(ei|x) to discern it from the RF distri-

bution used for affect recognition directly (i.e., without going through

gestures; “RF affect recognizer” block in Fig. 4), denoted by PE(RF)(ei|x)
above. These two distributions can be combined to give the final esti-

mate PE(ei|x). Many methods can be applied for combination [4] but

the simplest is the convex combination:

PE(ei|x) = αPE(RF)(ei|x)+ (1 − α)PE(G)(ei|x) (2)

where 0 ≤ α ≤ 1 is a specified constant. It can be selected according

to how reliable each estimate is.

2.5. Classifier evaluation based on a choice of loss functions

In this section, we describe the methods we use to evaluate the

performance of the classifier and make a performance comparison

for different emotional states. We first introduce the notion of a loss

function, then show how different loss functions can be used to apply

distances to the topological space defined by the dimensional emo-

tion model, based on one’s purpose or a priori knowledge. Finally we

illustrate six representatives with which we will analyze this dataset.

As opposed to saying that a classification is either correct or incor-

rect, the loss function assigns a degree to an incorrect classification.

For a correct classification, the loss is zero; but for an incorrect one, it
s non-negative. This number assigns a cost to that incorrect classifi-

ation.

For example (see Fig. 2), suppose that a classifier incorrectly classi-

es depressed states as miserable and also incorrectly classifies relaxed

tates as distressed. The classifier’s performance is thus bad for both

epressed and relaxed states. However, it should not be equally bad,

ecause the distance between depressed and miserable is much less

han between relaxed and distressed. Therefore, by defining loss func-

ions, we can compare performances of classifying different emotional

tates not by the correct classification percentage, but considering the

egree of misclassification. We define several loss functions in the fol-

owing and measure the performance of the random forest classifier

or different emotions.

Let E = {e1, . . . , e9} be the set of emotions. Fig. 2 shows the emo-

ions and their positions in the affect space. Let the number of samples

n class i be denoted as Ni; the loss incurred by deciding ej when the

ctual class is ei as L(ej; ei); and the probability of deciding ej when the

ctual class is ei as P(ej; ei). P(ej; ei) can then be estimated by dividing

he number of samples actually belonging to class ei that are classified

s ej by the total number of samples belonging to class ei, after testing

classifier by cross validation. So,

(ej; ei) = number of samples in ei classified as ej

Ni

(3)

xpected loss for emotion class i and loss function L is then

i(L) =
9∑

j=1

L(ej; ei)P(ej; ei) i = 1, . . . , 9 (4)

.5.1. A discrete (binary) loss function

A trivial choice for the loss function is the discrete (0-1) loss func-

ion LD that simply declares the loss zero for correct classification,

therwise one. This obviously does not account for the degree of

isclassification. Therefore, we define other loss functions based on

ifferent distances in affect space.

.5.2. A distance-based loss function

If we represent emotions as points in two dimensions, we can

efine the distance between the emotional states ei and ej in the affect

pace. Now, the expected loss in Equation (4) accounts for degree

f misclassification. Most simply, we can use the Euclidean distance,

iven by

E(ej; ei) = κ
√

(xi − xj)2 + (yi − yj)2 (5)

here κ is a scaling factor and (xi, yi) are the valence and arousal

oordinates of an emotional state, respectively. The subscript empha-

izes the Euclidean distance, and κ is chosen such that the loss for

he worst misclassification (diagonal of the square) is 1. Fig. 5 shows

istances for distressed, aroused, and neutral states, which together

apture the distances for all nine emotional states, available upon

otation or reflection.

For compatibility, we can also treat the discrete loss function LD

s a distance. All nonzero distances then equal 1.

.5.3. More tolerant loss functions

It is possible to define more “tolerant” distances in the affect space

nd use them as loss functions to evaluate classification performance,
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Fig. 6. Squared Euclidean distances for (a) e1, (b) e2, (c) e5 on affect grid.
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Fig. 9. LA distances for (a) e1, (b) e2, (c) e5.
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nd use them to account for the inherent fuzziness in affect. For ex-

mple, a loss function can be defined to tolerate the misclassification

f it is a “near miss,” i.e., the actual emotion and the classified emotion

re neighbors in the affect space. This has been done by Wöllmer et al.

