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Abstract:

Haptic icons (brief, tactile stimuli with associated meanings) are a useful new way to
convey information through the modality of touch, but they are difficult to create because
of our lack of understanding into what makes good haptic stimuli and how people will
perceive them. This thesis aims to enlarge our capabilities to design and evaluate haptic
icons, despite these problems. We seek to do this via two overlapping threads of research.
In the first thread, we introduce the design parameter of rhythm as a means of extending
the expressive capabilities of the simple tactile stimuli used in haptic icons. This allows
us to create.a set of expressive and perceptually distinguishable haptic stimuli larger by
almost an order of magnitude than any previously created. In the second thread of
research, we tapkle the problem of how to evalgate the perceptual characteristics of such
a large set of stimuli with real people. We develop a means of evaluation that allows us to
collect perceived difference data by present each user with only a subset of the total
stimulus collection, and then stitch together an aggregate picture of how the stimuli are

perceived via data collected from overlapping subsets from different users.

To advance these two threads of research, two user studies are run in order to examine
how our haptic stimulus set is perceived and to validate our new method of gathering
perceptual difference data. One study uses an established but cumbersome technique to
study our stimulus set, and finds that haptic rthythms are perceived according to several
different aspe'cts of rhythm, and that users can consistently differentiate between haptie
stimuli along these aspects. The second study uses our newly developed data collection
method to study the same stimulus set, and we find that the new technique produces
results that show no significant difference from the established technique, but using a
data collection task that is much quicker and less arduous for users to perform. We
conclude by recommending the use of our new haptic stimulus set and evaluation
technique as a powerful and viable means of extending the use of haptic icons to larger

sets.
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Chapter 1: Introduction

Can you touch abstract information? What does it feel like? These questions drive us in
our research into haptic communication. We wish to convey information to people from
computers enabled with haptic displays, and we wish to do so in the simplest and most
transparent fashion possible. To accomplish this we build upon the concept of haptic
icons: brief tactile stimuli that have been associated with a meaning. We believe that
haptic icons present a new means of diéplaying information to people that can be discrete,
convenient and informative while simultaneously decreasing the dependence on the

visual and auditory channels of communication.

In our vision, we see haptic icons being integrated into almost any interface in which the
visual and auditory channels are already used extensively, where haptic icons could
provide information to users without requiring them to visually monitor the interface. We
foresee haptic icons integratcd into handheld devices, where théy céﬁ suppbrt interaction
wifhout the user looking directly at the device, a considerable advantage in busy
environments, or social situations in which discretion is required. We see hapﬁc icons as
a general-purpose design tool to help ease the flow of information from computer to

human.

Researchers have worked hard to design haptic icons and test them with users. Across
many different haptic devices and technologies, robust design parameters such as
frequency, amplitude and waveform have been used to create haptic stimuli that users can
easily discern and recognize [19, 6]. Multiple applications have been created using haptic
icons, and have been found to be successful in conveying information in practical work
contexts [10, 18]. These promising results are opening up a much larger area of research

for work in haptic icons.

Yet many challenges still remain, not least of which is the gap in understanding between
the design of haptic stimuli and how they will be perceived by users. Because our

understanding of the sense of touch is quite primitive when compared to sight or hearing,



we are constantly forced to test our stimulus sets with users to determine how their
members are perceptually related. Another consequence of this is that we lack insight into
what the important perceptual parameters of touch are, such that creating new design
parameters is often simply done by guess-and-test. What is required is further
sophistication in all aspects of our work on haptic icons: greater sophistication in how
they are designed, and greater knowledge in how they will be perceived. This thesis

works to fill this void, though much more work remains to be done.

1.1 Motive

It has been posifed ;that a haptic equivalent of visual icons could be used to increase
information flow in an environment where computer interfaces are rich in the visual but
poor in the haptic. Following theory with testing, multiple researchers across the globe
have shown promising results’ in the use of various tactile stimuli to present iconic
information. Now it is time to push beyond current capabilities, expand benchmarks
outwards and determine how far this concept can go. Presented in this thesis are both an
expansion of the methodology for building and evaluatin‘g haptic stimuli as well as new,
multifaceted design parameters with enough depth to support the creation of an expansive

set of expressive, distinct haptic stimuli.

The motivation for the use of haptic icons is fairly straightforward. In modern interface
design, the visual modality is heavily relied upon. Especially in interfaces such as the
cockpit of a plane or the driver’s seat of a car, the user’s visual field is almost
overwhelmed with information. But even in a simpler interface such as that of a cell
phone, if it is placed in a busy environment where, either for social or practical reasons,
the user cannot spend all his/her time looking at the dévice, the over-reliance on visual
communication creates a bottleneck in information flow from device to user. The haptic
modality opens up a new channel between device and user, one that éan be constantly in
contact with the user without him or her constantly attending to it. This is not to claim
that simply moving something from the visual to the haptic domain will necessarily free
the attentional resources formerly used to track the visual information: attention and

multi-modal perception interact in complex ways that we are still only beginning to



understand, and other, cognitive bottlenecks exist in aside from basic perception of

stimuli.

Nevertheless, as an addition to interfaces already heavily dependant on other modalities,
the advantages of using the haptic channel to display information have been consistently
shown. For both critical control tasks and social communication, haptic icons can be used
as a simple, straightforward means of conveying information to the user through the
haptic channel. This simple, one-degree-of-freedom communication makes them,

perhaps, the most basic building blocks of abstract haptic communication.

Research into haptic icons has generally focused on the use of short, simple vibrotactile
stimuli to convey information to users [19, 6]. This focus should make them easy to
create, easy to display on a device and easy to evaluate. Unfortunately, this claim has
been the goal, but not the reality. In truth, research is still hamstrung by poor haptic
displays on which even simple design of stimuli presents serious challenges. Poor
displays lead to noisy results which make evaluation difficult, and evaluation of complex
human interaction with technology is not a simple task to begin with, as the very

existence of the field of Human Computer Interaction (HCI) attests.

Nevertheless, we are seeing more technology equipped with ‘more advanced haptic
displays every day, especially in handheld devices. If haptic display becomes more
common, then the opportunity for new haptic-enabled applications increases sharply, in
no small part due to increased user familiarity with the medium. Furthermore, as
',discussed above, handheld devices are often operated in busy, demanding environments
where a different, discrete modality such as haptics can help make the difference between
an easy—to-use, helpful application and one that simply causes the user more stress and
frustration. Consequently we are applying our research to the development and

application of haptic icons in the real world, in hope that they can solve real-world

problems positively and efficiently.




We are not there yet. Research into haptic icons has generally been preliminary,
involving ‘rrélati‘vely‘Sméll numbers of icons ﬁs‘edAin laboratory environments. Developing
stimuli has been done on a per-experiment basis, and has differed widely across
researchers (see [27] and [18] as comparisons). What this thesis aims to do is to greatly
increase the number of coordinated haptic stimuli that can be used in an experiment or in
an application: increase via gross number of stimuli in existence, and increase via easing
'development. We hope to create the beginning of a general reference set of haptic stimuli
that has been evaluated for consistency and distinctness. Moreover, we also aim to create
a robust process for the creation and evaluation of large number of haptic stimuli,
allowing other researchers to follow in our footsteps. Increasing by roughly an order of
magnitude the number of haptié stimuli in a single, coordinated set that are available to
researchers, we will be allowing for the creation of larger, more complex applications
that can use haptic icons. These applications can then be applied to real-world situations,
studied over longer periods of time, and evaluated for their usefulness and usability. Thus
the contributions of this thesis are to be viewed as major steps towards a more wide-scale,
ecologically valid evaluation of haptic icons. This thesis aims to break haptic icons out of
the domain of “toy” research and into the domain of grounded, practical application

work.

1.1.1 Icons vs. Stimuli

It should be made clear that, because our work deals strictly with the haptic stimuli
themselves, and at no point attempts to attach meaning to them, we do not often refer to
haptic icons throughout this document, instead haptic stimuli. Only when a stimulus has a
meaning associated with it does it become an icon, and this sémantic process is not the
concern of this work as the stimuli must be designed first, before meaning can be
attached to them. The process of assigning meaning is left to the designers of application

who wish to use our stimuli to make haptic icons.

1.2 Overview and Approach

Two main problems stand in the way of our goal of creating a large, diverse set of haptic

stimuli; solving them comprises the bulk of the contributions of this thesis. Both issues




stem from the size of the set of stimuli that we wish to create. The first challenge is how
to create so many different stimuli which are distinctive and expressive to potential users.
This problem is approached here by the systematic and wide-scale use of tactile rhythms,
a little-explored parameter for use in haptic stimuli that we find greatly extends the
number of perceptually distinct tactile sensations that can be created, even with a duration
as short as 2 seconds. The second challenge is to evaluate larger sets of stimuli, when
traditional means of evaluation do not scale well due to time and fatigue. Our solution to
this problem is a new method of gathering perceptual data that requires users to judge
only a manageable subset of the complete stimulus set, with the total, overall perceptual

picture stitched together using judgment data from multiple users.

Thus this thesis contains two intertwined, interdependent strands of research, one of
method and one of desigh. The design is the creation of a set of 84 haptic stimuli (much
larger than the previous standard of 36 set by Maclean and Enriquez [19]), using
amplitude, frequency and rhythm. The method is an extension of the data-gathering
techniques for multidimensional scaling (MDS) that are used to determine the perceptual
characteristics of a set of stimuli. This method has expanded the size of stimulus sets that
can be dealt with by a factor of three, enabling 150 stimuli, where 50 was the previous
maximum. By running two separate but related studies we are able to both evaluate our
stimilus set and validate our new data-gathering method. This duality informs the
structure of this thesis: Figure 1.1 lays out the logical structure of the thesis, in terms of

the two interlocking research strands.

The key to understanding the logic of this thesis is to understand the role played by the
two major studies discussed herein, and how they pertain to the two strands of research
described. Both studies seek to perform MDS on the same stimulus set; they both follow
the basic steps of (a) determining how people group our set of rhythmic haptic stimuli,
and then (b) feeding this data into the MDS algorithm, producing a n-dimensional plot of
the stimuli where the placement of each stimuli relative to each other stimuli represents

how perceptually similar the two were on average judged to be. How the two studies

differ is in the method by which perceived similarity ratings were gathered. The first




study uses the sorting technique developed by MacLean and Enriquez [19] to gather data.
This is a proven method [20], but it is stretchéd to its limit by the sheer number of stimuli
users are forced to deal with here. The second study uses a modification of the sorting
technique that allows a larger number of users to each deal with a smaller subset of
stimuli. This method, based on a form of between-subjects analysis, presents the user
with a less taxing task that can be completed in a more reasonable timescale, but as an
experimental technique the data integration must still be proven to produce valid results.

The two studies thus provide two different looks in at the same stimuli set.

Since it utilizes a previously Validafed techﬁique [20], we use the first study to investigate
the perceptual characteristics of our haptic stimulus set. By completing an in-depth
analysis of the MDS plot and examining-precisely what characteristics of our stimulus set
inﬂuences. how they are perceived, we find strong and interesting effects of tactile
rhythm—indicating its strength as a design parameter for use with haptic stimuli. Yet in
performing this analysis, we also develop a “gold standard” against which our new data-
gathering technique can be compared. Our second study uses the new method to examine
the same set of stimuli, and produces results which are both quantitatively and
qualitatively similar to the gold standard, thus allowing us to conclude that the technique

itself is valid as well as more practical.

It might be noted that, if haptic icons are truly to be the touch-based equivalent of visual
icons, the process that we are describing seems considerably more complex and involved
than what would be expected of a visual icon design process. When needing a new visual
icon, one might simply give a graphic designer some requirements as to what information
the icon need convey, and then upon receiving the designers best guess at what the icon
should look like, one would likely simply “eyeball” the result, ensuring its
appropriateness. Even if more detailed user testing was performed, it would likely only
be a part of a more wider usability analysis, and certainly would never reach the level of
complexity and rigor exhibited in our MDS studies. Yet as a technology, as a
psychological science, and as a symbolic medium, haptics and vision are by no means on

the same playing field—thus comparing relative design processes leaves haptics at a



considerable disadvantage. We have been studying and using vision, figuring out
different ways of displaying visual information, for far longer, and in far greater detail,

than ever has been done for haptics.

Relatively primitive displays and lack of knowledge make working with haptic icons
considerably more challenging than visual icons. If we were to limit visual icons to
abstract expressions only (as haptic stimuli themselves are limited); if we were to require
only 6-pixel visual icons, with no more than a dozen different shades of grey to choose
from; if creating each individual visual icon required an extended period of work writing
code or mathematically modeling a waveform; if all these limitations were required of
visual icon design, then perhaps a fair comparison of methodologies would be possible.
As the field stands, our current thorough design process represents our best attempt at
overcoming the constraints, both perceptual and technological, that the haptic modality

places on icon design.

Thus, at the end of this research what we have accomplished is setting up a solid basis
from which to extend the expressiveness and diversity of haptic icons. We developed a
new design parameter that gréatly increases the number of different héi)tic stimuli that
can be creatéd. We also developed a new technique for analyzing these stimuli to ensure
their success as useful, informative signals. This creates a toolkit and a process that any

new haptic icon developer could use to quickly and easily create a large set of discernable

haptic stimuli tailored to his or her needs.



Chapter 2: Related Work

2.1 Abstract Tactile Communication

Though it could easily be considered a small niche of the research world, work on
abstract tactile communication has flourished in the last few years, with groups from
several different research labs across the world contributing to a great increase in
knowledge about the design and application of haptic icons and informative tactile
signals in general. Their results have all been generally positive, indicating a clear ability
of people to discern, recognize and use haptic icons or similar types of stimuli in a variety

of applications and contexts.

2.1.1 Haptic Icons '

In the work of MacLean et az., which our own work largely builds upon, the design and
use of haptic icons has been study extensively across different platforms and applications.
MacLean and Enriquez [19] created haptic icons using a force feedback knob, varying
waveform, amplitﬁde and frequency to create a set of 36 haptic stimuli. In 'order to
determine how these icons were actually perceived, they were thoroughly analyzed using
Multidimensional Scaling (MDS), an analysis technique that would prove invaluable for
further work on haptic icons, and which is expanded upon in this thesis. They found that
their three parameters, with some adjustment, could create an even spread of perceptually
distinguishable stimuli. Their results showed both the utility of MDS as a tool for
perceptual analysis of haptic “sensations, and demonstrated that people can make

consistent distinctions between well-designed haptic stimuli.

Following the work of MacLean and Enriquez were several more studies. Chan er al. [10,
11] developed a haptic icon-based protocol for turn-taking in a collaborative environment
using a haptic mouse. It showed the efficacy of haptic icons used in cognitively loaded
environments to éommunicate information unobtrusively to users. Luk et al. [18] used a

novel piezo-driven skin-stretch display to present users with haptic icons in the context of

a handheld device. Luk er al. showed that the haptic icon design paradigm could be




applied equally well to new, handheld and non-vibratory platforms. Such robustness is an
encouraging result if we wish to continue extending haptic icons in new and interesting

directions.

2.1.2 Tactons

Coining the term “tactons” to describe their vibratory tactile icons, Brown et al. have also
explored somewhat similar terrain, with similarly encouraging results. Like the work of
MacLean et al. they have both developed design parameters for creating informative
tactile stimuli and analyzed these stimuli to determine their perceptual nature. In [5], they
introduce several different design factors to be used to create tactons, starting with
frequency, amplitude and waveform as in [19], but adding to it duration and rhythm, as
well the body location at which the stimuli is presented. These ideas were tested in-depth
in several later papers. Firstly in (6] théy tested icons with three different amplitude-
modulated textures and three different rhythms (based on previous audio icon designs)
and found strong recognition rates for each of their two parameters (80% and 93% for
texture and rhythm respectively). In a still—éieve'loping work [7], Brown et al. added in a
third parameter, location of stimulus presentation, and found that recognition rates
dropped somewhat for three-parameter icons, but could be designed around if needed. In
collaboration with a variety of other researchers, both Brown and Brewster continue to
expand their research into tactons by examining crossmodal effects [14], various musical

techniques such as crescendos [8], and applications in mobile phones [9].

2.1.3 Other Vibro-tactile Work

Research into tactual perception has been done at a more general level as well, not just in
attempt to create some form of haptic icon. Tan et al. [23] have studied the display of
tactual signals, comparing a variety of stimuli to determine the overall level of
information that can be transmitted using artificial stimuli. Though their results
considering the informational capabilities of tactile stimuli are a positive indication for
us, they make no discussion of designing of stimuli for use in practical considerations,
nor do they proceed beyond basic tactile waveforms in their stimulus set. Other

researchers such as Klatzky and Lederman have performed research into related areas,

for example texture perception using a stylus [16], and have gained similarly positive




results. Representative of much of the work in this field, both of these works are directed
at fairly low-level psychophysical findings, leaving considerable room still to be explored

as we bring these tactile stimuli into more and more practical contexts.

Other important work on displaying tactile information has been done by van Erp [26],
where he specified several design guidelines for communicating through vibro-tactile
displays. He discusses several features present in the work of both Macl.ean and Brown,
such as frequency, amplitude, temporal patterns (which are essentially rhythm), and
display location. He also points out the dangers of masking and confusion that can occur
using spatial and temporal effects. Van Erp has also worked on tactile melodies [27],
which is, to date, the most significant analysis of tactile melodies and rhythms yet
published. Van Erp and Spape take 59 real-world melodies and transfer them into the
tactile domain. Using MDS along with other statistical methods, they determine two main
perceptual characteristics: intrusiveness and tempo. However, these results are limited to
a description of very complex and specific musical rhythms, such that direct application
to the design of synthetic tactile stimuli from scratch would be difficult. Nevertheless, the

results of their experiment show encouraging trends for tactile melodies and rhythms.

2.2 Multidimensional Scaling

Multidimensional Scaling (MDS) is a statistical technique that provides quantitative
values describing the perceived dissimilarities between a given set of stimuli. The MDS
algorithm takes an input of dissimilarity values and calculates a value describing the
distance of each stimulus in relation to every other stimulus in a perceptual space. An
appropriate number of dimensions are chosen based on the stress value, a measurement of
model fit, where lower stress represents a better fit. Choice of the number of dimensions
is determined by the benefits of an additional dimension in reducing the stress level
against the loss of interpretability an additional dimension adds. Once an appropriate
number of dimensions have been chosen, the data can be mapped visually and analyzed

for clustering and trends [3].

10




The main reason that we use MDS in the study of haptic icons'is its ability to pick out
trends and grouping of stimuli, when no a priori knowledge exists about how the stimuli
will be perceived. The application of MDS to the perceptual domain was pioneered by
Roger Shepard at Bell Laboratories in the early ‘60s [21] as a general tool for analyzing
interstimulus similarity amongst any grouping of stimuli for which the perceived
differences were unknown. The technique was quickly picked up by many
psychophysicists, being applied to such areas as, for example, musical timbre. Significant
new understandings in how timbre was intuitively perceived were brought about by the

use of MDS [13], an early positive indicator of its usefulness as an exploratory tool.

The haptic modality, compared to modalities such as vision or audition, is still largely
lacking in a widely-accepted and intuitive description of its important perceptual
characteristics, though the work of Tan [23] and other has taken great strides in gathering
the basic perceptual knowledge to needed to gain such intuition. Lacking this intuition,
MDS can provide clues to what these characteristic might be, without us knowing
beforehand. MDS has thus been used extensively for the study of haptic stimuli, as well
as other stimuli in different modalities for which there is a similar lack of intuitive
understanding. In addition to the work of MacLean er al. described in séction 2.1, other
researchers have siiCcessfuliy used MDS to discover new information about novel
stimuli. For example, [15] found a 3D percept map from a set of real tactile surfaces,
. finding dimensions such as hard/soft and slippery/sticky. Bonebright [2] used MDS to
analyze everyday sounds, in hopes of furthering his work into designing informative

sound icons.

Considerable effort has been applied to analyzing different types of MDS algorithms as
well as different means of gathering dissimilarity data for analysis. However, for our

purposes the standard SPSS MDS algorithm, ALSCAL, shall be used. Our main research

interaction with MDS is in the means of gathering data; this shall be discussed in detail in

Chapter 4.
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2.2.1 Comparison of MDS Results -

One aspect of MDS algorithmics that does bear mentioning is how best to compare the
results of different MDS analyses. Two different MDS output maps based on subjective
dissimilarity ratings from different users are almost guaranteed never to be the same,
even if the stimulus set is the same. In canonical research into MDS from the psychology
and psychophysics fields (such as [22]), it was originally considered that Pearson’s r, the
product-moment correlation coefficient, was sufficient to measure whether two n-
dimensional MDS outputs were statistically correlated. For clarity, note that Pearson’s r
is unrelated to 7 which is used elsewhere in this document to describe goodness of fit for
MDS results. Borg and Leutner [4], with a simple example, proved that the product-

moment correlation is in fact inappropriate for use with MDS outputs:

Let A and B be two MDS configurations, consisting of NP = 3 points each, with
distances d(1,2) = 1, d(2,3) = 2 and d(1,3) = 3 for A, and d(1,2) = 2, d(2,3) = 3,
d(1,3) = 4 for B. The PM [Product-Moment] correlation of these distances is » =
1, indicating perfect similarity of A and B. This is false, of course, since the
greatest distance in A is three times as great as the smallest, whereas in B it is
only twice as long. Hence, A and B do not have the same shape: B forms a
triangle, whereas A’s points lie on a straight line, because they satisfy the
equation d(1,2) + d(2,3) = d(1,3).

Thus instead, Borg and Leutner proposed the use of the congruence coefficient defined

as,
[l] c= Z,‘ da; dB,'/ (Zz dAi2 Zi dBiz)I/2

where dy; is the i-th distance value between stimuli, in configuration X, and the sum is
over all pairs of distances in the MDS output map. Due to the tendency of ¢ to cluster
close to its upper limit of 1, a transformation was performed, giving us the alienation

coefficient K,

[2] K=(-cH"
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This formula was then empirically tested on randomly created dissimilarity matrices, at
different dimensions and numbers of points, providing empirically derived constants
describing similarity of MDS outputs at a 95% confidence interval. The alienation
coefficient thus provides the only statistical measure specifically designed and tested to
measure similarity of MDS outputs, and still stands as the state of the art for statistical

comparison of MDS results—Borg’s own book on MDS confirms this status [2]

In our own work we rely on the alienation coefficient to help validate our newly designed
‘method of gathering data for MDS. By using two different data gathering methods on the
same set of stimuli, we produce two MDS results that we hope to be similar. The work of

Borg and Leutner gives us a statistical tool to compare the two results, to be used in

conjunction with our standard visual interpretation of the MDS map.




Chapter 3: Creation of Haptic Stimuli

The simple haptic stimulus sets developed by Maclean and Enriquez [19] and built upon
in several ensuing publications [11, 18, 12] are based upon varying three parameters:
waveform, frequency and amplitude. However, using these three components has only
produced a relatively small set of stimuli, when varied using today’s tactile display
hardware. While these parameter provide a solid basis for building tactile stimuli, we
sought to find a means of creating new and interesting stimuli supplementing some of

with more complex parameters that might yield better results..

Previous work on haptic ‘stimuli has investigated the applicétion of thythm [6] and
melody [27] to vibrotactile stimuli, with fairly positive results. The approaches taken
were, however, quite different, with the work on rhythm using only a handful of very
basic rhythms, while the research into melody used a broad range of actual musical
melodies transposed into the tactile domain. So while their results point towards a
positive use of rhythm and melody in developing expressive tactile signals, their goals
were such that they do not cover a broad enough sample of the possible design space to
reveal a consistent framework for dealing with these parameters in the tactile domain.
Both studies lacked results that could be broadly generalized to all types of tactile
rhythms. The initial studies by Brown et al. [6] used only three rhythms, which were too
different and too few to establish any clear patterns. Van Erp and Spape [27] used far
more stimuli, but because their stimuli were sampled non-systematically from real-world
examples of music, they both lack a systematic description of their structure and suffer
from the many possible learned musical associations that a participant in the study might

have.

3.1 Description of Possible Stimulus Space

For our own purposes we felt that it was wrong to assume that the standards that inform
normal auditory musical composition would apply to the sense of touch; the skin’s

sensory capabilities are attuned to different things than the ear, to say nothing of the

effects that cognitive aspects of musical appreciation might have. This is not to say an




approach attempting to utilize musical capabilities in the haptic domain might not be
successful; rather, bringing the musical into the haptic is simply too large an issue to deal
with within this thesis. Yet despite our wish to avoid borrowing too heavily from the
musical domain, it was nonetheless considered most straightforward to represent rhythm
and melody as a sequence of notes of varying length played ét set intervals in a bar of

“music.”

For our purposes, we define rhythm as being the repeated, patterned recurrence of some
set of variable length beats/notes, and we differentiate this from melody, which is
concerned with the different tones that the notes in thythm are played at. Changing the
tones of the notes in a rhythm changes the melody, but not the rhythm; changing the
length, number or placement of notes changes the rhythm and would also likely have an

effect on the melody.

If we first simply Ibok at the number of different combinations of notes that could be
used in a rhythm or melody, we are immediately faced with an exponentially increasing
set of possibilities. Liniiting ourselves only to Ellianter, rioftes in 4/4 time, we would have 2t
= 16 different wa;y of anangiﬂg notes, with eighth notes 28 = 256 variants, with sixteenth
notes 2'® = 65536. If we then consider playing melodies (i.e. the tonelof each note is
different, played at different vibratory frequency) or adding emphasis (i.e. playing

different notes at different amplitudes) then the number of possibilities grows even larger.

Clearly we needed a means of reducing this huge number of variants down to a
manageable handful, in a way that would produce tactile stimuli that were different
enough to be perceptually distinguishable and while possessing shared features that
would contribute to some natural perceptual groupings to increase learnability. We lacked
a clear precedent into what would make a tactile rhythm or melody distinguishable yet
also perceptually similar enough to the other stimuli used that some natural grouping
would be evident. Thus we were forced to rely heavily on intuition and our own

reasoning on how to move forward.
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Very quickly it became clear to us that, as the above numbers indicate, some ﬁ priori
design decisioné were needed to limit the scope of this work. Our first observation was
that all melodies have a rhythm, at least implicitly, and this suggested rthythm was a more
fundamental parameter than melody and therefore should be focused on first. To
eliminate melody as a confound and keep our search space manageable, we therefore
utilized only monotone (non-melodic) rhythms: all notes in a particular rhythm were
played at the same amplitude and frequency. The particular amplitude -and frequency
level at which a rhythm is played could still be varied, meaning that we have allowed
rhythms that have the same number, type and placement of notes, but different overall
frequency and amplitude levels. It is only variation of frequency and amplitude within a
rhythm that we are choosing to disregard for the sake of simplicity. We felt that these
initial design choices narrowed the field of possible stimuli down to an area that could be
reasonably approached in a more rigorous manner. What follows is our analysis of the
tactile rhythm space, and a description of how we narrowed down the field to our final

selection of rhythms.

3.2 Sensory- and Hardware-Specific Limitations on Rhythm Space

Still without a set precedent on how we might partition the space of all possible tactile
rhythms, we set out to study the space as best we could. By iteratively creating different
haptic rthythms and observing how they felt, we were able to informally develop a set of
rules that we felt tactile rhythms needed to obey in order to produce diverse yet
associable stimuli. Some of these rules we believe, based on our own testing; to be
necessary for creating any tactile rhythm, while others are more design heuristics that
represent our own intuition on what makes good stimuli. In all cases though, these
recommendations are based on our tests on a specific hardware platform (described in
more detail in Chapter 5), and though it is likely that much of our work here is broadly
generalizable, we cannot remove completely the confound of the specific hardware used.

Nevertheless we feel that our extensive informal testing with a variety of different users

has lead to consistent high-level recommendations.




