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A pet cat or dog’s ability to respond to our emotional state opens an interaction channel with high visceral
impact, which social robots may also be able to access. Touch is a key but understudied element; here, we
explore its emotional content in the context of a furry robot pet. We asked participants to imagine feeling
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Afg;cm,e interfaces nine emotions located in a 2-D arousal-valence affect space, then to express them by touching a lap-sized
Haptic robot prototype equipped with pressure sensors and accelerometer. We found overall correct classification

(Random Forests) within the 2-D grid of 36% (all participants combined) and 48% (average of participants
classified individually); chance 11%. Rates rose to 56% in the high arousal zone. To better understand classifier
performance, we defined and analyzed new metrics that better indicate closeness of the gestural expressions.
We also present a method to combine direct affect recognition with affect inferred from gesture recognition.
This analysis provides a unique first insight into the nature and quality of affective touch, with implications
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as a design tool and for incorporating unintrusive affect sensing into deployed interactions.
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1. Introduction

An interactive affective computing system requires automatic, re-
altime recognition of affect. In the past decade, extensive research in
affect recognition has focused on vision, speech, physiological mea-
surements, and their fusion [3,5,27]. However, the touch modality
has not been widely considered, despite evidence that it is a potent
means for emotion communication [11,12,14].

Recognition of different aspects of affect via touch will enable a
substantially different approach to interactive applications, because
of its potential for unintrusive use. Meanwhile, situated in an object
rather than a space (as for vision), it can be built around interac-
tions rather than a viewpoint from a fixed space. Touch-based affect
sensing comprises a pipeline whose elements each impact ultimate
recognition performance:

o the user’s actual emotional state, its typical manifestation, and
degree to which this is expressed in his/her touch;

the object being touched, and the social and physical context of
the interaction, both of which impact the expressiveness of the
touch that is invited;

data quality, namely the sensors used and their ability to detect
expressively informative touches;
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e recognition algorithm, delivering probabilities of a particular af-
fective user state;
e metrics used to incorporate a priori known risk of misclassification.

Recently, good results have been obtained in touch-based affect
recognition [20], which captures one interesting path through this
large design space (Section 1.1).

In the present work, we explore the premise of human interactions
with a haptically inviting and expressive social robot. In this context,
interpretation of affective touch originating from the human, usually
from a combination of endogenous origins and response to robot
behavior, can potentially support closed-loop responsiveness in social
human-robot interaction (HRI) settings, for example for therapeutic,
caregiving and companionship applications with pet and humanoid
robots. Our studies employ the Haptic Creature (Fig. 1), a robot pet
that mimics a small animal sitting on a person’s lap.

Approach: Our research, based on a robot pet platform that displays
as well as senses touch stimuli, utilizes a dimensional representation
of affect. The resulting structure should be helpful in robot sens-
ing of human affect, by mitigating the impact of ‘noisy’ classification
through a concept of ‘near misses’ and of natural, i.e. higher-likelihood
transitional paths; and in robot rendering of its own affect display,
via a topological map of coherent dynamic transitions. In a previ-
ous study, participants performed a series of specified touch gestures
on the robot as they imagined feeling different emotions, and touch
data were recorded using first-generation touch sensors. An analysis
of the visual and video observation of these gestures has been pub-
lished [26]. However, these methods come at a high cost of labor,
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Fig. 1. The Haptic Creature, in experiment context.

processing delay and the intrusiveness and privacy issues of video
recording.

Here, we use pattern recognition on this study’s unpublished touch
sensor data to assess feasibility and best methods for classifying the
gesture-giver’s affective state, and to generate requirements for next-
generation touch sensing. We consider two schemes: (1) recognizing
affect directly from touch data, and (2) identifying touch gestures and
inferring affect information from gesture, then combining these two
information sources.

1.1. Related work

1.1.1. Affective content in touch gestures

The firstitem in our pipeline indicates the central assumption that
the user’s touch is emotionally informative. Evidence that it can be
comes from multiple sources. Touch has long been observed in real
situations by social scientists to encode social meaning, albeit modi-
fied by factors such as relationship, hierarchy and context [13]; and
studies in nursing chronicle its use for healing, e.g., [1]. In controlled
environments, individuals asked to imagine feeling varying emotions
are observed to make different touch gestures [26], and those asked
to express different emotions to a human or mannequin arm make
gestures and touch patterns that can be distinguished and which cor-
relate to the instructed emotion [20].

It remains to validate identifiable information content in touches
made under authentic emotional circumstances. This effort will be
assisted in future by a system able to capture touch data automatically
along with other verifying context (e.g. voice prosody, caregivers’
reports). The present work is a step toward that end.

1.1.2. Affective classification of touch gestures

Affect representations in use today generally take one of two
forms. A categorical approach models affective states as independent
classes; a dimensional approach organizes them with a systematic re-
lation [10]. Of the latter, the most well-known is Russell’s circumplex
model of affect [15], which locates emotions on dimensions of va-
lence (x-axis) and arousal (y-axis). Following the experiment design
under which our data were collected, fully motivated in [25], we use
a modification of the circumplex model known as the affect grid (|16],
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Fig. 2. Emotion labels (from [16]) and their locations in the affect grid, as adapted by
Yohanan and MacLean [26].

Fig. 2). Further discussion and review of continuous emotion models
canbe foundin[10],and in [9] in the context of affect recognition, and
we refer the reader to Silvera-Tawil et al. [20] for a comprehensive
review on tactile HRI.