22] in the context of affect recognition from speech.

An extreme example would assign zero loss if the actual emotion

nd the classified emotion are neighbors in the affect space. How-

ver, this is likely too tolerant. Instead, we would like something in

etween, with a small loss for adjacent emotional states, but a large

ne for distant states. The square of the Euclidean distance would

atisfy these conditions:

E2(ej; ei) = λ[(xi − xj)
2 + (yi − yj)

2] (6)

here λ is a scale factor; values are given in Fig. 6. For consistency, λ
s chosen such that the maximum loss value is 1.

.5.4. Relation to emotion models and another loss function

It is possible to link the loss functions defined above to emotion

odels in the literature. For example, the discrete metric LD considers

ach emotion as a separate entity, i.e., it does not take into account

he distance in the emotion space. Therefore, it can be considered as

representation of Ekman’s view of emotion in the affect recognition

omain. Similarly, the metric LE places each emotion on Russell’s

ffect grid, so it is a representation of that approach. A more popular

motion model is Russell’s circumplex. Here, the emotion e5 (neutral)

ould be at the origin and other emotions would roughly form a circle

entered at the origin. We assume that the remaining eight emotions

re equally spaced around the circle. Assuming a circle with diameter

, the loss values are shown in Fig. 7. We denote that loss function

s LC .

.5.5. Loss functions treating arousal and valence separately

In order to analyze the classification performance separately in

rousal and valence dimensions, we define two other loss functions.

V focuses on the valence dimension. If the true and classified emo-

ions are in the same valence zone, the loss is zero; if the valence is

pposite, the loss value is 1; otherwise it is defined as 0.5. LA similarly

ocuses on the arousal dimension. Note that for LV , the loss along the

rousal axis is zero, and for LA, the loss along the valence axis is zero.

herefore, the higher LV is, the worse the performance of a classifier

n valence dimension; the higher LA is, the worse the performance

f a classifier in arousal dimension. The loss values for LV and LA are

iven in Figs. 8 and 9, respectively.

We note here that all metrics defined above are normalized such

hat the maximum possible loss value is 1. This enables fair com-

arison between these metrics. For example, compare LE2 to the loss

unction defined by the Euclidean metric LE. If two emotions ei and ej

re adjacent, LE(ej; ei) = 1/2
√

2 but LE2(ej; ei) = 1/8. So LE2 tolerates a

ear miss more than the Euclidean metric. If ei and ej have the same

alence but opposite arousal, LE(ej; ei) = 1/
√

2 and LE2(ej; ei) = 1/2.
0 0.38 0.71 0.38 0 0.38 0.5 0.5 0.5
0.38 0.5 0.92 0.71 0.5 0.71 0.5 0 0.5
0.71 0.92 1 0.92 1 0.92 0.5 0.5 0.5

(c)(b)(a)

Fig. 7. Circumplex model distances for (a) e1, (b) e2, and (c) e5.
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Clearly, it is possible to define many other loss functions. However,

hese model the most frequently used dimensional approaches to

ffect in psychology, and capture the nature of the misclassifications.

ifferent loss functions might be appropriate for other applications.

Here we point out that the loss function LE2 is not a mathematical

istance as it violates the triangle inequality. However, we observe

hat this allows it to model the case where the affect space is not a

roper metric space. For example, according to this loss function e1 is

lose to e2, e2 is close to e3, but e1 and e3 are far apart.

Among metrics that are not proper distances, we highlight the

on-symmetric loss functions. When L(ej; ei) �= L(ei; ej), the loss in

lassifying ei as ej will not be equal to the loss in classifying ej as

i. This can have interesting utilities. For example, in a therapeutic

tudy, it might be most crucial to classify negative emotions cor-

ectly, with the highest cost associated with an incorrect positive

lassification. However, non-symmetric loss functions are beyond our

cope.

