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ABSTRACT 
This work explores a novel interaction paradigm driven by 
implicit, low-attention user control, accomplished by moni-
toring a user’s physiological state. We have designed and 
prototyped this interaction for a first use case of bookmark-
ing an audio stream, to holistically explore the implicit 
interaction concept. Here, a user’s galvanic skin conduc-
tance (GSR) is monitored for orienting responses (ORs) to 
external interruptions; our prototype automatically book-
marks the media such that the user can attend to the 
interruption, then resume listening from the point he/she is 
interrupted. To test this approach’s viability, we addressed 
questions such as: does GSR exhibit a detectable response 
to interruptions, and how should the interaction utilize this 
information? In evaluating this system in a controlled envi-
ronment, we found an OR detection accuracy of 84%; users 
provided subjective feedback on its accuracy and utility.  
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INTRODUCTION 
Most modern user interfaces developed for consumer elec-
tronic products rely on explicit channels of command and 
control. That is, information is most often exchanged be-
tween users and devices through explicit gestures like key 
strokes, verbal commands and finger swipes, and received 
through visual or auditory channels. When well designed, 
this clear, controlled form of interaction has the important 
benefit of leaving little room for misinterpretation.  

However, there are circumstances in which the demands 
and costs of an explicit interface encumber its utility and ef-

ficiency, most typically in multitasking scenarios [1]. In a 
time- and safety-critical example, steering and handling a 
vehicle often requires most of the driver’s attention; yet a 
variety of secondary vehicle controls (e.g., adjusting audio 
system settings) compete for the same attentional resources. 
The resulting diversion can impair safety. In other cases, 
the cost may be in convenience, privacy or attentional 
fragmentation: a user may wish to alter a device’s behavior, 
but cannot or prefers not to use explicit commands (e.g., 
answering the phone while washing dishes). A badly timed 
device notification may temporarily dip in priority and then 
be forgotten (e.g., a pop-up notification). 

Theory 
Foreseeing the rise of ubiquitous computing, Weiser and 
Brown argued that rather than abruptly demanding a user’s 
focus, interactions should slide transparently between the 
attentional periphery and center [2], “calmly” providing 
context and orientation.  

In this vein, we propose a fundamentally different approach 
to device interaction, which employs implicit control chan-
nels to reduce an interface’s attentional demand. Building 
on the knowledge that some human affective (emotional) 
states can be estimated from physiological signals captured 
with off-the-shelf biometric sensors [3], our implicit chan-
nel is a user’s voluntary and involuntary physiological 
responses to a situation. We incorporate this biometric re-
sponse directly into the application’s interaction loop, such 
that it responds to changes implied by the user’s affective 
state (Figure 1). The loop is closed with an immediate but 
unintrusive indication of system recognition and response 
to the user’s estimated state; in ongoing work, we are ex-
ploring haptic feedback for this role [4,5].  
 

 
Figure 1. Proposed implicit interaction loop structure. 
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Approach and Use Case Description 
We are interested in the utility and effectiveness of this im-
plicit control paradigm in the context of a simple but 
representative use case, illustrated by this scenario:  

A woman listens to an audiobook on her portable media 
player in a dentist’s waiting room. Her name is called; 
her focus shifts from the audiobook to the hygienist. She 
fumbles in her bag to pull out the device, and eventually 
finds the “pause” button. The hygienist waits. 

Or, 
… her focus shifts. Reluctant to make the hygienist wait, 
she pulls out her earbuds and gets up, leaving her play-
er running until the book ends. Later, she iteratively 
scrolls and listens backwards through the audio stream, 
trying to find the last familiar point and estimating for-
warding intervals when she overshoots. 

Both trajectories highlight how an explicit interface can 
‘demand’ a user’s attention, with negative outcomes if at-
tention is not given. But what if instead: 

… her focus shifts. An electrode slipped over her finger 
detects this and marks the audio stream, which contin-
ues to play. She feels a small tap on her finger that 
signals bookmark placement. She pulls out the earbuds 
and follows the hygienist. Later when alone again, she 
jumps back through two or three placed marks, locates 
the one placed just before the interruption where she 
stopped listening, and continues playback from there. 

This is the implicit interaction method: an ‘auto-
bookmarking’ system detects and marks a user’s orienting 
response (OR) to an interruption by monitoring galvanic 
skin response (GSR) in real time. Bookmarks placed near 
the estimated point of interruption can be accessed later 
via a graphical or haptic tool. This use case highlights the 
example of a mobile application used in a predominantly 
hands-free mode. At this stage, we do not seek to change 
the underlying nature of existing explicit control or re-
place its channels; but rather to bypass points of 
dysfunction with a new, lower-effort channel when appro-
priate.  

