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ABSTRACT
Persuasive technology is now mobile and context-aware. In-
telligent analysis of accelerometer signals in smartphones and
other specialized devices has recently been used to classify
activity (e.g., distinguishing walking from cycling) to encour-
age physical activity, sustainable transport, and other social
goals. Unfortunately, results vary drastically due to differ-
ences in methodology and problem domain. The present re-
port begins by structuring a survey of current work within a
new framework, which highlights comparable characteristics
between studies; this provided a tool by which we and others
can understand the current state-of-the art and guide research
towards existing gaps. We then present a new user study, po-
sitioned in an identified gap, that pushes limits of current suc-
cess with a challenging problem: the real-time classification
of 15 similar and novel gaits suitable for several persuasive
application areas, focused on the growing phenomenon of ex-
ercise games. We achieve a mean correct classification rate of
78.1% of all 15 gaits with a minimal amount of personalized
training of the classifier for each participant when carried in
any of 6 different carrying locations (not known a priori).
When narrowed to a subset of four gaits and one location that
is known, this improves to means of 92.2% with and 87.2%
without personalization. Finally, we group our findings into
design guidelines and quantify variation in accuracy when an
algorithm is trained for a known location and participant.
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INTRODUCTION
As smartphones become more powerful and pervasive, devel-
opers and designers are using them to effect social or personal
change — encouraging sustainable transport [9], facilitating
free living for the elderly [35], and supporting individuals in
being physically active [7]. The last has led to an abundance
of smartphone-based exercise applications and games target-
ing the global concern of obesity: 10% of adults worldwide
are classified as overweight or obese, a risk factor for many
diseases [32]. In 2008, 31% of adults worldwide aged 15 and
over were insufficiently active [33].

Modern smartphones have a wealth of sensing capabilities,
such as accelerometers, gyroscopes, and Global Positioning
System (GPS) units. These sensors allow for novel mobile
applications to assess the user’s context automatically, and
permit implicit control of a system rather than requiring ex-
plicit control of an application (such as an intelligent mu-
sic player that automatically pauses when a user stops run-
ning). This can support physical activity in a natural way,
such as matching a song’s beat to a user’s running cadence
(i.e., step rate) to provide motivation [26], or the ambient dis-
play of physical activity, which has helped people maintain
their exercise or weight management goals [6]. In particu-
lar, automatically sensing different gaits to help infer higher-
level context lends itself well to applications involving phys-
ical activity. Applications can encourage activity in everyday
choices, such as taking the stairs to the office rather than the
elevator. Mobile exercise games can also benefit from sens-
ing novel gaits as an input modality: accurate recognition of
exercise is important for motivation [6], and many only use
location-based sensing or approximations of overall physical
activity [2,11,12,17,20,30]. Different gaits are also valuable
for other persuasive applications, fitting naturally with sus-
tainable transport and unintrusive monitoring of the elderly
to encourage positive life choices.

However, results for gait-related activity classification vary
drastically in the related literature, obscuring the current
state-of-the-art. Meanwhile, variation in methodology and
problem characterization complicate finding the best match
of algorithm to novel applications. To remedy this, we have
identified key classification study dimensions, then organized
them into a framework that makes explicit the algorithm’s
and/or its evaluation’s intended target application, imple-
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mentation details, and validation methodology. We use this
framework to map closely-related work for mobile gait clas-
sification that is robust to different locations. Our map is in-
tended as a tool for readers and researchers — a guide for
different works and their key differences, a quick reference
for study details, and a way to view the current state-of-the-
art while placing results in the context of their methodology.

Related work posed within this framework revealed that our
target of mobile exercise applications required sensing that
is more robust to carrying location, and differentiates more
gaits, than past work; this led to the creation of our own new
algorithm. We classified 15 walking-category gaits suitable
for a range of persuasive smartphone applications, especially
exercise and games, and in describing this algorithm’s analy-
sis, we articulate our own study parameters within the pro-
posed framework. Finally, we frame our results in design
guidelines for using gait classification for mobile exercise ap-
plications.

RELATED WORK
Our related work is divided into two parts. In this section, we
cover both the potential of gait classification for persuasive
mobile applications and the current state of gait or gait-like
activity classification using a triaxial accelerometer in a con-
text analogous to a smartphone’s.

Gait as Input for Mobile Exercise Applications
Using on-person sensors to support exercise is not new. Ex-
amples range from self-reported logging of exercise and nu-
trition to smartphone-based pedometers and GPS-based lo-
cation sensing for running or cycling [10, 24, 26, 31]. More
elaborate sensing solutions (in particular entailing a feedback
and/or social networking element) have also been developed,
such as Nike+, whose sensors can communicate with third
party exercise equipment [25].

Recent studies have shown that physical activity monitoring
can influence physical activity levels when coupled with an
ambient display. Pedometers have been used to encourage
participants to increase their daily step count via graphical
fish avatars [23]. Findings from the “Houston” system, a mo-
bile fitness journal application, suggest that though pedome-
ters are motivating, non-walking activities must be supported.
When Houston failed to report non-walking activities (such
as climbing) correctly both to users themselves and via social
network sharing, users were frustrated [6]. Better reporting
was included with the followup system, UbiFit, which pro-
vides an ambient display of a garden growing when the user is
active or achieves fitness goals [7]. UbiFit allowed automatic
recording of some activities and manual entry of any activ-
ity, and this was better received by participants: the frustra-
tion encountered with Houston was not observed with UbiFit.
Over 60 activities were reported, suggesting that automated
systems will have to support a large number of activities.