3.2.1 High-level Limitations

Two facts were immediately obvious to us as soon as we started creating tactile rhythms.
First, there needs to be a gap after each note played in a rthythm in order for the notes to
be distinguished as separate. If the individual notes within a rhythm varied by frequency
or amplitude, it would be possible to perceptually segment the different notes if the
differences were large enough between adjacent notes; however, as we had already

decided to limit ourselves to monotone rhythms, gaps in between notes were necessary.

The second fact was that unless a rhythm was repeated, it was not perceived as a rhythm,
merely a set of isolated vibrations. Furthermore, the more times a rthythm was repeated,
the stronger the sense of rhythm:became. From our testing we found that four repetitions
was a good compromise between having enough repetitions to create a strong sense of
rhythm without requiring an-overly long total duration. for the -stimuli..This observation
led us to choose.a total stimulus duration of 2 seconds, rgsulting in a 500 ms duration for
each iteration of the rhythm. We felt two seconds to be about the longest a stimulus could
last and still be useful in the context of a haptic icon, while the 500 ms duration was long
enough to allow for a fair number of different notes to be packed into a rhythm (e.g. 4
bars of 4/4 time played at a brisk tempo, as elaborated below). Though from an auditory
musical perspective 500 ms could be considered quite short for a bar of music, we were
limited by our need to make the overall signal fairly short and yet still present enough
repetitions. However, we did not find this to be too fast a pace to be playing our rhythrﬁs
at, largely because we were not asking our users to pick out individual notes, just
perceive an overall sense of the rhythm. Perception of the rhythms as a whole was still
attainable, and benefit of the increased repetitions helped counteract the speed of the

overall thythm.

3.2.2 Shortest Note

With our single iteration time of 500 ms established, the next issue was to find the
shortest length of note people could consistently perceive. From our informal testing we

settled on a sixteenth of the total time (31.25 ms) followed by a break of a similar

duration. We could have chosen to make the break shorter in time than the vibration, but




in order to make it easier for us to line up where different notes (and breaks) fell, we
chose to keep the on and off time the same. Thus the total time required for the smallest
note was 62.5 ms, or exactly one eighth of the 500 ms single iteration time. Consequently
the smallest note we use is called an “eighth” note because it takes up exactly one eighth
of the time of a single iteration of the rhythm. Having now determined the smallest
interval, we built all our rhythms along the basis of 16 consecutive time slots, which can

either be on or off.

3.2.3 Selection of Different Note Types

We next sought to determine what other note lengths we should use to build up our
rhythms. To do this, we made a series of rhythms containing in'y one note, with a note
length varying from one to fifteen of the s}xteen, 31.25 ms time slots (the 16™ slot was
required to introduce a break between rhythm iterations). Of these fifteen possible note

sizes, the following observations were made.

The difference between a 31.25 ms vibration and a 62.5 ms vibration is noticeable

(i.e., one vs. two consecutive time slots set as “on”), though not overpoweringly

SO.

e The difference between a 62.5 ms vibration and a 93.75 ms vibration (ie, two time
slots vs. three time slots) is not consistently noticeable.

e This finding holds true for all longer notes: differences of one time slot (31.25

ms) are not noticeable.

e However, differences of 62.5 ms are noticeable for all longer notes.

These observations resulted in the following five types of notes, also described in Figure

3.1 in terms of the number of time slots they occupy.

e FEighth note (62.5 ms total play time: 31.25 ms on, 31.25 ms off)
e Quarter note (125 ms total play time: 62.5 ms on, 62.5 ms off)
e Half note (250 ms total play time: 187.5 ms on, 62.5 ms off)

e Three-quarter note (375 ms total play time: 312.5 ms on, 62.5 ms off)
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e  Whole note (500 ms total play time: 437.5 ms on, 62.5 ms off)

We used the larger break time of 62.5 ms (two time slots) rather than 31.25 ms (one time
slot) because we felt it gave greater distinction between notes. The 31.25 ms break time is
used only for eighth notes, in order to allow us to have two eighth notes played within the
same amount of time as one quarter note, which was a feature we used to create several

of the different groups of rhythms described in the next section.

3.3 Description of Stimulus Set

At this stage in our design process, we had pruned down our selection of possible
rhythms considerably through ad hoc and informal testing. However, the rhythm space
still remained relatively large. Having done all we could to develop rules describing
which types of rhythms not to use, we now had to develop some positive heuristics as to
which rhythms we should use. Again, using our intuition along with iterative informal
testing, we develop_ed four heuristics, which in turn created five groups of rhythms, each

defined according to one or more of these rules.

These groupfngé were 'designed into the.stimuli set from the start, and represent our best
attempt at creating a diverse yet logically grouped set of tactile rhythms. We do not claim
that this will end up to be the best grouping of rhythms that could be used. However,
without a clear precedent into how tactile rhythms might be grouped and perceived, our
own intuition, along with continual informal testing, was the best tool we could use. In
our study results we discuss how our intuitive groupings were, in part, confirmed: some
of our groupings were held out by the study, while other unanticipated perceptual
groupings were also found. For clarity we believe it important to specify what groupings
we built in to our stimuli beforehand and differentiate them from the post hoc groupings
that our studies later revealed. The groupings below represent our initial best guess at

how tactile rhythms might be grouped.
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3.3.1 Heuristic One: Qliérter Notes

Our first heuristic was to consider all possible rhythms that contain only quarter notes and
pauses. This decision was based upon both our initial testing results which found quarter
notes to be an easily recognizable duration, as well as the consideration that a straight 4/4
rhythm with notes on every downbeat would likely be considered one of the most simple
and basic rhythms available. As noted above, there are 16 possible all-quarter note
rhythms. However, many of these are perceptually indistinguishable from each other
because of the repetition of the rhythms. As a specific example, consider all rhythms
containing just one quarter note: the note could occur in any of the four slots, and thus we
have four different rhythms. Yet an issue with ‘monotone’ rhythms (those without
varying emphasis and thus a discernible downbeat) is that while looping, thére are no
indicators of its starting point. Thus all four of the single-note rhythms will feel the same
once they have started, as the spaces between the 4 played notes (one in each iteration)
will be the same in all cases. Similar situations occur for some rhythms of two and three
quarter notes per iteration, and we therefore used just one instance of each of these cases.
Thus considering all possible quarter note-only rhythms that are perceptually distinct

from each other, we arrive at Group 1, the first five rhythms as indicated in Table 3.2.

3.3.2 Heuristic Two: Long Notes

Our second heuristic was to consider all rthythms containing only notes that are longer
than quarter notes: i.e. half notes, three-quarter notes, and full notes. This decision was
based upon the observed difference in sensation that longer vibrations gave as compared
to shorter notes such as the quarter note, and because we felt that having a variety of
different nbte lengths in our rhythms would be prudent if we wanted to obtain a good
cross-section of different types of rhythms. Thus we have categorized quarter notes as
being “short” and notes longer than a quarter as being “long.” Similar issues of

duplication due to repetition were present for this group, narrowing the number of

possible rhythms down to four, creating Group 2 in Table 3.2.




3.3.3 Heuristic Three: Long and Quarter Notes

Our third heuristic was to consider rhythms which contained at least one quarter note, and
least one of the longer notes used in Group 2. The goal here was to produce rhythms
which had both quick and slow components. Again there were issues of duplication due
to repetition, which pruned several rhythms, and the requirement that there be at least one
quarter note meant that full notes could not be used. The final set of four possibilities is

presented as Group 3 in table 3.2.

3.3.4 Heuristic Four: Substituting Quarter with Eighth Notes

Our fourth heuristic actually resulted in two groups of rhythms, as this heuristic was
actually a means of modifying two of the groups already described. Because the number
of different rhythms cbntaining only eighth notes is 256 (to say nothing of rhythms
containing combinations of eighth notes and other length notes), we felt daunted at the
prospect of chaosing sofnc reasonable set of rﬁy:thms"from this space. Consequently, we
made the simple choice of taking the rhythms we created in Group 1 and Group 3, and in
place of each quarter note (total playing time of 125 ms) we substituted in two eighth
notes (playing time 62.5 ms a piece). This gave us a set of four eighth note-only rhythms
(Group 4, analogous to Group 1) and four eighth note plus longer note rhythms (Group 5,
analogous to Group 3). Group 4 has four rather than the five rhythms in Group 1 because
the eighth note analog of rthythm 3 was felt to be very hard to distinguish from the eighth

note analog of rhythm 2.

3.3.5 Complete Stimulus Set Used

With the 21 rhythms described in Table 3.2, we finally had set of diverse yet associable
tactile rhythms. Thankfully we had chosen early on that, though each stimulus must be
monotone in terms of the frequency and amplitude of all of the notes played within it, we
can create different stimuli by simply playing the same rhythm at a different set level of
frequency and amplitude. Keeping in mind our desire to have a large, but not overlarge
set of stimuli, we thought it best to have two frequency levels (high and low) and two
amplitude levels (high and low) that each of the 21 rhythms could be played at, creating

21 x 2 x 2 = 84 different stimuli. By having only two levels of frequency and amplitude,
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high and low, we hoped to ensure that the differences between each of the four frequency
x amplitude levels would be quite strong. Table 3.3 gives the exact value, rhythm.type by
amplitude by frequency, that each of the 84 stimuli was given, and can thus be used as a

~ lookup table for all further references to individual stimuli throughout this document.

3.4 The Space Untested

While our own selection of 21 different thythms to use for our stimulus set was guided by
a thorough loop of iterative testing, we by no means claim that our choices are the only
ones that could have been made. Indeed there are many rhythms that we did not use, and
that if studied, may well lead to further insights into tactile rhythms. As important as it is
to understand the thythms that we have chosen to use, it is also important to understand

their relationship to the space of rhythms we did not choose.

Right away, the choices we made in Section 3.2 sharply decreased the number of possible
rthythms that we were working with. First limiting ourselves to only monotone rhythms,
and then specifying a time-span that could only allow notes no shorter than an eighth of a
bar, we made somewhat arbitary, yet we feel reasonable steps towards a choosing a well '
defined rhythm space to work within. Many other choices could be made at this level,
such as having varying (and slower) tempos, varying amplitude of notes within a thythm,
using melody, using crescendos and many other musical techniques—not even to
mention multi-bar- musical compositions. All these choices could likely lead to interesting
new developments, but they are left to others to explore. We do believe, however, that
many of these choices represent additions of considerable complexity to the rhythm
space, such that we feel that in most cases we chose to decrease complexity of the

parameters we were working with.

3.4.1 Unused Rhythms Possible Given Hardware and Sensory Limitations

Even narrowing down our rhythm space to a more manageable size, we still had more
rhythms than we needed for our purposes. The choices that we made to select our final 21
rhythms are outlined above, but it is worth considering the rhythmé that we did not

choose. It is possible that some of these rhythms might be worth revisiting at a later date,
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especially if our chosen selection of rhythms does not truly represeni an even Cross-

section of possible rhythms.

Given the limitation set out in Section 3.2 for the size and number of notes that can be fit
into a thythm, we can see that for rhythms containing only quarter or longer notes, we
have exhausted all possible thythms that could be used. Rhythm Groups 1, 2 and 3
specify all of the rhythms using only quarter notes, only notes longer than quarter notes,
and both quarter and longer notes, respectively. Consequently for these note lengths we

can be confident in the coverage of our different rhythms.

However, as specified in Section 3.3.4, we were not as thorough in our coverage of
rhythms containing eighth notes. There are 256 rhythms containing only eighth notes, and
though many of them are likely the same due to repetition, we still only use four. Though
these four do have a good level of variance in terms of the number and placement of
notes, we neglect many of the more complicated rhythms that could be created, as well as
any rhythms with just one eight note separated by pauses on both sides (this because we
- were echoing the rHythms in Group 1, replacing one quarter note with two eighth notes).
These more complicatgad rhythms c_:ould well ha_v¢ producc;d.inter‘esting, more nuanced
results, yet for thié initial expldration it was thouéht best to -stért with reltati{v.el‘y simple
patterns. Moreover, it was noted that the subtle differenlcés in placement of a single
eighth note were often very hard to notice perceptually, so we felt that fully examining

this space would lead to diminishing returns.

Considering the combination of eighth notes with other, longer notes, there are yet more
possible combinations that were not used. In rhythm Group 5, we combined eighth notes
~ with longer notes, but many other possibly arrangements remain. Again, we felt that we
had a fairly reasonable cross-section of different numbers and placements of eight notes,
but by no means exhaustive. Taking, for example, rhythm 18 (containing a two-thirds
note followed by two eighths), we could have also made this rhythm using just one eighth
note, placing it either in the last or next-to last slot. While one of these rhythms might

have produced slightly different results than rhythm 18, it is doubtful it would have been
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greatly different, given the shortness of the eighth notes. Furthermore, it is almost certain
that users would not have been able to discern the difference between the single eight
note being in the last or next-to-last slot. This sense of diminishing returns is strong when
considering eighth notes, given that they lie almost on the threshold of perceptual

distinguishability.

One last combination of notes that we did not use at. all was combinations of quarter notes
and eighth notes. This was largely because, as described in Section 3.2.3, we found the
difference between these two note types to be quite perceptually weak. Beyond this, we
deemed 21 rhythms to be a fairly large number of rhythms, and so did not want to over-
extend our reach. As we wished to test these rhythms at‘ different ‘amplitude and
frequency levels, given the importance of these parameters in prior research into tactile
stimuli, the number of rhythms we developed would provide us with a large set of stimuli
as it was. So we chose not to use all possible thythms that we could have, mostly for
practical reasons. Nevertheless we feel that the majority of the rhythms we did not use
would have been perceptually quite difficult to distinguish between, and we -feel
confident that the rhythms we did select represent the strongest and widest selection we

could have reasonably chosen.
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Chapter 4: Subset Data Gathering Methodology for
MDS

In order to be able to analyze the large sets of haptic stimuli that we are creating, we need
to gather dissimilarity ratings from users that we can then feed into the MDS algorithm.
However, collecting judgment data from people on that many stimuli at once is unwieldy
and impractical. Our insight is to present users with less than the total stimulus set, and
then create a total, aggregate view of the stimulus set by averaging overlapping data from
multiple users. If we gather data simply by presenting users with pairs of stimuli and
asking them to rate their similarity, it is easy to safely use a subset of possible stimulus
pairs in a set, but pairwise comparisons also take far too long to perform and suffer from
calibration and drift problems as subjects are being asked to make absolute judgments.
Conversely, using a different data gathering method such as asking users to sort the
stimuli into different groups based on perceived similarity is a far quicker task, but makes
splitting apart the stimulus set much harder. Herein we address these challenges by
developing aimeans of sAobrrtingv stimulus sets that allows us to present _usersj with only a
subset of the fotal stimulus set, greatly shortening the total time and effort required of an
individual asked to provide perceptual judgments. In practical terms, this brings about a
three-fold increase in the number of stimuli that can be examined (from 50 to about 150).
This is a significant result for tactile stimuli which are ‘particularly difficult to gather
perceptual data from; further, 150 may approach the limits of distinct stimuli that can be

displayed and eventually learned given today’s tactile display hardware.

The challenges imparted by this new data gathering method are of two types. The first is
in development of an algorithm for splitting up a stimulus set into subsets that can be
sorted individually by users and then successfully stitched back together again to form an
aggregate picture. Secondly this method faces several challenges in. its experimental
validity, there being some potentially confounding effects of judgments gathered from

only part of the total stimulus set. As we are proposing a novel method for gathering

dissimilarity data for MDS, and several potential problems are clearly extant, a means of




validating this method must be developed and applied in a real-world experiment. This
validation process is described in Chapter 7, but first.in this chapter We outline the new

B

data gathering method and discuss its strengths and weakness. -

4.1 Other Methods for Dealing with Large Set Sizes

One of the limitations of the basic MDS procedure is that it requires a dissimilarity rating
for every pair of stimuli involved. A dissimilarity matrix for a stimuli set of size n
contains n(n — 1)/2 dissimilarity values (since the dissimilarity ratings are symmetric it is
only a half matrix, hence the division by two). Consequently the number of dissimilarity
values required increases quadratically with the number of stimuli. As the number df
stimuli being compared becomes large, it is an increasingly laborious task to gather all
these dissimilarity values. Subject fatigue and loss of calibration quickly become a
problem. If we are to study a set of 84 (or more) different haptic stimuli using MDS, then

we will need a method of gathering data that overcomes this problem of size.

Tsogo et al. performed a review of established data gathering techniqﬁes for dealing with
oversized sets of stimuli [25], i.e. set sizes which are too large for the acquisition methods
available for those data. According to their review, there are two main simplifying
approaches available to mitigate this problem: using incomplete dissimilarity matrices,
and gathering comparisons via sorting tasks, rather than individual pair-wise
comparisons. Both of these methods reduce the length of time and amount of work
required from users to gather perceptual data, but both eventually come up against hard
limitations as to the total number of stimuli they can handle. In this context “pair-wise -
comparisons” is the method whereby each possible pairing (disregarding order) of two
different stimuli in a set are presented to a user, who is then asked to provide a rating of
similarity; a “sorting task” is the method whereby users are presented with the entire
stimulus set and ask to “sort” or categorize them into groups according to perceived
similarity. A third data gathering method that we would also add to Tsogo’s accounting is
the use of a pre-determined scale that can be applied individually to each stimuli. In this
case, the user is presented with each stimulus individually, and asked to rate it on a pre-

determined Likert-type scale, as used by Van Erp, for instance, to study tactile melodies
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[27]. Since this method requires only one judgment per stimuli, it is only O(n), while
pair-wise comparisons require the full O(n’) comparisons. Sorting tasks require a number
of comparisons between those two extremes, though the exact number is not fixed due to
its dependence on the individual sorting strategies of each of the users. Nonetheless, these
three techniques span the range of data gathering methods for MDS, each with their own

strengths and weaknesses, to be discussed below.

4.1.1 Incomplete Dissimilarity Matrices

The insight behind incomplete dissimilarity matrices is that it is not always necessary to
have difference ratings for all pairs of stimuli from all subjects. Spence and Domoney
[22] investigated how incomplete dissimilarity matrices can be dealt with in perceptual
MDS methods, when the data comes from a standard pair-wise comparison task. For
every dissimilarity value d(i,j), comparing the ith to jth stimulus, a pair-wise comparison
task requires that those two stimuli are presented to a user, and that the user provides a
rating of how perceptually similar the two stimuli are. In this case d(i,j) = d(j,i) because
judgments are symmetric and the order of stimuli does not matter, requiring n(n — 1)/2

total dissimilarity values.

Spence and Domoney make two important claims. First, that for an individual, it is not
necessary to have a complete dissimilarity matrix in order to get an accuraté result from
MBDS, though each stimulus must have at least one dissimilarity value (connecting it to at
least one other stimulus in the matrix), and it should be possible to move from any one
stimuli to any other, by chaining along dissimilarity values (i.e. there are no unconnected
islands of stimuli). Second, that since each judgment in a pair-wise comparison task is
independent, it is possible to combine multiple incomplete dissimilarity matrices from
different users to create an average, complete dissimilarity matrix. The first claim frees us
from having to always guarantee that each individual compares every stimulus in the set,
while the second claim means that we can combine dissimilarity values from different
individuals to make a total, averaged picture—though unfortunatély Spence and

Domoney’s work on incomplete matrices was performed on data from individuals, rather

than averaged values, so the combinations of these two claims cannot be directly made..




Most encouraging of Spence and Domoney’s results was their finding that even with one-
third of the entries in an individual’s dissimilarity matrix removed (either at random or in
a cyclical pattern), the resulting difference map (MDS output) varied less than 10% from
the map derived from the complete matrix. This result is promising, indicating that we
need not be overly concerned with getting every difference rating for a set of stimuli.
That there is a certain amount of looseness to how many difference ratings must be
gathered, and from whom they must be gathered from, gives us much greater room to

devise new data gathering methods of our own.

However, if we wish to gather only pafticular dissimilarity values in either a cyclical or
random fashion as Spénce and Domoney recommend, we are required to use pair-wise
comparison between' each-stimulus, because it is the only technique that allows you to
individually pick the exact dissimilﬁrity values you want .without getting any other
values, unlike other data gathering methods such as sorting. The number of pair-wise
comparisons needed for a set increases exponentially with the number of stimuli.
Removing one-third of all entries may be a fairly large amount, but it is still one-third of
a quadratically increasing amount, meaning that the incomplete dissimilarity matrix
method will always eventually run into issues of having too many stimuli to judge in one
experimental task. Furthermore, pair-wise comparisons have been found to have almost
twice the level subjective fatigue as compared to sorting tasks [1]. So this method is
limited both in number of stimuli that can be compared as well as accuracy of ratings

given.

4.1.2 Sorting Tasks

Whereas Spence and Domoney show that it is not necessary for each participant to
compare every stimulus to every other stimulus in the set, the sorting task method seeks
to make the act of comparing stimuli much more efficient by having subjects compare all
stimuli at once and sort (or categorize) them into discrete groups based on perceived

similarity. Dissimilarity matrices can then be created using the number of times that two

stimuli occurred in the same group as a measure of their similarity (and inversely, their




dissimilarity). Often participants are required to sort the stimuli multiple times into

different numbers of groups, in order to give varying levels of resolution.

A variant of this method was used by Maclean and Enriquez [19] and analyzed in [20],
to determine the perceptual characteristics of a series of haptic stimuli. Their results show
that allowing users to sort a large set of stimuli into different numbers of groups provides
a strong and robust measurement of the perceived differences between a fairly large set of
stimuli, while gréatly shortening the overall time of the experiment. Unfortunately, even
this method is still limited in the number of stimuli that can be judged. Maclean and
Enriquez tested 30 stimuli in their study, a number significantly lower than our own goal,
and informally guessed that a maximal reasonable set size by this method and using

stimuli of this sort is 40 or 50.

4.1.3 Per-stimulus Judgment Tasks

The per-stimulus judgment task is a particular type of data gathering method, that differs
largely from the previous two methods in that it provide a confirmatory rather than -
explanatory descrlptlon of the stimulus set. Van Erp and Spape [27], in a study
particularly relevant to our own, analyzed 59 different tactile melodies by asking
participants to judge the melodies according to 16 different pre-determined criteria such
as “cheerful” or “polished,” each on its own 5-point Likert scale. This allowed them to
get judgments on all 59 melodies within a reasonable time-span and gave them data to
which they were able to apply MDS. However, it is clear that they approached the data
with a fixed belief about what aspects of the stimuli would be important to peoples’
percei)tions—specifically the 16 criteria on which they asked participants to judge the
stimuli. Though one could, by finding unexpected correlations between parameters,
perhaps indirectly discover new features of the stimulus set, it would be difficult to
directly discover any completely new and unforeseen perceptual parameters. While this
technique may be acceptable when some idea about the nature of the stimuli already
exists, in our own case we know so little about the stimuli that we wish to make no

assumptions about how people will perceive them going into our experiment, so.as to

minimize any bias we might have on the results.




4.2 Design of Proposed Subset Dafa.Gathei'ing Method

Though the methods described in Section 4.1 have been widely used to handle large sets
of stimuli, they,stillnl fail to sufficiently reduce the time and effort needed 't_‘oi_g_athqr data
for the goals defined herc;. Though the pér—stimuli judgment task would be fast éﬁough, it
contains too many assumptions about the stimuli for our purposes. Both sorting tasks and
incomplete matrices are valid attempts at reducing the number of comparisons needed to
get useful MDS data, but again, take too long to be practical. Sorting 84 haptic stimuli

takes approximately two hours to perform.

Yet it might seem strange that we so quickly came to the limits of the existing methods
for dealing with large stimulus sets. The reason this is so is because of the nature of
haptic stimuli, especially in our own case. With a two second duration, the comparison of
any two stimuli will take at a bare minimum four seconds, and likely much more if an
individual wishes to feel the stimuli multiple times. Compared to visual stimuli, which
can be viewed simultaneously and in the manner of a few milliseconds, it quickly
becomes clear why data gathering for our own stimuli is so much more difficult. Add to
this the general lack of experience people have with haptic stimuli (compared to aural or
visual stimuli) and we are confronted with a situation where the cost of each single
comparison is considerably higher for haptics compared to other modalities that MDS is

regularly used for.

Given this difficulty, we asked whether the sorting task could be combined with
incomplete matrices to further cut down on the number of comparisons need to gather
perceptual data. This idea forms the basis for our novel MDS data gathering method:
using a sorting task on a subset of the total stimuli, and building up an aggregate result by
piecing together dissimilarity data from multiple differing subsets. By using less than the
total number of stimuli in a sorting task, we can ensure that a participant will be able to
complete their experimental task within a reasonable timescale. However, splitting up the
simulus set into subsets creates several difficulties which are discussed throughout the
remainder of the chapter. As soon as each participant no longer experiences every

stimulus in the set, many potential issues arise of study design (which and how many
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stimuli should they get) and study validity (can judgments given from only a subset of the

stimuli apply to the whole).

Through informal testing it was determined that a subset of size 50, with 3 complete
sortings into 3 different numbers of groups, would take a participant roughly an hour to
complete, and so this became our target subset size. By giving participants different
subsets that cover different portions of the set of stimuli, we can gather dissimilarity data
about all of the stimuli in the total set. Averaging together the results from the different
participants can then give us a total picture of the perceptual space for a given set of
stimuli. What this subset method of gathering MDS data does is essentially forego
unreasonably long individual experiment session durations by using a larger number of

participants to gather the same amount of data.

4.2.1 Creation of Subsets

The primary challenge to this new method is in determining how large to make each
subset, and how to distribute stimuli amongst subsets in order to ensure each individual’s
results can be aggregated into the whole to produce accurate overall judgment ratings.
Because we wished to avoid biasing results, we chose to create random subsets, giving
each random subset to just one participant to judge. We hoped this would minimize data
bias due to the way a partiéular subset was. percei&;ed. However, the _creétiori of random
subsets is actually a somewhat more complicated matter if we are cohcemed with gaining
an even coverage of judgments across the entire dissimilarity matrix. Uniform coverage
is desirable because it minimizes the number of participants needed in order to achieve a

required number of observations for each point in the matrix.

To this end, we developed a program that attempts to minimize the number of
randomized subsets required to ensure that each value in the dissimilarity matrix has at
least the specified number of observations. The algorithm is given the total size of the
stimulus set that is to be used, the size of the subsets desired, as well as the minimum
number of observations that each point in the dissimilarity matrix needs to have, and

produces as many randomized subsets as is required by the given parameters.
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Unfortunately it is non-trivial to produce a group of subsets which provide only the
requisite number of observations to each point, due to the fact that every stimulus that is
added into a subset will be compared with all other stimuli in the subset. For example, if
a subset contains stimulus 2, and we are still lacking comparisons of stimulus 2 with 3,
and 2 with 4, it is impossible to get those comparisons without also getting a comparison
between 3 and 4. If another subset already exists with stimuli 3 and 4, then an overlap
between the two subsets is unavoidable. This problem becomes progressively more
complicated as the number of subsets increases, requiring more and more comparisons in
order to achieve a minimally overlapping set. We have dealt with this problem with the

following algorithm.

Description of Subset Algorithm )

Our algorithm contains a two-dimensional array which keepsw track of the number of
observations (NO_cur) for each value in the dissimilarity matrix, and tries to make sure
each value reaches the minimum number of observations (NO) without going over. It
does this by continually adding in stimuli to new subsets, trying to bring NO_cur up to
NO for each value. Thus at all times a list is kept for each stimulus detailing how many
observations are needed against which other stimuli. This list is called a stimulus’ free-set
(as in, there exists free space to add in new observations), and it is essentially a list of
stimuli that this stimulus still needs to be compared with (which means they must appear

in the same subset).

The algorithm begins by selecting the first stimulus to be placed in a new subset,

choosing the stimulus with the largest free-set (i.e. the largest number of stimuli it still

needs to be compared against). Thus the most “greedy” stimuli are always dealt with
first. Then the following loop begins:

e A stimulus is selected that is in the free-sets of all the simuli already in the subset.

e If there is not one single stimulus that all the stimuli already in the subset have in

their free-set (as is often the case), then the new stimulus is selected according to

the following criteria (in decreasing priority):
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1. The new stimulus should occur in the largest number of free-sets of stimuli
already in the subset. If the stimulus is not in an already selected stimulus’
free-set, the previously selected stimulus will end up with more than NO
observations for that point. By minimizing the number of values in the matrix
that receive more than NO observations, we ensure that we get as even
coverage of observations as possible.