. Analysis and discussion

.1. Direct affect recognition

We first report results with direct affect recognition, i.e., with

ouch gesture labels disregarded. A test pattern x is then assigned

o the highest-probability emotion class. More precisely,

abel(x) = arg max
i

PE(RF)(ei|x). (7)

his is the output of Fig. 4’s “RF affect recognizer” block.

.1.1. Results with all participants’ data

Affect recognition results with 10-fold cross validation are pre-

ented as a confusion matrix in Table 1, where rows represent the

rue and columns the estimated class. Overall correct recognition is

5.9%; chance is 11%.

This recognition rate does not take the closeness of emotional

tates into account. For example, in row 3, 164 of the e3 (excited)

amples are correctly classified. The next highest number in the row,

4, corresponds to column 6. This means that 54 of the e3 (excited)

amples are incorrectly classified as e6 (pleased), which is in fact right

ext to e3 in the affect space. It is hard to observe these “near misses”

n the confusion matrix.

To better illustrate the real situation, we also present the same

esults in graphical form. Fig. 10(a) shows our visualization for the

onfusion matrix in Table 1. Each shaded 9-cell block in the figure

orresponds to a row in the confusion matrix, according to the labels

efined in Fig. 2. For example, the position “medium arousal, positive

alence” in Fig. 10(a) corresponds to row 6 (e6) in the confusion ma-

rix. Within each block, we represent the classification results for that

ow, again according to Fig. 2 labels as follows. First, each row e is
i
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Table 1

The confusion matrix for affect recognition with all participants’ data combined. Note that e1−9 reside in a

2-dimensional (3 × 3) space, making this “flattened” view hard to interpret. See Fig. 10 for a more intuitive

3-D visualization.

e1 e2 e3 e4 e5 e6 e7 e8 e9

e1 51 22 44 5 13 36 15 15 22

e2 9 118 58 6 21 46 10 12 28

e3 22 39 164 6 16 54 9 8 19

e4 19 21 35 36 18 26 14 12 29

e5 6 20 27 14 92 42 13 21 40

e6 16 46 80 5 24 137 18 5 22

e7 9 23 26 15 10 35 72 17 30

e8 15 21 17 5 26 25 14 76 34

e9 14 15 25 11 26 31 16 18 142

Fig. 10. Visual quasi-3-D representation of affect recognition results (probabilities). For example, each upper-left block shows the 3x3 distribution of recognition results when

the high-arousal, negative valence emotion word (distressed) was imagined while the participant gestured, and so on. (a) All participants’ data combined (values listed in Table 1);

(b) average of individual participants; (c) hypothetical perfect classification.
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divided by the sum of the numbers in that row, to estimate the clas-

sification probabilities P(ej; ei) (probability of deciding the class is ej

when the actual class is ei) defined in Equation (3). Then, these prob-

abilities are arranged in a 3 × 3 structure consistent with the labeling

in Fig. 2 and represented by cell, with shade darkness proportional to

probability. Fig. 10(c) illustrates a hypothetical perfect classification.

This representation is particularly useful for visualizing the near

misses in the confusion matrix. Two key observations now emerge:

first, in Fig. 10(a), most of the incorrectly classified e3 (excited) state

samples are classified as the neighboring states, namely e2 (aroused)

and e6 (pleased), i.e. they are near misses. Second, classification results

are weakest for e1 (distressed) and e4 (miserable) - upper left and

middle left, respectively: most of the samples are incorrectly classified

(relatively uniform grey across block), and moreover, many incorrect

classifications are nonadjacent. Interestingly, this is consistent with

Yohanan’s observations that it is hard to render emotion in negative

valence and medium-high arousal zone [23].

To quantify classification performance of different emotional

states, we can use the distance metrics defined in the previous sec-

tion to systematically compare performance for each affect-grid re-

gion among each other and to baseline values, which differ by metric

and location on grid. In Table 2, for each of our distance metrics we

present expected loss values and results for individual and baseline

performance. Two baseline classifiers are considered for comparison.

Class frequency: assigns a class to a sample with a probability propor-

tional to the frequency of that class in the data set. Chance: classifies

a sample randomly; i.e., each emotion has a 1/9 chance (11.1%) of as-

signment to a given sample. These two classifiers represent a baseline

that any classifier is expected to beat, because they use no analysis.