Houston and UbiFit required external sensors, which users
felt were large and unsightly — unsuitable for a pervasive
application used in day-to-day life. Today’s powerful smart-
phones have potential to reduce reliance on external sensors,
but their on-board sensors require more elaborate processing.

Exercise games have used accelerometers to infer overall ac-
tivity level. NEAT-O-Games (Non-Exercise Activity Ther-
mogenesis) are simple games that used hip-mounted exter-
nal accelerometers to infer an overall physical activity level.
Their goal is to increase “energy expenditure of all physical
activities other than volitional sporting-like exercise,” such as
moving around to do chores [11,12,20]. Other common types
of input for mobile exercise games include heart-rate moni-
tors [5, 8] and location through GPS or wireless connection
points [2, 17, 30].

However, at the time of this writing there are no exercise
games that use gait as an input modality; that is, no exer-
cise games directly take into account how the user is moving.
Previous work on types of exercise game input has focused
on situated rather than mobile contexts (e.g., a stationary bike
or vision-based system): a set of abstract inputs for existing
exergames (or “active games”), later developed into a toolkit,
has included gesture, stance, point, power, continuous con-
trol, and tap [3, 29]. Although some aspects of gait can be
fit into these abstract specifications, emphasis was on non-
mobile input techniques. There is a clear need to investigate
how this new interaction modality could be used to support
persuasive applications.

Accelerometer-based Gait Classification
Activity detection has been accomplished with great accuracy
using an array of inertial measurement units (IMUs) attached
at multiple points to the body (e.g., [1]), but this approach is
far too intrusive for pervasive persuasive applications. Re-
cent results using smartphone sensors (or loose accelerome-
ters approaching the context of a smartphone) cite a variety
of success rates, up to 100% [19]. A closer look reveals that
results vary depending on methodology, such as the number
and type of classes (attributes to be classified; in this case,
gaits or activities), the constraints placed on a phone’s carry-
ing method, or the number of participants. It is thus difficult
to get an overall sense of mobile classification work, and how
much progress we have made at solving various aspects of
this problem. As such, we do not simply report on each study,
but provide a structured survey of closely-related work.

In the next section, we present a framework for organizing
mobile context-aware classification work, drawing upon spe-
cific studies for examples. An explanatory diagram of this
framework can be found in Figure 1.

We then present a table of the most closely related studies
organized by our framework in Table 1. Please note that we
only report upon gait or gait-like classification with loosely
carried smartphones. This excludes work in detecting the de-
vice’s carrying location [22] or the use of gait as a biometric
feature for identifying the user’s identity [13, 28]. We expect
that our framework will be applicable to mobile classification
work in general, but charting that terrain is left to future work.

STRUCTURING MOBILE CLASSIFICATION
Our framework consists of three spaces: an application space
that describes the overall goal and major problem description,
an implementation space of classification approaches and
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IMPLEMENTATION

APPLICATION

VALIDATION

Description
# of classes
Classes: _/_/_/...
Target population

Requirements
Types of sensors
Commodity vs. specialized
Locations/orientations
Other restrictions/constraints

Sensing

Preprocessing
Features
Classifiers
Real-time/not

Algorithm(s)
Data per cell
Total recorded data
Window
Sampling rate
Sampled population (#, ages, #m/f)

Sampling

Minimum
Maximum
Mean
Robustness/external validity

Results

Determines
restrictions

Determines which
are viable

Influences procedure,
metrics

Influences available sampling rates
Influences window size
and sampled population

Determines
Training set
Testing set
Procedure
Repeated?

Analysis

Influences

Restrictions influence
difficulty of classification,

robustness
Can be experimental factors

Defines success criteria; Influences - more classes and/or similar classes: harder problem

Influences - 
More subjects: harder problem, more robust

More data: easier problem, more robust

Figure 1: Framework for mobile context-aware classification work.

data collected, and a validation space of evaluation method-
ologies and results. We now describe the three spaces and six
dimensions in more detail.

Figure 1 shows an explanatory diagram of this framework and
the relationships between its entities. Each space is repre-
sented as a dashed box. Dimensions within each space are
solid boxes (the term “dimension” is loosely defined; each is
actually a collection of closely-related dimensions, but it is
more useful to work with a lower-dimensional space).

Relationships between dimensions are represented with di-
rectional arrows, describing the influence of one dimension
upon another. For example, when developing an interactive
exercise game (described below under the Requirements di-
mension), this limits possible algorithms to those that can per-
form in real-time (influencing the Algorithm(s) dimension),
which in turn restricts the available sample rate and window
size, as real-time applications might require that the system
reacts within a specified time period (influencing the Sam-
pling dimension). As such, the framework can also be used
as a flow chart to develop a study design – start by describing
the requirements and follow the arrows.

Application Space
Classification research generally operates within a certain
context to achieve a specific goal, e.g., discriminating differ-
ent gaits to track activity. This context can impose constraints

that make classification more or less feasible. Two dimen-
sions compose this space: Requirements and Sensing.

