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ABSTRACT
Over the last decade, the surprising fact has emerged that
machines can possess therapeutic power. Due to the many
healing qualities of touch, one route to such power is through
haptic emotional interaction, which requires sophisticated
touch sensing and interpretation. We explore the develop-
ment of touch recognition technologies in the context of a
furry artificial lap-pet, with the ultimate goal of creating ther-
apeutic interactions by sensing human emotion through touch.
In this work, we build upon a previous design for a new type
of fur-based touch sensor. Here, we integrate our fur sen-
sor with a piezoresistive fabric location/pressure sensor, and
adapt the combined design to cover a curved creature-like
object. We then use this interface to collect synchronized
time-series data from the two sensors, and perform machine
learning analysis to recognize 9 key affective touch gestures.
In a study of 16 participants, our model averages 94% recog-
nition accuracy when trained on individuals, and 86% when
applied to the combined set of all participants. The model
can also recognize which participant is touching the proto-
type with 79% accuracy. These results promise a new gener-
ation of emotionally intelligent machines, enabled by affec-
tive touch gesture recognition.

Author Keywords
Haptics, Tangible interaction, Conductive fur, Smart fur, Af-
fective touch, Piezoresistive pressure sensing, Gesture recog-
nition.

MOTIVATION
Although affective computing has gained traction in the HCI
community, at the moment, affective touch is largely ignored.
One reason for this gap is that creating touch experiences
involves building physical hardware and feedback, a more
complicated design and implementation task than support-
ing screen interaction. More fundamentally, the idea of ma-
chines providing even a limited level of the type of support
that comes from emotional touch is widely believed to be an
impossibility, even in the field of affective computing.
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Figure 1. Complete affective touch-sensing zoomorphic prototype with
pressure and conductive fur sensors (left), inner styrofoam and plastic
skeleton (top right), skeleton with fabric pressure sensor (bottom right).

However, affective touch is a crucial part of human develop-
ment and well-being, especially for the young, the elderly,
and the ill. Since natural forms of touch therapy, such as in-
teraction with trained animals, are often unavailable in hos-
pitals, homes of disadvantaged individuals, and other cru-
cial situations, an artificial system capable of providing even
partial support would have many valuable applications. Em-
powering machines with affective touch could lead to a whole
new range of potential uses in therapy, rehabilitation, edu-
cation, treatment of cognitive disorders, and assistance for
people with special needs.

THERAPEUTIC MACHINES: THE HAPTIC CREATURE
It has long been known that pets can have a positive effect on
their owner’s emotions. Could this phenomenon ever occur
in interactions between people and artificial systems?

Exploring this direction, our group has developed the Haptic
Creature [27], a furry lap-sized social robot that perceives
the world through touch, and expresses itself through ear
stiffness modulations, breathing rate, and purring patterns.
Focusing on employing a human/animal relationship anal-
ogy, the Creature system aims to create comforting experi-
ences through touch-based interactions by sensing and re-
sponding to human emotion. In a recent study in which par-
ticipants were set up with wearable biometric sensors to in-
dicate stress level, our group found that the Creature was
capable of reducing anxiety markers in individuals who ex-
perience its active breathing [20]. This important result mo-
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tivates further development of the Creature’s therapeutic ca-
pabilities. In particular, the current method of sensing emo-
tional state through wearable biometric sensors is too intru-
sive to be acceptable in the long run. This raises the ques-
tion: how can we sense emotion less intrusively?

Posture, speech, touch, voice prosody, and physiological mea-
sures have been explored as possible paths to emotion sens-
ing [16]. While these are promising directions, modelling
emotion accurately remains very much an open problem.
Given the emotional nature of the human/pet relationship,
we suggest that the zoomorphic and highly emotive, touch-
able form of the Creature encourages emotional expression
through touch. In particular, we propose that the way a per-
son touches the Haptic Creature is a window into her emo-
tional state. This assertion is backed up by a recent study,
in which our group found that different types of touch in-
teraction with the Creature can indeed be associated with
different human emotions [30]. This result justifies further
work investigating the Creature as a platform for sensing the
emotional content of touch.