2. Provided the new stimulus is in as many free-sets as possible, the next check
is how much of its own free-set overlaps with the other stimuli’s free-sets. The
stimuli with the largest amount of overlap is chosen. This will increase
likelihood of meeting criteria 1 when more stimuli are selected in the future.

3. The new stimulus should have the largest free-set possible (ie, it should be the
most “greedy”’). Though ultimately, the greedy stimuli need to be dealt with
most urgently, if we only ever grabbed the greediest stimuli without regard to
anythmg else, we might qu1ckly reach a point where 1t 1s 1mp0581ble to add in
new stimuli to the subset without creating many values in the matrix with
greater than NO observations.

e Once the new stimulus is chosen, it is noted which required observations have
now been accounted for (and Wthh non- requlred observations have now been
added as well).

e The process then repeats itself until the subset has been filled, and then starts

again on a new subset until all required observations have been filled.

Pseudocode

User specified constants:

NO - minimum number of observations needed for each value in
dissimilarity matrix

Stimulus_set_size - size of the total stimulus set to be used

Subset_size - size of subset to be used

Main Loop:

Variables:

MATRIX - 2D array, of Stimulus_set_size, used to keep track of how many
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observation each value in the dissimilarity matrix will have,
given the subsets thus specified
NO_temp - number of observations that we wish to obtain in this

iteration of the loop

For NO_temp = 1 to NO
While MATRIX still has values < NO_temp, do

Call CreateSubset
Add observation to MATRIX caused by new subset
Save new subset to file

End loop
End For

CreateSubset:

Variables: ‘

SUBSET - array returned containing all stimuli in this subset

STIMULI - array of all available stimuli that could still be added
to SUBSET

While SUBSET < Subset_size Do
Populate STIMULI with all stimuli not in SUBSET

/7
// First Criterion
// )
For each stimulius in STIMULI
number_of_conflicts = how may values in MATRIX would
be > NO_temp, if stimulus was added to SUBSET

If number_of_conflicts < min_conflicts,
min_conflicts = number_of conflicts

End For

Remove all stimuli from STIMULI with

number_of_conflicts > min_conflicts

If size of STIMULI is one,
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add remaining stimulus to SUBSET, iterate loop

//
// Second Criterion
//
For each stimulus in SUBSET
free_list = list of stimuli that still need to be compared
to stimulus in order to reach NO_temp
End For

subset_free_list = intersection of all stimuli's free_list

I1f subset_free list is empty,
skip to Third Criterion

For each stimulus in STIMULI
free list = list of stimuli that still need to be compared

to stimulus in order to reach NO_temp

overlap_size = size of intersection of free list

and subset_free list

If overlap_size < min_overlap,

min_overlap = overlap_size
End For - ' ' ‘ T _ | ' o -«"**f>
Remove all stimuli from STIMULI with overlap size > min_overlap

If size of STIMULI is one,
add remaining stimulus to SUBSET, iterate loop

/7
// Third Criterion
/7
For each stimulus in STIMULI
free_set_size = number of values in MATRIX along stimulus'’

row or column that are < NO_temp

I1f free_set_size < min_free_set_size,

min_free set_size = free_set_size
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End For

Remove all stimuli from STIMULI with

free_set_size > min_free_set_size

If size of STIMULI is one

add remaining stimulus to SUBSET, iterate loop
Else

randomly choose stimulus from STIMULI,

add to SUBSET, iterate loop

End Loop

Problems with algorithm

Because this algorithm was not the focus of this thesis, the actual end program written
takes one major shortcut for the sake of efficiency and simpiicity. In order to find a truly
minimal number of subsets, the calculation performed for Criterion 2 should not just
check whether the next stimuli will have a maximum amount of 6verlap‘"wﬁﬁ the free-sets
of the stimuli in the subset, but should also check whether stimuli that are in that
overlapping free-set, if chosen, would produce good results. That is to say, it is possible
that choosing a stimulus that has a smaller amount of overlap compared to some other
stimulus might actually work out better in the long run, because the stimuli that are in
that overlap might in fact be better choices than the stimuli in the larger overlapping free-
set. That is, choosing these stimuli might not lead as quickly to a point where the only
stimuli that can be added in will create overlap points where the number of observations
is greater than NO. We realized this error, but had to cut short our development time in

order to proceed with the rest of our research.

Consequently the subsets created are not necessarily the most mathematically optimal
non-overlapping subsets, though for our purposes they do provide reasonable coverage
and randomization (see Appendix C for examples of actual subsets used in our studies).
One exception to this is the tendency for the distribution of overlapped and'non-
overlapped points to clump together, as stimuli chosen in earlier sets tend to be used less

in the later sets, which are more constrained in which stimuli they can select. A more
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thorough and mathematically complete algorithm could be developed, but is outside the
scope of this work. This effect can be seen clearly in Chapter 7, Sections 7.2 and 7.3,

where this subset method is used in a full study and its results are discussed.

4.2.2 Robustness and Scalability

As this new data gathering method is designed to accommodate larger sets of stimuli, it is
reasonable to ask how large a set this method can handle. The tradeoff that our method
offers is that instead of increasing the length of time that a particular individual must
spend judging stimuli, an experimenter may simply increase the number of ihdividuals
judging stimuli, with the amount of time per individual staying constant. Once an
experimenter has figured out how large a stimuli set a person can be reasonably expected
to sort within a target time frame (usually an hour), and decided what the minimum‘
number of observations each point in the aggregate dissimilarity matrix should have, then
our subset algorithm will be able to provide as many subsets as needed to acquire the
requisite number of observations. At this point it is simply an issue of finding enough
participants to run through each of the subsets, and then the data will be collected. Thus,
theoretically, whatever the set size, it is only an issue of using enough participants in

order to gain the necessary data. -

However, in reality there are several concerns in regard to the scalability and robustness
of this technique in the face of increasingly large stimuli sets. The first is the size of the
subsets used to gather judgments: the smaller the subset, the more participants required to
gather data, as well as the greater the potential for disagreement in judgments from
different subsets, especially if the superset is large or perceptually complex. Another
concern is the number of subsets (and thus participants) that will be required to satisfy the
total number of observations specified. Last is the number of overlapping observations
required in order to overcome any variability brought about by the large number of
different participants contributing to the overall average, as well as any noise brought
about by subsets whose small size might create idiosyncratic judgments from

participants.
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Size of Subset Required For Data Collection ‘

One of the first issues an ex'perimenter must deal with when using the subset method is
determining the size of the subsets to be used. In order to gather the necessary judgment
data as quickly as possible, as large a subset size as possible is desired (the exact benefit,
in terms of decreased number of participants, is discussed later below). Consequently, it
is suggested that through trial runs with sample participants, the maximum size of
stimulus subset that can be sorted within a reasonable timeframe (usually about an hour)
be determined for a given hardware and stimulus set combination. However, the
maximum size is not the only concern with regard to subset size: there is also the issue of
whether there is a minimum size which a subset must be larger than, in order to gain

judgments that, when averaged together, will accurately reflect the entire stimulus set.

Though finding a time-driven maximum subset size is not overly difficult to deterr_nine‘,
the issue of minimum subset size is slightly less clear-cut. Small subset sizes would limit
the number of different stimuli a participant was exposed to, giving them a smaller
“world view” from which to make their judgments. While their judgments within this
world view would be valid, averaging them with other judgments that came from
different world views would likely cause noise in the data. It is always possible to gather
more observations in an attempt to counter the noise, but if the subsets were different
enough it could be that no amount of observations could cause the values to converge in

agreement.

What would likely determine if a given subset size was too small to produce converging
results would be the actual number of underlying perceptual dimensions of the total
stimulus set. The more perceptually complex the stimulus set (i.e. the more dimeﬁsions it
has), the more variability there might be in judgments from different subsets. If the
stimuli were only ever perceived as being “A” or “B” then even with very small subset
sizes, there would likely be very little disagreement about how each of the stimuli were
grouped. It is when there is a wide variety of stimuli that subsets can end up with far
more of one type of stimuli than another, and perhaps another type of stimuli not present

at all. It is this type of uneven distribution that would cause greater variability between
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subsets and thus would require greater numbers of observations to counteract. This
creates a somewhat paradoxical situation: how can we know how complex the stimuli set
is (and thus the size of subset needed), when that is the very thing that MDS is supposed

to discover?

Thankfully, practical considerations ensure that we rarely come truly face-to-face with
this issue. To begin with, as alluded to above, and discussed more thoroughly below, very
small subset sizes are quite impractical since they require a huge number of subsets (and
thus participants) even to gain a bare minimum number of observations. Secondly, when
deciding upon a stimulus set to study, experimenters are rarely without any intuition as to
how many perceptual dimensions there might be—it is usually clear roughly how
perceptually complex a set of stimuli is. Furthermore, in analysis of perceptual MDS
results, it is very rare to deal with a result of dimensionality greater than 4 due to
problems of visualization; a quick review of papers involving perceptual MDS finds very
few analyses larger than even 3 dimensions. Consequently the level of perceptual
complexity that a stimulus set has is often specifically designed in order to ensure its
interpretability. This does not mean experimenters could not unwittingly produce a
stimulus set too complex for the size of subset theyvspecified, but careful selection of

stimulus set, as would be done for any MDS study, will likely minimize this danger.

As a general rule, an experimenter should ensure that the subset size is large enough such
that several stimuli that exhibit any given type of parameter (and any of the particular
levels that that parameter might have) be present in any random subset. Though, as
discussed above, there is no guarantee that there might be unforeseen characteristics in
the stimulus set, as long as each of the various known (or assumed) major parameters has
some representation in each subset, then it is likely -that most important perceptual
characteristics will be gathered. The simplest way to achieve this is to have a subset size
as close to the superset size as possible without the subset become too large to sort with a
reasonable effort. Of course this is generally not possible (since it was too-large supersets
that this technique was designed to deal with in the first place), and so, as the subset size

decreases and the chances of particular dimensions of the stimulus set being left out of a

39




given subset increase, more randomized subsets (judged by more participants) are needed

to counteract the increased level of noise and disagreement.

Number of Subsets Required For Data Collection
When each participant is tested on a unique subset, the number of subsets required is

equal to the number of participants required. We will discuss here a version of our subset

creation algorithm in which each participant is tested on a unique subset, which provides

the specified number of observations in the fewest subsets possible. Repeating subsets
with multiple participants can also be done if desired (this is, in fact, done in Chapter 7 to
help validate the subset method), but is less efficient in terms of number of participants

run.

In our subset creation algorithm, there are tﬁree factors that affect the number of subsets
required for an expenment the size of the total stimuli set (NT), the 31ze of the subset
(NS), and the minimum number of - observat1ons required (NO) In our own practical
experience, a bare minimum of five observations per value in the dissimilarity matrix is
required for reasonable results, though there are exceptions, as discussed below.
Assuming that the size of the subsets is large enough to capture significant characteristics
of the stimulus superset, as discussed above, and holding the minimum number of
observations constant, it is the ratio between NS and NT that affects the total number of
subsets required. The total size of the stimulus set does not have an effect, as the
coverage of both subset and total set grows as a quadratic function of their size, thus
ensuring that our subset algorithm will produce the same number of subsets for a pairing
of NS = 50, NT = 100 as NS = 5, NT = 10; there will simply be a factor of ten fewer

stimuli in the subsets produced for the latter as opposed to the former.

In Figure 4.1, we show a curve of the number of sets required to obtain at least five
observations in each point in a dissimilarity matrix plotted against the NS/NT ratio. As
can be seen, the smaller the ratio, the greater the number of subsets required, to the point
that any ratio lower than approximately one third will likely require far more participants

than any experimenter would be willing to run. What this means is that though our new
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technique is theoretically unbounded, in reality there is a cap on how large a stimulus set
can be tested with it. We cannot state exactly what the upper limit on total set size is
though, because it is dependant on how many stimuli could be put in a subset. For our
purposes, with our target subset size of 50, we would probably not want to have a total
stimulus set size of much greater than 150. However, our target size of 50 is at least

partly limited by our means of sorting and the nature of the stimuli themselves.

Number of Observations Required for Data Collection

The curve in Figure 4.1 represents, in truth, a lower bound for the number of subsets
needed for a given NS/NT ratio, as NO is fixed at ﬁve, a value we have found sufficient
for our own purposes, but may under other circumstances be insufficient. More
observations are needed to deal with noisy data, which can result from two main causes:
greater variance within the pool of participants, or too-small subsets. Individual
differences will always be a factor, but the effect of subset size on the noisiness of the

judgment data will vary from stimulus set to stimulus set.

As discussed above, the likely determining factor in the size of subset (and thus the
number of observations néeded) is z}cpually. the true underlying dimensionality of the
stimulus set. Obviously if NS was equal to N7, then all subs‘etsh\would be the éa’fne and the
only cause of variance would be from individual differences. But as NS/NT gets smaller,
the difference between individual subsets increases, as they have less chance of overlap.
This means that the view each participant has on the stimulus set differs by more and
more. We advocate completely randomizing subset selection in order to cover over
differences between subsets, so that each aggregate dissimilarity value is built up of
values from enough different subsets so as to cover over any large, subset-specific
variances. Given this, it would seem clear that smaller subset sizes would require a larger
number of observations per dissimilarity value, in order to deal with the higher level of
variance. Perceptual judgments from an NS of 2, for examplé, would likely differ hugely,
and it may even be that no number of observations would ever create a complete picture

of the stimulus set with such a small NS.
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Thus in each case, the particular combination of NS, NT and NO tha_t will meet an
experimenter’s needs will have to be deéided‘individually. Nevertheless, giizenva not too
diverse set of stimuli, our method can cut the number of stimuli that need to be presented
to a user by a third, while still only requiring a very feasible nqmber» of participants to run
the éxpeﬁment. Such a decrease is of gfeat uSe for our own goals, but alsé of general use

to anyone who wishes to gather perceptual dissimilarity data about a large set of stimuli.

4.3 Potential Threats to Validity of Method

The subset method combines two previously validated experimental methods—sorting
tasks and incomplete dissimilarity matrices. Joining the two together, however, by no
means implies the validity of the combination. Certain characteristics of the sorting
method throw into question the validity of results produced by using comparisons

collected using anything other than the entire stimulus set.

4.3.1 Incomplete Individual Results

Firstly, compared with the straight pair-wise comparison task where it is easy to remove
just a single comparison (because each comparison is independent of all others), in the
sorting task it is impossible to remove one comparison without removing all of the
cofnparisons of a given stimulus. This is because in a sorting task all stimuli present are
compared against all others, so removing one stimulus removes all the comparisons of
that stimulus against all the other stimuli present. Thus there is no way to create an MDS
plot from just one individual containing all of the stimuli in the set (as in the incomplete
but completely connected set advocated by Spence & Domoney [21]), and if each
individual is given a different subset, it also means that each individual’s MDS plot will
involve (at least some) different stimuli. Consequently it will be very hard to compare
individual MDS plots directly with each other, as a means of determining how consistent
different people were in judging the stimuli set. Comparison of individual results is a
useful tool in proving the quality of the averaged results, and the subset method is hurt by

not having a direct means of performing this comparison.
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4.3.2 Subset-relative Judgments

Unfortunately, creating average results from a series of incomplete dissimilarity matrices
is also problematic due to the inter-dependant nature of all perceptual judgments
performed in a sorting task. In a pair-wise comparison task, each comparison is
dependant only on the two stimuli being compared (subject learning effects over time are
assumed to be negligible). However, in a sorting task, each stimulus is being compared,
either explicitly or implicitly, relative to all other stimuli present, and thus a change of
one stimulus could completely change the groupings of all other stimuli. What this means

is that an incomplete dissimilarity matrix produced by a sorting task comparison of one

subset of stimuli versus a different but overlapping subset of stimuli could produce

radically different dissimilarity values even for the stimuli in the intersection of the two

subsets.

As an example, consider a total stimulus set in which one stimulus was played at ten
times the amplitude of any of the other stimuli. If a participant was presented with a
subset without the very loud stimulus, the relative amplitude differences of the remaining
stimuli would seem more salient. However, if the very loud stimulus was present in the
subset., the participant might now judge all the remaining stimuli t.o‘be at the same
amplitude level, because the differences between the rest of the stimuli is so small
compared to the diffefence between the very loud stimulus and all the rest: In this way
the presence or absence of one stimulus could potential produce very differént sorting
strategies leading to very different results. Thus any attempt at aVeraging over all
dissimilarity values could be potentially covering over a very noisy set of data, producing
averages that essentially reflect no real-world population. However, it is not clear how
strong an effect the relative nature of these judgments would have on the resulting
dissimilaﬁty matrix; or stated another way, how many repetitions, assembled from many
participants, would be requifed in order to diminish the effect of this noise (as discussed
in Section 4.2.2). This potential threat to validity is why we emphasize the randomization
of subsets. We believe that cases of the above happening will likely be fairly rare, if the

stimulus set is well designed. Thus if all participants are presented with a unique,

43




randomized subset, we believe that instances of this problem occurring should, on

average, be covered over by the far greater number of reasonable, well-formed subsets.

4.3.3 Ability to Discover Overall Perceptual Trends

An additional problem that arises from averaging together different subsets is that due to
overlap points, some values in the dissimilarity matrix will be averaged over observations
from a larger number of participants than other values. This might, in essence, make
certain dissimilarity values more “trustworthy” than others—that is, less likely to contain
aberrant, fluke results. One option for dealing with this problem is to use some sort of
weighted MDS, with each dissimilarity value weighted according to the number of
observations or the standard deviation. However, by choosing to use a method that
specifically aims to make the number of observations per value in the dissimilarity matrix
as even as poséible, we can deal with this issue w‘i"t'hout resorting to more complicated
MDS models. Thus it will be important in experimentation to check the number of
observations-and/or cdnsi‘étency of the standard deviation of the various values. within the
dissimilarity matrix to ensure that fhey are not having an adverse effect on the MDS
results, though we will not have a strict mathematical means of analysis for these

features.

4.4 Pilot Study: Initial Study on Voicecoil Vibrators

An exploratory pilot study was run to determine the issues involved with both the
rhythmic haptic stimuli discussed in Chapter 3, as well as the subset method of data
gathering for MDS discussed above. The results of this study were used to inform the

more thorough and detailed studies discussed throughout the remainder of this thesis.

4.4.1 Apparatus

For this study, vibrotactile stimuli were emitted from the transducers VBW32 Skin
Stimulators from Audiological Engineering Corp. MA. The peak frequency transmitted
by the device is 250Hz with a usable output range from 100Hz to 800Hz. The transient
response of the device is Sms. The experimental software responsible for presénting the
vibratory stimuli was written in VB6, which logged results in a .csv format. The

experiment was run on a Dell laptop running Windows XP.
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4.4.2. Participants

Thirteen university undergraduate and graduate students (8 females) with ages ranging

from 19 to 36 years were recruited for this study.

4.4.3 Stimulus Set

Via brief preliminary psychophysical testing, two frequencies and two amplitude levels
were determined for use with the 20 of the 21 rhythms discussed in Chapter 3. We were
still in development of our stimulus set at the time, and so did not use rhythm 4 in our set
(see Table 3.2 for explanation of rhythm numbers). The two frequency levels were 150Hz
and 300Hz, and the amplitudes were defined as the maximum volume output of the
vibrators, along with the threshold amplitude level, as determined for each of the
frequency levels. This resulted in a set of 80 stimuli, comprised of 20 rhythms x 2

amplitudes x 2 frequencies.

4.4.4 Procedure

We generally followed the method of [19]. Participants sorted the entire 80-stimulus
rhythmic haptic stimulus set using the apparatus described ab-ove. Each participant
completed 3 sorting tasks on the same stimulus set. At the beginning of the study,
participants were instructéd to feel each stimulus by clicking on to each numbered tile
organized at the bottom of the screen, and to group stimuli that felt the same in the same
boxes. Participants were also told that they could feel the stimuli as many times as they
needed by clicking on the tile again, and were allowed to change their mind about the
groupings by clicking and dropping the tile in the desired box. In the first sort,
participants were told to group stimuli into whatever number of discrete, non-overlapping
groups they felt was appropriate to describe the perceived dissimilarity between stimuli.
For the remaining two sorting tasks, participants were required to sort the.stimuli into a
specified number of groups, either 3, 9 or 15. Of these three group numbers, the one
closest to the number of groups chosen in the first sorting task was not used, with the
remaining two numbers randomly assigned to the second and third sorting tasks. Having

three repetitions of the sorting task performed on the same set of stimuli and varying the
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number of groups that the stimuli are sorted into as we have done has been shown

previously in haptic MDS studies to yield good resolution for perceived differences [20].

4.4.5 Results and Discussion

An average dissimnilarity matrfx Wa_is “cc‘_)nstructed,fror:n the participants’ data, and then run
through the SPSS ALSCAL algorithm for 1 to 5 dimensions. 'Graphiné the résulting
stress values shows no clear elbow indicating a point of diminishing returns in terms of
goodness of fit (Figure 4.2); instead both 2 and 3 dimensional results provide reasonable
stress levels, while higher dimensions are somewhat decreased in improvement. For the
sake of parsimony as well as ease of interpretation, the 2D solution was chosen as the
primary solution for analysis, though the 3D solution is given some consideration as a

secondary tool for analysis.

Several features are immediately evident from visual inspection of the 2-D perceptual
map (see Figure 4.3). First is the clear circular arrangement of the stimuli around the
center of the graph. According to MacLean and Enriquez [19] this circumplex
arrangement is a common result in perceptual MDS studies, including those involving
haptic stimuli, resulting from judgments of stimuli as either very similar or very
dissimilar according to the frequency and amplitude of the vibrations used, regardless of
rhythm. This trend is further emphasized by the projection of the design parameters of
amplitude and rhythm onto the perceptual map, as they both neatly bisect the map in
nearly orthogonal directions. This projection is done by averaging the location of all the
stimuli that have one value of the parameter, plotting the points, and drawing an axis
between 4these points. The length and placement of these axes on the map indicate their
. overall importance in the perception of the stimuli. This result is consistent with those of
MacLean and Enriquez who found frequency and amplitude were both extremely

important perceptual features, as well as being highly correlated in terms of perception.

The second salient point is the even spread of stimuli around the circumplex.distribution
and the general lack of clustering amongst the stimuli. A cluster of stimuli around one

position indicates that people perceptually group them together as being related in the
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visible dimensions. A lack of any such clustering indicates an overall level of
distinctiveness and discernability of our stimulus set, such that even stimuli that are
perceived as being perceptually similar to each other are nonetheless perceived as distinct
and separate sensations. Maclean and Enriquez [19] with a similar circumplex
arrangement, nonetheless also showed clear clustering in mid-process results, a result

distinctly different from our own.

It is noted that in that previous work, iterations were performed for the distinct purpose of
designing non-clustered stimuli set with maximum perceptual ‘spread’, with the MDS
result guiding adjustments. In other cases, clustering might be desirable in order to

promote ‘family’ associations of meanings (e.g. Enriquez, Chita & MacLean [12]).

Thus we are left with the question of why the MDS plot shows no clear clustering, while
other similar studies have. Specifically we wonder what effects rhythm has had on the
perception of the stimuli, and whether it has played any role in this lack of clustering. The |
only clear rhythm effect is the one outlier stimulus, situated far outside the circumplex of
stimuli, which is the full 4 quarter note rhythm, stimulus 1, played at the highest
frequency and amplitude. That this is the most distinctive” of all rhythms is to be
expected, as it was tﬁe simplest according to our interpretation of rhythm, and it was
played at the most clearly discernable frequency and amplitude combination used. Yet
the remaining stimuli’s méfked descent into a cléud of opaque thythm effectsris made all

the more frustrating because of the tantalizing promise of this one outlier.

We are thus left with ambiguous, noisy results and several possible explanations for this
ambiguity. Given that the experimental method used was untested, one obvious possible
explanation is that the new data gathering method introduced too much noise into the
data. However, since the stimulus set is also unique and untested, it could also be
suggested that the results of this study accurately reflect the difficulties people had in
perceiving similarities amongst rhythmic haptic stimuli. Yet another issue is that
vibrators used to display the stimuli may have lacked sufficient dynamic range and

responsiveness to effectively display the more complicated haptic stimuli used here. The
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difficulty in resolving these possible explanations led us to design and implement the
studies described in Chapters 6 and 7, hoping to determine the validity of the

experimental method used and the true perceptual nature of the rhythmic haptic stimuli

created.




Chapter 5: Methods

The apparatus used in the pilot study — voicecoil vibrators attached to the sound-card
output of a PC — has been used before successfully to create and test haptic stimuli.
However, we felt that we may have been approaching the limits of this setup. The
voicecoil vibrators were not as precise in their output as might be desired, leading to
worries that our more complicated haptic stimuli might not be being displayed in
complete detail. Furthermore, the voicecoils were separate from the PC, making them
somewhat awkward to naturally introduce into regular application use. Thus when the
opportunity arose to use prototype hardware from Nokia based on piezo technology, we
gladly took advantage of it. It offered more precise timing and control over feedback, and
an embedded platform that could support new haptic applications without any additional
peripheral devices. In 5.1, we describe the hardware, a relatively new type of handheld
haptic display on which very little haptic icon work has been done previously. In 5.2, we
discuss the sorting program that we were required to write, in order to perform data

gathering on the-new handheld platform.

5.1 Discussion of Hardware Platform

The Nokia 770 (Figure 5.1) is a handheld intefnet tablet, with a iarge'(90;54 n{m) high-
resolution (800x480) screen, ARM-based processor, and runs a modified version of the
Debian Linux distribution. While the 770 is already commercially avai.lable, Nokia has
added haptic feedback to a prototype model, identified as the 770T (see [16] for details).
Though visually identical to the 770, the 770T has a piezo-mounted touchscreen, which
allows the screen to be pulsed with small displacements in the axis orthogonal to the
screen, giving the sensation of a single “click” when done once, and of a continuous
vibration when done repeatedly at tightly spaced intervals. This technique can give quiie

convincing and satisfying haptic feedback, all within the context of a handheld device.

We are much indebted to Nokia for supplying us with several of these devices along with

their technical support. What follows is a discussion of the new hardware platform’s
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suitability to our own ends, with regard to creating and analyzing a large set of rhythm-

based haptic stimuli.

5.1.1 Control of Haptic Feedback

Haptic feedback in the 770T is cc;r;trollf_:d through the use of Afeedbzlick scripts,-which are
compiled into byte-code and sent to the hardware that contfo‘ls the piezos. The feedback
scripts consist of a series of commands for driving the piezos. There are five main
commands: charge, discharge, delay, loop and voltage set. The charge command tells the
device to begin charging the piezos and can specify the speed (by specifying the
resistance of a current limiting resistor) that the piezos will be charged at. This creates the
leading edge of a single “click” motion. The discharge command causes the piezos to
discharge, thus creating the trailing edge of a single “click” motion. The delay command
is used to specify timing between clicks'and between chafges and discharges. The loop
command is used, as would be expected, to simply specify the number of times a set of
commands should be repeated. Lastly the ser voltage command sets the overall voltage
level to which the piezos will be charged. No more than 255 total commands can be used

in any one feedback file.

These feedback files, once compiled and loaded into the hardware, can be associated with
a given type of GUI widget (for example, a button or a scroll bar) or specific individual
widgets, and the feedback will then be played whenever the click event for the specified
widget is fired. The 770T hardware only has space for 16 user-defined feedback files to
be loaded into the hardware at one time, though multiple widgets can be mapped to the

same feedback file.