Past efforts have typically employed two steps to recognize af-
fect out of touch, first identifying the gestures and then attaching
an affective meaning to those gestures. For example, the robot seal
PARO [19] can sense if it is being stroked vs. hit through its touch
sensors. Huggable’s more sophisticated algorithm and structure dis-
tinguishes nine touch gestures [21]. Probo defines three gestures at
a higher level—a hug, scratch, or hurt [17]; AIBO detects only touch
location of touch [8]. All these robots employ some kind of gesture
recognition as part of affective communication.

Most relevantly and recently, Silvera-Tawil et al. [20] asked sub-
jects to display specified emotion messages to a real human arm, and
to a mechanical proxy with touch sensors. Six emotion states were
recognized with accuracy comparable to humans (47%-52%) repre-
senting to our knowledge a first instance of machine recognition of
affective content in touch.

Our study, while sharing a general aim, differs throughout the
recognition “pipeline”. We employed a human-pet paradigm: touch-
ing a nice-feeling animal proxy is socially very different from touching
a human or its proxy. Rather than communicate a specific emotion,
our subjects were instructed to imagine different emotional states,
and to interact as if with a real pet companion; it is unclear at this
stage whether this makes the classification problem harder (display
is not explicit) or easier (more natural circumstance makes differ-
ences more clear). Sensing was accomplished with discrete transduc-
ers rather than a continuous sensed sheet, producing discontinuous
data which likely impacted ultimate performance. Finally, we imple-
mented metrics based on a dimensional representation of emotion,
allowing us to apply distances to the topological connections between
actual and detected affective states. To our knowledge, recognizing
and classifying affective touch in such a setting is new.

1.2. Research questions and contributions

This study aims to answer, in the context described above:

How far can we push the limits of inexpensive sensors by applying
advanced machine learning methods to extract affect information
from touch?

Is a dimensional (e.g., 2-D arousal/valence space) representation
informative for affective touch?

What are good performance metrics for dimensional affect recog-
nition?

Which emotion states of those examined here tend to be confused
by our algorithm and sensor?

Is inferring affect directly from gestures more or less effective than
recognizing gestures then attaching emotional meaning to them,
for the conditions studied here?

Our original contributions are the following:

o Insights into the feasibility of classifying affect directly from touch
data, in the realistic case where the touch-giver is not explicitly
trying to communicate it.
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Fig. 3. Robot surface showing placements of 56 force sensing resistors (FSR) on robot
body. For any given gesture, data from the three most informative FSRs were used.

o Metrics defined in affect space to evaluate and compare recogni-
tion performance for emotional states.

o Asimple method to combine gesture recognition information with
affect recognition.

2. Methodology
2.1. Experimental setup

The Haptic Creature’s perception comes from a frame-mounted
accelerometer and a network of 56 surface-mounted force sensing
resistors (FSR; Fig. 3). Its sensing capabilities are restricted by the
limited coverage of the FSRs, the best technology available at time
of construction (2008). Furthermore, FSRs are sensitive to forces nor-
mal to the surface, whereas many touch gestures include tangential
(shear) forces. The accelerometer can detect but not localize both
robot motion and the small vibrations associated with a touch.

Here we analyze touch and accelerometer data collected exper-
imentally, to get the most out of these inexpensive sensors using a
sophisticated machine learning algorithm. This in turn provides in-
sight into requirements for more adequate touch sensing. Details on
the mechatronic design of the Haptic Creature, including the specifi-
cations for the touch sensors can be found in [24].

2.2. Experimental procedure

We analyzed previously unreported touch data collected from 31
participants as part of the study fully reported in [26]; here, we briefly
summarize the procedure. Consistently with previous Creature stud-
ies, we used nine emotion labels representing a 3 x 3 affect grid
(Fig. 2), where the horizontal axis is valence (negative to positive),
and the vertical axis is arousal (low to high), with a neutral state at
the middle. The specific emotion labels used are distressed, aroused,
excited, miserable, neutral, pleased, depressed, sleepy, and relaxed, and
were ultimately derived from Russell’s circumplex labels [16].

The experiments were conducted in a room with a desktop com-
puter and a video camera observing the participant. The Haptic Crea-
ture was placed on the participant’s lap initially; but she was free to
adjust its position throughout the study. The experiment facilitator
was not present in the room with the participant; the instructions
were displayed and the data were collected by the computer. At the
start of the experiment, the participant was presented with brief in-
formation about the Haptic Creature, such as how it moves and how it
senses the surroundings through touch. She was instructed to “imag-
ine the Haptic Creature to be [her] pet, one with which [she has] a close
and comfortable relationship.” She was further instructed that the robot
will be passive and will not react in any way. Then, the participant was

presented with emotion labels in random order, and for each emotion
label, she was asked to rate the likelihood of performing 30 different
gestures selected from Yohanan'’s gesture library [26]. The rating scale
was defined in the range: 1 (Very Unlikely) to 5 (Very Likely). Then,
for gestures reported with a likelihood of 4 or 5, the participant was
asked to perform that gesture on the Haptic Creature, imagining that
she was feeling that emotion. Each gesture was captured through
video, and force and acceleration data were recorded by the robot’s
FSRs and accelerometer. Video analysis results are reported in [26].
Here, we analyze touch and accelerometer data alone, and use sur-
vey results to estimate prior probabilities in combining the gesture
recognition information with affect recognition (Section 2.4). We use
26 gestures; the four least likely gestures were discarded because of
insufficient performance data. More details about the experimental
procedure can be found in [23].