CONTRIBUTIONS
Our goal is to sense human emotion through analysis of
touch interaction with the Creature. This endeavour involves
sensing and recognizing touch gestures, and then inferring
emotional state from those touch gestures. In this paper,
we investigate the former. We present the combination of
physical design work and artificial intelligence methods that
enable our new low-cost, low-tech touch sensing system to
achieve recognition rates competitive with existing gesture
recognition systems that use costlier sensing technologies.

Our physical prototype is a major expansion of our previ-
ous design for a new type of fur-based touch sensor [5]. We
adapted this sensor to cover a curved surface, and integrated
an additional piezoresistive fabric sensor to measure pres-
sure, resulting in a small (∼20cm x 15cm) furry animal-like
prototype that outputs synchronized time-series touch data
(Figure 1). We then used the prototype as an interface to
collect human touch data for 9 key emotional gestures, and
classified them using machine learning analysis. The result-
ing realtime model predicts gesture type with an average ac-
curacy of 94% for a given individual, and 86% when gen-
eralized across the combined set of all participants, and rec-
ognizes who out of the 16 participants is touching the proto-
type with 79% accuracy. We believe this work will provide
the Haptic Creature with a fundamental basis for modelling
gesture.

RELATED WORK
This project is at the intersection of touch sensing, affective
robotics, and machine learning. We discuss selected previ-
ous works relevant to our goals, and how our work differs
and builds upon them.

Haptic Affective Robots
Huggable, PARO, Aibo and Probo are all touch-sensitive af-
fective social robots relevant to our work [24, 21, 7, 9]. Of

these, Huggable [24], a furry robotic bear, has the most ad-
vanced touch sensing: its initial recognition model identifies
9 touch gestures with data from the robot’s full-body sensi-
tive skin, which includes a wide range of sensors. PARO [21]
is the famous interactive robotic seal that recognizes patterns
in its environment, including common verbal phrases, and it
has a long-term memory of owner touch behaviour. Specif-
ically, it differentiates between being stroked and hit, and
tries to amend its own behaviour accordingly, repeating ac-
tions that have been rewarded with stroking, and avoiding
actions that have resulted in hitting. Robot dog Aibo [7]
grows gradually from a puppy personality to a mature dog
over time, and is able to connect with people and its en-
vironment in many ways, including recognizing its owner,
learning tricks, and locating its charging station. Aibo has
touch sensors on its head, chin and back, and responds to
touch interaction based on location of touch. Probo [9] is an
elephant-like social robot equipped with a large variety of
sensors. It expresses 7 emotions by changing its facial ex-
pression, and is used to ease anxiety in hospitalized children.
Probo focuses its touch sensing on recognizing whether it is
being hugged, scratched, or hurt.

Some of these projects share goals similar to those of the
Haptic Creature project - namely, recognition of human emo-
tion, and appropriate responses to provide a therapeutic ef-
fect. But none has yet solved the complex problem of accu-
rate emotion recognition, nor do any of them go beyond the
most rudimentary processing in terms of sensing emotional
touch. It is our goal to contribute to touch gesture recog-
nition in the Haptic Creature, in the hopes of enabling this
system to recognize emotion from human touch behaviours.

Touch Sensing
Most affective systems focus on sensing touch through force,
such as with Force Sensitive Resistors (FSRs) [8] or Quan-
tum Tunnelling Composites (QTCs) [15]. PARO and Aibo
use FSRs alone to identify touch, and hitherto the Haptic
Creature has as well [21, 7, 28]. Huggable also uses FSRs,
in conjunction with temperature sensors and capacitive sen-
sors [24].