Contributions 
This research example of attentional bookmarking, applied 
here to the initial use case of interrupted audiobook listen-
ing, defines a model for a unique user-device interface 
driven by implicit, low-attention control. With this plat-
form, we have assessed the viability of a holistic interaction 
model that may be appropriate for a wide range of applica-
tions. We have focused on two questions pertaining to our 
implicit interaction model, with respect to the audiobook-
listening use case:  

1. Does GSR exhibit a consistent and detectable response 
to interruptions in realistic contexts? 

2. How should the system respond to this information? 

In this paper, we demonstrate empirically that GSR can be 
used to detect orienting responses to interruptions under 
controlled conditions, and have data suggesting that this 
ability can be extended to noisier, chaotic environments. 
We built an OR detection system based on this result, and 
to explore Question 2, made quantitative and qualitative ob-
servations of its use in a setup simulating audiobook 
listening scenarios. The latter effort gave us specific in-
sights towards how best to refine our implicit interaction 
model in both this and more general cases. We explored the 
interaction paradigm without the haptic feedback compo-
nent shown in Figure 1, as the feedback dynamics warrant a 
more in-depth examination than can be offered here.  

In the remainder of this article, we summarize related work 
(Related Work), describe our hardware/software setup for 
detecting and displaying ORs (Use Case System De-
scription), and present the experimental methods and 
results by which we quantified GSR-based ORs to interrup-
tions and applied it to our interaction paradigm use-case 
(Experiments). We conclude with discussion and future 
work (Discussion and Conclusions & Future Work). 

RELATED WORK 
Affective State Detection and Implicit Interaction 
Past work has related a human’s measured physiology to af-
fective state. This includes characterization of vision-based 
facial expression and auditory speech [6]; however, external 
manifestations (i.e., mouth and eye motions, voice pitch, 
etc.) can vary and be voluntarily suppressed. Physiological 
signal analysis is a popular alternative. Researchers have 
processed physiological sensor data and used filtering, sta-
tistical analysis and machine learning classifiers to derive 
models of affective user state [7-11]. Here, the difficulty 
lies in signal quality that differs by individual and day or 
hour, non-specific responses and other sensor noise. 

In their early work in affective computing, Picard et al. 
classified emotions using physiological sensors [3,7,8]. 
With algorithms such as Fisher Projection and Sequential 
Floating Forward Search, they obtained emotional state 
recognition accuracy of up to 81% after 2-4 min of algo-
rithm training per subject, for eight categories. Kim et al. 
aimed to reduce signal monitoring times and system train-
ing requirements through feature extraction and pattern 
classification of data (electrocardiography, skin temperature 
variation and electrodermal activity) pooled from multiple 
subjects [9]. A recognition rate of 78% for three emotion 
categories was obtained after 50s of monitoring. 
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There have also been initial attempts to use physiological 
classification to augment traditional interaction techniques. 
For example, Healey and Picard’s StartleCam - a wearable 
video camera - monitors a user’s GSR to detect when a user 
is startled [10]. When GSR indicates a user’s heightened 
arousal, a time series of digital images are saved to mimic 
the user’s “flashbulb” memory of the event causing the star-
tle, autonomously generating an image-based diary for 
offline examination and memory assistance. 

Our interaction model builds on these results with the aim 
of providing transition support between primary and secon-
dary tasks. Beyond offline review, we seek a fluid 
continuous interaction where marked moments are used to 
propel the user towards a goal with minimal disruption.  

GSR and the Orienting Response 
The OR is an immediate reaction to the perception of a 
novel element or stimulus that is not sudden or intrusive 
enough to elicit a startle reflex. ORs are often examined to 
gather insights on human attention shifts and information 
processing [12]. An OR can be detected in many ways, in-
cluding heart rate and electroencephalography (EEG), but 
the simplicity of measuring GSR and its strong relationship 
to OR is attractive.  

The GSR (i.e., electrodermal activity) has been studied 
since the late 1800s. It is currently believed that the GSR is 
caused by the electrical activity of the sweat glands, and is 
connected to the sympathetic nervous system; it has been 
linked with the physiological instantiations of emotion, 
arousal and attention [13-16]. Firth and Allen showed that 
short-term changes in GSR reflect ORs [12]. Previous re-
search has shown that within normal ranges of ambient 
room temperature and controlled subject state and motion, 
there is a high correlation between OR and GSR [14]. Other 
literature suggests that GSR measurements can be more 
easily discriminated than other physiological measures such 
as heart rate and EEG, since they can be detected quickly 
and without complex analysis [15].  

GSR measurements are most sensitive on volar surfaces, 
suggesting a future possibility for sensors that can be worn 
unintrusively as a ring or shoe insert during daily activities. 
GSR sensors are inexpensive, wearable and pose no risks 
for the user. Disadvantages include latency in signal detec-
tion (i.e., 1-4s lag periods are common), significant 
response variance between subject groups (e.g., gender, 
age), possible habituation over time, and non-specificity 
[16].  

We chose GSR as, on balance, the most promising physio-
logical input to our control loop - keeping its limitations in 
mind. Since we require only OR information, with GSR we 
can bypass the complexity of a full affective model.  

USE CASE DESCRIPTION 
In our use case, marks are placed automatically during in-
terrupted listening to an informative audio stream. 