2.3. Data processing and feature extraction

Instead of working with raw time series data (average duration
8.8 s, 0 =4.85s), we calculated several features which have proven
effective for touch gesture recognition [7]. These comprised the time
series’ mean, median, variance, minimum, maximum, and total varia-
tion. In addition, we calculate the series’ Fourier transform and use its
peak and the corresponding frequency as features. Thus, we calculate
eight features per signal. No normalization is applied to the signals or
the features.

We found that for most of the data only a few FSRs activated; this
may have been due to both actual participant activity, and limited
force sensing capabilities. For each gesture, we therefore calculated
the variances of the FSR signals and discarded all but the three with
the largest variance for that gesture; this produced (3 x 8 = 24) FSR
features. Position of the active sensors was not used in the feature,
meaning our features were location-independent. For example, if two
people perform the exact same gesture but at different locations on
the robot, the features that we calculate will exactly be the same.

While this is essential for gesture recognition, one might argue
that some information is lost for emotion recognition, since emotion
and touch location are correlated. This might be the case in human-
human(oid) interaction, but in our case of human-pet interaction,
associating touch locations with emotional states has not been re-
ported before, to our knowledge. Our case is inherently different; in
human-human touch interaction, the primary aim usually is to convey
some emotional information to the recipient. However, in human-pet
interaction, humans rather interact with the pet in a more relaxed
manner and do not try to convey an emotion. This arguably could
render touch location in human-pet interactions less important. In
our experiments, we observed that introducing location feature did
not improve the results so we disregarded the location data.

The three-axis accelerometer provided another three channels
from which we computed the same features as for the FSRs, or
(3 x 8 = 24). This resulted in 48 features in total.

2.4. Classification

We use Random Forests (RF) as the classifier in this study [2], a
method based on combining classification results from multiple deci-
sion trees. It gives the best results among the other classifiers that we
considered (Fisher linear discriminant, naive Bayes, k-nearest neigh-
bor, decision tree, multilayer perceptron). Furthermore, this method
has proven most effective among many alternatives considered for
gesture recognition [6] and gait classification [18].

We use the RF classifier to recognize affect from sensor data, i.e., to
generate a probability distribution (PD) that the sensor data belongs to
a given emotion class e;. In the following, we denote this PD obtained
for direct affect recognition by Pgr)(e;|X), where x represents the
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Fig. 4. Combining gesture recognition information with affect recognition.

data. After this PD is obtained, x can be assigned the class with the
highest probability.

We now consider the relation between gesture and emotional
states, and how to exploit it for affect recognition. Silvera-Tawil et al.
[20] relate their touch gestures (“touch modalities”) to the messages
that subjects have been instructed to convey. In our study, the ges-
tures are performed freely by participants in an imagined emotional
state. Here, we introduce a way to integrate the gesture information
into affect recognition and analyze the contribution of gestures to the
perceived emotional state.

Assume (Fig. 4) that a prior PD over emotional states for each
given gesture g; is available. Let Pg;(e;|g;) denote the probability of
feeling emotion e; given that gesture g; is performed. This probability
is not related to the collected gesture/affect sensor data, but is simply
prior information that we assume we know before analyzing (or even
collecting) the data.

If the prior probabilities are known, gesture recognition can pro-
vide information about the emotional state. Therefore, we also run
the RF algorithm for gesture recognition, without regard to emotional
state (“RF gesture recognizer” block in Fig. 4). Let P¢ (gj|x) be the out-
put of the RF classifier indicating the probability that data x belongs
to gesture class g, obtained by normalizing the number of votes for
each class. Then, affect can be inferred from this information:

2
Pe) (@ilx) = ) Prc(eilg)Po (glx) (1)
=

where Pg()(e;|x) is the PD of the emotional state inferred from ges-
ture information (“integrate gesture information” block in Fig. 4). We
denote this distribution by Pg(s)(e;|x) to discern it from the RF distri-
bution used for affect recognition directly (i.e., without going through
gestures; “RF affect recognizer” block in Fig. 4), denoted by Pggr) (e;|x)
above. These two distributions can be combined to give the final esti-
mate Pg(e;|x). Many methods can be applied for combination [4] but
the simplest is the convex combination:

Pe(ei|x) = aPewr (€ilX) + (1 — a)Pgc) (ei]x) (2)

where 0 < o < 1 is a specified constant. It can be selected according
to how reliable each estimate is.

2.5. Classifier evaluation based on a choice of loss functions

In this section, we describe the methods we use to evaluate the
performance of the classifier and make a performance comparison
for different emotional states. We first introduce the notion of a loss
function, then show how different loss functions can be used to apply
distances to the topological space defined by the dimensional emo-
tion model, based on one’s purpose or a priori knowledge. Finally we
illustrate six representatives with which we will analyze this dataset.

As opposed to saying that a classification is either correct or incor-
rect, the loss function assigns a degree to an incorrect classification.
For a correct classification, the loss is zero; but for an incorrect one, it

is non-negative. This number assigns a cost to that incorrect classifi-
cation.