These are promising directions, but they are still in early
stages of gesture recognition, and none is likely to individ-
ually have the needed sensing scope. Huggable contains
the most advanced recognition engine, but it uses over 1500
high-tech sensors, relies partly on location of touch to define
gesture, and does not have complete recognition capabili-
ties. The capacitive sensors are also quite expensive, and
may be vulnerable to interference. FSRs are inexpensive,
but don’t function well on curved surfaces, and production
scales poorly to continuous coverage. They are also insensi-
tive to light touches, including those that interact with the fur
above the “skin” surface. QTCs are less affected by curved
surfaces and potentially more sensitive to light touches, but
our group and others have found that they suffer from dif-
ficult nonlinearities, and they are also not readily available
at this time. To attempt to ease these problems of expense,
hardware complexity, degraded performance on curved sur-
faces, lack of continuous sensor coverage, and insensitivity
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to light touches, we propose the combination of two low-cost
sensor types: a conductive fur sensor, and a piezoresistive
fabric pressure sensor. The next two sections address works
related to these two sensors.

Hand Motion Sensing
Current touch sensing technologies rely largely on force alone,
which handicaps the system’s sensitivity to light touches,
and differentiation of gestures with similar hand pressure.
For instance, a firm stroke and a scratch could involve sim-
ilar pressure, and it is the subtleties of hand position and
motion over time that defines each. A firm stroke involves
the flat of the hand moving smoothly and repeatedly along
the skin to exert force, usually in one direction. In a scratch,
fingernails ruffle the fur back and forth with high-pressure
contact against its length, especially at the roots. Sensing
force alone would likely not provide the best differentiation
between a firm stroke and a scratch, and there are many such
examples. We have therefore developed, in previous work,
a sensor aimed at describing above-surface hand motion in-
formation [5].

Now, we take the initial sensor presented in [5], improve it,
adapt it to cover a curved surface, combine it with a pressure
sensing design, and integrate the two into a creature-like pro-
totype for extensive touch analysis (details below).

Pressure Sensing with Piezoresistive Fabric
As mentioned above, at least low-resolution pressure infor-
mation is important for gesture recognition, but there are
many drawbacks to existing pressure sensing technologies in
affective robots. These include expense, hardware complex-
ity, degradation of performance on curved surfaces, and non-
continuous sensor coverage. Piezoresistive fabrics, (which
change resistivity when a pressure is applied, and can thus
be used as pressure sensors), address many of these prob-
lems. In particular, these fabrics are inexpensive, flexible,
and can be easily wrapped and sewn around irregular three-
dimensional shapes, making them well-suited for use in the
Haptic Creature.

As a first step, we selected one of the simpler piezoresistive
fabric pressure sensor designs from the many proposed by
Schmeder and Freed [19], adapted it to our three-dimensional
robot body shape, and evaluated it for use in affective gesture
recognition.

Affective Touch Gesture Recognition
The use of machine learning for touch gesture recognition
in affective systems is in early stages, and formal accuracy
rates are rare in the current literature. Of the works we have
mentioned, only Huggable and the Haptic Creature projects
involve more than a few basic gesture types. The Huggable
team has experimented with supervised neural networks us-
ing feature-based sensor data, and reports a 61.6% true pos-
itive recognition rate, and 96.5% true negative recognition
rate, averaging to 79% accuracy [24]. This report includes
8 of the original 9 gesture types, due to some believed tech-
nical difficulties with the remaining gesture type (which had
resulted in very poor accuracy). The Haptic Creature group
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Figure 2. Adaptation of Schmeder and Freed’s piezoresistive fabric
pressure and position sensor.

has made use of features with an eventual probabilistic struc-
ture in mind [3], and reports 77% recognition accuracy for a
set of four gestures.

We also took a feature-based approach, but rather than defin-
ing features in terms of the relationships among multiple
sensors read instantaneously, we extracted standard sequence
statistics as features from our synchronized time-series sen-
sor curves [2]. In this way we incorporated the time-dependent
nature of gestures into our model, giving it a “memory,”
which we have not seen in similar previous work, and which
we hypothesize is key to performance.

APPROACH AND APPARATUS
This section is a step-by-step description of the design of our
low-cost touch-sensitive zoomorphic prototype.