Bookmarks are placed near GSR-detected ORs, without ex-
plicit user direction. The marking system used here is 
intended as a platform to demonstrate and study the broader 
implicit interaction paradigm.  

In this section, we describe our physical implementation. 
The “loop” is illustrated in Figure 2: the user’s GSR was 
sensed, processed and sent by network to a control com-
puter which analyzed the GSR stream, placed bookmarks, 
and made the bookmarks accessible to the user via a 
graphical list. A user can control the audio stream directly 
and/or via bookmark selection. Users could also place 
bookmarks manually (“Bookmark Functions” in Figure 2). 
Some parts of the system were developed specifically for 
this use case (e.g., the audiobook player and bookmark 
manager). Others, in particular the interruption detection 
algorithm and software, are of more general applicability. 

GSR Apparatus and System Architecture 
Our GSR measurements were obtained with Thought Tech-
nology’s ProComp Infiniti® physiology-measurement 
hardware system [17]. The ProComp encoder reads data 
from a GSR sensor which uses dry electrodes attached to 
the index and middle fingers of the non-dominant hand.  
The encoder transmits the filtered, digitized signal to a 
notebook computer via USB. Skin conductance was meas-
ured in micro-Siemens (μS) and recorded at 256 Hz. 

To test various feature-based OR detection approaches, we 
developed a distributed system based on a TCP/IP client-
server architecture (see Figure 2). The client CPU received 
GSR data via a custom MATLAB program which per-
formed OR detection and bookmark generation. Bookmarks 
are sent via TCP/IP to a custom MP3 audiobook player 
running on the server notebook. This architecture was de-
signed for flexibility and future use in implicitly-controlled 
media players in mobile or distributed environments, with 
the wired USB connection replaced with a Bluetooth link 
from a wearable sensor.  

Figure 2. Diagram of bookmarking system architecture. 
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Audiobook Player and Bookmark Manager 
Users interacted with a custom Java audiobook player (Fig-
ure 3a), on which the user could place bookmarks explicitly 
using a custom bookmark-manager graphical interface 
(Figure 3b). Participants used the bookmark GUI to navi-
gate through existing marks labeled by type (GSR-derived 
and explicitly user-created) and time. In the future, we plan 
to render device-to-user communication and bookmark 
placing through other channels (e.g., haptics) to further re-
duce demand on a user’s visual faculties. 

Interruption Detection Software 
Figure 4a shows a process flow diagram outlining the de-
tection process and subsequent auto-bookmarking behavior, 
which was implemented in MATLAB™. The GSR was 
measured in real-time, then down-sampled from 256 to 32 
Hz to permit online processing (literature and our own re-
sults have shown that GSR rise times for ORs are in the 
range of 1-3s [15]; the Nyquist-Shannon theorem translates 
this to sampling requirement of >5 Hz). The resampled sig-
nal is smoothed by convolution with a 32-point Bartlett 
window (Figure 4b), and then differentiated (Figure 4c) 
similar to the procedure used by Kim et al. [9].  

To detect an OR, we first identified zero-crossings in the 
first derivative of the smoothed GSR, noting the signal’s di-
rection at these points (‘-’ to ‘+’ or ‘+’ to ‘-’). Consecutive 
zero-crossings, from negative to positive then back to nega-
tive, signify peaks in the raw GSR signal. A bookmark is 
placed if the following inequality holds true: 

 

where Threshold is a pre-determined value established in 
Experiment 1, GSRpeak is the maximum value of a peak, 
and SMA640(GSR) represents the moving average of the last 
640 samples (20s). To avoid the placement of extraneous 
bookmarks, new bookmarks were suppressed for a 20s 
“blackout” window following the most recent placed 
bookmark. This procedure incorporates contextual informa-
tion (GSR amplitude) for the signal under investigation, 
which can vary greatly across individuals and time.  

Latency and Window Length: GSR measurements ex-
perience a natural latency of 1-4s [15]. The auto-
bookmarking system introduces a delay due to differencing, 
smoothing and other operations, measured at 100ms. Com-
putational latency associated with OR detection was 
experimentally assessed to range from 0.5-2s due to differ-
ences in GSR signal rise time after different stimuli. When 
summed, there is a 1.5-6s lag between the actual occurrence 
of a stimulus and the GSR-based recognition of the OR.  

We have hypothesized that users could more easily re-
orient after jumping to a few seconds prior to a perceived 
interruption, than to the exact point of interruption. Experi-
mentally, we found that users tended to rewind audiobooks 
to approximately 10s prior to the start of an interruption*. 
We therefore placed bookmarks 15s prior to the detection 
of an OR, corresponding to 9-13s before the actual interrup-
tion based on our estimate of recognition latency. Figure 5 
shows a timeline of these events.  

The choice of averaging window length was the result of a 
compromise. If the averaging window is too long, false de-
tections arise from large-amplitude, low-frequency GSR 
changes that are not characteristic of ORs. If the window is 
too short, the analysis will be too localized and the algo-
rithm will fail to identify ORs. Through pilot studies, we 
found that a 20s window provided the most stable algorithm 
sensitivity; hence this value was used in our experiments*.  