Requirements – The application space describes the task at
hand. Is it to classify gaits, recognize a user, or detect a mode
of travel? This dimension includes the number of classes and
what they are. For example, Zhang et al.’s study classifies
user gait and posture, recognizing 6 gaits: walking, posture-
transition, gentlemotion, standing, sitting, and lying [35]. As
well, the target user population are an important designation
of the requirements. An exercise game designed for children
will have different needs than an ambulatory monitoring sys-
tem for physiotherapy in the elderly.

Sensing – What sensors are available to detect gaits, and
what restrictions can we impose upon our users to facili-
tate sensing? Many studies seeking to use smartphones to
infer context would like their system to work however the
device is carried, but this is not always practical. This di-
mension makes chosen locations and other constraints ex-
plicit; this includes where the device is being carried or held,
whether it is loose or fixed, and whether specialized equip-
ment or commercially-available commodity hardware is re-
quired. For example, Huynh et al. use a sensor fixed to a
backpack strap (a clear constraint) [15], but Kawahara, Kura-
sawa, & Morikawa allowed subjects carry commodity smart-
phones loosely in their pants pockets, chest pockets, and a
personal bag [19].
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Analysis

Training Set

Testing Set

Procedure

Repeated?

Metric

For each participant, 
a randomly selected 

partition of 9 folds 

For each participant, 
the remaining fold

10-fold cross 
validation

For each participant, 
10 times (once per 

fold)

Mean accuracy

Results

Mean

Range/variation

78.1% - 92.2% 
(depending on 

gaitset and location)

68.1% - 100.0%

Requirements

Task

Target Population

# of Classes

Classes

Sensing

Types of Sensors

Specialized?

Locations & 
Orientations

Gait classification

Children, adults

15
walk, fastwalk, jog, 
run, up/downstairs, 

walksideways/
backwards, narrow, 

penguin, 
twofoothop, toes, 

heels, knees, 
kickbum

Smartphone 
(Android)    

Commodity

Front/back pockets, 
belt, arm, backpack, 
hand (freely placed 

in each)

Algorithm(s)

Preprocessing

Features

Classifiers

Real-Time?

Sampling

Total Recorded Data

Data Per Cell

Window & Sampling 
Rate

Sampled Population

None

Statistical features 
from time and 

frequency domains 
of X, Y, and Z axes

Random forest with 
500 trees

Yes

9 hrs

28-42 seconds
2 seconds, ~26 Hz 
(variable sampling 

rate)
12 subjects (6m/6f)

Ages: 21-31 yrs
Weights: 46-86 kg

Heights: 155-183 cm

Schneider 2013

60% of each subject 
(randomly selected)

40% of each subject 
(remaining)

Train on several 
subject training sets, 

test on remaining 
subject testing sets

Until all subjects 
were a part of the 

testing set

Accuracy

94.4%

87% - 98%

Activity monitoring

Elderly

7

walk,
run, up/downstairs, 
cycle, vacuum, rest

Witilt 2.5 Sensor

Commodity

Front left/front right/
rear trouser pockets, 

inner chest/jacket 
pockets

Moving average

Spectral entropy, 
linear discriminant 

analysis of 
autoregressive 

coefficients, signal 
magnitude area

Hierarchical neural 
networks (resting, 

lower activity, upper 
activity; then activity)

Yes

24 hrs

2 to 8 minutes

90 samples, 90 Hz

8 subjects (6m/2f)
Age: mean 65, sd 3 

yrs

Khan 2010

One subject

All ten subjects 
(including training 

subject)

Train on one,
test on all

No

Mean accuracy 
between motion and 

non-motion

94.4%

87% - 98%

Activity detection

General 

6

walk, posture 
transition, gentle 

motion, stand, sit, lie

Smartphone

Commodity

Belt (horizontal 
orientation)

Kalman filter

Accelerometer 
values

Threshold rules to 
detect motion, SVMs 

for activity given 
motion/non-motion

No

2 hrs

(not reported)
Segments of over 

10s; sampling rate 
of 1 Hz

10 subjects (7m/3f)
Ages: 23-50

Zhang 2010

3 subjects

1 subject

10-fold cross-
validation

For each feature set 
and classifier

Accuracy

Depends on 
classifier and feature 

set

66.3% - 90.6%

Activity detection

General 

6

walk, run, drive, 
cycle, sit, stand

Smartphone

Commodity

Freely carried

Estimate gravity, 
split (x,y,z) into 

vertical and 
horizontal 

components

Several feature sets 
(factor in 

experiment); 
common statistical 

observations, cross 
correlation function

Decision tree, naïve 
Bayes, kNN, SVM 

Yes

192 min

10-30 minutes

10 seconds, ~36 Hz

4 subjects

Yang 2009

3 subjects 

4 subjects

Accuracy of gaits 
given device 

position

No

Accuracy

N/A 

96.7% - 100.0%

Gait, device location 
classification

General 

3-4

walk, run, sit, stand,
(sit & stand 
sometimes 
combined)

Smartphone

Commodity

Pants/chest pocket, 
bag

None

Average, variance, 
strongest frequency 
component, change 

in angle

Rule-based: detect 
orientation/location, 
then detect posture

Yes

~40 min

~2.5 minutes

20 Hz, window 
varies with feature

4 subjects

Kawahara 2007

(not reported)

(not reported)

(not reported)

(not reported)