For example (see Fig. 2), suppose that a classifier incorrectly classi-
fies depressed states as miserable and also incorrectly classifies relaxed
states as distressed. The classifier’s performance is thus bad for both
depressed and relaxed states. However, it should not be equally bad,
because the distance between depressed and miserable is much less
than between relaxed and distressed. Therefore, by defining loss func-
tions, we can compare performances of classifying different emotional
states not by the correct classification percentage, but considering the
degree of misclassification. We define several loss functions in the fol-
lowing and measure the performance of the random forest classifier
for different emotions.

Let £ = {eq, ..., eg} be the set of emotions. Fig. 2 shows the emo-
tions and their positions in the affect space. Let the number of samples
in class i be denoted as N;j; the loss incurred by deciding e; when the
actual class is e; as L(e;; e;); and the probability of deciding e; when the
actual class is e; as P(e;; €;). P(e;; e;) can then be estimated by dividing
the number of samples actually belonging to class e; that are classified
as e; by the total number of samples belonging to class e;, after testing
a classifier by cross validation. So,

number of samples in e; classified as e;

P(ej; e) = N (3)
Expected loss for emotion class i and loss function L is then

9
Lil)=" Lieje)Plejie) i=1,....9 (4)

j=1

2.5.1. Adiscrete (binary) loss function

A trivial choice for the loss function is the discrete (0-1) loss func-
tion Lp that simply declares the loss zero for correct classification,
otherwise one. This obviously does not account for the degree of
misclassification. Therefore, we define other loss functions based on
different distances in affect space.

2.5.2. A distance-based loss function

If we represent emotions as points in two dimensions, we can
define the distance between the emotional states e; and e; in the affect
space. Now, the expected loss in Equation (4) accounts for degree
of misclassification. Most simply, we can use the Euclidean distance,
given by

Le(ej; e1) = K\/(Xi =X + (Vi — y;)? (5)

where « is a scaling factor and (x;,y;) are the valence and arousal
coordinates of an emotional state, respectively. The subscript empha-
sizes the Euclidean distance, and « is chosen such that the loss for
the worst misclassification (diagonal of the square) is 1. Fig. 5 shows
distances for distressed, aroused, and neutral states, which together
capture the distances for all nine emotional states, available upon
rotation or reflection.

For compatibility, we can also treat the discrete loss function Lp
as a distance. All nonzero distances then equal 1.

2.5.3. More tolerant loss functions
It is possible to define more “tolerant” distances in the affect space
and use them as loss functions to evaluate classification performance,

0 0.35 0.71 0.35 0 0.35 0.5 0.35 0.5
0.35 0.5 0.79 0.5 0.35 0.5 0.35 0 0.35
0.71 0.79 1 0.79 0.71 0.79 0.5 0.35 0.5

(a) (b) ()

Fig. 5. Euclidean distances for (a) ej, (b) ez, and (c) es in the affect grid.



K. Altun, K. E. MacLean / Pattern Recognition Letters 66 (2015) 31-40 35

0 0.13 0.5 0.13 0 0.13 025 | 0.13 | 0.25
0.13 | 025 | 0.63 025 | 0.13 | 0.25 0.13 0 0.13
0.5 0.63 1 0.63 0.5 0.63 025 | 0.13 | 025
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Fig. 6. Squared Euclidean distances for (a) ey, (b) ez, (c) e5 on affect grid.

and use them to account for the inherent fuzziness in affect. For ex-
ample, a loss function can be defined to tolerate the misclassification
ifitis a “near miss,” i.e., the actual emotion and the classified emotion
are neighbors in the affect space. This has been done by Wollmer et al.
[22] in the context of affect recognition from speech.

An extreme example would assign zero loss if the actual emotion
and the classified emotion are neighbors in the affect space. How-
ever, this is likely too tolerant. Instead, we would like something in
between, with a small loss for adjacent emotional states, but a large
one for distant states. The square of the Euclidean distance would
satisfy these conditions:

L (e; 1) = ML — %2 + (i — ¥j)°] (6)

where A is a scale factor; values are given in Fig. 6. For consistency, A
is chosen such that the maximum loss value is 1.

2.5.4. Relation to emotion models and another loss function

It is possible to link the loss functions defined above to emotion
models in the literature. For example, the discrete metric Lp considers
each emotion as a separate entity, i.e., it does not take into account
the distance in the emotion space. Therefore, it can be considered as
arepresentation of Ekman’s view of emotion in the affect recognition
domain. Similarly, the metric Lg places each emotion on Russell’s
affect grid, so it is a representation of that approach. A more popular
emotion model is Russell’s circumplex. Here, the emotion es (neutral)
would be at the origin and other emotions would roughly form a circle
centered at the origin. We assume that the remaining eight emotions
are equally spaced around the circle. Assuming a circle with diameter
1, the loss values are shown in Fig. 7. We denote that loss function
as Le.

2.5.5. Loss functions treating arousal and valence separately

In order to analyze the classification performance separately in
arousal and valence dimensions, we define two other loss functions.
Ly focuses on the valence dimension. If the true and classified emo-
tions are in the same valence zone, the loss is zero; if the valence is
opposite, the loss value is 1; otherwise it is defined as 0.5. L4 similarly
focuses on the arousal dimension. Note that for Ly, the loss along the
arousal axis is zero, and for Ly, the loss along the valence axis is zero.
Therefore, the higher Ly is, the worse the performance of a classifier
in valence dimension; the higher Ly is, the worse the performance
of a classifier in arousal dimension. The loss values for Ly and L, are
given in Figs. 8 and 9, respectively.