In order to create sustained vibrations which can be used to make up a rhythm,
consecutive series of closely spaced clicks had to be placed together to build up what is
essentially a square wave playing at a given frequency. These vibrations give us the notes
that can be used to make rhythms, while the delay command gives us the off-notes. Thus
a single haptic feedback file could be used to make an single haptic stimulus from our

rhythm set.
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5.1.2 Baseline Perceptual Data

According to [22] the most perceptually salient parameters to be varied with the piezo
touchscreen are the duration of the voltage curve and the speed at which the leading edge
of the curve rises. These parameters corresponded roughly to the perceived amplitude or
“strength” of the feedbaék. This claim was confirmed via our own informal user testing;
in further agreement with [22], our testing also showed that the height of the voltage
curve had an insignificant effect on the perceived strength of sensation, thus it was

decided that the default voltage level of 173 V would be used for all feedback.

In order to create rhythms, we first needed to determine how té make continuous
vibrations that were distinct. This necessitated a small, informal experiment in which
users were presented with different combinations of feedback strength and vibration
frequency, and asked to order them from strongest to weakest. For amplitude, we used
wave durations of 0.5 ms (low) 1 ms, 2 ms, 4 ms and 10 ms (high amplitude) and
resistance levels starting at 13.2 (low) and moving up to 1.0 kOhm (high amplitude) in 10
even intervals, thus controlling the sharpness of the leading edge of the voltage curve
(curve rise time) as well as the length of the curve. High resistance levels produced low
perceptual amplitudes because they decrease current "thus slowing curve rise time
Frequencies ranged from 150 Hz to 300 Hz, at 50 Hz intervals.

From this it was foﬁnd that there were geﬁerall‘y four levels of perceived-iﬁtensity of
signal. Frequencies of 150, 200 and 250 Hz were all perceived essentially the same; they
felt very strong and distinct to the touch. Vibrations played at 300 Hz felt much softer.
Only the two extremes of voltage curve rise time were distinctively different, but they did
tend to dominate the perception of curve duration. Voltage curve durations of greater than
1 ms were found to cause no perceptual differences when occurring within a vibration,
while the difference between 1 ms and 0.5 ms was evident, but perceptually it was

generally overwhelmed by frequency and curve rise time. Thus for the purposes of

creating thythms, we selected one wave duration (1 ms), two curve rise levels (1.0 and

13.2 kOhm), and two frequencies (200 Hz and 300 Hz). Thus we have a high and a low




amplitude and a high and a low frequency vibration, providing 4 different vibrations that

we could use for our rhythms.

5.1.3 Advantages and Disadvantages of Hardware

From our initial experiences using the 770T, we observed that compared to the voicecoil
vibrators as used in the pilot study, the piezo-driven 770T provided much more crisp and
precise feedback. Though it is perhaps not able to produce as strong a sensation, the
quick reaction times of the piezos were felt to have delivered a much more distinct
feedback with sharp starts and stops, whereas the voicecoils had more noise associated
with its edges, creating feedbacks that were not as well defined, feeling “mushier” to the
touch. This, coupled with the very precise timing control provided by the feedback
scripts, gave us hope that the 770T would have an increased expressive capability,
making it easier to distinguish small differences between- haptic st1mu11 and generally

giving greater discriminatory power to our haptic stimulus set.

Nevertheless, the 770T did héve,its.‘drawb‘a'cks. ‘As mentiéned, afnplvitude, Qf feedback
given was generally less than the voicecoil vibrators, but in addition to this there was a
strong audio component to any feedback given on the 770T due to the vibration of the
screen within the casing. This sound required noise-cancelling headphones to be worn at
all times during any testing of feedback on the device, with fairly loud white-noise
having to be played in order to drown out the sound, which can be fairly intrusive and
annoying to users. Another serious drawback was the hardware limitations on the number
of commands per feedback file and the number of feedback files that can be active at any
given moment. Though these problems could be worked around, they did create
difficulties in the development process and somewhat hampered the controllability (and

ease of programming) of the overall system.

Overall, we felt that the quality of the haptic feedback was well worth the switch to the
new device. Furthermore, with an open-source operating system and a large (for its size)

- graphical display, it was felt that the 770T represented a strong platform on which to
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develop new haptic applications, and thus was worth choosing as a device to characterize

and study.

5.2 MDS sorting program

As outlined in Chapter 1, two different MDS studies were required in order to both
perceptually characterize our new rhythmic haptic stimuli set as well as validate our new
method of gathering perceptual data. Both of these studies require gaining perceptual
judgment data from users. Prior to this, we had used a simple PC setup, as in the pilot
study. However, using a handheld, Linux-based platform for our studies necessitated a
change in the stimuli sorting program that is used to collect perceptual dissimilarity data

from the user.

For several reasons it was no longer feasible to use the box-sorting technique utilized in
our pilot study (and developed by MaclLean and Enriquez [18]); the format was too
space-intensive to fit on a small screen, and it was felt that having the box-sorting GUI on
a desktop PC while having the user still needing to hold the 770 and interact with it using
a stylus would be needlessly complicated both from a usability and a technical
standpoint. Usability-wise, it would require constant switching betweén two different
tasks on- two different 'platforms,Eand from a technical side, it would require detailed
communication between handheld device and PC, as well as a complete re-write of the
box-sorting GUI for Linux rather than the Windows platfonﬁ. Consequently, we designed
a new interface that would allow the stimuli to be sorted using strictly the 770 with no

other devices necessary.

The main limiting factor in the design of the new interface was screen space. The
800x480, 90 x 54 mm screen does not provide enough space to simultaneously display
buttons representing all stimuli as well as boxes which the buttons can be sorted in to.
Especially when the user is expected to sort stimuli into a large number of groups, the
box and buttons sizes required would be extremely small, something that is definitely a
troublesome issue when we are relying on the hand-eye coordination of touch-screen

interaction. The possibility of having multiple screens that the user must switch between
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in order to access all stimuli and boxes was raised, but it was felt that it was important
that all stimuli and groups be present and accessible at-all times, so that no stimuli were

neglected and all groups were at the same levél of visual saliency.

The method thué dégided upon was to have a siﬁatially static field :OfAb_L.lt.IOTlS' thét could be
grouped by assigﬁing different colours to the buttons, with.e‘ach colour representing a
different group. While adding colour does bring with it certain limitations, such as
inaccessibility to colour-blind users and unavoidable affective responses to certain
colours, we felt that this was the simplest technique that would achieve our goals of -
having all groups and stimuli present in the interface simultaneously. With this interface,
users can feel any of the stimuli by pressing on any of the buttons, each associated with
one stimulus. The user can then add a button to a group by selecting one of the colours
along the bottom and assigning it to the desired button. In order to decrease confusion, an
automatic sorting function is provided, which simply places all of the buttons, sorted by
colour, at the top of the screen, with the un-coloured placed after it. In order to aid with
the sorting task, users were provided with sheets of paper with coloured squares printed
on them corresponding to all the grouping colours, where they could write descriptive
names for each group if they so desired. This helped users conceptualize and remember
the groups they were sorting, as well as providing insight to the experimenters about how

users were sorting the stimuli.

5.2.2 Loading Haptic Feedback

We were successful in having all stimuli and groups equally accessible at all times both
visually and physically, but hardware limitations forced us to introduce load times for
playing some of the stimuli. As mention in Sectioﬁ 5.1, the 770 maps specific feedback
files to types of GUI widgets, or specifically named widgets, but only provides space for
16 different user-defined feedback files to be loaded at any one time. As a result of this,
only 16 buttons can play their particular stimuli immediately after being pressed. Any

. other stimulus has to be loaded first (a process that takes no more than two seconds),

which, in turn, unloads one of the other 16 buttons that already had its feedback loaded.




To load an unloaded button, the user simply presses it once to load it, and presses it again

‘L"’

to feel it. Loaded buttons are indicated with a “!” next to their numbers.

In order to minimize the amount of loading required by the user, both pre-fetching and a
history queue were implemented for feedback loading. Thus eight out of the sixteen
feedback slots were used as a hiétory of the last eight buttons the user had pressed, while
the remaining eight feedback slots were used to pre-load the nearest buttons next to any
newly-loaded button. What this allowed the user to do is move from the top-left down to
the bottom-right, having most of the buttons loaded ahead of time for him or her.
Furthermore, since the immediate neighbours of any non—loaded button would also be
loaded along with it, returning to feel what any given button felt like in a colour group
would load all of the other buttons in the group provided the buttons have been sorted
(see Figure 5.3 for an example). Though this does not remove all loading times, it does

greatly decrease the total amount, making the sorting task less frustrating and time

consuming for the user.
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Chapter 6: Investigation of Rhythmic Haptic Stimuli
(Gold Standard Study)

In Chapter 3 we developed our stimulus set using a novel application of rhythm to tactile
stimuli. As always with haptic stimuli, developing them was one challenge, but
determining how they were actually perceived by people was another. The intuitive
understanding of haptic perception that guided our design process is by no means a
guarantor of how the stimuli will be perceived by the broader public. Especially in the

case of haptic thythm, on which so little research has been performed, our knowledge is

~lacking. Thus in this chapter we seek a clearer picture of the important perceptual

characteristics of our stimulus set, and how these relate to the design parameters we used

to create the stimuli.

6.1 Purpose and Structure of Study

The purpose of this study was to produce a thorough description of the _perceptual
characteristics of our rhyfhmié haptié stimulus set through the use of‘kan e;(isting, verified
experimental method. In this study, we wished mostly to learn what characteristics. of the
stimulus set define its perceptual space—that is, the dimensions along which people
perceive these stimuli as a group, as opposed to the engineering parameters used to
construct them. Moreover, by using a verified method we also aim to produce a “gold
standard” result, which our modified, subset method of data gathering can be compared

against.

To this end, we decided to use the sorting method of data gathering with the full set of 84
haptic stimuli; and in fact, this decision influenced the maximum set size we could test
here. Since participants sorted the entire stimulus set, there were no concerns about
participants making judgments based on only part of the total set, and thus the resulting
aggregate dissimilarity matrix could be taken as a reasonable representation of the
average perception of the total stimulus set. While the sorting technique is a validated and
widely used technique [19], it is generally used with a much smaller number of stimuli.

Sorting a full set of 84 stimuli is a much longer and more involved process, with
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participant fatigue becoming a major issue. At 2 hours, the experiment time is extremely
long; realistically this was the absolute maximum set size that this sorting task can

handle, and then only with carefully chosen subjects

In order to minimize worries of fatigue, as well as trying to guarantee that our results
would indeed constitute a “gold standard,” several slightly unusual alterations were made
to the study. Primarily, participants were solicited directly, with the express aim of
choosing people who were dedicated and trustworthy enough to be vigilant throughout
the task, as well as having already had some experience with vibratory tactile stimuli.
This would help ensure the quality of the data gathered, with the obvious proviso that it
may not reflect entirely accurately the perceptions of the general public. Furthermore, this
resulted in all participants, in fact, being acquaintances of the experimenter, another
biasing factor. However it was felt that using unmotivated, inexperienced users for a
fairly long and arduous study would almost certainly give results too noisy and
inconsistent to interpret. Several other allowances were made in an attempt to minimize
the strain put on participants running the study, as will be discussed in the “Method”
section. We feel that these allowances, while deviating somgwhat from the standard
experimental method, actually help to guarantee that our results stand up in the face of

such a large stimulus set.

6.2 Full-set MDS study

As a well established standard for the study of haptic stimuli, MDS studies have been
shown to be a great tool for discovering perceptual characteristics of novel sensations
[19]. What follows is a description of the first of the two major MDS studies performed
in this thesis. It represents our best attempt to create a clea_r perceptual description of the

rhythm-centered stimulus set we made.

6.2.1 Method

Six expert participants were solicited directly for the study. While relatively few, the

demanding criteria set for the participants made recruitment difficult but meanwhile
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ensured a smaller amount of higher-quality data. Participants were S males and 1 female,

all graduate students in computer science, with an age range between 24 and 40.

The experiment lasted two hours, but participants were given the choice of breaking the
experiment up into two one-hour sessions in order to minimize the fatigue of running the
experiment. Of the six, two chose to break the experiment up, and four chose to do it in

one two-hour block. Participants were compensated $20 in total for the experiment.

Participants sorted the entire 84-stimulus rhythmic haptic stimulus set on the Nokia 770T
tactile platform described in Chapter 5, using the program also described there. Each
participant completed 3 sorting tasks on the same stimulus set. In the first sort,
participants were told to group stimuli into whatever number of discrete, non-overlapping
groups they felt was appropriate to describe the perceived dissimilarity between stimuli.
For the remaining two sorting tasks, participants were required to sort the stimuli into a
specified number of groups, either 3, 9 or 15. Of these three group numbers, the one
closest to the number of groups chosen in the first sorting task was not used, with the
remaining two numbers réndornly assigned to the second and third sorting tasks. Having
three repetitions of the sorting task performed on the same set of stimuli and varying the
number of groups that the stimuli are sorted into as we have done has been shown
previously in haptic MDS studies to yield good resolution for perceived differences [20].

Because of the auditory noise made by the 770T when playing haptic feedback, users
wore Bose Quiet Comfort 2" acoustic noise cancelling headphones during the experiment.
While the normal procedure is to play white noise during testing to drown out the sound,
it was felt that for obvious reasons listening to two hours straight of loud white noise
would itself be an impédiment to making well-reasoned judgments. Consequently, and
since participants had already been selected for their trustworthiness and dedication,
participants were allowed to listen to music self-chosen according to stated criteria, and
told to self-monitor to ensure that no sound from the device could be heard. The criteria

were simply that the music was consistently loud enough to mask the noise made by the

! http://www.bose.com/controller?event=view_product_page_event&product=qc2_headphones_index
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770T, and that it be emotionally neutral enough that it would not overly affect the
participant’s mood. The music played by the participants was periodically checked to

ensure that it followed these criteria, and no violations were observed. .

6.2.2 Basic Results

As per the methods of MacLean and Enriquez [19], similarity values were created for
each pair of stimuli by taking each instance of co-occurrence in the same sorted group as
an indication of perceived similarity, adding a similarity score to that pair proportional to
the number of total groups used in that particular sorting task. Thus higher similarity
values were given when two stimuli were placed together during the 15-group sort'ing'
task than the 3-group sortiﬁg task. These total similarity values were then subtracted from
1000 to create a dissimilarity matrix for each subject. These individual dissimilarity
matrices, covering the total 84x84 (symmetric) comparisons between stimuli, were then

added together and averaged, to create an overall average dissimilarity matrix for the

group.

Analysis of MDS Plot

The resulting d1ss1m11ar1ty matrix (Appendlx A) was then run through the SPSS
ALSCAL algorithm for 1 to 6 dimensions. Graphlng the resultlng stress values (Young S
s-stress Formula 1 was used) shows no clear elbow indicating a point of diminishing
returns in terms of goodness of fit (Figure 6.1); instead both 2 and 3 dimensional results
provide reasonable stress levels ‘while higher dlmensmns are ‘somewhat decreased in
improvement. Specifically, the 2D solution has an s-stress value of 0.36668 and an r* of 0
47788, while the 3D solution has an s-stress value of 0.26630 and an 7 of 0.58049. Both
s-stress and r* values range from O to 1, with low s-stress values showing better fit, while
low 7 values show worse fit. These particular s-stress values are both relatively high,
indicating the difficulty of fitting the data into the required dimensions; this is likely due
to the number of stimuli used. Furthermore in both cases the r* values are fairly low,
indicating that around half of the variance in the data set was not accounted for in the

MDS model.
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However, given our own experience with MDS plots of haptic stimuli, such levels of
stress and #* are not necessarily signs that the plots themselves will not yield informative
and trustworthy results [20]. Given this, and the diminishing returns of the s-stress plot,
for the sake of parsimony as well as ease of interpretation, the 2D solution was chosen as
the primary solution for analysis, though the 3D solution is given some consideration as a
secondary tool for analysis. Despite the relatively poor s-stress and r* values, these

solutions proved amenable to reasonable interpretation.

2D Results

Initial examination of the 2D plot (Figure 6.2) shows a-clear circumplex arrangement in
the data similar to that found in the pilot. Overall distribution of stimuli along this
circumflex is fairly even. A few denser clusters are evident, but only as part of a general
trend of dispersed stimuli. At best only three very large clusters could be said to exist, but
they are almost too broad to be of any interpretive value. Instead, several grouping trends
according to amplitude and rhythm are explored in the next section.

In analysis of«MDS‘ output, ouf main goal ‘is to determine how the engineéring.pﬁrameters
that were used to create the stimulus set map to the perceptual parameters that
participants used to group the stimuli. In our stimulus set, three main engineering
parametefs were used: amplitude, frequency and rhythm type. Our main method of
projecting engineering parameters onto the perceptual space is to average the values of all
the stimuli in a given group as defined by some parameter, and treat the resulting point as
a centroid representing the overall group that can then be compared against other groups.
For example, one group might be all observations for a given amplitude, and another
group all observations for another amplitude. Drawing a line between the centroids of
two different groups (as done for amplitude and frequency in Figure 6.2) creates an axis
from which we can further interpret the data. The length of this line can be interpreted as
the strength of the effect of this parameter, because the length of the line is the distance
between the two centroids of the two groups, and in MDS maps, distance in layout

equates to magnitude of perceptual difference.
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Thus projection of the design parameters of amplitude and frequency onto the perception
space shows a very strong and very clean cut trend Qf amplitude, but almost no trend of
frequency whatsoever (Figure 6.2). The dominance of amplitude in distinguishing stimuli
is as expected, and agrées with the previous results in the study of haptic stimuli {19, 18,
20]. However the lack of effect of frequency is a unique result, counter to previous

findings, and is discussed in the next section as well.

Analysis of Standard Deviation

Analyzing the standard deviation of the averaged values in the dissimilarity matrix
provides encouraging results that broadly agree with the MDS output. The overall
average standard deviation for all dissimilarity values for the matrix is 160.02, which, on
scores of 0-1000 is fairly large, but not insurmountably so—prior research has shown
positive results with comparable levels of SD [19]. More interesting is the distribution of
the standard deviation over the dissimilarity matrix (Figure 6.4). Unlike the pilot study,
where the spread of high and low points of standard deviation was, as far as could be
distinguished, completely random, there are clearly two different areas of SD, one with a
higher overall SD, one with lower overall SD. These can be seen as the rough square of
low SD (light coloured squares) in the middle of the half-matrix displayed in Figure 6.4,
and the two darker corners (high SD) of the triangle. As stimuli numbered 1-42 were
high-amplitude, and those nimbered 43-84 loW-arnplitiidé (see.'Table"j.é), the light
square corresponds precisely to the area where stimuli with low amplitude are compared
against stimuli with high-amplitude (or vice versa), while the darker areas are precisely
where stimuli of the same amplitude level (either low or high) are compared against each

other.

This distribution of standard deviation confirms the large role that amplitude played in
how people characterized the stimuli, as evinced by examination of individual MDS
results: almost everyone agreed that stimuli of different amplitude levels were indeed
different, while there was much more disagreement about the similarity of stimuli of the
same amplitude level, differing only by rhythm. Compared to the results of the pilot

study, these results contain considerably more structure both in terms of MDS output and
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distribution of standard deviation. This gives us much more confidence to delve deeper
into the MDS results in order to investigate the effect of rhythm on the perception of

haptic stimuli (below).

Quality of Judgmenfs from Participants

Since we are t‘rxeating'fhe. results of tliis study as fél “gold standar'”"_truth of how our
stimulus set is pérceived, we need to feel confident that the judgmehts given us by our
participants are trustworthy. The use of only six participants has been shown to produce
consistent results (i.e. low between-subjects standard deviation, and similar overall
structure in MDS result) for haptic stimuli before [20]. However, the use of six
participants with a more tiresome task is a concern. Fatigue was potentially a problem for
this experiment, given the large size of stimulus set the participants were being asked to
sort. Mitigating this concern, we observed that four out of the six participants elected to
perform the experiment in one large 2-hour block, preferring to “get it over with,” though
by their own reports the task was not overly taxing. Especially with being able to listen to
music of their own choosing, most participants reported being fairly comfortable with

making perceptual judgments for an extended period of time.

Furthermore, we find from analysis of the standard deviation that the level of
disagreement between participants was fairly low. Aside from the trend of amplitude
described in the above section, the level of SD is within a similar range for all values in
the dissimilarity matrix. While we do not have a good threshold for a reasonable absolute
value of standard deviation in a task of this type, consistency of the standard deviation
values for the averaged dissimilarity matrix helps confirm that participants’ results did
not suffer from random noise introduced by fatigue. Along with the strength of the MDS
results we actually obtained, we feel that our participant pool has been shown to produce

trustworthy perceptual judgments.

6.3 Analysis of Frequency and Rhythm

The clearest result from our initial data analysis was that of amplitude, neatly bisecting

the MDS plot, indicating a strong perceptual role for our stimulus set. The strength of
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amplitude is in accord with previous research [19], but other results require further
examination, such as the absence of the effect of frequency, and the perceptual role
played by the different rhythms. In particular, we will show that the frequency and

rhythm results are intertwined, and thus discussed here in relation to one another.

6.3.1 Frequency

Unlike amplitude, in plotting the centroids from the two frequency (“tonal”) levels, we
find almost no trend whatsoever (Figure 6.2); the two centroids are extremely close
together in the middle of the MDS map. Since the frequency of stimuli did not seem to
play a large perceptual role in dividing the overall map, it would be expected that stimuli
with the same rhythm and amplitude but different frequencies should occur very closely

together, which is largely, but not exactly, the case.

Pairs of low and high frequency stimuli with the same rhythm are usually within at least
the same quadrant of the map, if not much closer. For example, in the upper-left
quadrant, high-amplitude and high-frequency stimuli 15, 16, and 17 all sit close to their
low-frequency equivalents 36, 37, and 38, and in the lower-right quadrant stimuli 50 and
52 are quite near their counterparts 71 and 74. Howéver, if frequency had absolutely no
perceptual_ salience, then it would have been expected that the pairs of stimuli differing
only by frequency would have been exactly co-located, which is almost never the case.
The observed difference in placement could be due to noise in the data, but given the
Cohsistency of the rest of the results, it would seem odd that there might be 'pbckéts of
such high noise that coincidently occur between stimuli of different frequencies. In
Figure 6.4, there appear to be no distributions of standard deviation for between and
within frequency level comparisons, as thefe are for amplitude (see 6.2.)2 for discussion).
Consequently it cannot be concluded that the frequency of stimuli had no effect
whatsoever, merely that it did not have a consistent effect across all stimuli, and that in
total magnitude its effect on distinguishing stimuli was less tha.nvthat of afnplitude, or

indeed, certain types of rhythm.
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Pdssible Explanation for Lack of Effect

This relatively small effect of frequency runs Countcr' to the previous results of MacLean
and Enriquez [19], who found that frequency dominated all‘ other parameters, along with
amplitude and waveform, among others. One potential explanation for the lack of effect
is that the previous results were gained from continuous vibrations (in [19], of 2 second
duration), while our results were gained from rhythms involving mostly quite short notes
(e.g. a quarter note, the most frequently used, lasted for just 62.5 ms). Potentially, the
short duration of the individual vibratory notes did not allow their overall frequency to be
clearly perceived: a quarter note would allow just 12.5 repetitions at the lower frequency,

200 Hz (see Section 5.1.2 for frequency values used).

Pasquero et al. [20] have shown that performing MDS analysis on-a sub-matrix of the
total dissimilarity matrix can effectively unfold dimensions that were hidden in the
perceptual map for the total stimuli set; essentially, a subsection of vthe stimuli might have
a local dimensionality which i1s suppres‘sed by a more dominant one that appiies to the
overall set. Thanks to this fact, we were able to look only at the rhythms contaiﬁing

longer notes, in hope that the longer vibration times would allow people more time to

~perceive frequency (Figure 6.5). However, when mapped and expanded, the stimuli

behaved similarly to the larger group: they fell in a general circumflex arrangement, with
amplitude being the largest distinguishing factor and frequency playihg a considerably
smaller role. Though the axis of frequency was slightly larger than in the full MDS plot,
given the small sample size of long note stimuli (16 /84 stimuli contained only half-notes
or longer, with an average on-time of 1312.5 ms allowihg 26.2.5 cycles of the lower

frequency level) it is hard to claim any clear effects.

With this explanation eliminated, only two other likely possibilities exist: either the two
frequency levels wefe too similar to be consistently diétinguished between, or rhythm
dominated or masked frequency in a perceptual sense, essentially ovem’ding any
judgments that people might have made based on frequency. As outlined in Chapter 5,
initial testing was done with different frequency and amplitude levels in order to

determine values that would be perceptually quite different. These tests were performed
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only on continuous vibrations, and not on rhythms, because we wished to avoid the
confounding factor of which rhythm or rhythms should be tested. Furthermore,
participants could feel each vibration for as long as they wished, furthering differing the
sensation from the time-limit rhythms. Nevertheless, the frequency levels selected created
sufficient peréeptual separaﬁon in the continuous vibration test, and the rhythmic stimuli
themselves were tested informally to ensure that rhythms at different frequency levels

could be distinguished.

So despite there being some a priori evidence of perceptual difference between stimuli
played at different frequencies, it was seemingly not large enough to create a difference
that people noted and used as a grouping criterion when combined with rhythm. Perhaps
this lack of difference is because the two frequency levels chosen were dissimilar enough
to create a difference, but only at the edge of creating a difference big enough to be
perceptually important in classifying. This borderline condition might be an explanation
for thé inconsistent effect of frequency, but without a more concrete theory, we chose to
largely ignore the effect of frequency throughout the remainder of this analysis. In‘futur.e
work, it will be relevant to consider a larger frequency differential than that madé

possible with the present hardware.

6.3.2 Rhythm

In the pilot study no obvious trends olver rhythm were discernable'. For every possible
common-sense grouping applied to the data, there were enough exceptions that flew in
the face of the trend that it was impossible to be certain that we were not simply iinposing
our view of the data onto what was essentially noise. In contrast, in the results from the
full-set study the separation on amplitude was much more obvious and pronounced, and
some clear clustering was evident, as opposed to almost no clustering in the pilot study
results. This gave us greater confidence that our new hardware, as well as evaluation
using trusted experts, had in fact tapped into the real perceptual characteristics of our
stimuli—which, though displayed on different hardware, were made using the exact same

parameters as in the pilot.
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Analysis of 2D Solution

As is often the case for analysis of MDS solutions, the 2D map was used as a
landmarking tool; its easy-to-conceptualize nature makes distinguishing the broad
features of a solution a much more feasible task. Examining the 2D plot of our data
(Figure 6.2), there appeared to be two breaks across from each other in the circumflex,
and if we drew a line between these two breaks we split the perceptual maps into two
halves roughly orthogonal to the two halves created by amplitude. This seemed very
encouraging, pointing towards the existence of a sécond major perceptual axis in the
definition of the stimulus set’s space, and since frequency had already been ruled out as a
potential factor, the next reasonable place to look for a cause of this separation was

rhythm.

Inspecting the stimuli that fell along the left side of the map and the stimuli that fell along
the right, it soon became clear that, barring a handful of exceptions, the stimuli along the
left all involved rhythms that were comprised of entirely “short” notes, while the stimuli
along the right had rhythms that contained “long” notes v(see Figure 6.3). For 6ur
purposes, a “short” note was a either a quarter or an ‘eighth of a bar loﬁg—thus stimuli
from Groups | and 4 (see Section 3.3 for explanation) are rhythms containing only short
notes. A “long” note is any note that is a half bar or longer; Groups 2, 3 and 5 all contain
one or more long note. Plotting centroids for this split of “long” versus “short” note
groups, we find an axis roughly as large in size, and orthogonal to, that of amplitude. The
fact that such a strong grouping occurred according to pre-defined logical groupings of
the rthythms was an encouraging result; these separations were a priori built into the
stimulus set based on our intuitive undérstanding of how rhythms fnight be pefcéived.
Finding these assumptions confirmed, at least in part, from our experimental results
indicates that we are likely seeing evidence of peoples’ true perceptual characteristics,
rather than chance artifacts of the experimental and data analysis process. That we found
evidence of the perception of parameters that we built into the stimulus set mi ght seem to
be a self-fulfilling prophesy; however, lacking knoWledge of the overall 'possibler space of

rhythms, some assumptions and intuitions had to be used. That we have found these
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assumptions and intuitions confirmed experimentally indicates that we were justified in

our original decisions, and nevertheless allowed us to notice some unexpected trends.