Accuracy

~80%

~73% - ~95%

Activity detection

General 

5

walk, fastwalk, run, 
up/downstairs

Cellphone

Commodity

Breast/hip pocket

Pseudo-data 
created by rotating 

original signals

Wavelet packet 
decomposition of 

periodogram, 
momentum from 

best basis

Kohonen self-
organizing map 

(KSOM)

Yes

7.5 hrs

15 minutes

3 seconds

2 subjects

Iso 2006

800 cluster-means 
(4 of 5 folds of 1000 

cluster-means)

remaining fold
(200 cluster-means)

Cross validation

5 times (one per 
fold)

Recall/(1-Precision) 
curves

N/A

N/A

Activity detection

General 

6

walk, jog, skip, hop,
ride bus, stand

Integrated sensor 
board

Specialized

Affixed to backpack 
strap, consistent 

location

None

Statistical features 
on both time-domain 

and frequency-
domain, light sensor, 

digital compass

K-means clustering 
for training, nearest 
cluster centroid for 

classification

Yes

~200 min

(not reported)

0.25, 0.5, 1, 2, 4 
seconds at 512 Hz

2 subjects

Huynh 2005

Table 1: Map of related work, structured according to the framework presented in Figure 1. The new study reported in this paper
is listed as ‘Schneider 2013’.
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Implementation Space
The Implementation Space describes the details of the solu-
tion, answering the question “How?” It has two dimensions:
Algorithm(s) and Sampling.

Algorithm(s) – In this dimension, one describes both classifi-
cation schemes as well as any preprocessing steps or unique
notes about feature extraction. For example, Iso and Ya-
mazaki generate pseudo-data by transforming their collected
data rotationally [16]. This means that they may have some
bias in their classifier (from similar patterns being artificially
repeated), but they also making their classifier more robust
to orientation, an important fact to consider when comparing
different work. Because algorithms can become quite com-
plex, we reserve this dimension to discuss high-level features,
and direct readers to the papers themselves for details.

Sampling – The sampling dimension is the specific mani-
festation of a dataset for validation of the algorithm. As
the amount of data collected has a large bearing on the re-
sults, it is important to describe both the overall amount
of data collected and the amount per data cell – that is,
how much data exists for each experimental factor (e.g.,
gait/subject/location). If there is only a small amount of data
in a data cell, then evaluation of the classifier may give lower
results than if more data was collected. We also represent the
relationship between time and number of observations in this
dimension, by giving the sample rate and the window size
(the amount of time or number of samples taken to consti-
tute a sample used in classification. For example, Yang col-
lects 10 to 30 minutes per data cell for a total of 192 minutes,
and takes one observation from 10 seconds of data (with an
accelerometer sampling rate of approximately 36 Hz) [34],
while Khan et al. collect 2 to 8 minutes per data cell for a to-
tal of 24 hours of data, sampling at 90Hz with a window of 90
samples (1 second) [21]. Khan et al. clearly have more data,
but are trying to classify observations with less data individ-
ually (1 second or 90 samples vs. 10 seconds or 36x10=360
samples), and less time spent with each gait or location. We
include both sampling rate and window size to relate the num-
ber of observations to the amount of time.

Validation Space
Every technique must be evaluated. In this space, the dimen-
sions of Analysis and Results have the most influence on the
conclusions of a given study. As analysis necessarily varies
with application area, generalization and comparison are dif-
ficult. However, this can be mitigated by clearly articulating
both dimensions to provide context.

Analysis – The metrics that researchers use and the way that
they compare results is extremely important. Most tend to use
accuracy (the percent of correctly classified observations) as
their metric, but classification techniques have several other
ways to measure success, such as recall, precision, and F-
measure. Some analyses might train on a single participant
and test on several others (a difficult problem), while others
might train on a subject and test on that same subject (which
is expected to be easier).

Results – The actual metrics found during analysis. To facili-
tate comparison and access by algorithm consumers, we urge
researchers to not just list an overall score (mean, etc.) but to
also report the minimum, maximum, and mean. There is of-
ten a large variance of classification rates that is not captured
in the mean alone.

Positioning Our Study
The goal of our user study is to explore previously unexam-
ined areas with smartphone-based gait classification. Here,
we demonstrate how the framework might be used by posi-
tioning our study within the established literature.

Looking at the Requirements dimension of Table 1, we see
that previous studies have typically explored 5-7 gaits or ac-
tivities, looking at common postures or modes of transport.
We expand this to 15 gaits, looking at several atypical gaits
suitable for exercise games. Along the Sensing dimension,
we similarly examine more locations (6) than previously ex-
plored (5, [21]). With both of these dimensions, we explore a
more challenging problem than does previous work.

In Algorithm(s) dimension, each study has its own algorithm,
with some overlap (e.g., SVM); ours introduces Random For-
est. In this we are not necessarily introducing a challenge, but
it illustrates how the framework can be used for a quick sur-
vey of past algorithm use and overlap between studies. In the
Sampling dimension, a quick comparison establishes context
for our study’s results: the largest number of subjects and
smallest reported length of data per data cell, a typical-to-
large (but not largest) total amount of recorded data, and the
use of a lower (but not lowest) sampling rate.

The Analysis dimension concisely describes how the final re-
sults were achieved, and highlights any difference from other
studies. For example, in our evaluation, we both train and
test our algorithm on each participant (effectively personaliz-
ing the algorithm, although we report non-personalized data)
while other analyses might have other schemes, e.g., training
on one participant and testing on others. Finally, after exam-
ining this context, we use the Results dimension to compare
how the different algorithms might perform given the analysis
and dataset.