EXPERIMENTS  
Our main objective was to support development of and then 
validate the general implicit interaction paradigm, within 
the context of the initial audiobook marking use case. We 
                                                           
* See Experiment 3. 

Figure 3. a) Audiobook player; b) Bookmark manager. 

 a) 

b) 

c) 

 
Figure 4. a) Flowchart of OR detection process. b) Typical 

smoothed GSR waveform (3200 samples). c) Smoothed first de-
rivative GSR waveform (3200 samples). 
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structured our research questions to be broad, but answer-
able and relevant from this use case perspective. 
Experiment 1 (E1) examined the usability of GSR as an in-
dicator of true interruption. We used Experiment 2 (E2) to 
refine parameters of the bookmark algorithm; e.g., the dis-
tance by which bookmarks should be advanced from the 
point of measured interruption. In Experiment 3 (E3) we 
showed our bookmarking implementation to users and in-
vited their qualitative feedback. Finally, in a preliminary 
pilot experiment (E4), we logged and examined additional 
GSR data in an uncontrolled, noisy environment to assess 
the algorithm’s viability in more realistic situations. 

Experiment 1: Evaluation of GSR Utility 
Our first research question addressed physiological re-
sponses to interruptions - specifically: 

Q1: Does GSR exhibit a consistent and detectable change 
in response to interruptions of a level that distract users? 

Bookmarks should be placed at or near the point where the 
user is interrupted. To do this, we need to know what GSR 
looks like when the user has really been interrupted. Only 
some events at some times are interruptive enough to dis-
tract users who are focused on a primary task (here, 
audiobook listening). For example, one may be able to 
mentally block a nearby conversation in a café, but will be 
distracted by the sound of a door opening in a quiet room. 
We would like to differentiate between these two situations 
using only features extracted from GSR measurements. E1 
was conducted to answer Q1 by specifically addressing the 
following hypotheses: 

H1: The GSR signal amplitude exhibits a range that corre-
sponds to ranges of interruption levels; and 

H2: Disruptive interruptions exhibit a characteristic GSR 
profile and amplitude range that can be detected with usa-
bly high (>80%) true-positive rates. 

This would provide the empirical grounding necessary for 
development of an OR detection system. An 80% accuracy 
rate was chosen as baseline. This was comparable to results 
obtained by Kim et al. [9] for the recognition of three emo-
tion types and determined to be adequate for practical 

applications. Usability of detection rates is examined in the 
Discussion.  

Design 
Four female and seven male subjects (n = 11) aged 23-30 
participated in E1. Subjects were pre-screened for potential 
confounds including diagnosed attention disorders (obses-
sive-compulsive or attention-deficit) and familiarity with 
the audiobook used. Data from one male subject was dis-
carded due to sensor malfunction.  

At the beginning of the experiment, half of the subjects 
were asked to put in their pocket a cell phone provided by 
the experimenter that was programmed to emit an auditory 
ringtone triggered by an experimenter. The other half were 
asked for their own cell phone numbers, then asked to set 
their cell phones to vibrate mode and place them in a pock-
et. This was done to determine if there is a net noticeable 
difference in GSR when a familiar stimulus from the par-
ticipant’s own cell phone is presented verses an unfamiliar 
one from cell phone provided by experimenters. We ob-
served no discrepancy between the two cases.  

During the experiment, subjects were asked to sit in a silent 
experiment room facing a wall and to don a GSR sensor 
and pair of headphones. To reduce noise in the GSR, sub-
jects were asked to avoid making large physical motions. 
The entire experiment was video-recorded for post-hoc 
comparison with GSR data. The experimenters sat on the 
other side of a visual divider from the subject, as shown in 
Figure 6, to avoid unintentional distraction or anticipation 
thereof. To encourage interruption responses typical of fo-
cused listening, subjects were instructed to listen to the 
audiobook carefully as they might be tested on concepts de-
scribed in the audiobook; no test was actually administered.  

After collecting two minutes of baseline GSR data where 
the participants were asked to silently relax, experimenters 
started playback of the first chapter of the audiobook “Free” 
by Chris Anderson [18]. The chapter, which describes the 
invention and marketing of Jell-O and Gillette disposable 
razors, was verified to be of neutral arousal level in a pilot 
study; that is, listening to the audiobook did not impact the 
user’s GSR signal except at the start or end of play. The 
content was considered boring by most subjects and was 
reused in E1, E2 and E3.  

Figure 5. Approximate timeline of the auto-bookmarking sys-
tem. Horizontal bars indicate timeline variability, black vertical 
lines show an example timeline for a participant introduced to 

vocal stimulus. 

Figure 6. Experiment 1 set-up.  
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After approximately a minute of playback, the experimenter 
began to cause interruptions without pausing or stopping 
the player. Four different interruptions were used: knocking 
on the experimenter’s desk three times {K}, tapping the 
subject on the shoulder twice from behind {T}, calling the 
cell phone in the subject’s pocket {C}, and verbally activat-
ing the subject {V}. These interruptions were chosen as 
they were perceived to be common in daily-life settings 
within the context of an audio-listening task. Each interrup-
tion was used twice. Intervals of at least 1 min between 
interruptions allowed the subject’s GSR to settle. 