Conductive Fur Sensor
Our conductive fur sensor is a new type of touch sensor made
up of conductive threads embedded in animal-like fur [5].
Inspired by Perner-Wilson and Satomi’s conductive thread
stroke sensor [12], our conductive fur touch and gesture sen-
sor is in essence a big resistor: when we run a weak cur-
rent through the fur, the touch of a hand will disturb the
configuration of the conductive threads inside. This distur-
bance alters the number of electrical connections between
threads and thus changes the overall sensor resistance, which
is reflected in voltage changes across the fur. These voltage
changes can be collected and analyzed in realtime. See [5]
for a full discussion of the conductive fur sensor.

Piezoresistive Fabric Pressure Sensor
Schmeder and Freed [19] introduced a pressure and position
sensor comprised of a rectangular standoff layer of plastic
mesh sandwiched between two layers of piezoresistive fab-
ric. The sensor is wired at its four edges Va, Vb, Vc, Vd as
shown in Figure 2, which must each be settable as input or
output, and the surface resistivity of the fabric must be small
in comparison to the material’s through-resistance. While at
rest, the two pieces of piezoresistive material are physically
separated by the mesh standoff layer, and thus a supplied
voltage can cause current to flow across the surfaces of the
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two separate fabrics, but not between them. A touch, how-
ever, puts them in physical contact, allowing current to flow
both across the fabric surfaces, and between them, depend-
ing on where a voltage is applied.

Using this fact, Schmeder and Freed demonstrate how it is
possible to manipulate different input/output combinations
of the nodes to measure different variables. Referring to
Figure 2: setting Vb to supply a high voltage and ground-
ing Vd allows us to measure the x position of a touch with
Va. A touch brings the two piezoresistive pieces in contact,
creating a voltage read at Va that is proportional to the resis-
tance in the path along the surface of the lower fabric layer
between the touch and the Va node. Since this resistance is
proportional to the physical distance between the touch and
Va, it provides an estimate of the x position. We can simi-
larly measure the y position. Further, if we apply a voltage
to Vb and ground Va, Vc will give a reading inversely propor-
tional to pressure. This is because as current flows from the
top layer to the bottom layer, more pressure decreases the re-
sistance of the fabric, read at Vc. Position of the touch does
not interfere with the pressure reading, because the through-
resistance of the fabric is large compared to its surface resis-
tance. See Schmeder and Freed [19] for more details.

Sensor Construction, Adaptation, and Fusion
We constructed a small rounded semi-spherical zoomorphic
shape as a base for our prototype. Head and body are suffi-
ciently defined to suggest an animal form, but do not repre-
sent any particular species. This inner skeleton is carved out
of styrofoam, on top of which is attached a soft, thin layer of
plastic foam material to give the impression of skin-like elas-
ticity. We adapted the fabric pressure sensing design to this
curved three-dimensional shape (Figure 2). Segmenting the
body into top, bottom, left and right hemispheres allowed us
to measure position and pressure on the curved surface using
the method described above. The layers of the fabric pres-
sure sensor are sewn to fit garment-like to the body of the
prototype, and attached at the edges using conductive tape,
which also provides connecting points for the wired nodes.
Then the conductive fur sensor is mounted on top, in similar
garment-like fashion.

Constructing this three-dimensional shape involves wrapping
the fabric layers fairly tightly, mounting the hardware se-
curely, and accommodating the (albeit small) weight of the
fur. A side effect of this process is a bias pressure on the
pressure sensor. To avoid saturating the pressure reading,
we use three plastic mesh standoff layers between the two
piezoresistive pieces (rather than just one). Using three lay-
ers increases the stiffness of the vertical structure holding the
top piezoresistive layer up and away from the bottom layer.
Since the sensor is activated not by pressure directly, but by
the pressure between the two piezoresistive pieces, increas-
ing the structure between them allows us to offset the weight
of the hardware on top without needing to actually decrease
its weight. Input/output leads from the conductive fur sensor
and the fabric pressure sensor are then wired to the analog
inputs of a Teensy 2.0 microcontroller [14]. We sample at
50 Hz, and at each iteration measure pressure, x position, y

position, and fur sensor data by exciting and then reading
the corresponding analog ports. At the moment, recogni-
tion processing is done offline, however the models we have
chosen can be evaluated very quickly, and thus are capable
of performing at interactive rates when eventually integrated
into the Creature system. A sampling rate of 50 Hz satis-
fies our speed requirements for measuring gestures, as 5-
10 Hz has been established as the maximum bandwidth for
comfortable human voluntary motion (as opposed to sensa-
tion) [22].