Worst case: assigns a sample to the class for which the loss would be

maximized; e.g., if a sample’s correct class is e9 (relaxed), it is assigned
o e1 (distressed). This is not a proper classifier because it uses class

nformation, i.e., it already “knows” the true class of a sample and

ssigns it to the worst class possible.

In viewing Table 2, keep in mind first, that the random guess

nd worst case values vary by location in the affect grid because

he number of neighbors differ; and secondly, the LD (distance-based

oss function) values are in fact error rates (fraction of misclassified

amples) for each class and can be interpreted as the probability of

isclassification.

Clearly, a lower loss value means better performance. From Table 2

esults, we can conclude that performance in the positive valence

one is generally better. For example, for the e3 (excited) state,

1 − 0.51 =)49% of samples are classified correctly (second column,

oss function LD). Interestingly, for e1 (distressed), e4 (miserable), and

7 (depressed), LV is significantly higher than LA. For negative valence

motions, near misses in arousal are much more likely than near

isses in valence; i.e., misclassifications of arousal are more likely to

e near misses than those of valence. Similarly, for e8 (sleepy) and e9

relaxed), LA values are higher than LV values. These emotions have

ore near misses in valence than in arousal.

LD values are the highest among all other loss functions (even

he worst case classifier) because near misses are not reflected in

D. To compare near-miss rate for different emotions, we calculate

ercentage decrease in loss value for LE, LE2 , LC , LV , and LA as compared

o LD for the RF classifier, and for class frequency (CF) as a baseline.

ifferences between the RF and CF classifier percentage decreases are

hown in Fig. 11(a).

This chart displays a measure of the distribution of just the incor-

ect classifications. If most incorrect classifications are near misses

nd their number is larger than that of the class frequency classifier,

he bar is higher. This view shows the highest number of near misses
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Table 2

Expected loss values, for (column 2 of each matrix) Random Forests trained on all participants’ data and (column 3) on individual participants’ data then averaged.

Baseline data are (column 4) the class frequency classifier, (column 5) random guess classifier, and (column 6) worst case classifier. Each matrix shows data computed

for a different loss function: (a) LD , (b) LE , (c) LE2 , (d) LC , (e) LV , (f) LA .

Emotion All Individual Class frequency Chance Worst case Emotion All Individual Class frequency Chance Worst case

(a) Discrete loss function (LD) (d) Circumplex distance loss function (LC)

e1 0.77 0.59 0.91 0.89 1.00 e1 0.57 0.43 0.64 0.61 1.00

e2 0.62 0.44 0.88 0.89 1.00 e2 0.39 0.26 0.60 0.61 1.00

e3 0.51 0.49 0.86 0.89 1.00 e3 0.28 0.27 0.57 0.61 1.00

e4 0.83 0.71 0.92 0.89 1.00 e4 0.62 0.51 0.66 0.61 1.00

e5 0.67 0.47 0.89 0.89 1.00 e5 0.33 0.24 0.44 0.44 0.50

e6 0.61 0.50 0.86 0.89 1.00 e6 0.35 0.30 0.57 0.61 1.00

e7 0.70 0.53 0.90 0.89 1.00 e7 0.52 0.39 0.66 0.61 1.00

e8 0.67 0.57 0.91 0.89 1.00 e8 0.44 0.37 0.63 0.61 1.00

e9 0.52 0.47 0.88 0.89 1.00 e9 0.33 0.31 0.59 0.61 1.00

average: 0.66 0.53 0.89 0.89 1.00 average: 0.43 0.34 0.60 0.60 0.94

(b) Euclidean distance loss function (LE) (e) Valence loss function (LV )