Analysis of 3D Solution _ _

Attempting to find a different perspective on rhythm, the 3D MDS solution was
examined. Arbitrarily assigning the names X, Y and Z to the three axes produced by the
MDS algorithm, it was noted that the X-Y plane (Figure 6.6) was structured according to
the same parameters as the 2D solution (though without the circumflex arrangement),
with the Y axis differing along amplitude values, and the X axis differing along the “long
note” to “short note” rhythms. However, examining the X-Z (Figure 6.7) and Y-Z (Figure
6.8) planes, it became evident that the Z axis was defined according to a different set of

criteria.

As discussed in Section 3.2, the rhythms were constructed to fall into 5 major groups.
Since the grouping of “long notes” and “short notes” already fell along these grouping
trends, the 3D data was examined to see where each of these 5 groups was situated. What
was discovered was that along the Z axis Group 2, the group contéining only “long”
notes, appeared at the very extreme end of the axis, with all the other groups spread fairly
evenly along the rest of the axis. This seemed to indicate that there might be something
special with Group 2, distinguishing it from the rest of the rhythms containing long notes.
This makes intuitive sense, as Group 2 contains only long notes, while Groups 3 and 5

contain both long and short notes.

This difference manifests itself in an important peréeptual characteristic of rhythm that
will be discussed further below, namely the feeling of “evenness” or regularity, versus
“unevenness” or irregularity of a given rhythm. At a high-level, rhythms that contain only
notes of the same length feel even, while rhythms that contain notes of different lengths
(or résf notes of different lengths) feel uheven. Yet given ohly the 3D solution, all that
was evident was the different place of the long-note, even fhythm group; there was no

clear evidence of evenness similarly affecting the short-note rhythms.
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Amplitude-Independent Analysis _ _

The fact that in the 3D solution the Y axis accounts for rﬁost of the effect of amplitude,
presumably allowed the Z axis to account for certain perceptual features of rhythm that
could not be fit into the 2D solution. As mentioned above, by taking only one section of
the total dissimilarity matrix and analyzing it using MDS, factors that were hidden in the
larger solution can appear [20]. Thus if we remove completely the dominant factor of
amplitude, the more subtle characteristics that define rhythm have a chance to manifest
themselves. To this end, two sub-analyses were performed on the two halves of the
stimulus set that had the same amplitude level. Unfolding the data in this way, it became
clear that there were actually two perceptual axes involved in the perception of rhythm.
As initially noticed in the 2D solution one of the dimensions was the length of the notes
in the rhythm (presence of absence of the longest notes). The other dimension, as hinted

at in the 3D solution, was the “evenness” of the rhythms.

The 2D MDS‘output for ali the high-amplitude stimuli ié shown in Figure 6.9. As can be
~ seen, the map caﬁ clearly be split into two halves of even and uneven rhythms; a large
gap separates the two halves. Here we also see evidence of evenness of rhythms affecting
both short and long note rhythms, which was hidden in the 3D solution. The split
between the rhythms containing long notes and those containing only short notes is not
quite as distinct, but still clearly observable. Initially this result may seem
counterintuitive; the length of notes was the major discriminating factor in the 2D
éolution, SO it would seem reasonable to assume that in the unfolded single-amplitude
solution it would have the strongest effect. However, the likely cause of this is the fact
that the “note length” axis actually contains a range of potential values, and can be
somewhat ambiguously defined at certain points, while rhythms can be fairly

unambiguously classified as either “even” or “uneven.”

Note Length
Generally speaking, the definition of a “long note” rhythm is any rhythm containing at
least a one half, three-quarters or whole note. Seemingly the longest note presént in a

rhythm defines how it is perceived along this perceptual axis. Rhythms with three-
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quarters or whole notes tend to fall near the ends of the axis, while rhythms containing
half notes fall closer towards the middle, and those containing only short notes fall
towards the opposite end, all as would be anticipated. Furthermore, if short notes are also
present in a rhythm, the more short notes there are relative to loﬁg notes, the further
towards the middle of the axis the rhythm will fall. This is especially evident for rhythms
11 and 19, which consist of a half note followed by two quarter notes or four eighths
respectively, and both of which fall roughly in the middle between the long note and
short note groups. This placement only serves to reinforce that note length is indeed the
trend that is being displayed here, as the rhythms contain long and short notes in equal
measures; their placement directly in the middle of the axis is exactly where one would

expect them to be.

The trend of note length is not perfectly consistent throughout. Given the position of
rhythms 1, 2 and 3 in the map, it may be claimed that the number of notes in a rh-ythm is
also confounded somewhat with overall note length. Séemingly by having multiple short
notes, these rhythms have rhoved towards the center of the éxis. Under this explanation, it
might actually be more accurate to describe the trend as one of overall time spent with
notes playing versus not playing: if we add up the total duration of all notés played in the
rhythms near the center of the axis, they come to a similar total, though the number of
notes might be quite different for each rhythm. But this description is not strictly true
either, as the three rhythms that are the equivalent of rhythms 1, 2, and 3, but with two
eighth notes replacing each quarter note (and therefore with the same amount of total
playing/not playing time), are placed much farther towards the “short” end of the note
length axis. It is sufficient to say, then, that increasing the number of notes present can
have an effect of moving rhythms more towards the “long” end of the note length axis,
but that effect is not stronger than the overriding effect of the longest note present. in the

rhythm.

Evenness of Rhythm
As opposed to the note length axis, the even/uneven perceptual axis is very clearly

delineéted, with essentially no middle ground between the two groups. This can be felt
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quite distinctly when the stimuli are actually displayed on the haptic device. Even
rhythms have a regular repeating nature in which each part of the rhythm feels the same
as every other part, throughout the duration of the stimulus. Uneven rhythms have an
irregular, lurching feel to them; even with our monotone, same-amplitude stimuli, there is
an emphasized portion of the rhythm and a deemphasized portion, such that the rhythm
has an overall two-part structure, with a perceived emphasis on the first part of the
rhythm. The most obvious examples of uneven rhythms are those in Groups 3 and 5,
which consist of one long note followed by a number of shorter notes. Thus the longer
note draws the emphasis, while the smaller notes are deemphasized, creating a skipping,

one-two emphasis within the rhythm.

By only looking at the structure of the rhythms (as shown in Table 3.3), it is easy to
conceptualize that Groups 2 and 5 might be perceived as uneven given the above
description, yet it far less intuitive as to why rhythms 2, 3 and 15 also feel uneven,
despite containing only notes of the same length. Yet upon feeling these rhythrhs, the
sensation of unevenness is distinct. What appears to create the feeling of “unevenness” in
these stimuli is actually the rest that occurs after the notes; the initial set of notes played
thus creates the emphasized portion of the rhythm, with the blank occurring as the
deemphasized portion. A caveat to this is that the rhythm must contain more than one
note before the rest in order for it to be perceived as uneven. In the case of rhythms like
5, 7 and 8, which all contain only one note and then a rest for the remainder of the bar,
the rhythm is seemingly recontextualized into one longer, slower pace rhythm containing
a single bar consisting of a note played four times, instead of a bar repeatéd four times
containing one note per bar. What appears to be ca'using this are the different sizes of the
blank periods in the rhythm: in 2, 3 and 14, there are the blank periods that sepafate each
note, as well as a longer rest note at the end of the bar. Thus what appears to define an
“uneven” rhythm, in terms of how our subjects have placed them here, is that it either
contains notes of two-different lengths, or blank periods of two different lengths. The
blank space between pairs of eighth notes, however, does not seem to cbunt fowards this

effect. Consequently rhythms such as 16 and 17 are perceived as even.
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As a last, confirmatory point, each of the four groups, from the four perceptual quadrants
found in the amplitude-independent data (long-even, long-uneven, short-even, short-
uneven, as seen in Figure 6.9), were individually.run through the MDS' algorithm (Figure
6.10). The resulting outputs were fairly similar in layout to the full 2D solution, with
amplitude playing the largest defining role, but now with stimuli more spread out. No
further insights were gained into how tactile rhythms are perceived. The most signifiéant
result of this sub-analysis was the stress and /* values produced by these solutions (Table
5.1). As can be seen, stress values are lower and 7 values higher than the overall 2D
solution. While some of this improvement can be attributed to the smaller number of
stimuli, it should be noted that the long-uneven group has a lower stress value that the
short-even group, even though it has 8 more stimuli. Consequently, we can see this as
further evidence that the stimuli in these groups naturally “fit” together, as it is fairly easy

algorithmically for MDS to deal with them.

Rhythin Groupings in 2D Solution

Returning to the 2D solution, we can see how these two axes manifest themselves when
forced to contend with the overriding factor of amplitude (Figure 6.11). Plotting the mid-
points of the 4 groups (short-even, short-uneven, long-even, long-uneven), several
features can be noted. Firstly, the mid points all fall roughly in a line orthogonal to the
line of the axis created by amplitude. Secondly, it is clear that of the two factors, note
length has a stronger effect than evenness of rhythm, such that stimuli are grouped first
by note length, and then within that group they vary according to evenness of rhythm.
However, by introducing unevenness as a criterion, it eXplains the position of several
stimuli whose placement was somewhat counter to the trend using strictly note length.
For instance, without considering evenness stimuli 44 and 45 appear to wrongly be
positioned with the long-note rhythms, despite consisting only of quarter notes. With
evenness considered, it becomes evident that 44 and 45 are uneven rhythms, and are
actually positioned in a group containing long-note rhyt.hrns'a‘s well as uneven rhythms.
This result gfves further weight to the claim that these two dimensions of rhythm are truly

being perceived by people and that this is not a case of over-analysis of the data. |
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6.4 Summary

In Chapter 3 we created a set of 84 different haptic stimuli by varying three design
parameters: amplitude, frequency and rhythm. In this chapter, we set about studying how
these stimuli were actually perceived when presented to users. Since the other main
challenge this thesis deals with is how to present such a large number of stimuli to users,
certain concessions had to be made in order to successfully examine these stimuli.
Nevertheless, the results we achieved were extremely encouraging, especially in regards
to the effect of rhythm within tactile stimuli. Our analysis showed clearly that different
aspects of rhythm could be distinguished, and that coupled with amplitude could create a

very wide range of perceptually different haptic stimuli.

Our study consisted of asking six expert users to sort all 84 stimuli into groups, using the
standard sorting method of data gathering for MDS. Since sorting 84 stimuli using a
small handheld display is quite a tiresome task, only devoted and diligent participants
were solicited. An elite subject pool is not always possible to recruit, and nor are its
results necessarily reproducible by the general public. Yet despite the challenges in
gathering participants, their willingness to accept a more difficult commitment and their
prior experience and knowledge in the field made certain that data quality was high, and

gave it credence in establishing ground truth.

After gathering the subjective perceptual data and running it through the MDS algorithm,
we performed analysis, primarily on the 2D solution. We found amplitude to be the
strongest perceived differentiating factor, while frequency was almost completely absent
from the picture. The ‘strength of amplitude agreed with previous findings' [19], but the
lack of frequency did not, an effect that can mostly be explained by the strong role of

rhythm (which was conversely not present in the earlier analyses).

From our analysis, it appears that the two primary characteristics on which our rhythms
are distinguished between are the length of the longest note present in a rhythm, and the
“evenness” of the rhythm (“even” rhythms only have notes and rests of the same length,

“uneven” rthythms have notes or rests of different length). Controlling for the effect of
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amplitude, thése two criteria are perceived roughly orthogonally, with note length being
the slightly more dominant of the two. Though the rhythms that we tested in our stimulus
set do not by any means cover the range of all possible thythms, their simplicity should
make these trends quite generalizable. Indeed, the consistency with which these two
criteria were used to judge our rhythms is very encouraging, and Should prove extremely

useful to those wishing to use tactile rhythms in the future.

Our results have provided interesting new insights into how tactile stimuli are perceived,
and specifically how haptic stimuli can be designed in order to maximize both perceptual
differentiability and grouping. Furthermore, using an established, validated technique
with committed, expert users has provided us with a clear “gold standard” as to what
constitutes ground truth for the human perception of this stimulus set. Thus we now have
an empirically derived standard that can be used to compare the results from our as-yet

unvalidated novel data gathering method, a goal we pursue in the next chapter.
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Chapter 7: Subset Method Validation Study

. In Chapter 6, we examined our haptic stimulus set through the use of the sorting method
often used to gather MDS data on haptic stimuli [19] [11] [18]. However, using this
method with the full set of 84 stimuli created an extremely arduous task which was
demanding even for skilled participants—problems outlined in depth in Chapter 6. In
fact, if our total stimuli set had been any larger, we‘ likely could not ha:\'/é;' pérformed the
full-set study at all, sorting 84 stimuli at once being about the absolute maximum that
could be done by a single ?articipant. Consequently, this makes the full-set study
described in Chapter 6 a unique, one-off experiment. With the goal of creating a general,
easy-to-use -method for evaluating large numbers of haptic stimuli, a less arduous

technique must be developed.

As proposed in Chapter 4, by combining several existing methods that deal with large
stimulus set sizes in MDS, we devised the subset method of data gathering for MDS that
allows users to sort only a subset of the total stimulus set, thus greatly shortening
experiment times, loosening restrictions on potential participants, and yet still producing
a total picture of the perceptu'al épace of a given stimulus set by averaging over a series of
overlapping subsets. The cost of this method is in requiring a considerably larger number
of participants for a given set size (to obtain sufficient overlap and reduce noise due to
between participant variability), as well as the increased complexity of experiment design

and analysis.

This chapter is concerned with validating the accuracy of this new method, by testing the
hypothesis that the subset method of data-gathering for a perceptual MDS analysis can
produce results comparable to the normal, full-set sorting method, but with a
considerably shorter and less taxing experimental task. Thus, in addition to providing
new results about rhythm stimuli, the full-set study also played the role of *“gold

standard” in this scheme.
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7.1 Validation Overview

As discussed in Chapter 4, our main concern with collecting dissimilarity data from
subsets of the total stimuli set is that the specific composition of each subset might affect
how participants judge each stimulus. As an analogy, consider a quiet library in which
everyone is whispering: if someone were to talk at a normal voice level, they might be
considered “loud” compared to everyone else being “quiet.” But if someone were then to
start yelling, the person talking at a normal level might also be considered “quiet”
compared to the “loud” yeller; conversely, the yeller might be considered “very loud”
while the normal talker would still be “loud.” Thus a subset without the yeller might
produce different results across the board compared to a subset with the yeller. This is
essentially a question of relative versus absolute judgments, and how great their effect

might be on judgments within a subset.

At a slightly higher level, we are also concerned that participants might miss some of the
larger patterns existent in the stimuli due to their lack of representation in the particular
subset that participants are presented with. Especially if there is a small but highly
distinct group of stimuli, there is a definite chance that some subsets might not have any
of these stimuli, causing the user to completely miss their existence. Missing these
stimuli would, in turn, create problems’ when averaging together the results: from the
different users, as different subsets would highlight different aspects of the stimuli,
creating noisy averages that cover over incongruent pieces. On the other hand, it is
possible that this will not be an iésue, because the particular trends are oﬁly noticed when
the stimuli that manifest these trends are present in a subset, thus making each subset fit.
together like a jigsaw, with different subsets providing coverage for the particular trends
that are most evident in their stimuli. In fact, this situation could even serve to highlight
subtle aspects of the stimuli that might be obscured in a full-set analysis. What we hope is
that the relative difference values assigned to stimuli by participants stays at least roughly
the same regardless of the composition of the subsets. The presence or absence of
particularly “loud” stimuli would thus function in a way similar to a fish-eye lens on the
MDS plot—distorting  and compacting the positioning of all the stimuli around it, yet

keeping their relative positioning. This kind of mild distortion can then be dealt with in a
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convergent manner by averaging together observations collected from different

randomly-generated subset comparisons.

Our criteria for validation of the subset data-gathering method are thus as follows. Firstly,
stimuli that occur together in different subsets multiple times (such that dissimilarity
values for that pair of stimuli will come from more that one subset) must still be given
comparable dissimilarity ratings by users. “Comparable” in this case will mean that the
level of standard deviation between ratings from overlapped stimulus pairs is no larger
than the overall level of noise in users’ dissimilarity ratings. Secondly, the averaged
dissimilarity matrix must produce MDS results that are reasonable and logically sound,
standing alone. Thirdly, the results must be similar to the gold-standard study, both
qualitatively and quantitatively. Criterion one checks for the effect of subset-relative
judgments, while criteria two and three check whether the averaged result in fact reflects
the real nature of the stimulus set. Criterion two is thus a lighter version of criterion three,

assuming the accuracy of the gold-standard result.

7.1.1 Criterion 1: Consistency of Results Obtained from Different Subsets

Inter-subset consistency is checked largely through examination of the uniformity of
standard deviations of the avefagéd dissimilarity matrix elements. By looking at the
standard deviation of values in the matrix where multiple subsets contributed to the
dissimilarity rating, and comparing them to those points that have been covered only by a
single subset (provided multiple participants judged the subsets, so that standard
deviation can be calculated), we can see whether the points of overlap have higher
variability compared to the points of non-overlap. There is always some disagreement
among different users when it comes to perceptual judgments (and, indeed, users can
often disagree with themselves on different repetitions). However, if different subsets do
indeed produce highly different results for the same stimulus pairs, then it would be
assumed that there would be a much higher level of disagreement (and thus standard

deviation) for those areas of overlap, compared to the normal level of noise

(disagreement) between ratings given by participants.




In order to be able to perform this particular test on the data, a slight variation on the
proposed experimental method had to be made. Our original design called for complete
randomization of the stimuli in each subset, such that each participant would be presented
with a unique subset. Randomization was to be performed in order to minimize any
possible effect due to subsets, so that the damage of any particularly unfortunate grouping
of stimuli in a subset would be covered over by the bulk of reasonable subsets. It was also
done to ensure an even coverage of the dissimilarity matrix with as few participants as

necessary.

However, if we wished to compare the standard deviation of matrix points that average
over multiple different subsets versus points that are averaged only over the same Subset,
then subsets must be repeated in order to develop a baseline level of noise/standard
deviation that is to be expected when different participants are presented with the exact
same set of stimuli. In this way we can compare the baseline level of standard deviation
from individual difference to the level of standard deviation that occurs from individual
differences plus differences due to participants experiencing different stimulus subset. To
make this comparison possible, the minimal number of subsets needed to cover the entire
dissimilarity matrix with one observation was created, which in our case took 5 subsets.
These five subsets Wer_e used multiple times, such that each of the five subsets was sorted
by several participants, allowing us to determine our baseline level of standard deviation
while getting multiple observations per stimulus pair. This baseline level could then be
compared against the standard deviation of areas where the five subsets overlapped,
giving us a measure of how much comparisons from different subsets disagree with each

other compared to the overall level of disagreement.

7.1.2 Criteria 2 & 3: Overall Accuracy of Results

Criteria two and three both pertain to the resulting MDS output map: they seek to
determine whether the output has real-world traction, and specifically whether it
compares favorably to our gold standard. We perform much of the analysis required for
these critieria in an ad-hoc method similar to the analysis performed in Chapter 6 on the

output of the full-set study. Yet calling our analysis ad-hoc is not meant as a slight to its
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efficacy. Computerized clustering algorithms have yet to consistently attain the results of
detailed human analysis; their lack of semantic reasoning and “common-sense”
appreciation of the dataset is usually their downfall. Nevertheless, since this type of
analyéis can be considered as quite qualitative, a statistical means of testing similarity has
been considered as well. Aé the accepted statistic for the comparison of MDS results, the
coefficient of alienation, K, is also used to determine statistical similarity, using the
empin'cally—derived_'vdlueé' p‘feéentedv by Borg and Léutner [4]. to determine 'si'rhilarity at
the p = 05 levei (és discussed in Section 2.2.1). However, statistical significance is not
always practical significance, so it is‘ important that our qualitative analysis—our
assessment of reasonableness of result—agrees with the statistical measures on the
similarity of the results of the two studies; both measures of analysis are required if we

are to consider criteria three to have been met.

7.1.3 Strengths and Weaknesses of Validation Process

Overall, the main weakness of this validation process is thé degree of bootstrapping
involved in the creation of the stimuli and the design of our studies: we are testing a new
study methodology on a new stimulus set. Furthermore, the gold standard that we are
comparing the results of our new study against comes from stretching an already

established technique potentially to its breaking point.

However, these two studies were carefully designed to minimize any circularity in their
reasoning and to minimize the amount of bootstrapping. The full-set study uses an

already valid technique to gather data, and its main weakness is the potential fatigue of its

participants, which we watched closely for. The subset study uses an unvalidated

technique, but its potential weaknesses are in the logic of the study itself, and it is, in fact,
designed to minimize the issue of fatigue that troubles the full-set study. So each study’s
weaknesses are designed to counteract the weaknesses of the other, with the full-set study

providing the solid ground-truth, produced at a heavy cost, while the subset study can be

compared to this ground-truth with data much more easily gleaned from the user.




7.2 50-Stimulus Subset MDS Study

Our study using the subset method of data gathering for MDS takes place in two parts. In
the first part we ran a study on 15 participants using the subset method, specifically
designing our experiment to allow us to analyze several different characteristics of our
new methodology in order to test for validity. While this experiment did produce several
very important insights into the strengths and weaknesses of our new method, it also
failed to produce an MDS plot that was sufficiently similar to our gold standard due to
the experimental design decisions we made (specifically, it was derived from non-
uniform number of observations across the full-set dissimilarity matrix). Thus in the
second part of our study, we ran an additional 7 participants with the specific aim of
gaining a better coverage of perceptual data across the entire stimulus set. By adding
these supplementary data points, we were able to increase the quality of the resultant
MDS plot such that it was both qualitatively and quantitatively similar to our gold
standard. At the same time, we gleaned an important methodological insight, i.e. the

importance of uniform coverage.

7.2.1 Method (Study Part One)

Fifteen participants, 5 female, 10 male, ages ranging from 22 to 35 were recruited to run
this experiment. All were graduate students at UBC. The experiment lasted

approximately one hour, and participants were compensated $10 for their time. -

As in the full-set, gold standard, study, participants sorted a set of haptic stimuli on the
Nokia 770T u.sing tﬁe 'pro'gram déscﬁbed in Chapter 5 Each participant sorted a
particular stimulus set three times during the experiment session. In the first sort,
participants were told to group stimuli into whatever number of discrete, non-overlapping
groups they felt was appropriate to describe the perceived dissimilarity between stimuli.
For the remaining two sorting tasks, participants were required to sort the stimuli into a
specified number of groups, either 3, 9 or 15. Of these three group numbers, the one
closest to the number of groups chosen in the first sorting task was not used, with the
remaining two numbers randomly assigned to the second and third sorting tasks.

Participants wore Bose Quiet Comfort 2 acoustic noise cancelling headphones during the
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experiment, which played white noise loudly enough to mask the sound made by the
haptic feedback on the device. White noise was substituted for music, which was used for
the gold-standard study, because (a) the experiment time was shorter (and so the noise
less tiresome) and (b) we had recruited ‘normal’ rather than especially trustworthy
participants, and were not comfortable allowing them to self-monitor their own music

choice. The use of white noise is a much simpler and more realistic experimental setup.

Unlike the full-set study, participants were not presented with the full 84 haptic stimulus
set, but instead with a subset of 50 haptic stimuli. Subsets of size 50 were chosen as the
target size as, in initial testing, it was found to be the largest number of stimuli that could
be consistently sorted in approximately an hour, using the technique described above.
Using the subset algorithm described in Chapter 4, and employing the modifications to
our method described in Section 7.1.1, we produced 5 randomly distributed subéets (see
Appendix C for specific subsets used) that we could use multiple times in order to test if
judgments differed from subset to subset. Our algorithm ensured that every two stimuli
appeared together: at least once in one of the subsets, and guaranteed that a dissimilarity
value would be present for each combination of stimuli. While our algorithm attempts to
minimize the ambunf of ‘ovérlé-lpping coverage, certain points:in the dissimilarity matrix
are overlapped by as many as four different subsets, though most points are covered by
only one or two subsets. This overlap is unfortunate but some amount is unavoidable due
to the nature of the sorting task. Each one of the 15 participants performed their sorting
task on one (and only one) of the five subsets, meaning that each subset was sorted by
three participants, with 3 participants x S subsets giving the total 1S participants, as
shown in Table 7.1.

7.2.2 Results

Dissimilarity values for each participant were calculated in the same manner as described
in Section 6.2.2. Full 84x84 symmetric dissimilarity matrices were then created for each
participant, containing the dissimilarity values for those stimuli present in the subset they
were tested with, and a value of -1 for all stimuli not presented, to mark them as missing.

These dissimilarity matrices were then averaged over all users, with only the non-missing
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values used to create the average value for each point within the matrix (many of the final

values were thus averaged over different numbers of individuals).

This averaged dissimilarity matrix was then run through the SPSS ALSCAL algorithm
for dimensions 1 to 4. The resultant stress values were plotted (see Figure 7.1), and a
marked elbow was looked for, but no obvious candidate was forthcoming. The most
likely candidate for an elbow was the 2D solution, though the overall curve of the graph
was fairly even. The 2D solution had S-Stress = 0.38949 and r* = 0 .23463, while the 3D
had S-Stress = 0.28216 and #* = 0.35597. These stress values are reasonable, though the
#* values are very low‘, indicating that a large amount of variability in the data was not
accounted for in the solutions. However, this trend occurs across all dimensions, so we
were forced to use the data as it was. Therefore, as in our full-set study, for parsimony as
well as ease of interpretation, the 2D solution was selected for analysis, and the 3D

solution was consulted for clarifying purposes.

Upon an initial analysis of the 2D solution, several features were evident (see Figure 7.2).
Firstly, the strength of the amplitude axis is still quite evident, which is encouraging if we
are concerned about the results being realistic: the subset technique has at least captured
this, the strongest trend in the data according to our gold standard. Additionally,
essentially no effect of frequency was féund, just és in the gold standard. However,
applying the rhythm trends as established in our gold standard, we see that the placement
of the four groups has shifted. In the gold standard, the- 2D solution was split,
orthogonally to the trend of amplitude, first according to the note lengtﬁ of the rhythms,
short to long, and then within those two halves, from even rhythms to uneven rhythms. In
the 2D solution for the subset study, however, the solution is split first according to
evenness of rhythm, and then by note length. The major manifestation of this is that the
group of stimuli that has long notes and an even rhythm has shifted over to the far

extreme left of the map, pushing the other three groups towards the right.

Comparing the subset study MDS output statistically with the gold standard, we find a

result contradictory to our visual inspection: the coefficient of alienation, K, is 0.4485,
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which, at NP = 84, ND = 2, is less than K critical = 0.55, and is significant for p = .05,
according to the work of Borg and Leutner [3] and described in detail in Section 2.2.1.
This result means that the similarity between the MDS maps of the subset and full-set
studies is statistically similar, ét a 95% confidence interval. Here we are prese_,nted with a
case where statistical sig'nifivcvance does not seem to agréé-vk;ith oﬁf practical anaiysis. The

reason for these troublesome results is discussed in the following section

7.2.3 Reasons for Difference in MDS Resﬁlts |

The discrepancy between our statistical and practical analysis was a major concern to us.
The placement of the “long-even” group in a different position as opposed to the gold
standard study was a potentially fatal result for our new study methodology. This result is
the primary reason why we determined that we needed to run additional participants, as
described in Section 7.2.4—a choice that would result in a successful. validation of our
new technique. First, however, we will describe how a limited number of observations
caused this group of stimuli to be placed differently, the key insight leading us to run

additional participants.