Eight interruptions were presented to all subjects in the fol-
lowing order: {K}-{T}-{C}-{V}-{V}-{C}-{T}-{K}. 
During piloting, we did not discover any difference in any 
measured quantities as a result of stimulus order; therefore, 
to standardize the experience of the interruption order 
across users we did not randomize this sequence. Subjects 
were not informed of the order of interruptions. The same 
experimenter introduced all interruptions throughout all 
sessions with consistent volume and tone. The duration of 
phone rings was constant, and the two verbal instructions in 
the experiment were scripted as: 

V1: "[Subject Name], I just want to let you know that you 
are doing great." 

V2: "[Subject Name], we are going to continue to take 
more measurements, and let you know when the experi-
ment is over, OK?” 

The experiment was followed by a post-hoc questionnaire 
and a semi-structured interview. The questionnaire aimed to 
discover which interruptions were most disruptive. For each 
type of interruption, the subjects were asked whether they: 
a) were distracted, b) found it hard to refocus on the book 
after the interruption, and c) would have liked to rewind the 
book to a time just before the occurrence of interruption. In 
the interview, we collected general feedback on the experi-
ment with a focus on each interruption. Qualitative data 
from the questionnaires and interview was statistically ana-
lyzed to test H1. Quantitative data from the recorded GSR 
was analyzed with pattern detection algorithms to test H2.  
The length of E1 excluding preparation and administration 
of the questionnaire/interview was 20 min. 

Results 
Questionnaires & Interviews: Post-experiment question-
naires revealed that 81% of participants agreed or strongly 
agreed that they were engaged by the audiobook. 73% of 
participants agreed that they were interrupted during the 
experiment. From a set of yes/no questions for each type of 
interruptions, 91% of participants agreed that they were in-
terrupted by verbal interaction {V}. 55% of subjects stated 
that {K}, {T} and {C} were interruptive. Qualitative analy-
sis of the post-experiment interview showed that verbal 
interruption was found to be the most disruptive; it was also 
found that {K} did not register as either annoying or disrup-
tive to most participants. Three subjects reported that they 

did not notice a knock at all. Users found the level of dis-
ruption by tapping or cell phone to be in between that of 
knocking and verbal interruption. Hereafter, we refer to 
{K} as non-disruptive and {V}, {T}, and {C} as disruptive 
interruptions. 

GSR Signal Analysis: The algorithm’s performance was 
evaluated by power and precision metrics as defined in Ta-
ble 1. We considered an interruption “detected” if an OR 
occurred within -4 to +11s from the presentation of an inter-
ruptive stimulus; this range was derived from the sum of the 
1–6s detection latency (see Interruption Detection 
Software) and ±5s which was allocated to account for var-
iation of when ORs were detected. We tested both the 
power and precision of the algorithm’s interruption detec-
tion. Power reflects the frequency of true positives, i.e. 
detection of when an interruption occurred. For example, if 
4 out of 6 disruptive interruptions were detected in a single 
trial, power = 67% (NTP=4, NFN=2). Precision indicates ro-
bustness to false positives. If 4 out of 10 detections 
correspond to disruptive interruptions, precision = 40% 
(NTP=4, NFP=6). A false positive proved difficult to define 
because nonspecific responses – those that occur in the ab-
sence of an identifiable stimulus – could be caused by valid 
internal or otherwise unobservable stimuli.  

Figure 7 shows the results of our OR detection algorithm 
for a typical trial, illustrating disruptive interruptions and 
detected ORs. Supporting our previous approximation of 
1.5 to 6s, the average interval between an interruption’s ac-
tual occurrence and “true” OR capture was 2.52s (std 
2.35s).  

We examined the algorithm’s sensitivity to detection 
threshold by computing the average power and precision for 
threshold values ranging from 0.01 to 0.70μS as shown in 
Figure 8. Power and precision are inversely and directly 
proportional, respectively, to threshold in a roughly linear 
fashion. A threshold of 0.07μS (shown at the arrow in Fig-
ure 8) was found to be optimal, with maximum power of 
84% and a precision of 32%. 

Name Definition 

True positive 
(TP) 

A detection occurred within a 15s time win-
dow from the start of a labeled interruption  

(-4 to +11s). 
False negative 

(FN) 
No detection occurred within a 15s time win-
dow from the start of a labeled interruption. 

False positive 
(FP) 

A detection occurred without a correspond-
ing a labeled interruption within a 15s period. 

True negative 
(TN) 

No detection occurred when there was no la-
beled interruption within a 15s period.  

POWER 
Proportion of interruptions that are detected 

by the algorithm (NTP / Nactual). 