CLASSIFICATION STUDY
In order to inform gait as input for persuasive smartphone
applications, in particular encouraging physical activity, we
conducted a user study of novel gaits. In particular, we
aim to explore rich and robust sensing by investigating more
gaits and more carrying locations than in previous work. In
essence, we pursued the most difficult manifestation of this
classification problem to date, in order to identify baseline ca-
pabilities for mobile classification (which has been success-
ful so far). We drew from 4 primary goals in this area: (a)
to explore subtle differences for context-aware applications,
investigating gaits that were similar (such as distinguishing
jogging from rapid walking); (b) to explore novel gaits suit-
able for exercise applications, by involving different muscle
groups; (c) to explore novel gaits that could be easily linked
by metaphor to a child-friendly exercise game, such as march-
ing like a soldier or walking on a tight rope; and (d) to connect
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Category Label Verbal description

Pedestrian

walk Walk normally
fastwalk Walk quickly
jog Jog, if asked for clarification: slow run
run Run, not necessarily a flat out sprint, but a run
ascendstairs Walk up the stairs as you normally would until you reach the top
descendstairs Walk down the stairs as you normally would until you reach the

bottom

Exercise

toes Walk on your toes
heels Walk on your heels
liftknees Walk while lifting your knees high in the air
kickingbum Walk while kicking your bum. You don’t actually have to hit it,

but do that motion

Game

twofoothop Hop with two feet
penguin Walk like a penguin
narrow Walk as if on something narrow, like a tightrope
walkbackwards Walk backwards
walksideways Walk sideways

Table 2: Gaits and descriptions used in our data collection study.

modes of travel, such as cycling or driving. These four goals
informed the generation of our gaits. As such, our target gaits
were divided into gaitsets, sets of gaits grouped by their rela-
tionship to our four goals.

Gaits
With this in mind, we developed a set of gaits suitable for an
exercise or context-aware game or application. After pilot-
ing, we retained 15 gaits organized into three gaitsets (Pedes-
trian, Exercise, and Game) corresponding to our first three
goals; for scope and logistical reasons, our fourth goal of
travel methods (the would-be Locomotion gaitset) is left to
future work. We discovered during initial brainstorming that
some gaits were consistently interpreted by participants (e.g.,
walking on heels, walking like a penguin) but others were not
(e.g., skipping, walking like a zombie). To facilitate our user
study and allow for a robust application, we decided to only
use gaits that were consistently interpreted by a simple verbal
or written description. To limit scope, all gaits had to involve
directional movement and be bipedal - that is, we did not al-
low in-place activities like jumping jacks or walking on hands
and knees. Our gaits are described in Table 2.

Gaits not involving stairs were performed outside in a ran-
dom order. For logistical reasons, Ascend Stairs and Descend
Stairs were performed either at the beginning or end of the
trial; this was counterbalanced by participants, as was the or-
der of Ascend Stairs and Descend Stairs.

Apparatus and Participants
Seven Samsung Galaxy Nexus smartphones running Android
OS 4.0.1 (Ice Cream Sandwich) were used in the experiment,
each loaded with a custom accelerometer logging application.
Six were placed on the participant in the following locations:
front pocket, back pocket, hip, hand, arm, and backpack.
These six phones sampled the accelerometer at the highest
rate allowed by the operating system (mean sampling period
was 16.95 ms, standard deviation 28.75 ms, median 8.3 ms),

Age (years) Height (cm) Weight (kg)
Minimum 21 155 46
Median 26 171.5 69.5
Mean 25.3 171.5 68

St. Dev. 2.96 9.71 14.14
Maximum 31 183 86

Table 3: Self-reported statistics from 12 participants.

and saved the sampled signals to a comma-separated value
(CSV) file retrieved after the experiment. The final phone was
held by the experimenter, and was used to record the start time
and end time of each gait. The logging phones were synchro-
nized with the experimenter’s phone at the beginning of the
experiment by having the experimenter simultaneously press
buttons on the experimenter’s phone and the logging phone.
Analysis was conducted on a MacBook Pro laptop with a 2.7
GHz Intel i7 processor and 8 GB of RAM.

12 participants (6 female, 1 left-handed) are hereafter referred
to as P1 to P12. Table 3 reports summary statistics for self-
reported age, weight, and height.

Algorithm
For our classification scheme, we use Random Forest, an al-
gorithm that uses bagging with randomly selected subsets of
features, constructing a decision tree for each bootstrap sam-
ple. Decisions are made by majority response of these trees.
As the number of trees approaches infinity, the accuracy of a
Random Forest classifier converges [4]; through piloting we
found accuracy converged between 100 and 500 trees, and
so use 500 trees. We used the implementation provided by
Weka [14].

We used a 2-second window with 50% overlap to compensate
for our small amount of data; this yielded a total of 35806
instances for our entire dataset. Our classification scheme
and window were chosen as the best performing in a pilot
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study examining window sizes (2- and 4-second), classifi-
cation schemes (SVM, Naı̈ve Bayes, Multilayered Percep-
tron, and Random Forest), and axis-grouping (x/y/z, verti-
cal/horizontal [34], and vector magnitude). We hereafter refer
to our algorithm as “RF500”.