e1 0.54 0.40 0.60 0.58 1.00 e1 0.57 0.40 0.56 0.50 1.00

e2 0.31 0.20 0.47 0.48 0.79 e2 0.25 0.17 0.34 0.33 0.50

e3 0.27 0.26 0.54 0.58 1.00 e3 0.20 0.22 0.44 0.50 1.00

e4 0.49 0.41 0.52 0.48 0.79 e4 0.55 0.43 0.56 0.50 1.00

e5 0.28 0.20 0.38 0.38 0.50 e5 0.26 0.16 0.34 0.33 0.50

e6 0.28 0.24 0.45 0.48 0.79 e6 0.22 0.19 0.44 0.50 1.00

e7 0.49 0.37 0.62 0.58 1.00 e7 0.49 0.37 0.56 0.50 1.00

e8 0.35 0.30 0.50 0.48 0.79 e8 0.24 0.22 0.34 0.33 0.50

e9 0.32 0.30 0.56 0.58 1.00 e9 0.24 0.26 0.44 0.50 1.00

average: 0.37 0.30 0.51 0.51 0.85 average: 0.34 0.27 0.45 0.44 0.83

(c) Squared Euclidean distance loss function (LE2 ) (f) Arousal loss function (LA)

e1 0.40 0.30 0.44 0.42 1.00 e1 0.35 0.32 0.48 0.50 1.00

e2 0.17 0.10 0.28 0.29 0.63 e2 0.28 0.17 0.48 0.50 1.00

e3 0.16 0.16 0.37 0.42 1.00 e3 0.22 0.20 0.48 0.50 1.00

e4 0.32 0.26 0.32 0.29 0.63 e4 0.31 0.29 0.33 0.33 0.50

e5 0.12 0.09 0.17 0.17 0.25 e5 0.23 0.19 0.33 0.33 0.50

e6 0.15 0.12 0.26 0.29 0.63 e6 0.26 0.21 0.33 0.33 0.50

e7 0.37 0.28 0.46 0.42 1.00 e7 0.37 0.29 0.52 0.50 1.00

e8 0.20 0.17 0.30 0.29 0.63 e8 0.35 0.30 0.52 0.50 1.00

e9 0.21 0.21 0.39 0.42 1.00 e9 0.30 0.24 0.52 0.50 1.00

average: 0.24 0.19 0.33 0.33 0.75 average: 0.30 0.24 0.44 0.44 0.83
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or neutral to positive valence emotions, especially for e3 (excited) and

6 (pleased). For negative valence emotions (e1,4,7), the negative bar

alue indicates that a class frequency classifier is expected to have

ore near misses. Taken together, this means that the incorrect clas-

ifications of the RF classifier are distributed away from the actual

motion for negative valence emotions, but they are distributed close

o the actual emotion for neutral and positive valence emotions.

Among different loss functions, LE, LE2 , and LC values are close,

hich means that the way that the distance is defined is not very sig-

ificant. However, interesting conclusions can be drawn by observing

V and LA bars. The LA bar is highest for high arousal emotions (e1,2,3).

ince LA is zero in the valence dimension, this bar measures the per-

ormance in the arousal when valence is disregarded. For this case,

he classification performance is the best for the high arousal emo-

ions e1,2,3. Similarly, LV measures the performance in the valence

imension when arousal is disregarded. For this case, performance

s the best for positive valence emotions (e3,6,9). Therefore, we can

onclude that near misses in arousal are more likely to occur for high

rousal emotions; near misses in valence are more likely to occur for

ositive valence emotions (upper side and right side of the square-

haped affect space).

.1.2. Results for individual participants

Affective communication between a robotic pet and its user is

sually idiosyncratic; individual affect recognition results are thus

lso of interest. We run the RF classifier for each participant, normalize

ach resulting confusion matrix (by dividing each row by its sum) to

et probabilities, then average them over all participants. A visual

epresentation is given in Fig. 10(b); expected loss values appear in

he third column of Table 2. The average correct recognition rate for
his case is 47.8%. f
As expected, loss values are usually lower for individual par-

icipants. A similar calculation for the percentage decrease in

oss can be calculated for this case as well (Fig. 11(b)). Per-

ormance for negative valence emotions is better than when

rained on all participants, but the class frequency classifier

till slightly outperforms Random Forests. Results are qualita-

ively similar to the case with all participants: near misses

re more likely in arousal for e2 and e3, and in valence for

3 and e6. The exception is that near misses in arousal are also likely

or e9.