Construction Costs
One of the goals of this research is to develop lower cost
sensing technologies that still perform well enough (see Dis-
cussion) for our purposes in affective touch recognition.
Specifically, in our context is it important to have full con-
tinuous touch-sensitive coverage in order to hope to capture
every touch; extremely high-resolution, high-accuracy sens-
ing is less necessary. Many existing projects do not pro-
vide continuous coverage, and/or involve expensive high-
performance hardware that is perhaps overkill in this con-
text [29, 24, 21, 7, 9]. Low-tech methods may be sufficient
because hand gestures occur at relatively low speeds [22],
span large (hand-sized) areas, and do not involve highly
precise pressure gradations. Further, the use of analytical
methods may make up for some of what lower-tech hard-
ware lacks. Our estimated total cost of manufacturing one
of these zoomorphic prototypes is $73 (and would likely
decrease in bulk production), far less than existing high-
performance continuous touch-sensing technologies. For
example, patches of similar size manufactured by Meka
Robotics [11] or Roboskin [17] perform at much higher res-
olution and accuracy, but start in the thousands of dollars.

GESTURE EVALUATION AND ANALYSIS
We chose 9 key emotional gestures from Yohanan’s 30-item
human-animal touch dictionary [30] that are a) appropriate
within our lap-pet context, b) important for emotional com-
munication, and c) feasible to perform on our prototype. Our
final set consists of: stroke: moving hand gently over the
prototype body, often repeatedly, scratch: rubbing the pro-
totype with the fingernails, tickle: touching the prototype
fur with light finger movements, squeeze: firmly pressing
the prototype body between the fingers or both hands, pat:
gently and quickly touching the body with the flat of the
hand, rub: moving the hand repeatedly to and fro with firm
pressure, pull: gently and randomly pulling at hairs in the
fur, contact without movement: any undefined touch with-
out motion, no touch: prototype left untouched.

Gesture Data Collection
We collected gesture data from 16 participants (9 female),
with cultural backgrounds in Canada, the United States, the
Middle East, China, and Southern Asia. After viewing a list
of the above gesture definitions, participants held prototype
on their laps, and performed each gesture continuously for
several seconds. From each participant, we collected 25 2-
second examples of each of the 9 gestures, sampling at 50
hertz. We chose a 2-second window of observation through
informal experimentation: in pilot data collected from two
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Figure 3. Gesture recognition results for random forests, neural networks, logistic regression, and Bayesian networks. Models were trained and
tested on each of 16 study participants individually. (A graph range of 80-100% is used to maximize detail.)

participants, a window shorter than 2 seconds resulted in de-
graded model performance, while increasing the window did
not improve performance. These results suggested that a 2-
second window might be a reasonable choice for the main
experiment (though further work will be needed to formally
optimize window length for real-world applications). In ad-
dition, while our participants took 1 second or less to per-
form even the longest gestures, we wanted each example to
capture more than one continuous instance of each gesture,
so as not to give our model the benefit of clearly delineated
start and stop times. In this way we better mimicked our
eventual application, which will read in data continuously,
and thus have no way of knowing the span of a gesture.