Analysis of Standard Deviation

As visual inspection and statistical comparison differed in their conclusions, greater
importance was placed upon our third means of analysis, comparison of the standard
deviation values of the averaged dissimilarity matrix. The average standard deviation of
all values in the dissimilarity matrix is 346.27, whiqh is considerably higher than the gold
standard’s average SD of 160.02, so right away we were presented with a potential
explanation for the difference in the two MDS outputs (gold standard and subset study) as

being some source of additional noise in the subset data.

Next we observed the distribution of the SD values over the dissimilarity matrix for the
subset study, and noted a marked difference in the distribution of high and low SD values
as compared to the gold standard (see Figure 7.3). The gold standard generally contained
high SD values for points in the matrix where two stimuli of the same amplitude level

were being compared, and low SD values for points where stimuli of different amplitude
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levels were compared. By contrast, the subset study has distinct “stripes” of high SD
values running through the dissimilarity matrix. These stripes occur along groups of four
or five stimuli, and extend through comparisons with other stimuli of both different and
the same amplitude level. No overall trend of between and within amplitude comparisons

can be seen.

As noted in Figure 7.4, many of these stripes of high SD occur along stimuli from the
“long-even” group —the same group whose placement in the MDS map is the primary
difference between the full-set and subset study’s results. Though there are two other
stripes that correspond to stimuli in parts of other groups (the high-amplitude and
frequency members of Group 4 from Table 3.2, and the high-amplitude, low-frequency
members of Group 5), the long-even group has by far the largest number of stimuli that
are part of these high SD stripes. Certainly it can be noted that not all of the stimuli in the
long-even group correspond to areas of high standard deviation; indeed several of the
stripes are off by one or two stimuli from the actual stimulus groups. However, as we will
argue later, this is because such stripes of high SD are the result of a combination of
certain hard-to-judge groups with areas that received low numbers of observations, and

so this lack of exact correspondence is to be expected.

Nevertheless, a high degree of variability would _explain ‘why the long-even group
appears in a different position in the subset study’s results compared to the full-set study.
What requires an explanatlon is the source of thlS h1gh degree of dlsagreement among
participants. Comparison of individual 'MDS plots is not overly fru1tfu1 as most
participants saw different sets of stimuli than the others and thus have, by definition,
different MDS plots (see Appendix B for individual plots). Consequently we continue to

rely on standard deviation as our main method of analysis.

Hypothetical Explanations for Divergent Long-Even Group Results
There are several possibilities for the observed strips of high standard deviation
associated with the long-even group in the subset MDS result. It could be that by a fluke,

these stimuli only ever occurred in one of the subsets, thus biasing their results
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(Hypothesis 1); it could be that this is the result of different subséts producing different
results for the stimuli in this group (Hypothesis 2); it could be that there was simply not
enough data gathered for the stimuli in this group to gain a statistically reasonable
average (Hypothesis 3); or it could be that the long-even group is inherently harder to
judge than the other groups (Hypothesis 4). Hypothesis 4 is hard to prove definitively;
instead it becomes the default conclusion by elimination if the other explanations are

actively disproved.
In the following, we will address Hypotheses 1-3.

Hypothesis 1: Fluke Distribution of Stimuli

As the subsets were randomly created, it would be expected that the stimuli in the long-
even group would appear fairly evenly throughout all five different subsets used, and this
is indeed the case. All five subsets contained between 7 to 12 out of the 16 total stimuli in
the long-even group (see Appendix C for subsets used). Thus all of the subsets would
have contributed values to describing this group, so Hypotheses 1, the ‘fluke’ uneven

distribution of stimuli, is eliminated.

Hypothesis 2: Subset-Relative Judgménts

We know that long-even note rhythm stimuli occurred at roughly the same frequency in
all 5 subsets; however, we do not know if one or more of these subsets had a distribution
of stimuli that would cause the judgments in the set to be skewed and/or noisy. If such
outlier subsets existed in our study, it could be that they contributed to the long-even
‘group being placed differently in the MDS plot (hypothesis 2). If this were the case, we
would notice this most distinctly for dissimilarity values that were averaged using data

from different (conflicting) subsets.

A simple way of determining whether the averaged dissimilarity values for the long-even
group came mostly from overlapping subsets or just from single subsets was to look at

the number of values used in the average of each dissimilarity value in the group. If we

plot the number of observations for each dissimilarity value in a similar way to the




standard deviation values (see Figure 7.5), we can see which values were produced only
from a single subset (evaluated by three participants, and shown in dark purple), and
which values were produced with data from more than one subset (run by some multiple
of three participants (shown as light purple or white cells, i.e. lightest means highest

number of both observations and distinct subsets used).

By lining up the columns and rows that contained the long-even group (orange) with the
plot of the number of observations, we can see that for the most part, the dissimilarity
values for the long-even group have been aggregated from single subseté (dark purple;
though the particular subset that has contributed to each value does differ). Given the
high standard deviation that the long-even group is correlated with (as illustrated in
Figure 7.4), a possible explanation is that the noise was due to judgments for different
subsets being distinctly different as a consequence of between-subset variations--yet this
appears not to be the case. These levels of high SD seem to be occurring despite the
values being averaged from only one subset, so we can claim that Hypothesis 2, noise
from conflicting subsets, does not appear to be a convincing explanation for the source of
the higher overall noise exhibited in the subset analysis compared to the single set

analysis.

It should be noted that there is another way that subset-relative judgments could have
affected the placement of the long-even group, bht it is not an effect th-at would have
produced the distinctive , long-even group associated stripes of high SD that are evident.
If there were any subsets that 'produced judgfnents for the loﬁg-evpn group which were
distinctly different from that of the other subsets (i.e. these stimuli substantially
rearranged on the MDS output, as opposed to their relative positions ‘stretched’ a little),
then stitching together the results from these subsets could create a contradictory picture
of the entire stimulus set, as evinced by high noise associated primarily with members
found in the idiosyncratic subset as opposed to just the problematic stimuli group.
However, the stripes of high SD occur across all five different subsets (since the long-
even group that corresponds with them appears in all five subsets)--so either all the

subsets produced idiosyncratic results for the long-even group, or none of them did. If
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each subset skewed its judgments consistently, we would not notice a trend of higher SD
for the long-even group, a consistent skew should produce similar results for each of the
subsets which in turn produce a low SD when aggregated. In fact the only way in which

we would be able to determine such a skew would be in comparison to the gold standard.

Alternatively, if the subsets caused judgments fo skew unpredictably for each participant
(between-participant variations rather than between-subsets, but in a subset-specific way)
then we would expect to seé levéls of high SD across all stimuli and not just in tﬁe long-
even group (Hypothesis 4 already accounts for there being something particular about the -

long-even group that tends to create noise).

Hence it is not the case that our observed noise resulted from the fact that in some
instances, dissimilarity values in the long-even group were averaged from multiple-
individual evaluations of a single subset, as we can See no evidence that any of the
subsets produced ‘bad’, outlier results. In Section 7.3.2 we further discuss how we found
no evidence of subset-relative skewing of judgments overall, but for our current argument
pertaining to the long-even group it suffices to say that such subset-relative judgments do
not appear to have caused the high SD exhibited by this group. Thus we are left with
either Hypothesis 4 (long-even group is inherently hard to judge) or Hypothesis 3 (this

group did not receive sufficient observations).

Hypothesis 3: Insufficient Observations

While one can view the plotted observations (Figure 7.5) as a means of determining how
many different subsets contributed to an average value, we can also simply consider the
number of observations as a raw value in itself, disregarding how many subsets these
observations came from. Performing this mental switch, we notice that the long-even
group largely corresponds to areas with the minimum number of observations (three,
represented by dark purple). A low n value in the calculation of standard deviation allows
outliers to more strongly affect the value, and so the high standard deviation that the
long-even group corresponds to could well have been caused by have an n of 3 for many

of its values. It is thus possible that outliers from such a small sample of data (as
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evidenced by the high SD) caused the long-even group to be placed differently in the
subset study’s MDS output, as compared to the gold standard. Given that the subsets
were randomized, we can only conclude that it was simply an unfortunate distribution
that caused the long-even group to have so few observations for many of its dissimilarity

values.

Thus far, our data analysis allows' us to make this claim specifically about the long-even
group, but we have not yet presented a general analysis of how the number of
observations (as well as the number of subsets) can affect the quality of the MDS results.
In Section 7.4 we discuss this topic in much greater detail. Nevertheless this analysis is
key to understanding why we decided to run additional participants: i.c. we needed to .
distinguish between Hypothesis 3 (insufficient observations) and Hypothesis 4 (inherent
difficulties in judging) to explain the placement of the long-even group. Thus, we chose

to obtain additional data to rigorously test Hypothesis 3.

To bring the current analysis to closure, we will thus make a forward reference to the
conclusions derived ffom this augmentation of our study in Section 7.3, where we do
indeed find that increasing the number of observations (apparently independently of the
number of subsets) to a level that is relatively uniform across all stimulus pairs,
diminishes the stripés of high SD. That is, low observation numbers seem to correlate to
high SD, and this compounded with the fact that the long-even group, by chance,
appeared to particularly suffer from receiving a low number of observations. Further, the
augmented subset study produced an MDS result in which the long-even g}oup is placed
consistently with the gold-standard result. We therefore will conclude that Hypothesis 3
is upheld.

Hypothesis 4: Long-Even Group is Inherently Hard to Judge
Our results to this point do not allow us either to firmly accept nor refute Hypothesis 4,
that the long-even group was inherently harder to judge. Compounded with the lack of

observations, this inherent difficulty could well have been an additional source noise. We

87



therefore must conclude that it may also have contributed to the stripes of high standard

deviation seen associated with this group in Figure 7.5.

Summary of Long-Even Results

Overall, these findings are very encouraging: we were initially worried that subsets might
produce poor results, but have found instead that they can produce strong results quite
similar to the gold standard. Along the way, we discovered the importance of maintaining
uniform coverage, of at least 5 observations per point, across the whole dissimilarity

matrix. Below we will further disambiguate the role of the subsets themselves in the

result (7.3.2).

7.2.4 Study Part Two: Additional Participants with New Subsets

The fact that many values in the averaged dissimilarity matrix for the initial subset study
only came from a single subset, tested three times on three different participants, was due
to a particular choice in the study design of using only 5 subsets for 15 participants. We
made this choice so we could gather a baseline level of variance due to individual
differences, and compare it against the level of variance between different subsets.
However, this choice had the negative side effect that there was a fairly large range in the
number of observations that a given value in the aggregate dissimilarity matrix could be
averaged over. Values where subsets 'overlapped were replicated three times, meaning
that while some values had as few as three observations, others had as many as twelve.
Since it appeared that these values with a low number of observations might be causing
the MDS output to differ from the gold standard (Hypothesis 3), it was decided that we
should run more participants, using new subsets designed to “fill in the gaps” left by the
first subsets, thus evening out the number of observations across the entire dissimilarity

matrix.

Method
Seven additional participants were run through the same procedure as described in 7.2.1,

but this time each with a unique subset of 50 stimuli designed to even the coverage

provided by the first subset study. Participants were all graduate students at UBC, ages




ranging from 22 to 29. The seven additional subsets ensured that each point in the
aggregate dissimilarity matrix had a minimum of 5 observations (filled from a minimum
of 3 different subsets), while the majority of points had between 6-10 observations and

some points had as many as 17.

Results

Adding the dissimilarity matrices produced from the 7 additional participants to those
produced from the original 15 participants, we created a new aggregate dissimilarity
matrix, which we then ran through the SPSS ALSCAL algorithm as before. Figure 7.6
shows the stress plot for the new MDS solutions, from dimensions one to six. Though the
stress curve is very similar to Figure 7.1, again with no marked elbow, there is a
significant increase in #* values for both the 2D and 3D solutions at 0.32848 and 0.47007
respectively, indicating a greater amount of variability in the data has been accounted for

in the solution.

Graphing the MDS output with the additional participants’ data, and applying again the
grouping of stimuli from the gold standard, we find a much more encouraging result (see
Figure 7.7). The trend of amplitude is just as strong as before; but now the trend of
rhythms, from long note to short note with uneven to even nested within, is present in the
exact same order as the gold standard (Figure 6.10), though mirrored left-right. As
relative, not absolute, position is what is important in MDS plots, mirrored. results are
equivalent. Mapping an axis along the centroids of all four of these groups creates a line
almost perfect&lvy ppfpendicular to the axis of afnplitude, preciéely as. ithdo.es in the gold
standard. Additibhally, idiosyncratic placements of stimuli éuéh as 44 and 45 (from the
short-uneven group) amongst a generally long-uneven cluster are replicated quite
similarly to the gold-standard solution. Further qualitative similarities and analysis are

described in Section 7.3.1.

Two quantitative values also point towards an increase in similarity to the gold standard.
The average standard deviation is down from 346.27 to 245.78, which is still higher than
the gold standard’s value of 160.02, but greatly decreased from the initial subset study,

89




in_dicating that these results are more internally consistent. Furthermore, the new, lower K

~ value of 0.3534, a roughly 21% decrease from the previous value of 0.4485, is consistent

with the theory that the additional participants run have increased the similarity between
the subset study’s results and the gold standard—though as discussed before and further

elaborated in 7.3.1, K cannot be taken as a complete guarantor-of similarity.

Running additional participants was done in order to address our analysis in Section
7.2.3. The results of this addition back up Hypothesis 3, i.e. that insufficient obseryations

can explain alterea placement of the long-even group in Part 1 of this study.

7.3 Validation of Subset Technique

We set out to prove the validity of the subset method of data gathering for MDS by
ensuring that it met three criteria: that different subsets did not produce significantly
different results for the same stimuli; that the resultant MDS plot was reasonable and.
believable in terms of interpretability; and that the MDS output compared favorably to
that of the gold standard. Below, Section 7.3.1 describes how the output of the MDS
algorithm is structured and how it compares to the gold standard, thus validating our
method in terms of the second and third criteria, given sufficient data as collected in Part
Two of this study. After this, Section 7.3.2 describes how the standard deviation of the
dissimilarity values shows where discrepancies between individuals arose, disproving the
theory that these discrepancies arose from the use of subsets, thus satisfying the first
criterion. The analysis of standard deviation (7.3.2) is made easier by first considering the

shape of the MDS outpuf, which is why it is discussed second.

7.3.1 Criteria 2 and 3: Reasonableness of Results & Comparison to Gold

Standard

The initial MDS results of our subset study could be said to have met the second criterion
of reasonable and believable results, but failed on the third criterion of similarity to the
gold standard. The strength of amplitude and the lack of effect of frequency were as
expected, and grouping according to certain aspects of rhythm on an axis perpendicular to

that of amplitude were also evident. Without a gold standard referent, we could have
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concluded that these results in fact represented ground truth as to the perceptual
characteristics of the rhythmic haptic stimulus data set. Even with the gold standard,
according to our statistic of similarity, K, the two results were similar. However,
according to our visual, ad hoc analysis of the MDS outputs, the two trends of rhythm
were without a doubt different: the four main groups differed in order of appearance
along the rhythm axis, which would lead do different conclusions about which aspects of

rhythm were more perceptually important in differentiating between stimuli.

Happily, running additional participants closed the gap between the subset study and gold
standard, greatly increasing their similarity even to detailed visual inspection. Though
rotated roughly 45 degrees clockwise, and mirrored along the rhythm axis (béth simply
products of random variations within the MDS algorithm itself, and therefore
inconsequential), the two MDS maps maintain the same order of grouping along the
rhythm axis, and have an even stronger and cleaner separation along the amplitude axis.
K was similarly more positive, approaching more closely its ideal value of 0. Thus at a
broad level, the subset results did seem to resemble those of the gold standard to a

reasonable and practically useful degree (in the absence of other objective measures).

Sub-Group Analysis for Higher Resolution

However, these trends were fairly high level, and so a more detailed analysis was
performed in order to determine how well the subset methodbcaptured the mére nuanced
characteristics of the stimulus set. In the analysis of the gold standard, a sub-analysis of
all the stimuli with a high *amplitude‘levei was pérformed in order to iexLaminc more
closely what effects rhythm had on the stimuli’s perception, regardless of amplitﬁde; we
performed a similar sub-analysis on the data produced by the subset method, to see if it

yielded the same insights.

In Figure 7.8, the high-amplitude sub-group is analyzed in isolation and graphed.
Applying the same groupings as in the gold standard and plotting their axes, we see that
they are almost exactly the same length and in similar directions. Indeed the general

layout of the two graphs, Figures 7.8 and 6.9, is strikingly similar. The evenness of a
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given rhythm makes up one axis, going from even in the top right to uneven in the bottom
left, while note length makes up the second axis, going from long notes in. the top left to

short notes in the bottom right.

However, there are some differences between the two MDS maps, most notably that the
short-even and short-uneven groups are not totally separated, as they are in the gold
standard. The two stimuli with a four quarter-note rhythm, and the two stimuli with an
eight eighth-note rhythm are situated amongst the short-uneven group, which is counter
to their placement in the gold standard. This placement may indicate that, at least for
short-note rhythms, the number of notes in a rhythm is sometimes considered as the same
thing as the perceived evenness of the rhythm. However, at this level of detail, we are
entering into a realm of very precise pronouncements about how very small numbers of
stimuli are perceived, from a study that involved the judgment of a very large number of
stimuli. Insights at this level are probably better served by studies run on small sections
of the data, looking for particular characteristics of individual stimuli. Thus at a
secondary level of detail (with amplitude removed) the results from the subset study can
be said to be similar to that of the gold st'andard, though at an even further level of detail,
discrepancies begin to appear. This level of correspondence is likely greater than we can
expect between any two experiments run on the same stimuli, so for our purposes, the
MDS results of the subset study and the gold standard can be said to be both quélitatively

and quantitatively similar.

Questioning the Statistical Analysis

One last question that might be asked is why the K statistic failed to account for the
differences in MDS outputs that were observed through our own analysis. A potential
explanation for this is due to dependence of K on the distances between each data point
on the map, as K is calculated by comparing the distances between each data point in the
first map against the same distances in the second map. Since both 2D results were
arranged in a circumflex, most points in the MDS map have large distances between

them, across the circumflex. Consequently, the similarity of these large distances may

have had a large enough effect on the K statistic that the change in position from one side




of the circumflex to the other, of a small number of stimuli, created too small a difference
to greatly change the overall K value. Since K does not encode the relative importance of
any particular stimuli, it could not reflect the significance that the change in position of
those particular stimuli had. Indeed, a similar change in position (distance-wise) of a
different but similar number of stimuli could likely have produced more-or-less the same
ordering of rhythm groups, which we would have then used as an argument for the
similarity of the two MDS results. This result only serves to confirm to us the importance
of cross-checking conclusions using several means and of looking for practical
significance as well as statistical significance; which our results, in the end, have indeed

demonstrated.

7.3.2 Consistency of Results: Do Subsets Introduce Too Much Noise?

The‘standard deviation of each averaged dissimilarity value can be used as an indicator of
the degree to which different participants disagreed on how dissimilar a pair of stimuli
appear: the higher the standard deviation, the higher the disagreement between
participants. If all the participants were tested with the same subset, then the level of
disagreement can be attributed solely to individual differences, and/or variability in
repeated observations by the same individual, in their perception of the given stimuli. If
the participants were judging the same stimuli, but in different subsets, then an additional
potential source .of disagreement is the relativizing effect of different subsets on
perceptual judgments. Thus if we are concerned ‘about whether Splitﬁng the stimuli up
into subsets will cause too much variability in judgments (Criterion 1 in Section 7.1.1),

analysis of standard deviation is where we need to concern ourselves:

Noise Due to Subset-Relative Judgments: Between-Subsets Analysis

The need to check for this effect drove our initial 3 participant x 5 subset study design:
we required replicated data for a small number of unique subsets, as opposed fo a larger
number of non-replicated unique subsets, with their more complex overlapping pattern.
The data from the additional participants is discussed in the next section, but this
particular analysis requires the 3x5 structure of the first part of the study. As we had three

participants sort each subset in the first round of our study, we can create an average for
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the dissimilarity values for each subset, and examiné the standard deviation of those
averaged values to determine the baseline level of noise that comes solely from
individual differences. The baseline SD gives us a reference point to compare against the
SD of dissimilarity values averaged with data from multiple, overlapping subsets—values
indicating the level of noise from individual differences plus the effect of different
subsets. If the SD for these ovériap véiués;is ‘substantianllly greéfer than the baseline, then
we would have strong evidence for there being an effect of subset on the judgments given

by participants. -

This comparison is performed by plotting the SD of all values in the dissimilarity matrix,
aside by side with the number of subsets involved in the average of each dissimilarity
value, as is shown in Figure 7.9. By Comparing back and forth between the two halves of
the matrix, various trends can be discerned. Through choice of colouring we highlight
that the darker areas of high SD (and specifically the distinct “stripes™) generally occur
where there are darker areas indicating a single subset — i.e. non-overlap areas; and that
the lighter areas of low SD generally occur where there are lighter areas of high numbers
of subsets. This result is in contrast to our original concern that increasing the number of
subsets in play would increase SD for observations from overlapping subsets, although it
is countered by the fact that these points also have more observations overall.
Nevertheless, it does appear that dissimilarity values from overlapping subsets converge

towards an appropriate value for this stimulus set.

If some particular subsets affect peoples’ judgments by consistently skewing them a
certain way (for all individuals), then we would expect .to see the result of overlapped
dissimilarity values having higher SD, a result that we did not see. However, if some
subsets by chance contain combinations which generate confusion or disagreement and
simply make everyones’ judgments noisier, then we would expect to see that some
subsets exhibit overall levels of noise higher than others. This too, is not evidenced by
our data, most strongly by the instances of stripes of high SD. These stripes occur across
values from all five of the subsets used originally, and as noted above, generally only

have single subsets contributing to each of its dissimilarity values. The consistency of
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these stripes of SD across all five subsets seems to indicate that no one subset was noisier

than the other.

The fact that the levels of high SD found in the first round of the study cannot seemingly
be attributed to the negative effects of subsets is strong support for the subset method

meeting the first criterion of validity (no effect of subset-relative judgments).

Evidence from Additional Participants

Further evidence for the lack of subset-relative effects is the results from running
additional participants, each with their own, unique subset. If each unique subset did tend
to produce judgments that were unique for the stimuli contained in the subset, then
adding in seven new subsets to a data set already built up of five different subsets should
increase the overall noise level in the aggregate matrix. Yet the net effect was to reduce
standard deviation and increase the MDS result’s similarity to the gold standard. This
reduction confirmed our initial hypothesis (Section 4.2) that the best way to counteract
any effect of subset, large or small, is to completely randomize the selection of each
subset used and to use overall a ‘reasonably’ large number of subsets relative to the size
of the complete stimulus set. In this way, if any one subset did have a strong relativizing
effect on judgments, its effect would be minimized due to its data being mixed in with
many other subsets, which should, on average, contain a reasonable cross-section of
stimuli. Another way of saying this is that we wished to have as many different subsets as
possible, to minimize the effect of each one; randormzed subset construction maximizes
this effect. By giving multiple participants the same subset (Part Ong_of this study), we
were able to observe this trend, but- this techniqueiis not recommended for regular use:
instead complete subset randomization, as originally specified, will minimize overall
noise levels in the data, as well as the number of participants needed to obtain a desired

number of observations for each data point.

In summary, we cannot claim that there will be no effects of subsets; and to some extent,
the low impact of subsets observed here could be a function of characteristics of the

particular overall stimulus set which we have explored in the present research. Other sets,

95




e.g. those containing small groups of highly salient stimuli, could potentially be more
vulnerable to such problems. However, it appears that (a) potential subset effects can be
mitigated by using more and randomly created subsets, as opposed to fewer; and (b) the
effect of subsets handled in this way are likely to be small, or even negligible (as
observed here) in comparison to that of individual differences. Since the problem of
individual differences is one that is never going to be removed completely from an
experiment, we can assume that the effect of subsets, if any, will manifest itself very
infrequently if handled properly. Individual differences are a problem that any MDS data
gathering technique suffers from, so we feel we can conclude that our new subset
technique suffers from no problems worse than those confronted by any other method

known to this author.

7.4 Reflections on the Design of the Subset Data Gathering Method

With a strong case made for the validity of the subset method of data gathering, we turn
next to a reflection on the overall nature of the technique, its strengths, weaknesses and
peculiarities. Especially in our analysis of the standard deviation of the dissimilarity
matrix, we found many interesting features indicating where our experimental technique
succeeded, and where it struggled. As we wish this technique to be taken up by other
researchers in the field, we outline here several important features or the subset method

that any experimenter who wishes to use it should be aware of.

7.4.1 Observations vs. Subsets

In validating our method, we showed that subset-relative judgments did not appear to
have a strong negative effect on our results (7.3.2). If judgments did differ from subset to
subset, this difference- was not evident to us. Furthermore, in our an‘alysis of the long-
even group (in Section 7.2.3), we concluded that its improper placement in the MDS plot
from the first part of our study was due to it receiving an insufficient number of
observations in conjunction, perhaps, with it being an innately difficult group to judge.
These two results together seem to indicate that to ensure the quality of MDS results

using the subset method, one should concern oneself most with gathering enough
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observations, and not be too concerned about the effect of subsets; and potentially to even
employ more subsets to reduce the skewing influence of ‘outlier’ stimulus groups. We

pursue this argument to its conclusion here.

Importance of Having Sufficient Observations A

A low n value in the calculation of standard deviation allows outliers to more strongly
affect the value. Thus analyzing Figure 7.9, we cannot be too surprised to find that having
high SD in dissimilarity values seem to consistently occur where there are a low number
of observations, though the converse is not always the case. It is important to note that a
low number of observations has not in all cases resulted in high standard deviation,
especially the noticeable “stripes” of high SD. Referring back to Figure 7.5, we see that
these stripes also largely correspond with several different groups of stimuli from
particular types of rhythms. Thus a second condition for creating high SD seems to be
that the stimuli being averaged are from either the long-even group, or the two additional

small subgroups of stimuli that also have high SD.

The nature of these two conditions is largely quite encouraging. By design, the areas of
the dissimilarity matrix with the highest number of observations are also the areas with
the greatest amount of overlap between subsets. Yet these areas of high overlap in fact
generally correspond to values with low standard deviation; and even with the noise-
reducing role of increased observations, if subset overlap was a source of truly discrepant
data, we would not expect to see this. What this correspondence seems to indicate is that
having observations coming from multiple different subsets has not been a noticeable
source of mnoise in our data—th'e' judgmerits from different subsets h'a;/e generally
converged. Instead, our major source of noise abpears to be simply the effect of
individual differences, regardless of subset, causing havoc within an average only when it
contains too few observations. Furthermore, adding in more observations (as was done in
the second part of the study) served to decrease overall standard deviations levels (see

Figure 7.10) while simultaneously adding in more subsets.

Value of Having Many Subsets
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However, a potential confound to the claim that increased observations brought about
better data is that, in adding in seven more participants we also added in seven more
subsets. Thus it could be argued that it was adding in subsets and not observations that
increased the quality of the data. Though we had previously been concerned that different
subsets would produce markedly different judgments, we had also tried to mitigate this
problem by cfeatifig random sub/sets.th<at‘ would, on average, not suffer too-heavily from
this problem. Thus it could be argued that adding in more subsets simply allowed for the
differences between subsets to be covered over more evenly (mdeed a posmve role

-

which we originally hypothe51zed in our argument for subset randormzatlon)

~We did not find evidence of the subset-specific effect which the problem subset

randomization was meant to mitigate. Furthermore, the only positive effect we would
supposedly be gaining from adding in more different subsets would be to counter this
effect. It would almost then seem that our entire attempt to create randomized subsets
was of no value, given that the main effect that it was meant to counter was not found — at

least for this stimulus set.