Features are extracted using the Python programming lan-
guage and Scipy software package [18]. Features were cho-
sen to represent a large number of basic statistical observa-
tions of both time and frequency domain data: our gaits can
have subtle differences. To address the variable sampling rate
found in smartphones, we calculate the frequency spectrum
of each window with the Fast Lombe-Scargle Periodogram
(FASPER) algorithm [27].

For each axis (x, y, z), we take the following features: mini-
mum, maximum, and mean values, variance, skewness, kur-
tosis, 25th percentile, median (50th percentile), 75th per-
centile, a ten-bin histogram (normalized to have the propor-
tion of each value in each bin), the most powerful and least
powerful spectral frequencies, a weighted average of spectral
frequencies by spectral power, spectral variance, spectral en-
tropy, and a ten-bin histogram of spectral powers (normalized
to have the proportion of each value in each bin). In addition,
we look at the Pearson correlation and corresponding p-value
for each pairwise combination of the x, y, and z axes. Finally,
we take the signal magnitude area (sum of the Euclidean or
�-2 norm of every x,y,z tuple).

A full analysis of feature quality is beyond our present scope.
However, we observed no trends in feature contribution to
results. We suspect that the Random Forest algorithm’s per-
formance might be influenced by an ability to examine subtle
trends across all features.

We could not train the All Locations/All Gaits/All Partici-
pants data cell with RF500, as the 8GB of laptop memory
was in sufficient for this dataset. This dataset is thus miss-
ing from our all-participants analysis. We use the equivalent
algorithm with 100 trees (“RF100”) for our confusion matrix
involving all gaits (Figure 3); it is expected to perform similar
to but slightly worse than RF500. These computational costs
are only present when training the algorithm; once trained,
RF500 can perform efficiently on mobile devices.

Results
We conducted our main algorithm analysis with location,
gaitset, and participant as factors. That is, we examine the
benefit of knowing them by training classifiers that assume
specific levels (such as an algorithm that is trained only on
Exercise gaits with Front Pocket as the location).

We conduct this analysis twice, once training and testing on
all 12 participants (“All-Participant”), and once training and
testing on each participant (“By-Participant”). For each lo-
cation, gaitset, and (for by-participant analysis) participant,
we conducted 10 iterations of a 10-fold cross-validation. Our
results analyze the mean of each cross validation, giving 10
data points for each location/gaitset(/participant) combina-
tion. For both all-participant and by-participant analysis we
planned an Analysis of Variance (ANOVA) to compare dif-
ferent factors. However, the Shapiro-Wilk test of normality

Gaitset Location Mean % correct
Exercise Back Pocket 87.2
Exercise Front Pocket 86.6
Exercise Arm 85.3

Game Front Pocket 85.0
Exercise Belt 84.8
Exercise Backpack 84.6

Game Back Pocket 84.5
Pedestrian Front Pocket 83.7
Exercise Hand 83.4

Pedestrian Back Pocket 82.6
Game Arm 81.7

All Gaits Front Pocket 80.1
Game Backpack 79.9

All Gaits Back Pocket 79.8
Game Belt 79.6

Pedestrian Belt 79.5
Game Hand 78.9

Pedestrian Backpack 78.9
Pedestrian Arm 78.4
Pedestrian Hand 77.2
All Gaits Arm 74.5
All Gaits Belt 74.4
All Gaits Backpack 74.3
All Gaits Hand 73.5

Table 4: All-participant means of gaitset/location accuracy.
Chance ranges from 6.66̄% (“All Gaits”) to 25% (“Exercise”).

failed with a 5% level of significance on data cell residuals
in both analyses (Exercise/Arm data cell in all-participant,
W=0.83, p=0.037; 55 of 336 data sets in by-participant). We
thus do not detect statistical effects for the three factors (loca-
tion, gaitset, and participant), and could not conduct analysis
through planned contrasts.

All-Participants

Confusion matrices have been produced with all locations
across all-participants (e.g., without personalization) for each
gaitset in Figure 2, and for all gaits in Figure 3. Table 4 shows
mean classification rates by gaitset and location.

By-Participant

Training the RF500 algorithm on each participant improves
results with the short data collection time of 30s per gait and
location, and reveals variability in individual differences; see
Figure 4 for graphs of the effect of participants by gaitset and
location. The top performing mean data classification rate
was 100.0%, present in three data cells (involving two partic-
ipants): Game/Front Pocket/P3, Game/Backpack/P9, and Ex-
ercise/Backpack/P3. The worst performing mean data classi-
fication rate was All Gaits/All Locations/P10 with a mean of
63.2% classification rate. Table 5 shows mean classification
rates by gaitset and location. Due to space considerations, we
only report the mean of each personalized Gaitset/Location
result over all participants; as such, the extreme values of
63.2% and 100.0% do not appear in any tables.
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Figure 2: All-participant confusion matrices over all carrying locations for each gaitset (distinguishing only between gaits in the
gaitset). Darker squares represent a higher classification rate. Numbers presented are percents of classification rates for each
actual gait (rows sum to 100%).