We note here that all metrics defined above are normalized such
that the maximum possible loss value is 1. This enables fair com-
parison between these metrics. For example, compare Ly, to the loss
function defined by the Euclidean metric Lg. If two emotions e; and e;
are adjacent, Lg(ej; €;) = 1/2v2but L (ej; €;) = 1/8.S0 Ly, tolerates a
near miss more than the Euclidean metric. If ¢; and e; have the same
valence but opposite arousal, Lg (ej; €;) = 1/+/2 and Lp, (ej;e)) =1/2.

0 0.38 | 0.71 0.38 0 0.38 05105 ] 05
0.38 0.5 0.92 0.71 05 | 0.71 0.5 0 0.5
0.71 0.92 1 0.92 1 0.92 05 ] 05 | 05

(a) (b) (c)

Fig. 7. Circumplex model distances for (a) ey, (b) e2, and (c) es.
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0 0.5 1 0.5 0 0.5 0.5 0 0.5
0 0.5 1 0.5 0 0.5 0.5 0 0.5
(a) (b) (c)
Fig. 8. Ly distances for (a) ey, (b) ez, (c) es
0 0 0 0 0 0 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 0.5 0 0 0
1 1 1 1 1 1 0.5 0.5 0.5

Fig. 9. L, distances for (a) eq, (b) €3, (c) e5.

Clearly, it is possible to define many other loss functions. However,
these model the most frequently used dimensional approaches to
affect in psychology, and capture the nature of the misclassifications.
Different loss functions might be appropriate for other applications.

Here we point out that the loss function Ly, is not a mathematical
distance as it violates the triangle inequality. However, we observe
that this allows it to model the case where the affect space is not a
proper metric space. For example, according to this loss function ey is
close to ey, e; is close to es, but e and e3 are far apart.

Among metrics that are not proper distances, we highlight the
non-symmetric loss functions. When L(e;; ;) # L(e;; €;), the loss in
classifying e; as e; will not be equal to the loss in classifying e; as
e;. This can have interesting utilities. For example, in a therapeutic
study, it might be most crucial to classify negative emotions cor-
rectly, with the highest cost associated with an incorrect positive
classification. However, non-symmetric loss functions are beyond our
scope.

3. Analysis and discussion
3.1. Direct affect recognition

We first report results with direct affect recognition, i.e., with
touch gesture labels disregarded. A test pattern x is then assigned
to the highest-probability emotion class. More precisely,

label(x) = arg max Pgr)(€i]X). (7)
1

This is the output of Fig. 4’s “RF affect recognizer” block.

3.1.1. Results with all participants’ data

Affect recognition results with 10-fold cross validation are pre-
sented as a confusion matrix in Table 1, where rows represent the
true and columns the estimated class. Overall correct recognition is
35.9%; chance is 11%.

This recognition rate does not take the closeness of emotional
states into account. For example, in row 3, 164 of the e3 (excited)
samples are correctly classified. The next highest number in the row,
54, corresponds to column 6. This means that 54 of the es (excited)
samples are incorrectly classified as eg (pleased), which is in fact right
next to es in the affect space. It is hard to observe these “near misses”
in the confusion matrix.

To better illustrate the real situation, we also present the same
results in graphical form. Fig. 10(a) shows our visualization for the
confusion matrix in Table 1. Each shaded 9-cell block in the figure
corresponds to a row in the confusion matrix, according to the labels
defined in Fig. 2. For example, the position “medium arousal, positive
valence” in Fig. 10(a) corresponds to row 6 (eg) in the confusion ma-
trix. Within each block, we represent the classification results for that
row, again according to Fig. 2 labels as follows. First, each row e; is
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Table 1

The confusion matrix for affect recognition with all participants’ data combined. Note that e;_g reside in a
2-dimensional (3 x 3) space, making this “flattened” view hard to interpret. See Fig. 10 for a more intuitive

3-D visualization.

e ey es ey es €6 e7 eg €9
e 51 22 44 5 13 36 15 15 22
e 9 118 58 21 46 10 12 28
es3 22 39 164 16 54 9 8 19
ey 19 21 35 36 18 26 14 12 29
es 6 20 27 14 92 42 13 21 40
e 16 46 80 5 24 137 18 5 22
ey 9 23 26 15 10 35 72 17 30
eg 15 21 17 5 26 25 14 76 34
ey 14 15 25 11 26 31 16 18 142
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Fig. 10. Visual quasi-3-D representation of affect recognition results (probabilities). For example, each upper-left block shows the 3x3 distribution of recognition results when
the high-arousal, negative valence emotion word (distressed) was imagined while the participant gestured, and so on. (a) All participants’ data combined (values listed in Table 1);

(b) average of individual participants; (c) hypothetical perfect classification.

divided by the sum of the numbers in that row, to estimate the clas-
sification probabilities P(e;; e;) (probability of deciding the class is e;
when the actual class is e;) defined in Equation (3). Then, these prob-
abilities are arranged in a 3 x 3 structure consistent with the labeling
in Fig. 2 and represented by cell, with shade darkness proportional to
probability. Fig. 10(c) illustrates a hypothetical perfect classification.

This representation is particularly useful for visualizing the near
misses in the confusion matrix. Two key observations now emerge:
first, in Fig. 10(a), most of the incorrectly classified e3 (excited) state
samples are classified as the neighboring states, namely e, (aroused)
and eg (pleased), i.e. they are near misses. Second, classification results
are weakest for ey (distressed) and e4 (miserable) - upper left and
middle left, respectively: most of the samples are incorrectly classified
(relatively uniform grey across block), and moreover, many incorrect
classifications are nonadjacent. Interestingly, this is consistent with
Yohanan’s observations that it is hard to render emotion in negative
valence and medium-high arousal zone [23].