Yet it would be premature to conclude that randomization is unnecessary, for two main
reasons. First, we have not shown that there will never be subset-relative effects, merely
that they were not evident in the current results. Indeed, it seems intuitive to us that there
must be at least some -variation due to subsets occurring, if only at a fairly small level,
and that randomization would still be the best means of handling this problem. Thus we
would argue that randomization acts as a sort of “safety net” that should help guard
against effects of subset, should any manifest themselves; and further, could help to

identify when larger subset effects do occur through a simple subset-overlap SD analysis.

The second point is efficiency: our subset randemization algorithm also helps to
minimize the number of subsets needed in order to have a certain number of observations
for all values in the dissimilarity matrix. This helps cut down on the number of
participants needed to run a study using the subset method and at the same time optimizes

uniformity of number of observations across all stimulus pairs, which is very important
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given that one of the major tradeoffs of the subset method is the number of participants
needed to gather data. In fact, if we had used unique randomized subsets from the start,
we would only have required 17 participants to gain the same number of observations (as
opposed to 22), and the distribution of observations would have been considerably more

even, with a range of 5 to 12 rather than 5 to 17 observations per dissimilarity value.

Types of Outliers and Method to Deal with Them

Another way viewing the argument put forward above is in terms of outliers. In our
analysis of standard deviation, it was noted that there were two main possible sources of
outlier data points that could cause noise in the data: individual differences and
idiosyncratic subsets. Furthermore it was noted that these two sources produced different

types of outliers, and could be dealt with separately using different methods.

The common source of outliers in psychological experiments is from individual
differences in perceptual, physical or cognitive ébility. We found this most evident in.the
five groups of three participants that each judged the same subset. Despite all
experiencing the same subset, they still exhibited a high degree of standard deviation,
even more so than where subsets overlapped, though not at a level that their results were
entirely different (see Appendix B for individual plots). Nevertheless these differences in
opinion must be attributed to individual differences. The standard method of dealing with
such individual differences is to ensure the participant pool is representative of the
overall population and to use enough participants to gain a representative sample. While
we made our best effort to ensure participants were representative, we founq that we had
initially gathered too few observations for maﬁy' of the data ~.'points. Thus we used

increased observations to guard against outliers from individual differences.

‘The second source of outliers was subsets, though we did not find strong evidence of this
being a large source of outlier data in the present data set. Nevertheless, we have not
disproven that subsets could exist that would greatly skew any judgments given from it.

Thus it is useful to consider the fact that the outliers caused by such subsets would occur

not at the level of individuals, but at the level of entire subsets. Instead of one individual




producing outlier results, one subset could produce outlier results over and over again,
each time it was used by a new participant. To guard against this form of outlier, we used
unique randomized subsets, so that the cost of any one outlier subset is mitigated by, on

average, having many more subsets that do not cause strong subset-specific effects.

In essence, adding in more randomized subsets and adding in more observations both
help reduce the effect of outliers, but at different levels. More subsets reduces the effect

of outlier subsets, more observations reduce the effect of outlier individuals.

7.4.3 “Striping” of Standard Deviation

One last particular facet of the standard deviation results that does bear further
examination is the “stripes” of high standard deviation in the aggregate dissimilarity
matrix. As can be seen in Figure 7.3, the stripes are very distinct and generally occur in
groups of four or five consecutive stimuli, though several single-stimulus stripes are also
evident. While these stripes were observed to occur due to a combination of a low
number of observations with certain groups of stimuli, adding more participants and
subsets removed the stripes of extreme high levels of SD. Yet if we observe the
distribution of SD within the new aggregate dissimﬂarity matrix (Figure 7.10) we find -
striping again, though at a much lower absolute level of standard deviation. Some of
these stripes are in similar-places as before, but many of them are not. Furthermore, their

correspondence with areas of lower numbers of observations is less marked than before.

Thus we are forced to conclude that the striping at least somewhat comes from the
algorithm that creates the subsets (see Chapter 4, Section 4.2 for details). The most likely
explanation is that those stimuli which are placed into subsets made first by the subset
algorithm (as is the case for many, but not all, of the stimuli that are part of stripes), end
up not being used very often in later subsets, since they have already gotten the requisite
number of observations assigned to them via the subset creation algorithm. This in turn
causes other stimuli that occur more in the latter subsets to have a much more randomly
distributed number of observations, since it becomes harder and harder for the subset

algorithm to come up with stimulus pairings that do not create overlap. Thus stimuli used
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in early subsets will likely appear in fewer different subsets, receiving fewer total
observations, and thus higher standard deviation. This potential weakness of the subset
algorithm was admitted early on, and it could possibly be dealt with through continued
iterations on the subset algorithm. However, once lower than a certain threshold of SD,
there seemingly appears to be no longer a great effect of the striping on the actual output
of the MDS algorithm. Moreover, if we had used completely randomized subsets (rather

than re-using the first five) this effect may have been even smaller to begin with.

7.5 Summary

With all 22 participants run through our subset study, the results we produced were very
similar, both qualitatively and quantitatively, to the gold standard which we produced
using an established, validated data gathering technique. Furthermore, the addition of
more subsets was found to increase rather than decrease the quality of the MDS output.

Thus our three criteria for validating our new experimental method were met.

The effect of different subsets on judgments made in the sorting task was found to be
negligible compared to individual differences in judgments, as evidenced by the relative
distribution of standard deviation for within-subset averaged dissimilarities and between-
subset dissimilarities. The fact that we saw areas of high SD generally being associated
with values that only a single subset contributed too, and that adding in more new subsets
resulted in lower SD values, all point towards subsets not having a negative effect on

overall agreement within the data. Thus criterion one was met.

Criteria two and three were met due to the reasonable and interpretable.results of running
the dissimilarity matrix gathered by our subset method through the MDS algorithm, and
its significant similarity to our gold standard. The 2D MDS output from the subset study
exhibited very similar trends of amplitude and rhythm as those found in the gold
standard, full-set study. Furthermore, the two outputs were statistically similar in layout
according to the alienation coefficient K, the best statistical measure available for judging
similarity of MDS results [4]; although we point out that this statistic must be used with

caution in the current context, and paired with other means of analysis.
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With all criteria met, and with results that are clearly similar to the gold standard, we can
feel confident that our new subset method of gathering data for MDS will indeed produce
valid results in future studies. Thus validated, we can recommend the method for use with
any similarly large stimuli set, as a means of gaining perceptual dissimilarity ratings from

users quickly and accurately.

102



Chapter 8: Conclusion

We set out in this thesis to accomplish two main goals. Firstly we wished to create a large
and diverse set of haptic signals, by using rhythm as a parameter that could potentially
increase a set’s expressive range; and to ascertain the perceptual dimensions by which
users actually categorize these signals. This first goal brought about the second goal,
which was to develop a new means of evaluating the perceptual characteristics of such a
large set of haptic stimuli. This we accomplished through the development and validation
of a novel technique for allocating stimuli to participants, allowing smaller subsets to be

tested separately on different users and greatly easing the task of data gathering.

In each of these goals we produced contributions to the field. The use of rhythms as a
design parameter opened up a huge design space that easily allowed for the creation of a
large set of different haptic stimuli. Prior work on haptic rhythms [24] [5] had only
shown some evidence of this promise. Furthermore, people responded well to the use of
rhythms in haptic stimuli; they were able to discern different aspects of rhythm within the
stimuli, and distinguished the stimuli accordingly. Not only was the stimulus set
successful, but our new experimental methodology proved valid as well. By producing
results that are comparable both statistically and practically to an established gold
standard we showed that breaking the data gathering task into subsets of the total, and
then building the overall .picture out of the pieces, is indeed a valid way to gather
perceptual data about a stimulus set. The particular contributions of each of these

successfully met goals are described in the sections below. -

At a high level, these contributions mean that we have crossed a major hurdle in what we
can do with haptic icons. No longer confined to small numbers used in restricted
laboratory studies, haptic icons can now be produced and analyzed in set sizes of more
broadly practical utility, given human perceptual abilities. Larger scale haptic icon
production can ensure that a designer wishing to use haptic icons can find the types of

stimuli that he or she wants, can find enough of them, and can know how each of them
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will feel relative to each other. This is a strong step towards mainstreaming the use of

haptic icons, and bringing them into the world of practical application development.

8.1 Conclusions on Rhythms for Haptic Icons

When we were trying to find a means of enlarging the number of haptic icons that could
be made, rhythm intuitively seemed like it might have depth enough to allow this. Our
intuition was amply repaid by the results we found. We made a simple first trial at
creating haptic stimuli using rhythm, attempting to use as few parameters as possible in
order to allow for easier interpretation. Thus we did not even tap all of the potential
aspects of rhythm—not to mention melody—that could be used with haptic stimuli.
Nevertheless we easily created a set of 84 haptic stimuli that we intuitively believed, and

later confirmed, to be distinct.

As always with haptic stimuli, designing them was one problem, but determining how
people actually perceived them was a second, and in many ways more difficult problem.
By using an established data gathering technique, we were able to build a dissimilarity
matrix for all stimuli which could be applied to MDS. Analyzing the resultant output
map, we were able to gain great insight into how these rhythm-based stimuli were

perceived.

Perceptually, oﬁr stimﬁli wére distinguished' first by their amplitude, ,théqgh not by
frequency. This result counters results of previous studies that found both amplitude and
frequency to be of importance [17]. This difference is perhaps because after amplitude, it
was the previously untested parameter of rhythm that appeared to be the most important
distinguishing feature. Rhythms shortened the overall time people were exposed to the
frequencies of the vibrations, the quick succession of relatively short notes overwhelming
the effect of frequency. This strong role of rhythm, and the conclusions we were able to

make about how haptic rhythms are perceived, is a major contribution of this thesis.

Our analysis showed that our haptic thythms were perceived according to two orthogonal

axes. Though these axes may be particular to the types of rhythms we chose to study, we
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hope that the simplicity of our rhythms should make our insights ‘a solid grounding for
more complex instances. The first axis was what we termed “note length,” while the
second was “evenness” of the rhythm. How a stimulus was perceived along the “note
length” axis depended on the longest note present in the rhythm. If a thythm contained a
half note or longer, it would fall on the “long” end of the note-length axis; if it contained
only notes shorter than a half note, then it would fall on the “short” end of the axis. The
“evenness” of a rhythm was determined by whether there were notes or rests of differing
lengths within a given rhythm. If so, then the rhythm will feel distinctly uneven or
unbalanced; conversely if a rhythm has only the same length notes and rests, it will feel
even. This was a consistently reported perception that showed itself clearly in the data,
yet was an unexpected perceptual classification which was not part of our original thythm
creation scheme. Nevertheless, these two axes of perception for rhythm appear to be
strong and robust. Not only that, but they provide useful tools for future designers to

predict how the stimuli they make will be grouped perceptually.

Compared to previously created sets of haptic icons, we succeeded in making an icon set
larger than any yet created. The next largest, the tactile melodies created in [24], was 53
icons, but these icons were collected at random from a database of real-world musical
melodies. More systematic icon sets like those created in the work of MaclLean and
Enriquez [17] or Brown et. al. [16] are generally even smaller, at 36 and 27, respectively.
Thus we have roughly doubled the size of any prior icons sets. Furthermore, the
perceptual axes our icon set exhibited—such as “note léngth” and “unevenness’—have a
much larger and more interesting space for growth compared to such prior axes as
amplitude or waveform; as they are not strictly ordinal in nature there is much more room

for creative design.

The different perceptual axes found for rhythmic haptic stimuli, even when using a fairly
simple set of rhythms, already show interesting and novel ways that stimuli can be
distinguished. Our stimulus set has shown very promising results, with interesting
perceptual features leading to an easily diversified set of rules about perception of haptic

rhythms. The detailed insight into how these haptic stimuli are perceived has made them

105



of great use to designers who wish to use haptic icons in their application, or to create

more haptic icons themselves.

8.2 Validation of MDS Data Gathering Technique

Our new method of gathering perceptual judgment data also proved successful. By
splitting the data gathering task into smaller subsets, we were able to greatly reduce the
amount of time it takes for a user to perform a complete set of judgnient"tasks. This sub-
sectioning allows for much more feasible experiment times, and ensures that fatigue is
considerably less of an issue for the judgmeflts givén. Fatigue in particular is.a very large
issue, as other methods of data gathering such as pair-wise compaﬁsons [20] can be
heavily affected by drifts in judgment criteria caused by fatigue or loss of attention over
time. Our new technique allows experimenters to select whatever size stimulus set they
would like, giving them complete control over how hard they wish to push the
participants in their study. The only major tradeoff of this technique is that the smaller the
subset of stimuli presented to the user, relative to the superset, the more participants will
have to be run in order to gain the same amount of data. For practical purposes, we
suggest that a subset / superset size ratio less than one third will require an impractical
number. of participants; in our case, with a subset size of 50, this would allow for a
superset of 150, which is almost twice again the size of our current—quite large—
stimulus set. Thus we still have considerable room for growth before our data gathering

method reaches its capacity.

To review the work we accomplished in designing and validating this new method of data
géthering, we first proposed a simple study design based oh combining two existing
methods of gathering data for MDS. By using the sorting method as used by MacLean
and Enriquez [17] among. others, as well as the incompleté—set design described by
Spence and Domoney [20], we developed the subset method, whereby each participant in
the study was presented with a subset of the total stimulus set,.with the average
dissimilarity matrix being created out of the patchwork coverage of the various

overlapping subsets.
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We then validated our new: technique by running a study using the new method on the
same rhythmic haptic stimulus set that we had already studied using an established, but
more cumbersome technique (the “gold standard”). What we found was extremely
encouraging. Using 12 different subsets and 22 participants, we produced MDS results
that both visually and statistically highly resemble the MDS results from the gold
standard. The same trends of amplitude and rhythm that we found in the gold standard
study were also found in the results of the subset study. Furthermore, the statistic of

similarity K [3], also showed the two results to be statistically similar at p=.05.

Perhaps even more convincing, was that when presented initially with somewhat unclear
results, it was running additional participants with more different subsets that improved
the results to a point at which they were clearly similar to the gold standard. It was seen
as a potential stumbling point of our method that participants would make their
judgments completely relative to the stimuli present in their subset, and thus each set of
judgments would be highly dependant on the subset they were from. However, we have
shown that by randomizing subset selection, adding in more subsets (along with more

participants) actually increases the accuracy of the averaged data.

Thus our main concern was allayed, and our resultant MDS output was confirmed as
similar to the gold standard. Consequently we feel confident that our new subset data
gathering method will produce valid results, and can be used in cases where the size of
the stimulus set that needs to be tested is larger than any one user can Be“reasonably

expected to make judgments on in a single sitting.

8.3 Future Work

There are two main areas of future work that start where this thesis ends off. The first is a
further refinement of the haptic stimulus set using the insights we gained from our
studies, and the second is a larger goal of applying these haptic icons in more in-depth

applications.
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Given what we found in our twin studies on the rhythmic haptic stimulus set, there are
clear indicators of which design parameters we used were most important to. people
pefceptually, and which were not. Certainly amplitude, length of notes present in thythm
and evenness of rhythm are among the former, while frequency (in the ranges tested, and
in the presence of the more salient rhythmic variation) is among the latter. Thus if we
wish to improve upon our stimulus set, making each stimulus more distinctive from the
others as well as providing logical grouping for the stimuli, we need to take our findings
into account and redesign the stimulus set accordingly. This redesigned stimulus set
would have to be tested again with users (most likely using our new data gathering
method), so that we could feel confident that our stimulus set actually exhibited the

perceptual characteristics we anticipate.

With a well-designed stimulus set in tow, our next task, and the true aim of all the work
that has gone into this, would be to apply the stimulus set as haptic icons in an interesting
application and test it with users. Specifically, our hope is that with such a large stimulus
set, we might be able to study the use of a haptic icon-enabled application over a longer
period of time, in order to determine the upper maximum of how many different haptic
icons a user can reasonably handle in -an application. Due to the novel nature of the
sensation haptic icons deliver, it ié our belief that users have to struggle considerably with
overcoming the ndvelty and unfamiliarity of the feeling before they are able to use haptic
icons successfully. Yet if users wer’e‘zex':f)d‘sed' fo hapﬁc icons for'a 1onger"_'1)ériod of time,
to the point af which these sensations became normaliied; then we might be able to
determine such things as just how prevalent the use of haptic icons can be in an
applicafion, how many haptic icons people can learn to use, and how useful haptic icons

can be for designing usable interfaces.

It is our sincere hope that the work done in this thesis will provide a key piece in

answering these questions.
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Chapter 1;
Motivation & Approach

Chapter 4:
Subset MDS Data
Gathering Methad

Figure 1.1 Logical structure of thesis. Chapters 3 & 6 pertain to the design and

Chapter
Validation Study

Chapter 2:
Related Work
Chapier 3:
Design of Rhythmic
Haptic Stimulus Set
Chapter 5
Methods & Apparatus
v
Chapter 6:
Investigation of Rhythmic
Haptic Stimulus Set
Chapter 8:
Conclusion

evaluation of the rhythmic haptic stimulus set. Chapters 4 & 7 pertain to the experimental
design and validation of the new data gathering method. Chapter 5 describes the methods

and apparatus that are shared by the studies described in Chapter 6 and 7.
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Table 3.1. Note Types Used in Rhythms. Though at its smallest level of granularity there
are 16 different slots in which vibration can be played, logically the notes are arranged
either according to whole, three-quarter, half, quarter and eighth notes. Each note consists
of both the time in which the vibration is played as well as the off-time where no
vibration is played that is needed in order for one note to be distinguished from the next.
Rest notes are referred to in the same manner as normal notes, except no vibrations are
played.

R# | Note Type

01{02|03]|04]05[06|07 08091011 |12]|13|14|15]|16

Whole Note

Three-Quarters Note

Half Note . Half Note

Quarter Note Quarter Note Quarter Note Quarter Note

Eighth | Eighth | Eighth | Eighth | Eighth | Eighth | Eighth | Eighth
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Table 3.2. Rhythms Used in Stimulus Set. Each row represents one “bar” that is repeated
four times over a 2 second interval to make a rhythm. Within each bar, a note is
demarcated by a pair of bold black lines. Notes contain both the on-time of the vibration
plus the off-time that allows each note to be distinct from the next. Thus within each note
there is a grey area indicating a time period where vibrations are playing and a white area
indicating no vibrations are playing. This is except for rest notes, which are all white. See
Table 3.1 caption for explanation of types of notes.

R# | Notes

GROUP 1

N n

| 18
N N W
20 ‘ R
m




Table 3.3 Lookup Table for Stimulus Set. Stimulus numbers are used to refer to
individual stimuli throughout the remainder of this document. We used a total of 84
stimuli, which consisted of 21 rhythms which varied as described in this chapter,

- combined with 2 amplitudes and 2 frequencies, distributed as described here.

. High Amplitude Low Amplitude
Rhythm | High Low High Low
# Frequency | Frequency | Frequency | Frequency
1 1 22 43 64
2 20 - 23, . 44 - 65 ‘
3 3 24 |- 45 | 66 ’
4 4 25 46 67
5 5 26 ' 47 68
6 6 27 48 69
7 7 28 49 70
8 8 29 50 71
9 9 30 51 72
10 10 31 52 73
11 11 32 53 74
12 12 33 54 75
13 13 34 55 76
14 14 35 56 77
15 15 36 57 78
16 16 37 58 79
17 17 38 59 80
18 18 39 60 81
19 19 40 61 82
20 20 41 62 83
21 21 42 63 84
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Number of Subsets Required to Gain Minimum 5
Observations Vs. Subset Ratio

200
-]
e
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g
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g
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2
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4

0 T T T T T T 1 T ?
0 01 02 03 04 05 06 07 08 09 1
Subset Ratio (NS/NT)

Figure 4.1. Graph of subsets versus subset ratio, for a desired minimum of five
observations per dissimilarity value. For any ratio of subset size (NS) to total set size
(NT), between 0 and 1, our subset creation algorithm attempts to create the minimal
number of subsets that will ensure that at least the required number of observations are
present for each point in the dissimilarity matrix. The resultant curve is shown above. As
can be seen, anything lower than a ratio of roughly a third requires a number of subsets
that is quite unreasonable for practical purposes.
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Pilot Study, Stress Values

Dimension

Figure 4.2. Stress values for the first five dimensional MDS solutions. No distinct elbow
in the curve can be seen
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Figure 4.3. 2D Map of MDS Results. Trends of frequency and amplitude are as
displayed. Green and blue stimuli are high amplitude, grey and orange stimuli are low.
Green and orange stimuli are high frequency, blue and grey stimuli are low frequency.
Icon numbers are as in Table 3.3. As can be seen, rhythms do not appeared to be grouped
together, and even frequency and amplitude do not appear to have an overly strong
grouping effect.
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Figure 5.1. The Nokia 770
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Figure 5.2. The MDS stimuli sorting program, with 50 stimuli.




Full-Set MDS Stress Values

Stress

1 2 3 4 5 6

Dimension

Figure 6.1. Stress values for the first six dimensional MDS solutions. No distinct elbow
in the curve can be seen.
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Figure 6.2. 2D MDS output, with all 84 stimuli plotted. Green and blue stimuli are high
amplitude, grey and orange stimuli are low. Green and orange stimuli are high frequency,

blue and grey stimuli are low frequency. Projected axes are labeled accordingly. See

Table 3.3 for a lookup table of individual stimulus numbers, and in particular to identify

their rhythm.
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Figure 6.3. 2D MDS output, with all 84 stimuli plotted. Projected axes are labeled
accordingly. Green stimuli are from Groups 1 and 4, containing only “short™ notes; blue
stimuli are from Groups 2, 3 and 5, containing “long” notes. See Table 3.3 for a lookup
table of individual stimulus numbers and Table 3.2 for a lookup of rthythm groups.
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Figure 6.4. Distribution of standard deviation values for averaged dissimilarity matrix.
Black squares indicate high SD, grey-blue medium-high, grey medium-low, and white
squares have lowest SD.
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Figure 6.5 MDS plot for stimuli only containing long notes. Green and blue stimuli are
high amplitude, grey and orange stimuli are low. Green and orange stimuli are high
frequency, blue and grey stimuli are low frequency. Projected axes are labeled
accordingly. See Table 3.3 for a lookup table of individual stimulus numbers.
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Figure 6.6 X-Y plane of 3D MDS for all 84 stimuli. X is the horizontal axis, Y the
vertical. The green stimuli are from the short-even group, the blue are the short-uneven,
the orange the long-even, and the grey are long-uneven (see text for explanation of group
names). Projected axes are labeled accordingly.
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Figure 6.7 X-Z plane of 3D MDS for all 84 stimuli. X is the horizontal axis, Z the
vertical. The green stimuli are from the short-even group, the blue are the short-uneven,
the orange the long-even, and the grey are long-uneven
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Figure 6.8 Y-Z plane of 3D MDS for all 84 stimuli. Y is the horizontal axis, Z the

vertical. The green stimuli are from the short-even group, the blue are the short-uneven,
the orange the long-even, and the grey are long-uneven. Frequency axis is omitted due to

space constraints, but is similar in size to Figures 6.6 and 6.7.
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Figure 6.9. High-amplitude only MDS sub-analysis. The green stimuli are from the
short-even group, the blue are the short-uneven, the orange the long-even, and the grey

are long-uneven. Projected axes are labeled accordingly.
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Figure 6.10 Individual MDS plots for the four rhythm groups. Clockwise from top left:
long-even, short-even, short-uneven, long-uneven. Green and blue stimuli are high
amplitude, grey and orange stimuli are low. Green and orange stimuli are high frequency,
blue and grey stimuli are low frequency..
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Figure 6.11. 2D MDS output with all stimuli. The green stimuli are from the short-even
group, the blue are the short-uneven, the orange the long-even, and the grey are long-
uneven. The middle axis is made up of the plotted centroids of the 4 groups, as labeled.
We consider this to be the gold standard MDS map for our stimulus set.

Table 6.1. S-Stress and r2 values for individual groups 2D MDS output

2

Group S-Stress r

Long-even 23096 .82260
Long-uneven 27128 73703
Short-even 27397 71022
Short-uneven 22747 J9722
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Table 7.1. Mapping of Subsets to Participants. Subsets are defined in Appendix C.