.2. Combining gesture information with affect recognition

We also applied the RF method for gesture recognition and com-

ined the results with direct affect recognition. In this case, affect is

lassified according to the combined PD:

abel(x) = arg max
i

PE(ei|x). (8)

For gesture recognition, we were able to assess classifier perfor-

ance since participants were instructed not only to imagine an emo-

ion, but also to perform a gesture and this was thus known a priori.

e disregarded instructed emotional state and trained the classifier

o distinguish directly between all 26 gestures. This gives the prob-

bility distribution PG(gj|x) for a test sample x. Assigning the gesture

lass with the highest probability to x, the confusion matrix for 10-fold

ross validation is presented in Table 3. Overall correct classification

s 32.8%, an order of magnitude larger than chance (1/26 = 3.9%).

urther, most confusions occur within similar gestures.

We estimated prior probabilities PE|G(ei|gj) in Equation (1)

rom the survey collected before gesture acquisition, which asked
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Fig. 11. Bar chart comparison of classification performances for (a) all participants combined, (b) average of individual participants. Neutral valence column: e2,5,8; neutral arousal

row: e4,5,6.
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Fig. 12. Results combining gesture recognition with affect recognition.
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participants to rate likelihood of performing a gesture for a given

emotional state ([26], omitted for space). Prior probabilities were esti-

mated by scaling likelihood values to produce a legitimate probability

distribution.

We combined gesture information with affect recognition in two

ways. First we combined them according to the gesture recognition

performance of the random forest classifier, using Equation (1). Sec-

ondly, we combined the two results assuming that the gesture recog-

nition was perfect. That is, we did not run the gesture recognition

algorithm but considered the true labels for gestures and combined

the results, manually setting PG(gj|x) = 1 for the true gesture and zero

otherwise. Fig. 12 illustrates the results of the data fusion for differ-

ent values of α. In this case, direct affect recognition performance
ithout any gesture recognition aid is 35.9%. Combining random for-

st recognition of gestures results in a small performance increase.

f we assume perfect gesture recognition, classification increases to

7.6% for α = 0.4. This suggests that gesture recognition can indeed

mprove affect recognition results provided that gesture recognition

erformance is high. When our actual gesture recognition results are

sed, the improvement is marginal; 36.1% for α = 0.7.

. Conclusions and future work

In this study, we presented the results of affect recognition from

ouch gestures using FSR and accelerometer signals. The experiments

ere conducted with a lap-sized pet robot, the Haptic Creature. We

onsidered Russell’s 2-D arousal-valence affect space in modeling

he emotions. The overall correct recognition rate is about 36% with

ll participants’ data and 48% for individual participants on average.

hese numbers are comparable to the results from human-human af-

ective touch studies (24%–63% and 31%–83% in two different studies)

12]. However, these human-human studies do not consider the close-

ess between emotions. While the obtained error rates are relatively

igh, we observed that in many cases, the misclassified states were

lose to the actual states in the affect space. To quantify and analyze

his closeness, we defined several new metrics which demonstrate

hat it is possible to quantify and compare the misclassifications.

Knowledge of the nature of wrong classifications and near misses

ill be valuable in a deployed affective human-robot interaction sys-

em. For example, prior probabilities in a pattern recognition system

an be adjusted according to near miss statistics, improving over-

ll probability of correct classification. Depending on the application,

symmetric penalties may be associated with specific misclassifica-

ions. Knowing the performance of classifiers in arousal and valence

imensions would help improve the design of other classifiers. Inte-

rating touch sensing with other sensing modalities (such as video or

udio) would certainly improve results, another upcoming step.

We emphasize that our physical FSR coverage was low; there are

egions on the surface where no sensor is present. We expect that

etter other technology will improve results considerably, and are

pdating sensing on a new platform.
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Table 3

Confusion matrix for gestures. The highlighted diagonals indicates correct identification; mis-classification frequencies larger than the diagonal value are highlighted in

red.
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In the following, we highlight other important results.