The gestures were collected from each participant in the same
order. Randomizing gesture categories seemed unnecessary
at the time, since beyond the supplied general gesture defi-
nitions, interpretation of each gesture type was left up to the
participants, making learning effect unlikely. And indeed,
we did not observe a learning effect: however on reflection,
randomizing the gesture types might have been a better ap-
proach. Participants maybe have become more comfortable
as the study progressed, possibly making execution of later
gestures truer and more natural. Further, we did not attempt
to randomly intersperse gesture examples due to the added
time involved in transitioning for each of the 2 second sam-
ples. This was a limitation of our study, because the repeti-
tion involved could have encouraged the participants to set-
tle into comfortable patterns, whereas randomization might
have sparked more diversity in touch behaviours within a
gesture. In our analysis, we make sure to measure recogni-
tion accuracy across participants (as well as within), which
we believe incorporates some of the diversity that lack of
randomization might have lost. However, future evaluations
should include randomization.

Machine Learning Analysis
In machine learning analysis, recognition depends on the
combination of measurable properties or “features” to help
differentiate between data categories. Crucial to classifica-
tion performance, a strong feature can distinguish between
two or more gestures; i.e., its typical range is distinct for two
or more gestures. We extracted several standard sequence
statistics from our time-series data to be used as features
for training a classifier. Based on our previous work mod-
elling gesture data with the fur sensor [5], we hypothesized
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Figure 4. Gesture recognition results for random forests, neural net-
works, logistic regression, and Bayesian networks. Models were trained
and tested on a combined set of all 16 participants. (50-100% displayed
graph range).

that the following sequence features aid in prediction: max-
imum, minimum, mean, median, area under the curve, vari-
ance, and total variation. These features were calculated for
each of the 4 time-series curves, resulting in a set of 28 fea-
tures. We then evaluated several standard models considered
highly effective for classification [1, 10] using Weka [26], an
open source framework supporting practical application of
machine learning algorithms.

Results
We evaluated our recognition models, in all cases using
100-fold cross-validation. Cross-validation is a standard ap-
proach to evaluating performance in a way that a) takes ad-
vantage of all available data, and b) avoids variation due to
random partitioning that might throw off our estimate of the
true predictive value of the model [10]. Accuracy was de-
fined as the percentage of data cases in the subset that were
labeled correctly by the model. The model assumed that
each case was a true instance of one of the gesture classes,
and always returned one of these labels as an answer.

Figure 3 summarizes classification performance on individ-
ual participants for the following standard models: random
forests, neural networks, logistic regression, and Bayesian
networks. Figure 4 summarizes classification performance
for the same models on a combined data set of all partici-
pants. The Hinton diagram in Figure 5 is a visualization of
the confusion matrix for classification of the combined data
set by the highest-performing model, random forests, which
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Figure 5. Hinton diagram of the confusion matrix corresponding to
the random forests gesture recognition model, evaluated on the com-
bined data set of 16 study participants. Size of grey squares represents
classification: for example, the first row shows how many examples of
”stroke” are recognized as stroke, how many are mislabeled as scratch,
and so on for all gesture types.

is 86% accurate. The random forests model is selected as
the best of the reported models, because while all perform
similarly well on individual data, the random forests model
is significantly better on the combined set. In Figure 6 we re-
port the relative drop in performance when leaving out any
given channel, and when relying on only a given channel.
Finally, Figure 7 reports the results of training a model to
recognize specific people from their touch gesture data.

DISCUSSION
We evaluated our prototype’s ability to differentiate a single
person’s gestures, to recognize gestures across participants,
and to recognize individual people from their touch interac-
tion. All three results are of interest to us. Individual gesture
recognition shows the system’s capacity for personalization,
much like how a pet develops a relationship with an owner,
and learns to interpret the owner’s specific behaviours. Com-
bined gesture results show the system’s potential for gen-
eralizability across a wide audience, representing its under-
standing of the basic rules of human touch behaviour. Person
recognition results indicate how the system could be trained
to recognize and respond to important people in the environ-
ment, such as the owner.

As shown in Figure 3, a model trained on a single person’s
touch data can generally achieve very high recognition per-
formance. Accuracy is almost always above 90%, on aver-
age higher than 95%, and quite consistent across classifiers.