To quantify classification performance of different emotional
states, we can use the distance metrics defined in the previous sec-
tion to systematically compare performance for each affect-grid re-
gion among each other and to baseline values, which differ by metric
and location on grid. In Table 2, for each of our distance metrics we
present expected loss values and results for individual and baseline
performance. Two baseline classifiers are considered for comparison.
Class frequency: assigns a class to a sample with a probability propor-
tional to the frequency of that class in the data set. Chance: classifies
a sample randomly; i.e., each emotion has a 1/9 chance (11.1%) of as-
signment to a given sample. These two classifiers represent a baseline
that any classifier is expected to beat, because they use no analysis.
Worst case: assigns a sample to the class for which the loss would be
maximized; e.g., if a sample’s correct class is eg (relaxed), it is assigned

to e (distressed). This is not a proper classifier because it uses class
information, i.e., it already “knows” the true class of a sample and
assigns it to the worst class possible.

In viewing Table 2, keep in mind first, that the random guess
and worst case values vary by location in the affect grid because
the number of neighbors differ; and secondly, the L (distance-based
loss function) values are in fact error rates (fraction of misclassified
samples) for each class and can be interpreted as the probability of
misclassification.

Clearly, alower loss value means better performance. From Table 2
results, we can conclude that performance in the positive valence
zone is generally better. For example, for the es (excited) state,
(1 —0.51 =)49% of samples are classified correctly (second column,
loss function Lp). Interestingly, for ey (distressed), e4 (miserable), and
e7 (depressed), Ly is significantly higher than L. For negative valence
emotions, near misses in arousal are much more likely than near
misses in valence; i.e., misclassifications of arousal are more likely to
be near misses than those of valence. Similarly, for eg (sleepy) and eq
(relaxed), La values are higher than Ly values. These emotions have
more near misses in valence than in arousal.

Lp values are the highest among all other loss functions (even
the worst case classifier) because near misses are not reflected in
Lp. To compare near-miss rate for different emotions, we calculate
percentage decrease inloss value for Lg, Lz, Lc, Ly, and L as compared
to Lp for the RF classifier, and for class frequency (CF) as a baseline.
Differences between the RF and CF classifier percentage decreases are
shown in Fig. 11(a).

This chart displays a measure of the distribution of just the incor-
rect classifications. If most incorrect classifications are near misses
and their number is larger than that of the class frequency classifier,
the bar is higher. This view shows the highest number of near misses
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Table 2

Expected loss values, for (column 2 of each matrix) Random Forests trained on all participants’ data and (column 3) on individual participants’ data then averaged.
Baseline data are (column 4) the class frequency classifier, (column 5) random guess classifier, and (column 6) worst case classifier. Each matrix shows data computed

for a different loss function: (a) Lp, (b) L, (¢) Lz, (d) Lc, (e) Ly, (f) La.

Emotion  All Individual Class frequency ~ Chance  Worstcase  Emotion  All Individual  Class frequency =~ Chance  Worst case
(a) Discrete loss function (Lp) (d) Circumplex distance loss function (L¢)
e 0.77  0.59 0.91 0.89 1.00 e 057 043 0.64 0.61 1.00
ey 0.62 0.44 0.88 0.89 1.00 e 039 0.26 0.60 0.61 1.00
e 0.51 0.49 0.86 0.89 1.00 es3 028 0.27 0.57 0.61 1.00
ey 083 0.71 0.92 0.89 1.00 (A 062 0.51 0.66 0.61 1.00
es 0.67 0.47 0.89 0.89 1.00 es 033 024 0.44 0.44 0.50
e 0.61 0.50 0.86 0.89 1.00 e 035 030 0.57 0.61 1.00
ey 0.70  0.53 0.90 0.89 1.00 ey 0.52 039 0.66 0.61 1.00
eg 0.67 0.57 0.91 0.89 1.00 eg 044 037 0.63 0.61 1.00
29 0.52 047 0.88 0.89 1.00 ey 033 031 0.59 0.61 1.00
average: 0.66 0.53 0.89 0.89 1.00 average: 0.43 0.34 0.60 0.60 0.94
(b) Euclidean distance loss function (Lg) (e) Valence loss function (Ly)
e 0.54 0.40 0.60 0.58 1.00 e 0.57 0.40 0.56 0.50 1.00
e 031 0.20 0.47 0.48 0.79 e 025 0.17 0.34 0.33 0.50
es 027 0.26 0.54 0.58 1.00 es 020 0.22 0.44 0.50 1.00
e 049 041 0.52 0.48 0.79 es 0.55 043 0.56 0.50 1.00
es 028 0.20 0.38 0.38 0.50 es 026 0.16 0.34 0.33 0.50
e 028 0.24 0.45 0.48 0.79 e 022 0.19 0.44 0.50 1.00
e; 049 037 0.62 0.58 1.00 e7 049 037 0.56 0.50 1.00
eg 035 030 0.50 0.48 0.79 eg 024 022 0.34 0.33 0.50
(29 032 030 0.56 0.58 1.00 ey 024 0.26 0.44 0.50 1.00
average: 0.37 0.30 0.51 0.51 0.85 average: 0.34 0.27 0.45 0.44 0.83
(c) Squared Euclidean distance loss function (L ) (f) Arousal loss function (Ly)
e 040 0.30 0.44 0.42 1.00 e 035 032 0.48 0.50 1.00
e 0.17  0.10 0.28 0.29 0.63 [} 028 0.17 0.48 0.50 1.00
es 0.16  0.16 0.37 0.42 1.00 e 022 020 0.48 0.50 1.00
e 032 0.26 0.32 0.29 0.63 es 031 029 0.33 0.33 0.50
es 0.12  0.09 0.17 0.17 0.25 es 0.23  0.19 0.33 0.33 0.50
es 015 0.12 0.26 0.29 0.63 e 026 0.21 033 0.33 0.50
e7 037 0.28 0.46 0.42 1.00 ey 037 029 0.52 0.50 1.00
eg 020 0.17 0.30 0.29 0.63 eg 035 030 0.52 0.50 1.00
eq 0.21 0.21 0.39 0.42 1.00 (23 030 0.24 0.52 0.50 1.00
average: 0.24 0.19 0.33 0.33 0.75 average: 0.30 0.24 0.44 0.44 0.83