PRECISION 
Proportion of detections are interruptions 

(NTP/Ndetected). 
Table 1. Definitions of test outcomes, conditions and measures. 
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E1 subjects received 20 of each interruption type for a total 
of 80. The average power of each type of interruption is 
plotted in Figure 9. Additionally, we calculated the power 
of detected interruptions deemed to be disruptive, by ex-
cluding the apparently non-disruptive {K} types. With the 
detection threshold set to 0.07μS, the average trial power of 
disruptive interruptions was 84% (std 15%). A two-sample 
right-tail T-test verified that the power of disruptive inter-
ruptions - {V}, {T} and {C} - is significantly greater than 
the power of non-disruptive {K} interruptions (p=0.02). 
However, inspection of GSR data from E1 does not show 
notable qualitative differences between interruption types.  

Experiment 2: Qualitative/Quantitative Observation of 
Desired System Behavior 
In E2, we sought data that would help build the auto-
bookmarking application for an average user. Specifically, 

Q2a: Where should a mark be placed for greatest utility? 

Q2b: Is there a correlation between interrupt duration and 
how far back participants rewind the audio stream? 

According to E1, verbal interruptions (conversation, verbal 
instructions and questions) were the most disruptive of 
those tested; verbal interruptions are also controllable in du-
ration. Thus, to maximize the number of rewind events, we 
used only verbal interruptions in E2.  

Design 
Four females and seven males (n=11) aged 23 to 30 partici-
pated in E2. The same audiobook used in E1 was reused in 
E2. We required that subjects chosen for E2 had not previ-
ously listened to nor read the book prior to the experiment; 
hence, no participants from E1 participated in E2.  

The set-up for E2 is shown in Figure 10. The visual divider 
used in E1 was omitted, as we felt verbal interruptions lack-
ing eye contact was unnatural. A second experimenter 
recorded interrupt durations. Both experimenters were out 
of the participant’s immediate sight to prevent anticipation 
of stimuli. Subjects used the MP3 player shown in Figure 
3a; the pause function and ‘track time’ display were dis-
abled to simulate the scenarios described in Approach and 
Use Case Description. After a brief training session on 

the customized player, subjects were instructed to pay close 
attention to the content of the audiobook, to rewind when-
ever desired, and that there would be content-related 
questions following the listening session. The player auto-
matically logged timestamps of user rewind actions.  

Subjects were asked to relax for two minutes at the outset 
of the experiment to collect baseline GSR data. Experi-
menter 1 initiated verbal interruptions periodically after the 
subjects’ GSR had settled, with short (2-13s), medium (14-
28s), and long (29+s) conversations. A total of six verbal 
interruptions (two short, two medium and two long) were 
used for each subject. One medium and one long question 
were related to the content of the audiobook. Finally, the 
video recording of the experiment was played back to the 
subject in a semi-structured interview, to understand the ra-
tionale for various rewinding patterns.  
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lines for one representative trial (threshold set at 0.07 μS).  

  

Figure 8. Average power and precision versus detection 
threshold. The arrow points to the maximum power when the 

threshold is set to 0.07μS. 
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Figure 10. E2 set-up. A similar set-up was also used for E3. 
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Results 
We expected all 66 stimuli to be interruptive - six per sub-
ject across the 11 subjects. 19 of these generated user-
driven rewind events that corresponded to an interruption. 
33 of the remaining stimuli did not cause any rewind event, 
and the other 14 were discarded either because they caused 
unrelated rewinding (due to mind wandering etc.), or sub-
jects were not able to remember their reasons for rewinding 
the audiobook at that particular incident during the inter-
view. It was found that users tended to rewind multiple 
times for a short duration after an interruption for reasons 
such as seeking for the ‘best’ location. This was still count-
ed as a single valid rewind event. 

We measured how many seconds the subject rewound prior 
to the onset of the interruption. For example, we recorded a 
value of -2 if a subject rewound the audiobook to a position 
2s prior to the start of an interruption. The average rewind 
period during the 19 valid interruptions was found to be -
9.37s (std: 7.65s), i.e. on average, a subject rewound the 
audiobook to 9.37s prior to the occurrence of the disruptive 
interruption event. We also recorded the duration of each 
interruption. The duration of the 19 valid interruptions 
ranged from 7 to 56s. The correlation coefficient between 
interruption length and extent of the rewind event was 
r=0.03, which suggests that the rewind distance was unre-
lated to length of interruption. 

Experiment 3: Interaction Utility Assessment 
In E3, we tested the utility of our tuned GSR-based auto-
bookmarking algorithm. E3 re-used E2’s procedure and set-
up (Figure 10) but employed the bookmarking algorithm in 
real-time. Data from E3 provided insight into user reactions 
to the bookmarking prototype.  

Design 
One female and four males (n=5) aged 23-29 participated in 
E3. The system used in E3 is described with its parameteri-
zations in the Use Case System Description. While 
the previous experiments provided us with information on 
how to detect disruptive interruptions and how to use that 
information, E3 specifically addresses the question: 

Q3: Do our system-generated bookmarks consistently 
provide utility after interruptions? 