As might be expected, modelling all participants together de-
creases gesture recognition accuracy (Figure 4). The effect
of model choice also becomes more evident, with perfor-
mance among classifiers ranging from 68-86%. This result
suggests that touch behaviours are by no means universal. It
also appears that while people vary widely in their individual
interpretations of a given gesture, they are likely to stick to
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Figure 6. Contributions of individual sensor channels to gesture
classification performance of random forests model on combined 16-
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ognize people from their touch data. Model was trained and tested on
stroke data for all participants, scratch data for all participants, etc for
all gestures. Model was also evaluated on combined set of participant
data for all gestures.

their respective interpretations, and perform each gesture in
a consistent way. The random forests model has highest per-
formance, classifying the set with 86% accuracy. From the
confusion matrix visualization in Figure 5, it appears that the
rub gesture is easy to confuse with scratch, and vice-versa,
as might be expected. Pull is quite difficult to classify, often
confused with stroke, scratch, or tickle.

We also attempt to characterize the value of each data chan-
nel to prediction of our set of gestures. As can be seen
in Figure 6, each channel contributes to classification per-
formance. Combined x and y position is the best individ-
ual classifier, and when left out, performance suffers a 6%
drop, as it does when pressure is left out. As an individ-
ual classifier, the fur sensor has the second weakest perfor-
mance, only stronger than x position. However, performance
drops 4% when the fur is removed, more than the perfor-
mance drops corresponding to either x position or y position
(1% and 2%). This result suggests that the fur sensor con-
tributes a relatively orthogonal channel of information, valu-
able to recognition. Removing pressure information also has
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a big negative impact on performance. However, Schmeder
and Freed [19] described some possible noisy dependen-
cies in the fabric pressure sensor between pressure and posi-
tion reads, suggesting our pressure/position data is not com-
pletely accurate at present. Further work will be needed to
ensure this issue does not interfere with the relative evident
individual contributions of x position data and y position
data.

Finally, we examine our model’s ability to recognize an indi-
vidual person from her touch interaction. As shown in Fig-
ure 7, the 16 participants can each be recognized from the
way they perform a given gesture with an accuracy of 78%
or higher. In the combined set of all gesture types, we find
that a person is recognizable by the model with 79% accu-
racy. This accuracy could potentially improve over time, as
the model is exposed to more and more data from a given
person. Some gestures are more telling than others: for in-
stance, people appear to be most recognizable from the way
they perform the tickle gesture, in which the model is 95%
accurate. This result makes sense given our observations of
the widely varying ways participants executed the tickle ges-
ture.

Despite the drop in gesture recognition performance when
generalizing to a group, we are still able to model our se-
lected gestures quite successfully relative to previous litera-
ture in affective gesture recognition. As discussed above, ex-
pensive high-performance sensors are not necessary in this
context; our low-tech approach performs well enough for
competitive touch recognition results, despite the low one-
off cost of ∼$73 for a 20cm x 15cm prototype. When com-
paring to previous results, however, it is important to remem-
ber that these accuracy rates are related to gesture selection.
At present, we have focused on a set of gestures key to emo-
tional communication, and while there is overlap between
our gesture set and previous sets, they are not identical. It is
likely that different gesture sets will result in different recog-
nition rates both in terms of recognition and differentiation,
and a more valid comparison to previous work will require
evaluation of identical gesture sets, a topic for future work.

In terms of practical value, classification accuracy rates are
usually evaluated in terms of the specific problem domain.
Since limited work has been done in this area to establish
what “good” performance means, choosing a performance
goal is nontrivial. We hypothesize that in the realm of an
emotional companion-like machine, strict correctness is per-
haps less important than in other computing applications,
since a certain amount of unpredictability might be expected.
Further, the idea of “correctness” can be defined as either a)
how well the system recognizes a person’s intended gesture,
regardless of how it was actually carried out, or b) how well
the system itself defines a gesture to support practical use.
In the first case, we would evaluate our system by its ability
to meet audience expectations, without giving it the bene-
fit of any expectations of its own. In the second case, the
system has its own model of expectations based on general
norms of touch behaviour, and probably its own correspond-
ing likes and dislikes, which might not always cater strictly

to audience needs and expectations. Here, in addition to ex-
amining standard recognition rates, we would also evaluate
how easy it is for the audience to communicate effectively
with the system, and how valuable the resulting interactions
are. Given these factors, we might initially hypothesize that
a real-world (out of lab) recognition performance of 80%+
for 10 or more gestures is a good preliminary goal. We be-
lieve this level of performance would enable the system to:
a) perceive and respond in a large number of complex, subtle
ways, b) capture a significant majority of audience expec-
tations, and c) express a “personality” and sense of unpre-
dictability that might make for a compelling interaction in
both the short and long term.