Gaitset Location Mean % correct
Exercise Belt 92.2
Exercise Hand 91.0
Exercise Arm 90.1
Exercise Back Pocket 89.8
Exercise Front Pocket 89.7
Exercise Backpack 88.7

Game Back Pocket 88.6
Game Front Pocket 88.2

Pedestrian Hand 87.9
Game Hand 87.5
Game Arm 87.4

Exercise All Locations 87.3
Pedestrian Front Pocket 87.0

Game Belt 87.0
Pedestrian Belt 86.7

Game Backpack 86.3
Pedestrian Back Pocket 86.0
Pedestrian Arm 85.6
Pedestrian Backpack 84.7

Game All Locations 84.1
All Front Pocket 83.0

Pedestrian All Locations 82.7
All Hand 82.3
All Back Pocket 82.1
All Belt 81.6
All Arm 80.7
All Backpack 80.1
All All Locations 78.1

Table 5: By-participant means of gaitset/location accuracy
rate. “All Gaits” results are highlighted in grey. Chance
ranges from 6.66̄% (“All Locations”) to 25% (“Exercise”).

DISCUSSION
Overall, the classification scheme performed with a varying
range of success. In this section, we list our major conclu-
sions to inform designers. We make an effort to compare our
results with previous work whenever possible; please refer to
our map (Table 1) for additional context.

Overall success

When trained and tested over all participants, accuracy ranged
from 73.5% (All Gaits/Hand) to 87.2% (Exercise/Back
Pocket), although we notably must exclude All Gaits/All Lo-
cations (due to limitations of computational resources), ex-
pected to be the worst performer. All are far larger than
chance.

Overall, accuracy improved by about 5% when the algorithm
was personalized (by-participant analysis). Although we can-
not confirm statistical significance of this effect, it suggests
that a short personalization session might improve classifi-
cation rates. Even with personalization, though, there was a
great deal of variation in accuracy: mean classification rates
of each Gaitset/Location/Participant had extremes of 63.2%
(minimum) to 100.0% (maximum). All classification rates
are well above chance (the lowest classification rate, 63.2%
compares to 6.66̄% for all 15 gaits). For all locations and all
gaits, after training on an individual for 30 seconds for each
gait, the mean classification rate across all 12 participants was
78.1%.

For post-hoc analysis (analyzing a day’s data for overall activ-
ity after-the-fact) we expect that both personalized and non-
personalized algorithms (that is, trained on the user’s data
or not) could be sufficient for extremely high classification
rates: Kunze et al. used a majority vote of several 1 second
windows with 82% classification rate in 1 or more minute
sequences to achieve 100% classification rate of walking vs
not walking [22]. For real-time applications, a classification
rate of 78.1% could be used with novel application design
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Figure 3: All-participants confusion matrix over all gaits and
all carrying locations. Darker squares represent a higher clas-
sification rate. Numbers presented are percents of classifica-
tion rates for each actual gait (rows sum to 100%).

or game mechanics to improve perceived recognition rates.
We also note that many of our gaits are very similar, and that
careful pruning of the selection of gait could improve per-
formance: our Exercise gaitset had a mean classification rate
of 87.3% without knowledge of location when personalized,
and achieved a mean classification rate of 92.2% when it was
known to be mounted on the user’s belt. Thus, our results are
promising for robust classification of a wide variety of gaits.

Gait is a complex ecosystem of gaitset, location, and user

In Figure 4, we note interactions between location, gaitset,
and participant. Different locations perform well with differ-
ent gaitsets, and these vary depending on participant. With
P3, we see a flat pattern across gaitsets and location — basi-
cally, the algorithm performed well for P3 regardless of loca-
tion and gaitset. This pattern was observed for three partic-
ipants: P2, P3, and P9; in fact, the 18 best performing data
cells were from P3 and P9. No distinguishing demographic
features stand out for these participants: both sexes are rep-
resented, heights and weights vary (155-183cm and 51-64kg
respectively), and no notable behaviours were observed. This
suggests that these gaits may work very effectively for certain
individuals with minimal personalization (30 seconds per gait
and location). If this is from gait interpretation, then it is pos-
sible that, if instruction is given to users, a wider variety of
gaits could be effectively classified.

However, with other participants we see more variation (P4
and P5 are representative of the other 9 participants). Accu-

Gaitset
P

er
ce

nt
 C

or
re

ct

70
90

All Pe Ga Ex

● ● ● ●
P3

Front Pocket

All Pe Ga Ex

● ●
●

●●●●●
P4

Front Pocket

All Pe Ga Ex

●
● ● ●

● ●

P5
Front Pocket

● ● ● ●●● ●●
P3

Back Pocket

● ●
●

●

●●

●

P4
Back Pocket

70
90

●
● ● ●
● ●

P5
Back Pocket

70
90 ● ● ● ●●●

P3
Belt

●
● ●

●

●●

●●

P4
Belt

●
● ●

●

●

P5
Belt

● ● ● ●●
P3

Backpack

●
● ●

●

P4
Backpack

70
90

●
● ● ●

P5
Backpack

70
90 ● ● ●

●

P3
Arm

●
●

●
●

●

P4
Arm

●
● ●

●
●

P5
Arm

●
●

● ●●●
P3

Hand

● ● ●

●

●

P4
Hand

70
90

●

● ● ●●●

P5
Hand

70
90 ● ● ● ●

P3
All Locations

● ● ●
●●

P4
All Locations

●
● ●

●

●

P5
All Locations

Figure 4: Bar-and-whiskers plot of gaitset performance for
each of participants 3, 4, and 5 (chosen for illustrative pur-
poses; P3’s results are indicative of the high-performing par-
ticipants P2, P3, and P9, while P4 and P5 are representative of
the interactions present in the other 9 participants). Note the
3-way interactions between gaitset, location, and participant.

racy varies by participants and gaitsets when location is fixed.
When the smartphone is carried in the hand, all gaitsets ex-
cept for Exercise perform similarly for P4, but all gaitsets
except for All Gaits perform similarly for P5. With different
locations, more interactions appear; performance of all four
gaitsets is similar for both P4 and P5 (but quite different from
P3). We conclude that the performance of RF500 depends
upon location, gaitset, and user, with intricate interactions.