We used the same pre-screening procedure and setup as in 
E2. In addition, E3 subjects were asked to use the custom 
MP3 player and associated custom bookmark manager 
interface (Figure 3b). Subjects were instructed to use this 
manager as their first method of rewinding when rewinding 
was desired, reverting to manually navigating through the 
audiobook only if the bookmarks were unsatisfactory. 
Subjects could rewind from any bookmark, but were 
advised to try the most recent one first. Interactions with the 
MP3 player and bookmark manager were logged, and video 
and audio recordings of the experiment were saved.  

To better understand their strategies for interrupt recovery, 
we asked subjects to view the recorded video stream while 

commenting on each interruption in a post-experiment 
questionnaire. Finally, we conducted an interview to under-
stand user satisfaction and usefulness of each bookmark. 

Results 
Each subject in E3 was exposed to six interruptive stimuli, 
for a total of 30 events. 26 of these stimuli were reported as 
disruptive, valid interruptions. 21 of these caused subjects 
to rewind immediately following the interruption. 18 of the 
21 rewinds utilized only system-generated bookmarks; in 
13 of these, subjects used only the latest system-generated 
bookmark, whereas subjects in the other five instances 
continued to try older bookmarks. In the remaining three 
rewind events, subjects manually navigated through the 
audiobook. Subjects rated 76% of the automatically-placed 
bookmarks that they used as ‘appropriately positioned’.  

The semi-structured interviews provided constructive 
feedback: users were surprised to see such a system, and 
were interested in seeing further application areas of such 
interaction. In general, subjects provided positive feedback 
on the system’s usefulness and utility. Few suggestions on 
bookmark follow-up were raised. Two subjects suggested 
the system should pause when the user is interrupted, and to 
play again by user's manual control. One subject reported 
that the system’s visualization and/or interaction quality 
could be improved.  

Experiment 4: GSR Field Assessment (Pilot) 
As a final early validation step, we assessed the potential 
effectiveness of this implicit interaction implementation 
based on GSR informativeness in a less controlled 
environment. We were keen to preview through a pilot what 
would be involved as we moved to the field to guide our 
own future work.  Specifically, we wanted an initial 
indication of:  
Q4: Are there quantifiable differences between GSR 
measurements obtained from a controlled vs. uncontrolled, 
possibly noisy environment which may affect utility or 
effectiveness of the interaction? 

Design 
Two male subjects (n=2) aged 23 participated in the E4 
pilot. During rush hour at a busy outdoor bus terminal, each 
participant was seated (alone) on a bus bench for the 
duration of the study and asked to attend to an audiobook 
played through headphones. Subjects wore a GSR sensor 
and were instructed to use a pushbutton marking device to 
signal moments where they felt interrupted enough by an 
event to wish the audiobook to be rewound. An 
experimenter (out of the participant’s view) also recorded 
major events that could have potentially caused ORs. 

Results 
An informal analysis of data from two male participants 
showed little qualitative (wave shape, event responsiveness) 
difference between raw GSR measurements obtained from 
our controlled tests (E1 and E2 results) and the bus termi-
nal. The primary distinguishing characteristic was absolute 
GSR amplitude: subjects in E1 and E2 tended to exhibit 
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baseline and OR GSRs in the range of 3-6μS, whereas GSR 
measurements in E4 were 6-15μS; an example comparison 
is shown in Figure 11. As the software algorithm designed 
for the auto-bookmarking use case does not utilize absolute 
signal amplitude, but rather amplitude of peaks relative to 
the moving average, this preliminary result suggests that 
system operation should be minimally affected by a chaotic, 
noisy environment. 

Although E4 results are informal and preliminary, this pilot 
study suggests (though not proves) to us that at the cost of 
more sophisticated signal processing, information regarding 
ORs will still be present in GSR data collected from less 
controlled environments. 

DISCUSSION 
Q1: Does GSR indicate disruptive interruptions?  

E1 showed that GSR can be used to detect disruptive inter-
ruptions in an audiobook listening context. According to 
subject interviews and self-reports, our {V}, {T} and {C} 
interruptions did disrupt subjects. E1 results (Figure 9) con-
firmed that different types of interruptions correspond to 
different levels of disruption as indicated by GSR. Thus, H1 
is confirmed for the range of interruptions that we tested. 
Moreover, for GSR data obtained in E1, we achieved an 
84% recognition rate in detecting disruptive interruptions, 
(i.e., true positives of type {V}, {T} and {C}). This sup-
ports H2, where disruptive interruptions produce salient 
GSR signal features, detectable by our algorithm with an 
acceptable true-positive rate; false positives were difficult 
to detect, as explained in Experiment 1.  

Only four types of interruption stimuli were tested in these 
experiments; the design space of possible interruption stim-
uli and contexts is much larger. As such, validity of our 
results is coupled to the primary task and interruption stim-

uli used here. For example, while a gentle knock was not 
disruptive in this context, it certainly could be in other 
situations. Nevertheless, our approach - evaluating the GSR 
signal in context and using this to tune an algorithm variant 
to that context - is general enough to be applied to other 
primary tasks such as watching TV, housecleaning, garden-
ing, working at a computer and perhaps driving. 