for neutral to positive valence emotions, especially for e3 (excited) and
eg (pleased). For negative valence emotions (e; 4 7), the negative bar
value indicates that a class frequency classifier is expected to have
more near misses. Taken together, this means that the incorrect clas-
sifications of the RF classifier are distributed away from the actual
emotion for negative valence emotions, but they are distributed close
to the actual emotion for neutral and positive valence emotions.

Among different loss functions, Lg, Ly, and L¢ values are close,
which means that the way that the distance is defined is not very sig-
nificant. However, interesting conclusions can be drawn by observing
Ly and L, bars. The Ly bar is highest for high arousal emotions (eq 3 3).
Since Ly is zero in the valence dimension, this bar measures the per-
formance in the arousal when valence is disregarded. For this case,
the classification performance is the best for the high arousal emo-
tions eq » 3. Similarly, Ly measures the performance in the valence
dimension when arousal is disregarded. For this case, performance
is the best for positive valence emotions (e3 g 9). Therefore, we can
conclude that near misses in arousal are more likely to occur for high
arousal emotions; near misses in valence are more likely to occur for
positive valence emotions (upper side and right side of the square-
shaped affect space).
3.1.2. Results for individual participants

Affective communication between a robotic pet and its user is
usually idiosyncratic; individual affect recognition results are thus
also of interest. We run the RF classifier for each participant, normalize
each resulting confusion matrix (by dividing each row by its sum) to
get probabilities, then average them over all participants. A visual
representation is given in Fig. 10(b); expected loss values appear in
the third column of Table 2. The average correct recognition rate for
this case is 47.8%.

As expected, loss values are usually lower for individual par-
ticipants. A similar calculation for the percentage decrease in
loss can be calculated for this case as well (Fig. 11(b)). Per-
formance for negative valence emotions is better than when
trained on all participants, but the class frequency classifier
still slightly outperforms Random Forests. Results are qualita-
tively similar to the case with all participants: near misses
are more likely in arousal for e, and e3, and in valence for
e3 and eg. The exception is that near misses in arousal are also likely
for eg.

3.2. Combining gesture information with affect recognition

We also applied the RF method for gesture recognition and com-
bined the results with direct affect recognition. In this case, affect is
classified according to the combined PD:

label(x) = arg max Pz (e;|x). (8)
1

For gesture recognition, we were able to assess classifier perfor-
mance since participants were instructed not only to imagine an emo-
tion, but also to perform a gesture and this was thus known a priori.
We disregarded instructed emotional state and trained the classifier
to distinguish directly between all 26 gestures. This gives the prob-
ability distribution P¢(gj|x) for a test sample x. Assigning the gesture
class with the highest probability to x, the confusion matrix for 10-fold
cross validation is presented in Table 3. Overall correct classification
is 32.8%, an order of magnitude larger than chance (1/26 = 3.9%).
Further, most confusions occur within similar gestures.

We estimated prior probabilities Pgc(e;|g) in Equation (1)
from the survey collected before gesture acquisition, which asked
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Fig. 12. Results combining gesture recognition with affect recognition.

participants to rate likelihood of performing a gesture for a given
emotional state ([26], omitted for space). Prior probabilities were esti-
mated by scaling likelihood values to produce a legitimate probability
distribution.

We combined gesture information with affect recognition in two
ways. First we combined them according to the gesture recognition
performance of the random forest classifier, using Equation (1). Sec-
ondly, we combined the two results assuming that the gesture recog-
nition was perfect. That is, we did not run the gesture recognition
algorithm but considered the true labels for gestures and combined
the results, manually setting P;(gj|x) = 1 for the true gesture and zero
otherwise. Fig. 12 illustrates the results of the data fusion for differ-
ent values of «. In this case, direct affect recognition performance

without any gesture recognition aid is 35.9%. Combining random for-
est recognition of gestures results in a small performance increase.
If we assume perfect gesture recognition, classification increases to
37.6% for a = 0.4. This suggests that gesture recognition can indeed
improve affect recognition results provided that gesture recognition
performance is high. When our actual gesture recognition results are
used, the improvement is marginal; 36.1% for o = 0.7.