In aggregate, Exercise does best and All Gaits worst

In general, the best performing gaitset tended to be Exercise,
and the worst was the expected laggard, All Gaits. In the all-
participant analysis, the top three performing data cells are
Exercise data sets, and the worst four are from All Gaits (Ta-
ble 4). In the by-participant analysis, the top 6 performing
algorithms are Exercise sets, and the worst 6 performing al-
gorithms are from All Gaits (Table 5). In both all-participant
and by-participant analyses, the best performer for every lo-
cation was Exercise, and the worst for every location was All
Gaits. A close look at the by-participant results (Figure 4)
shows that these results might change dramatically depend-
ing on the user even when the algorithm is personalized.

Gait similarity affects classification performance

Though there could be several reasons for the difference in
performance of different gaitsets, such as the number of gaits
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within each gaitset, our findings suggest that the types of gaits
chosen within each gaitset are an important factor. Major pat-
terns in the all gaits confusion matrix follow, using “→” to in-
dicate mis-classification. Mis-classification is not necessarily
bidirectional.

As we can see in Figure 2, Exercise’s gaits have fewer stand-
out confusions with each other than the gaits in Pedestrian
and Game, which is not surprising considering that Exercise
is the best performing gaitset. Pedestrian has a number of
confusions that suggest differences between these gaits are
quite subtle, such as walk → fastwalk and jog → fastwalk.
This is an expected result, and is consistent with the design
of the Pedestrian gaitset to include very similar gaits. For the
Pedestrian gaitset, then, we note that distinguishing between
different categories of interpreted speeds of walking is chal-
lenging, and it may be best to only classify walking and jog-
ging or running, or refer to cadence directly in applications.

In the Game gaitset we notice a dichotomy – two groups of
gaits. Most gaits were mis-classified as narrow, especially
walksideways and walkbackwards. The least confused gaits
were narrow → walksideways and penguin → walksideways.
We thus suggest that narrow, walksideways, and walkback-
wards are similar, but different from twofoothop and penguin
(which, unexpectedly, had a strong confusion with penguin
→ twofoothop). Ultimately, many of these gaits are similar to
normal walking, and those that differ were more easily rec-
ognizable.

Pedestrian shows a number of confusions. As in the All Gaits
confusion matrix (Figure 3), many were mis-classified as as-
cendstairs, and several were mis-classified as jog. Both stairs
were often correctly distinguished from jog and run. Few
gaits were confused with run and walk. Exercise demon-
strates few standout confusions between its gaits. The most
confused gait was heels, in that it has the darkest column
excluding the diagonal element, followed by liftknees. The
strongest individual confusion is liftknees → heels. Toes and
kickingbum were confused with each other more than with the
other two gaits.

Individual differences strongly influence gait recognition

Individual differences add an important dimension to the re-
lationship between location and gaitset. This wide variation
in individual differences for activity recognition is consistent
with literature (Zhang et al. report 69% to 95.3% with their
best classifier [35], Kunze et al. report 72% to 93% with a
binary classifier [22]), but we are not aware of any previous
work that has commented on or explored individual differ-
ences and their impact on gait. Furthermore, previous work
has used a non-personalized algorithm for all participants; we
demonstrate this effect even when it is personalized via train-
ing on each participant, location, and gaitset, suggesting that
it is not merely error from the classifier, but could be an in-
trinsic component of each participant’s gaits.

We thus suggest that future work attempting gait classifica-
tion with gaits that might be susceptible to individual differ-
ences, such as the interpretation of unusual gaits or gaits with

subtle differences, must accommodate these differences. We
aim to pursue this in our future work.

CONCLUSION
In this work, we have given an argument for the role of gait
classification in persuasive applications. We have identified
a need for better comparison between different studies in this
area, and provided a framework for comparison based differ-
ences in application area, implementation details, and valida-
tion methodology. We have used this framework to provide
a map of relevant classification studies to help guide read-
ers through the literature. Finally, we have provided our own
contribution to real-time gait classification, looking at the dif-
ficult problem of classifying 15 novel, similar gaits consider-
ing 6 different carrying locations with only 30 seconds of data
collected for each data cell.

There are limitations to our study that must be considered for
interpretation and future work. As revealed by our frame-
work, we have only a single algorithm, and a limited amount
of data per data cell. More data could improve results, or
make them more trustworthy. As well, there are two con-
founded variables in our study. First, our data was only
collected once from each participant - individual differences
could be a result of clothing or the phone orientation in ad-
dition to personal gait characteristics. Second, gaitsets do
not have a consistent number of gaits: Pedestrian has 6 gaits,
Game has 5, and Exercise has 4. We leave the investigation of
these variables to future work. Finally, although we approach
the problem of gait classification by exploring the limits of
sensing, we suggest another angle for future work: examin-
ing how robust and accurate classification algorithms must be
for use in persuasive mobile applications.
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