As seen in Figure 8, there is a tradeoff in power versus 
precision as a function of detection threshold, i.e. between 
false negatives and false positives. Based on subject 
interviews, we believe that higher power with slightly lower 
precision is a reasonable tradeoff. However, the optimal 
balance will depend on the environment and individual 
responsiveness to ORs. 

Q2: Where should a mark be placed relative to 
interruption? 

E2 provided data for designing the bookmark placement 
system. Its results indicated that users preferred to rewind 
the audiobook to a location approximately 10s prior to the 
onset of an interruption, independently of interruption 
length. This implication for mark placement advance may 
be applicable to interruptions in other use contexts. Con-
veniently, the results also imply that it is not crucial to 
measure or estimate the length of interruption, a potentially 
challenging task in the field. However, we believe this find-
ing only applies to interruptions under a minute. Longer 
interruption may affect user’s behavior and the desire of 
bookmark location; for instance, a 10-minute interruption 
may cause the user to replay the entire chapter of the 
audiobook, because the content has slipped out of his short-
term memory. Likewise, our observation of mark-advance 
independence from interruption length may apply to other 
use cases, but this will need to be verified.  

Q3-Q4: Do our system-generated bookmarks consistently 
provide utility after interruptions? Is GSR informative in 
uncontrolled environments?  

GSR signals are known to be susceptible to noise from 
sources such as bodily motion and cognitive workload [15]. 
We generally found (E1-E3) that our algorithm was quite 
robust to small hand or arm movements and subtle posture 
changes, but we had false-positive detections in the absence 
of an identifiable stimulus. Although it is not feasible to 
explain each one, we expect that some occur through 
internal distractions, such as when a phrase or a word in the 
media being perused initiates mind wandering. E4 results 
suggest that GSR is robust in a chaotic environment.  

Subjects did not always find rewinding the audiobook nec-
essary despite being interrupted – particularly for short 
interruptions (<11s – as determined by the length of the 
longest ‘short’ interruptive conversation in E2 without 
causing users to rewind). We found that no rewinding oc-
curred for 81% of the short interruptions presented to 
subjects in the experiments. Subjects reported that even if 
they stopped listening to the audiobook to attend to short in-
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Figure 11. Raw GSR data collected from a participant in a) a 
controlled test environment and b) a bus terminal at rush 
hour. Thick, dotted lines signifies interruptions; thin, solid 

lines represent bookmarking system OR detections. 
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terruptions, they could quickly pick up the gist of what was 
being said afterwards. We believe this was representative of 
this use case, and it seems that users sometimes use a 
‘multi-tasking’ strategy to cope with interruptions.  

E3 and E4 served only to briefly explore the potential of 
our implicit control algorithm in controlled and 
uncontrolled setting; the small sample size limits our ability 
to provide any concrete evidence pertaining to the useful-
ness our system in the field and thus caution is required 
when evaluating the significance of these results. They give 
some indication that our algorithm provided a usable 
detection rate; further investigations with larger sample 
sizes are required. Subjects reported appreciation of and 
surprise at the automatic bookmarking. Perhaps most 
relevantly, many comments were directed to bookmark 
follow-up as opposed to the actual bookmark generation, 
supporting the conclusion that the current bookmarking 
algorithm is reasonably accurate, our vision of a loop-
closing system is of potential utility and our next step is to 
concentrate on using the bookmarks themselves.  

CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated a novel approach to 
human-computer interaction based on an implicit 
communication paradigm. We have developed and 
validated the theory that a computer algorithm can, in real-
time, detect features within a GSR stream that correspond 
to ORs caused by external disruptive interruptions. We 
have exploited these findings with a system that provides 
OR-based auto-marking for a representative audiobook use 
case. We have found that with our algorithm, we can 
achieve a true-positive interruption detection power of 84%. 

The work presented here demonstrates the feasibility of an 
implicitly-controlled interaction model which provides a 
possible solution for managing the interplay between 
primary and secondary tasks in various environments. This 
use case represents a first step in a larger effort in which we 
aim to develop an implicit interaction loop driven by 
physiological parameters such as GSR.  

We anticipate that the false-positive rate found in this use 
case may be addressable by dynamically tailoring the OR 
detection algorithm to individuals, through adjusting 
sensitivity, bookmarking delay and dead-zone period until 
another bookmark can be placed. Improvements to the 
present system’s usability in the field (e.g., further reducing 
noise in the GSR introduced by bodily movements) may be 
assisted by integrating contextual information such as 
accelerometer and location data from a worn or carried 
device.  

Our next step is to provide users with a low-attention notifi-
cation that the application has acted in response to the 
user’s physiology (for the use case presented here, that a 
mark has been placed). To further test and validate this 
model, we plan to study the closed-loop dynamics of other 

use cases such as streaming media, internet browsing and 
vehicle operation. We would also like to explore how to 
discriminate ORs to the media itself from responses to ex-
ternal events. 
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