FUTURE WORK
Our next steps include both hardware and analytical improve-
ments. Hardware-wise, we will attempt to improve the pres-
sure and position sensing currently in our prototype by ex-
perimenting with different piezoresistive fabrics with differ-
ent material properties. We will also compare recognition
performance in alternate pressure sensor types, possibly in-
cluding multiplexed designs for higher position resolution.
And we will compare performance in larger and smaller pro-
totypes, including designs which combine multiple conduc-
tive fur and pressure sensing “patches” on different parts of
the prototype anatomy. We will also experiment with addi-
tional sensor types, such as an accelerometer. Further, the
system will need to be tested on a larger pool of partici-
pants, so as to better represent our audience population, and
make for a better-informed model. Future data collection
will also include more randomization of gesture types, the
lack of which was a limitation of our study. Perhaps most
importantly, for a true evaluation of our design and its impli-
cations, we need to get the system out of our lab environment
and into the hands of real people. The way people perform
gestures in the constrained setting of the lab chair may be
very different from how they behave in the real world, when
they are free to carry the device, put it in different places,
hold it in different ways. It is difficult to predict how perfor-
mance will be affected by these factors; experiments collect-
ing and modelling this real-world data will tell us more.

On the analysis side, we will investigate more machine learn-
ing schemes to attempt to improve performance, including
time-series-specific classification routines. As feature se-
lection is often found to be more important than choice of
classifier, we will also explore different feature types be-
yond the standard ones that we are using at present, espe-
cially those that are specific to time-series data. Future sys-
tems can incorporate confidence estimates, so that the model
is not forced to classify all data in terms of known ges-
ture types, even if probability is low. Also, before inte-
grating any recognition system into the Haptic Creature, we
will need to transition to continuous gesture recognition that
works with ongoing sequences of data, rather than fixed-
length windows. Given our current approach, this transition
could involve buffering in 2-second periods, and perhaps
running several buffers of different lengths simultaneously
to help prevent shorter gestures from getting lost in too-long
windows, as suggested in Chan, et. al. [3].
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Up until now, we have only discussed supervised learning, in
which models are trained on labeled data. However other in-
teresting possibilities include the use of unsupervised learn-
ing and reinforcement learning, both of which attempt to
mimic how a real living creature learns [4, 25]. In unsuper-
vised learning, the model is shown lots of data and searches
for hidden structure, for instance using clustering or dimen-
sionality reduction [4]. In reinforcement learning, the sys-
tem would learn by interacting with its environment, and
observing the resulting feedback, such as with a Markov de-
cision process [25]. This type of approach would be more
complex than a supervised model, but carries fascinating po-
tential. Such a system would learn directly from its own
unique environment, and thus develop its own “personality.”
No two would be alike. It would be sophisticated and unpre-
dictable, constantly learning and evolving based on observa-
tions, experiences and interactions.

In conclusion, based on the original objectives of this re-
search, these early positive results justify further develop-
ment of our approach to affective gesture recognition. Specif-
ically, the following are promising directions for future re-
search: a) interpreting touch behaviours of a given person,
b) generalizing across a population to understand basic pat-
terns of human touch, c) learning to recognize and respond to
important people, such as an owner, and d) designing models
for learning and “personality”. These capabilities could en-
able an affective touch-based system to better engage with
its audience on an emotional level, informing comforting
and therapeutic interactions. We hope this work can be a
small first step in this direction, ushering in a generation of
smarter, more emotionally sophisticated machines that can
help people feel better.
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