4. Conclusions and future work

In this study, we presented the results of affect recognition from
touch gestures using FSR and accelerometer signals. The experiments
were conducted with a lap-sized pet robot, the Haptic Creature. We
considered Russell's 2-D arousal-valence affect space in modeling
the emotions. The overall correct recognition rate is about 36% with
all participants’ data and 48% for individual participants on average.
These numbers are comparable to the results from human-human af-
fective touch studies (24%-63% and 31%-83% in two different studies)
[12]. However, these human-human studies do not consider the close-
ness between emotions. While the obtained error rates are relatively
high, we observed that in many cases, the misclassified states were
close to the actual states in the affect space. To quantify and analyze
this closeness, we defined several new metrics which demonstrate
that it is possible to quantify and compare the misclassifications.

Knowledge of the nature of wrong classifications and near misses
will be valuable in a deployed affective human-robot interaction sys-
tem. For example, prior probabilities in a pattern recognition system
can be adjusted according to near miss statistics, improving over-
all probability of correct classification. Depending on the application,
asymmetric penalties may be associated with specific misclassifica-
tions. Knowing the performance of classifiers in arousal and valence
dimensions would help improve the design of other classifiers. Inte-
grating touch sensing with other sensing modalities (such as video or
audio) would certainly improve results, another upcoming step.

We emphasize that our physical FSR coverage was low; there are
regions on the surface where no sensor is present. We expect that
better other technology will improve results considerably, and are
updating sensing on a new platform.
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In the following, we highlight other important results.

Location-independent features: We used location-independent
features. This is appropriate for pure gesture recognition; however,
location can provide useful information in emotion recognition. Here,
adding location features did not improve results so we disregarded
location. This finding could be due to the limited touch sensing capa-
bility of our robot; further investigation is necessary to identify the
relation between touch location and emotion in human-pet interac-
tions. On the other hand, our feature set does not totally disregard the
location information. The accelerometer signal carries some informa-
tion about the touch location, since, for example, a pat on the head
and a pat on the back do not generate the same acceleration pattern.

Dimensional vs. categorical approach to affect: Our procedure
began with a categorical approach to affect (we considered classes
as independent); then, we interpreted results with a dimensional
approach (affect grid), and show that misclassifications are usually
“near misses,” especially in the positive valence zone. This suggests
that the 2-D arousal-valence grid is a good representation of affect in
a human-robot interaction setting where touch is one of the sensing
modalities.

Personalized affect recognition: With all participants’ data com-
bined, the best classification performance is a tie between e (excited)
and eg (relaxed). If near misses are taken into account, e is correctly
classified with higher performance than eg. For the case with a single
participant’s data, e, (aroused) and es (neutral) are correctly classified
with the largest success. When near misses are taken into account, the
classification performance of e, is better than that of es. This suggests
that the affect classification performance for different emotions will
be different for a pet robot that is used by many people as opposed to
a personalized robot.

It is difficult to classify negative valence: Negative valence is
harder to classify, especially in the medium-high arousal zone, when

all emotional states are considered and with our sparse data condi-
tions (three sensors out of 56). We also ran the algorithm with subsets
of the emotional states; best results are obtained for emotions in the
positive valence zone. It is possible that people are less likely to per-
form affective touch gestures on a pet robot in the negative valence
emotional states, as compared to positive valence emotional states,
but more data are needed to assess this. Our observation is confirmed
by the numbers in the user survey previously reported in [26]; and
Silvera-Tawil et al. [20] also report confusions mostly in negative va-
lence and high arousal zone.

Affect recognition vs. gesture recognition: We combined gesture
recognition information with direct affect recognition. For gesture
recognition results obtained with the Random Forests method, there
was little improvement when gesture data were added to the direct-
affect classification. More improvement was achieved by assuming
that the gesture recognizer was perfect. This suggests that good ges-
ture recognition can be used to aid affect recognition systems based
on touch sensing. Here we should state the fact that our method of
estimating prior probabilities is based on empirical user survey data.
Better ways of estimating prior probabilities and better gesture recog-
nition methods could prove gesture recognition even more useful for
affect recognition.

Human display of affect: In this study, participants were asked to
enact an artificial display of affect. Recognizing naturalistic and spon-
taneous affect is still one of the problems of affect recognition systems
that use audiovisual cues, but that problem applies to affective touch
as well. We believe that our study is a stepping stone in solving this
harder problem.

In this study, the touch recipient is a pet robot. Were the re-
cipient a human or a humanoid robot, the human performing the
touch would possibly display a particular emotion in a different
manner—that is, the identity of the recipient may influence the touch
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given. For this reason, our study should not be directly compared to
studies in human-human(oid) interaction. Further investigation of
human behavior in different human-human, human-robot, human-
pet interactions will improve applications involving emotion recog-
nition such as ours.

Future work

Affect recognition from touch gestures is currently in infant stages.
To our knowledge, this study is one of the first in this area. There are
many unexplored areas for future work. With the advance of sensor
technology, cheap sensors that cover the entire touch surface can
be built and spatially continuous data can be acquired. Finding the
most informative features for affect recognition from touch gestures is
another area where little research has been conducted. Unsupervised
feature learning and deep learning approaches can be applied and
better recognition performance could be achieved. Another question
that needs to be answered is whether there is a need for recognizing
gestures before recognizing emotional states. Further studies need
to be conducted to answer these questions. We believe that video
recordings of touch gestures provide additional information about the
gesture being performed, as well as the emotional state. Considering
the vast literature on affect recognition from vision, fusion of touch
sensor and video data are another very promising method for affect
recognition.
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