Location-independent features: We used location-independent

eatures. This is appropriate for pure gesture recognition; however,

ocation can provide useful information in emotion recognition. Here,

dding location features did not improve results so we disregarded

ocation. This finding could be due to the limited touch sensing capa-

ility of our robot; further investigation is necessary to identify the

elation between touch location and emotion in human-pet interac-

ions. On the other hand, our feature set does not totally disregard the

ocation information. The accelerometer signal carries some informa-

ion about the touch location, since, for example, a pat on the head

nd a pat on the back do not generate the same acceleration pattern.

Dimensional vs. categorical approach to affect: Our procedure

egan with a categorical approach to affect (we considered classes

s independent); then, we interpreted results with a dimensional

pproach (affect grid), and show that misclassifications are usually

near misses,” especially in the positive valence zone. This suggests

hat the 2-D arousal-valence grid is a good representation of affect in

human-robot interaction setting where touch is one of the sensing

odalities.

Personalized affect recognition: With all participants’ data com-

ined, the best classification performance is a tie between e3 (excited)

nd e9 (relaxed). If near misses are taken into account, e3 is correctly

lassified with higher performance than e9. For the case with a single

articipant’s data, e2 (aroused) and e5 (neutral) are correctly classified

ith the largest success. When near misses are taken into account, the

lassification performance of e2 is better than that of e5. This suggests

hat the affect classification performance for different emotions will

e different for a pet robot that is used by many people as opposed to

personalized robot.

It is difficult to classify negative valence: Negative valence is

arder to classify, especially in the medium-high arousal zone, when
ll emotional states are considered and with our sparse data condi-

ions (three sensors out of 56). We also ran the algorithm with subsets

f the emotional states; best results are obtained for emotions in the

ositive valence zone. It is possible that people are less likely to per-

orm affective touch gestures on a pet robot in the negative valence

motional states, as compared to positive valence emotional states,

ut more data are needed to assess this. Our observation is confirmed

y the numbers in the user survey previously reported in [26]; and

ilvera-Tawil et al. [20] also report confusions mostly in negative va-

ence and high arousal zone.

Affect recognition vs. gesture recognition: We combined gesture

ecognition information with direct affect recognition. For gesture

ecognition results obtained with the Random Forests method, there

as little improvement when gesture data were added to the direct-

ffect classification. More improvement was achieved by assuming

hat the gesture recognizer was perfect. This suggests that good ges-

ure recognition can be used to aid affect recognition systems based

n touch sensing. Here we should state the fact that our method of

stimating prior probabilities is based on empirical user survey data.

etter ways of estimating prior probabilities and better gesture recog-

ition methods could prove gesture recognition even more useful for

ffect recognition.

Human display of affect: In this study, participants were asked to

nact an artificial display of affect. Recognizing naturalistic and spon-

aneous affect is still one of the problems of affect recognition systems

hat use audiovisual cues, but that problem applies to affective touch

s well. We believe that our study is a stepping stone in solving this

arder problem.

In this study, the touch recipient is a pet robot. Were the re-

ipient a human or a humanoid robot, the human performing the

ouch would possibly display a particular emotion in a different

anner—that is, the identity of the recipient may influence the touch
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given. For this reason, our study should not be directly compared to

studies in human-human(oid) interaction. Further investigation of

human behavior in different human-human, human-robot, human-

pet interactions will improve applications involving emotion recog-

nition such as ours.

Future work

Affect recognition from touch gestures is currently in infant stages.

To our knowledge, this study is one of the first in this area. There are

many unexplored areas for future work. With the advance of sensor

technology, cheap sensors that cover the entire touch surface can

be built and spatially continuous data can be acquired. Finding the

most informative features for affect recognition from touch gestures is

another area where little research has been conducted. Unsupervised

feature learning and deep learning approaches can be applied and

better recognition performance could be achieved. Another question

that needs to be answered is whether there is a need for recognizing

gestures before recognizing emotional states. Further studies need

to be conducted to answer these questions. We believe that video

recordings of touch gestures provide additional information about the

gesture being performed, as well as the emotional state. Considering

the vast literature on affect recognition from vision, fusion of touch

sensor and video data are another very promising method for affect

recognition.
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