Subset 1

Subset 2

Subset 3

Subset 4

Subset 5

Participants

1,6,11

2,712

3,8,13

4,9,14

5,10,15

Stress

50 Icon Subset MDS Stress Values

4

Dimensions

Figure 7.1. For first round of subset study, stress values for dimension 1 to 6 of the MDS

solutions.
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Figure 7.2. For first round of subset study, 2D MDS output map of results. Grouping is
the same as in Chapter 6. Green is the short-even group, blue is short-uneven, orange is
long-even, and grey is long-uneven. As can be noted, the orange long-even group is
significantly out of place from the ordering in the gold standard, out on the far right of the

map.
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Figure 7.3. For first round of subset study, distribution of standard deviation values for

averaged dissimilarity matrix. Black squares have the highest levels of standard
deviation, blue-grey squares the next-highest, light-grey lower still, and white the lowest.
Note the distinct stripes of darker (higher standard deviation) values, running along
various columns and rows.
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] 1 ] E
Figure 7.4. For first round of subset study, distribution of standard deviation values for

averaged dissimilarity matrix with stimuli groups marked in opposite half of matrix.
Stimulus groups are labeled along the side and top; note that each is spread across 4
places in the matrix, once for each combination of amplitude and frequency. The four
orange columns/rows correspond to the “long-even” group. The green columns/rows
correspond to stimuli 14-17, members of Group 4 in Table 3.2, played at high amplitude
and high frequency. The grey columns/row correspond to stimuli 39-42, members of
Group 5 in Table 3.2, played at high amplitude and low frequency.
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Figure 7.5. For first round of subset study, distribution of number of observation per
value of averaged dissimilarity matrix with stimuli groups marked in opposite half of
matrix. Stimulus groups are labeled along the side and top. The colour coding for the
number of observations is that dark purple values have 3 observations, light purple have
6, white values have 9 or greater. Coding of stimuli groups is the same as in Figure 7.4
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50 Icon Subset MDS w/ Additional Participants:
Stress Values

1 2 3 4 5 6

Figure7.6. Stress values for dimension 1 to 6 of the MDS solutions for the subset study
with additional participants (second round of subset study).
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Figure 7.7. 2D MDS output map for subset study with additional subjects (second round
of subset study). Green is the short-even group, blue is short-uneven, orange is long-even,

and grey is long-uneven.
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Figure 7.8. 2D MDS map of only high amplitude stimuli (second round of subset study).
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long-uneven. Two perceptual axes are labeled accordingly.
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Figure 7. 9 For the ﬁrst round of the subset study one half of thls matnx shows standard
deviation (bottom left triangle) while the other half shows the number of observations
(top right triangle). Stimulus groups are labeled along the side and top. Color coding of
SD: Black squares have the highest levels of standard deviation, blue-grey squares the
next-highest, light-grey lower still, and white the lowest.. Colour coding of number of
observations: dark purple values have 3 observations, light purple have 6, white values
have 9 or greater. It can be seen how the (darker black) stripes of high SD correspond to
the (darker purple) areas of low numbers of observations. There are however many areas
of low observations that do not correspond to areas of high SD; thus we claim that both
low numbers of observations plus more “difficult” stimuli are needed to create stripes of
high SD.
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Figure 7.10 Standard deviation and number of observation for subset study with
additional participants (second round of study). Format is same as in Figure 7.9. Stimulus
groups are labeled along the side and top. Color coding of SD: Black squares have the
highest levels of standard deviation, blue-grey squares the next-highest, light-grey lower
still, and white the lowest. Colour coding of observation values differs slightly, dark
purple values have 5 observations, light purple between 6 and 9 observations, white
values greater than 9 observations. As can be seen, overall level of SD is much lower,
and overall level of observations is much higher and more evenly spread
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| Appendix A: Dissimilarity Matrices

Proceeding pages display the averaged dissimilarity matrix for the pilot study described
in Section 4.4.
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Proceeding pages display the averaged dissimilarity matrix for the full-set (gold standard)
study described in Chapter 6.
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1

0

745

896
957.28571
957.28571
905.57143
905.57143
905.57143
891.14286
877.28571
649
863.14286
863.14286
839.42857
914.85714
829.42857
896
668.14286
877.28571
877.28571
649
588.28571
872.71429
985.85714
909.85714
957.28571
919.71429
919.71429
909.85714
738.85714
829.85714
696.42857
863.14286
863.14286
696.85714
872.71429
744

896
553.85714

857.71429

682.28571
696.42857
734

1000
952.57143
886.57143
957.28571
795.57143
1000
971.42857
943.14286

2

0
591.57143
985.85714
843.28571
905.57143
905.57143
648.71429
738.85714
792.14286
773.28571
435.71429

497
985.85714
772.85714
886.57143
985.85714
806.28571
558.57143
611.28571
601.85714
334.85714
687.71429

848
852.71429
900.14286
610.71429
691.42857
938.42857
919.71429
744.71429
649.57143
553.85714
635.42857
985.85714
673.57143

901
985.85714
834.57143

421
549.71429
748.85714

1000°

957.28571
724.85714

734.42857

985.85714
952.57143

1000
733.57143
985.85714

0
849
805.71429
743.42857
971.71429
943.14286
805.14286
725.14286
929
734.14286
672.85714
905.57143
768
820.42857
849
828.85714
363.57143
662.57143
607
943.42857
354.42857
678.14286
801.57143
849
805.14286
985.85714
715.85714
985.85714
820.28571
867.71429
734.14286
767.85714
985.85714
697
863.14286
763.28571
867.71429
496.42857
853.57143
825.28571
1000
828.85714
924
791
815.28571
952.57143
985.85714
591.85714
985.85714

0
554.42857
791

791
743.57143
853.57143
952.57143
1000
985.85714
938.42857
791.28571
877
650.14286
654.57143
1000
952.57143
938.71429
1000
914.85714
891.42857
792.42857
621.57143
654.57143
985.85714
757.71429
568.85714
882.14286
1000
952.57143
877.14286
985.85714
957.28571
863.14286
550
654.57143
1000
985.85714
938.42857
886.85714
971.42857
952.57143
1000
800.57143

- 800.57143

1000
985.85714
909.85714
957.28571

0
838.57143
881.85714
725.42857
957.28571

1000
819.28571
843.28571
843.28571
696.14286
696.14286
796.28571
473.71429
957.57143
914.28571
914.28571
857.42857
729.14286
577.42857

654
586.85714

365
938.42857
843.28571
706.42857
985.85714

1000
857.42857
985.85714
757.57143
957.28571
724.71429
553.57143

388

1000
843.28571
985.85714
929.28571
971.42857

1000

1000

753.14286

667.42857

1000
985.85714
957.28571
957.28571

0
449.57143
597.42857
597.14286
706.42857
919.71429
905.57143
834.85714
985.85714
985.85714
971.71429
971.71429
777.14286

834

834
919.71429
858.14286
695.71429
985.85714
971.71429
924.28571
583.28571
407.42857
459
734.42857
849
919.71429
863.14286
749.14286
985.85714
985.85714
938.42857
886
919.71429
985.85714
905.57143
919.71429
1000
857.42857
1000
92428571
838.57143
833.85714
819.71429
705.71429
848.28571

0
530.57143
763

834
919.71429
905.57143
819.85714
985.85714
900.14286
971.71429
971.71429
877.28571
919.71429
919.71429
834
715.28571
924.28571
985.85714
971.71429
924.28571
549.42857
345.28571
510.85714
482.85714
834

834
692.28571
905.57143
985.85714
985.85714
938.42857
971.71429
919.71429
985.85714
905.57143

777.14286

1000
1000
1000

.924.28571..
924.28571

910.14286
957.28571
985.85714
900.14286

0
834.85714
773
891.14286
734.42857
616
985.85714
985.85714
943.14286
971.71429
848.71429
843.71429
891.14286
748.57143
905.57143
943.14286
957.28571
886
824.71429
682.28571
311.14286
653.42857
810.42857
820.42857
700.85714
743.85714
663.71429
985.85714
957.28571
985.85714
971.71429
891.14286
814.71429
743.85714
805.42857
1000

924
971.42857
971.71429
971.71429
857.42857
985.85714
710.14286
843.28571
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
gh
72
73
74
75
76
77
78
79
80
81
82
83
84

1
938.42857
985.85714

1000

1000
914.85714
938.42857
924
971.42857
900.14286
985.85714
985.85714
1000
862.14286
914.28571
985.85714
971.42857
971.42857
1000

1000
919.71429
871.57143
952.57143
1000

1000

1000
829.14286
904.85714
900.71429
985.85714
938.42857
1000

1000

1000

2
795.85714
943.14286
957.28571
957.28571

1000

924
952.57143
957.57143
971.42857
828.85714
885.71429
772.28571
1000
914.85714
800.57143
1000
914.28571
957.57143
871.85714
919.71429
1000
909.85714
871.57143
814.71429
914.85714
1000
957.28571
929.28571
900.71429
924
957.28571
957.28571
957.28571

3
781.14286
957.28571
900.71429
971.42857

1000

924
795.57143
843.28571
971.42857
971.42857
971.42857
885.71429
1000
971.42857
957.28571
985.85714
843.28571
985.85714
985.85714
900.14286
1000

924
971.42857
971.42857
971.42857
1000
885.71429
985.85714
791.28571
924
971.42857
828.85714
971.42857

4
1000
985.85714
952.57143
1000
971.42857
1000
719.57143
696.57143
952.57143
952.57143
1000
1000
971.42857
1000
938.42857
672.14286
648.85714
985.85714
985.85714
985.85714
971.42857
1000
857.42857
1000

1000

971.42857
1000
871.57143
644.85714
1000
1000
1000
1000

-5

1000
985.85714
1000
952.57143
971.42857
1000
719.57143
744

1000
857.42857
1000
866.85714
971.42857
1000
985.85714
719.57143
648.85714
985.85714
985.85714
900.14286
971.42857
1000

1000
857.42857
1000
971.42857
914.28571
957.28571
606.57143
1000

1000

1000

1000

6
857.42857
985.85714
957.57143
839.42857

1000

1000
843.28571
843.28571
957.57143
1000
957.57143
796.14286
1000

1000
985.85714
985.85714
843.28571
862.14286
862.14286
653.71429
862.42857
1000

1000
957.57143
1000

1000
914.28571
943.42857
900.14286
957.57143
1000

815
886.85714

7
929.28571
985.85714

1000
952.57143
1000

1000
985.85714
985.85714
1000
914.28571
1000
809.71429
1000

1000
915.14286
985.85714
985.85714
896
957.28571
877

1000

1000

1000

1000
914.28571
1000

1000
985.85714
843.28571
938.71429
857.42857
914.28571
914.28571

8
885.71429
957.28571

924
900.71429
1000
971.42857
985.85714
938.42857
924
781.14286
885.71429
900.71429
1000
971.42857
909.85714
938.42857
900.14286
985.85714
900.14286
763
857.42857
971.42857
885.71429
828.85714
971.42857
1000
971.42857
985.85714
909.85714
971.42857
971.42857
971.42857
900.71429
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0
834.85714
815.71429
563.28571
625.71429

924
881.57143
882.14286
871.57143
772.42857
682.28571
520.85714
905.57143
891.14286
943.42857
857.42857
853.57143
957.28571

568
748.85714
814.71429
597.71429
692.28571
905.57143
677.57143
801.57143
838.28571
809.71429
867.71429
814.71429

730
771.85714
919.71429
905.57143

924

1000
771.71429
734.14286
772.28571
819.14286
757.57143
667.28571
828.85714

10

0
582.71429
596.85714
474.28571

1000
857.71429
971.42857

1000
625.14286
711.71429
682.85714
535.85714
919.71429
786.42857

896

1000

1000
863.14286
858.14286

1000
819.85714
141.71429
345.85714
549.42857
24157143

1000
914.85714
985.85714

1000

664
914.85714
588.28571
521.42857
1000

767
914.85714

1000

1000

1000

11000
795.57143
914.28571

11

0

375

697
771.85714
611.57143
885.71429
819.28571
720.28571
707.28571
725.28571
725.28571
738.85714
644.57143
776.57143
819.28571
819.28571
905.57143
905.57143
1000
858.14286
582.71429
512
596.85714
549.42857
952.57143
625.42857
805.14286
819.28571
492.57143
720.42857
739.42857
582.71429
866.85714
886.57143
957.28571
957.57143
957.57143
857.42857

952.57143 .

985.85714
952.57143

12

0
359.42857
938.42857
778.14286
957.28571
900.14286
648.71429
540.57143
558.57143
596.85714
905.57143
811.14286
943.14286
985.85714
985.85714
738.85714
777.14286
985.85714
872.28571
596.85714
383.57143
401.85714
392.42857
852.71429

792
971.71429
985.85714
563.85714
468.42857
725.28571
596.85714
952.57143
886.57143
871.57143
762.71429
943.42857
914.28571
866.85714

819.28571

938.42857

13

0
985.85714
801.14286
957.28571
985.85714
639.28571
502.57143

416
449.85714
905.57143
872.42857
881.85714
985.85714
985.85714
738.85714
729.42857
985.85714

834
521.71429
402.14286

497
450.71429
985.85714
900.71429
971.71429
985.85714
493.14286
577.42857
616.57143
678.14286

1000
909.85714
957.28571
762.71429
943.42857
1000
1000

771.85714

900.14286

14

0
648.71429
905.57143
634.85714
952.57143

1000
1000
1000
563.57143
724.71429
724.71429
696.14286
553.57143
1000
1000
734.42857
952.57143
1000
1000
985.85714
938.42857
511.57143
677.28571
467.85714
634.85714
952.57143
938.42857
985.85714
1000
682.42857
1000
1000
957.28571
957.28571
943.42857
952.57143
971.42857
895.71429

15

0
905.57143
696.14286
938.42857
663.28571
943.42857
857.71429
776.57143
483.42857
615.42857
696.14286
696.14286

1000

1000

871
866.85714
857.71429
857.71429
929.28571
881.85714
839.14286
321.71429
682
696.14286
853.57143
654.71429
786.71429
943.42857
924
985.85714
985.85714
914.85714
914.85714
1000
952.57143
971.42857
824.14286

16

0
563.85714
900.71429
971.42857
862.71429
971.42857
872.71429
792.14286
644.57143
650.14286

753.85714 -

843.28571
985.85714
849
882.14286
971.42857
971.42857
896
957.28571
985.85714
763.85714
593.57143
563.85714
971.42857
871.57143
957.28571
881.57143
733.57143
790.71429
790.71429
901
971.71429
1000
985.85714

.985.85714

985.85714
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77

78
79
80
81
82
83
84

9
985.85714
871.85714
914.28571

701
909.85714
1000
943.14286
857.42857
1000
957.57143
809.71429
929.28571
924
952.57143
914.28571
914.85714
895.71429
757.57143
700.42857
763
828.85714
914.28571
938.42857
866.85714
1000

924
795.57143
909.85714
1000
771.71429
952.57143
952.57143
929.28571

10
772.28571
957.28571
909.85714
886.57143
985.85714
971.42857
843.28571
753.14286

924
838.28571
971.42857
844.14286

1000
914.85714
909.85714
952.57143
843.28571
957.57143
957.57143
919.71429
1000
957.28571

848
957:28571
829.14286

1000
943.14286
1000
867.42857
971:42857
957.28571

729

800.85714

11
957.28571
914.85714
957.28571
957.28571
938.42857
971.42857
915.14286
985.85714
885.71429

929

924
957.28571
952.57143
824.14286
957.28571
957.57143
938.42857
952.57143
952.57143
872.28571
866.85714
957.28571
800.57143
909.85714
957.28571
866.85714
895.71429
952.57143
957.28571
971.42857
909.85714
909.85714
957.28571

12
971.42857

815
871.57143
871.57143
952.57143
971.42857
929.28571
914.28571
971.42857
786.42857

924
957.28571
952.57143
909.85714
857.42857
957.57143
952.57143
866.85714
952.57143
872.28571
952.57143
871.57143
814.71429
681.28571
957.28571
952.57143
909.85714
952.57143
943.14286
885.71429
909.85714
909.85714
957.28571

13
828.85714
900.71429
909.85714
886.57143
1000
971.42857
~ 1000
952.57143
924

653
971.42857
886.57143
1000
957.28571
895.71429
910.14286
1000

1000

1000

919.71429 .

1000
814.71429
719.57143
672.14286
871.57143
1000
957.28571
1000
895.71429
828.85714
957.28571
729
658.28571

14
985.85714
800.85714

1000

1000

516.57143
985.85714
971.42857
971.42857
943.42857
943.42857
938.42857
1000
724.85714
809.71429
985.85714
971.42857
924
952.57143
952.57143
952.57143
867.42857
957.57143
910.14286
952.57143
1000
516.57143
952.57143
695.71429
905.57143
943.42857
910.14286
952.57143
1000

15

1000
929.28571
843.28571
985.85714
924

1000
971.42857
971.42857
1000
871.85714
952.57143
985.85714
924
938.42857
971.71429
929

924
952.57143
952.57143
809.71429
924
985.85714
938.42857
938.42857

'757.57143

924
795.85714
924
891.42857
1000
938.42857
852.71429
757.57143

16
971.42857
909.85714
971.42857
971.42857

1000
828.85714
890.71429
985.85714
743.14286
971.42857
971.42857
971.42857

1000

705
814.71429
890.71429
890.71429
985.85714
985.85714
985.85714
771.71429
828.85714
790.71429
971.42857
T 924
914.28571
971.42857
915.14286

877
971.42857
790.71429
971.42857

924

163



01U W=

D oS bbb R DR PR SR WWWWWWWWWWRWRENENNNNDNGDDND o e e e ek odd okl
—_ SO WU S WN =SSO NHEWN=OYORIANNSEWN = OV IS WN-=ONW

17

0
914.28571
1000
952.57143
1000
672.85714
710.57143
421.57143
544.42857
431.28571
985.85714
985.85714
749.71429
843.28571
1000

1000
985.85714
985.85714
810.28571
682.28571
558.57143
180
914.28571
985.85714
985.85714
839.42857
828.85714
1000
914.28571
943.14286
943.14286
914.28571
900.14286
957.28571
957.28571

18

0
862.85714
625.14286
586.85714

849
758.14286
914.85714

1000

1000
905.57143
905.57143

1000
677.28571
767.71429
586.85714
781.85714
734.42857
866.85714
839.14286
915.14286

1000
311.14286
909.85714

601
586.85714
952.57143

711
871.57143
929.28571
' 1000
914.28571
866.85714
843.28571
952.57143

19

0
553.85714
616.57143
919.71429
563.14286
800.85714

1000

1000
724.71429
858.14286
914.28571
905.57143
759.14286
641
606.28571
687.57143
1000
819.71429
985.85714
914.28571
716.71429
496.42857
583
759.14286
1000
839.14286
957.28571
776:85714
871.85714
1000

1000
757.71429
1000

20

0
682.85714
919.71429
843.28571

767
938.71429
1000
682.28571
905.57143
914.28571
844.28571
540.28571
682.85714
497.28571
611.28571
1000
772.28571
924.57143
724

512
734.14286
626.28571
677.85714
1000
957.28571
772.28571
819.28571
771.71429
1000

1000
805.14286
1000

21

0
919.71429
786.42857

896
952.57143
1000
863.14286
763
952.57143
639
488.42857
212.42857
739.42857
493.14286
1000
914.85714
985.85714
1000
483.14286
629.71429
454.85714
483.14286
1000
957.28571
867.42857
1000
929.28571
952.57143
1000
915.14286
914.28571

22

0

687
762.71429
734.14286
686.71429
872.28571
919.71429
914.85714
919.71429
919.71429
919.71429
763
905.57143
601.71429
606.28571
473.42857
672.85714
915.71429
985.85714
905.57143
734.71429
914.85714
914.28571
1000
839.14286
909.85714
943.42857
1000
971.42857
943.14286

23

0
601
710.57143
663.14286
938.42857
985.85714
805.71429
985.85714
929

929
914.85714
829.14286
985.85714
426.57143
606.57143
624.85714
886.57143
615.85714
914.85714
929

- 1000
828.85714
971.42857
811.14286
796.14286
1000
985.85714
843.28571
985.85714

24

0
682.28571
611.57143

1600

1000
792.42857
1000
753.42857
896
943.14286
881.85714
985.85714
401.85714
668.14286
278.71429
896

848
881.85714
735.42857
1000
914.85714

814.71429

985.85714
843.28571
1000
1000
1000
985.85714
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52
33
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
g
72
73
74
75
76
77
78
79
80
81
82
83
84

17

1000
852.71429
914.28571
914.28571
971.42857
1000
862.14286
800.85714
1000

1000

1000

1000
971.42857
1000
900.14286
719.57143
791.42857
900.14286
985.85714
985.85714
971.42857
914.28571
1000
914.28571
952.57143
971.42857
1000
957.28571
834.85714
914.28571
1000

1000
952.57143

18
629.71429
871.57143
871.57143
767.85714
938.42857
971.42857
843.28571
757.57143
971.42857
971.42857
881.57143
853.57143
952.57143
806.14286
767.85714
1000
795.57143
866.85714
952.57143
872.28571
952.57143
667.71429
596.71429
577.85714
853.57143
952.57143
895.71429
839.42857
957.28571
743.14286
848.57143
520.71429
711

19
957.28571
914.85714

767
957.28571
985.85714
971.42857
915.14286
938.42857

924
881.57143
971.42857
871.57143

1000
957.28571
909.85714
910.14286
985.85714

1000

1000
691.42857

1000
957.28571
943.14286
957.28571
814.71429

1000
857.42857

1000
824.14286
971.42857
957.28571
957.28571
814.71429

20
772.28571
909.85714
957.28571
814.71429
985.85714
971.42857
985.85714
943.42857
971.42857
971.42857
828.85714
829.14286

1000
914.85714
957.28571

1000
985.85714
957.57143

815
834

1000
814.71429
705.42857
814.71429
867.42857

1000
714.85714

1000
829.14286
686.28571
957.28571
814.71429
767.28571

21
867.42857
957.28571
886.57143
957.28571
985.85714

924
938.42857
943.42857
971.42857
743.14286
971.42857
914.85714

1000
914.85714
957.28571

1000
985.85714
957.57143
957.57143
919.71429

1000
909.85714

848
814.71429
829.14286

1000

943.14286

1000
914.85714
924
957.28571
871.57143
871.57143

22
985.85714

943.42857

1000
952.57143
819.71429
985.85714
971.42857
971.42857
943.42857
943.42857
985.85714
809.71429
914.85714
1000
985.85714
971.42857
971.42857
1000

1000
919.71429
914.85714
957.57143
957.57143
1000

1000
819.71429
1000
900.71429
843.28571
943.42857
815

1000

1000

23
828.85714
914.85714
971.42857

924

1000
971.42857
843.28571
843.28571
971.42857
929
971.42857
838.28571
1000
971.42857
957.28571
943.42857
843.28571
985.85714
985.85714
900.14286
1000
971.42857
971.42857
971.42857
971.42857
1000
885.71429
915.14286
791.28571
971.42857
971.42857
828.85714
971.42857

24

929
895.71429
957.28571
772.28571
914.28571
885.71429
914.28571
929.28571
971.42857
971.42857
786.42857
914.85714
1000
914.85714
900.71429
1000
929.28571
1000
857.42857
1000

1000
957.28571
957.28571
914.85714
867.42857
1000
814.71429
957.57143
792.14286
828.85714
871.57143
914.85714
867.42857
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25

0
316.14286
900.14286
900.14286

773
882.14286
952.57143

1000
838.85714
985.85714
957.28571
682.28571
454.85714
544.42857

1000
985.85714
900.14286
871.85714
971.42857

1000
952.57143
943.14286
943.14286
952.57143
985.85714
871.57143
957.28571

26

0
852.71429
900.14286
607.14286
985.85714

1000

1000
900.14286
985.85714
814.71429
682.28571
368.28571
431.28571

1000
985.85714
900.14286
801.14286
971.42857

1000

1000
895.71429
895.71429

1000
985.85714
871.57143
957.28571

27

0
435.71429
644.42857
625.14286
863.14286
863.14286
653.14286
877.28571

1000

1000
952.57143
985.85714
905.57143
819.28571
791.57143
819.85714

1000

1000
957.57143
757.71429
938.42857
900.71429
957.28571
705.28571
929.28571

28

0
463.71429
554.42857
905.57143
715.28571
673.42857
777.14286

1000

1000

1000
985.85714
905.57143
857.42857
786.57143
819.85714
1000
952.57143
1000
985.85714
985.85714
929
914.85714
796.14286
957.57143

29

0
748.14286
952.57143

1000
985.85714
900.14286
814.71429
863.14286

692
664

1000
985.85714
985.85714
886.85714
971.42857

1000
952.57143
943.14286
857.42857
952.57143
985.85714
957.28571
957.28571

30

0
819.85714
639
787.71429
872.28571
952.57143
952.57143
896.28571
985.85714
677.28571
910.14286
738.85714
724.71429
809.71429
957.57143
1000
985.85714
985.85714
971.42857
909.85714
971.71429
866.85714

31

0
393.28571
596.85714
241.57143

1000
772.28571
985.85714
857.42857

664
914.85714
635.71429
521.42857

1000
957.28571
724.57143

1000
857.42857
952.57143

1000
985.85714
914.28571

32

0
549.42857
350.57143

1000
914.85714
985.85714

1000

483.14286

772.28571
407.42857
340.57143
1000
839.14286
914.85714
1000
1000
1000
1000
938.42857
914.28571
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

25
866.85714
985.85714

1000

1000
971.42857
952.57143
814.71429
957.28571
1000

1000
914.28571
1000
971.42857
1000
985.85714
791.42857
776.42857
985.85714
900.14286
985.85714
971.42857
952.57143
914.28571
1000
-1000
971.42857
1000
957.28571
905.57143
952.57143
1000

1000

1000

26
914.28571
843.28571
1000
952.57143
971.42857
1000
862.14286
886.57143
1000

1000
914.28571
952.57143
971.42857
857.42857
985.85714
862.14286
705.71429
985.85714
900.14286
985.85714
971.42857
1000
914.28571
1000
1000
971.42857
1000
957.28571
834.85714
1000

1000

1000

1000

27
857.71429
1000

1000
952.57143
985.85714
857.42857
971.71429
929.28571
786.71429
929.28571
843.57143
910.14286
1000
957.57143
857.42857
985.85714
886
844.14286
758.42857
806.28571
786.71429
786.71429
829.42857
929.28571
886.85714
" 1000
985.85714
985.85714
957.57143
929.28571
929.28571
929.28571
1000

28
829.42857
1000
910.14286
957.57143
985.85714
1000
971.71429
924.28571
910.14286
809.71429
871.85714
1000

1000

1000
881.85714
938.42857
886
957.28571
871.57143
834.57143
957.57143
1000
900.14286
815

11000
11000
985.85714
943.42857
952.57143
957.57143
1000
957.57143
957.57143

29
952.57143
843.28571

1000

1000
971.42857
952.57143
909.85714
886.57143

1000

1000

1000
914.28571
971.42857
857.42857
985.85714
957.28571
886.57143
985.85714
985.85714
900.14286
971.42857

952.57143°

1000
1000
1000
971.42857
914.28571
957.28571
749.14286
952.57143
1000
1000
1000

30
915.14286
1000

1000

1000
938.42857
957.57143
929.28571
971.71429
1000
914.28571
952.57143
1000
952.57143
952.57143
929.28571
843.28571
92428571
909.85714
909.85714
829.57143

952.57143 .

1000

896
952.57143
914.28571
952.57143
896
938.42857
1000

1000
952.57143
866.85714
914.28571

31

867.42857
957.28571
957.28571
744
985.85714
924
938.42857
943.42857
971.42857
885.71429
828.85714
844.14286
1000
914.85714
957.28571
1000
985.85714
957.57143
815
919.71429
1000
909.85714
848
957.28571

829.14286 ..
1000 - -

800.57143

1000
914.85714
781.14286
957.28571
871.57143
800.85714

32

914.85714
957.28571
909.85714
957.28571
985.85714
971.42857
915.14286
896

924
695.42857
971.42857
914.85714
1000
914.85714
909.85714
952.57143
985.85714
957.57143
957.57143
919.71429
1000
957.28571
848
814.71429

829.14286

1000
943.14286

1000
867.42857
971.42857
957.28571
871.57143
871.57143
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33

0
582.71429
985.85714
900.71429
910.42857
985.85714
739.42857

720
592.14286
368.57143

1000
909.85714
957.28571
805.14286
985.85714
957.57143
957.57143
643.71429
943.42857

34

0
938.42857
853.28571
971.71429
900.14286
630.71429
710.42857
621.57143
535.57143
952.57143
957.28571
914.85714
985.85714
900.14286

1000
952.57143

1000
938.42857

35

0
938.42857
672.14286
896
866.85714
867.71429
985.85714
1000

825

1000

834
957.28571
957.28571

'857.71429

866.85714
971.42857
715

36

0
597.42857
539.71429
867.42857
696.85714
900.71429
872.42857

952.57143 .

871.57143

814.71429

915.14286
843.28571
1000
952.57143
1000
938.42857

37

0
558.57143
985.85714
971.71429
971.71429
943.42857
971.42857
985.85714
985.85714
839.14286
909.85714

1000

1000
971.42857
957.28571

38

0
1000
985.85714
985.85714
839.42857
971.42857
1000
857.42857
943.14286
714.85714
© 1000
985.85714
957.28571
957.28571

39

0

867.42857

426.57143
483.14286
952.57143
957.28571
871.57143
957.57143

957.57143

771.71429
866.85714
985.85714
952.57143

40

0
900.71429
914.85714

"786.57143

834.57143
957.28571
724.71429
905.57143
919.71429
872.28571
738.85714
858.14286
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
gh |
72
73
74
75
76
77
78
79
80
81
82
83
84

33

815
943.14286
867.42857
914.85714
1000
971.42857
1000
952.57143
881.57143
924
843.28571
814.71429
1000
957.28571
825
952.57143
914.28571
1000
914.28571
877.28571
957.57143
957.28571
776.42857
914.85714
957.28571
1000
957.28571
957.57143
752.85714
929
814.71429
914.85714
914.85714

34

929
943.14286
957.28571
886.57143
952.57143
971.42857
1000
957.57143
971.42857
828.85714
924
758.42857
952.57143
867.42857
943.14286
1000
952.57143
910.14286
910.14286
786.57143
952.57143
957.28571
814.71429
767
914.85714
952.57143
824.14286
952.57143
815
971.42857
909.85714
909.85714
886.57143

35
985.85714
715.14286
914.28571
914.28571
549.14286
724.71429
710.28571
624.57143
943.42857
943.42857
938.42857

1000
606.28571
729.42857

639
891.14286
662.85714
866.85714
952.57143
952.57143
867.42857
871.85714
910.14286
866.85714

1000
468.71429
691.42857
662.85714
805.14286
857.71429
910.14286
952.57143

1000

36
971.42857
943.14286
957.28571
814.71429
952.57143
971.42857

10060

1000
971.42857
971.42857
781.14286
957.28571
952.57143
909.85714
943.14286

1000
952.57143
952.57143
809.71429
952.57143
952.57143
957.28571
909.85714
909.85714
957.28571
952.57143
624.42857
881.85714
862.85714
828.85714
909.85714
909.85714
957.28571

37

1000
829.14286
985.85714
938.42857
971.42857
1000
876.28571
971.42857
1000

1000

1000
938.42857
971.42857
843.28571
971.71429
876.28571
876.28571
1000

1000

1000
971.42857
985.85714
985.85714
985.85714
985.85714
971.42857
985.85714
815
891.42857
1000
985.85714
985.85714
985.85714

38

1000
938.42857
1000
857.42857
971.42857
1000
862.14286
886.57143
1000

1000
857.42857
914.28571
971.42857
1000
985.85714
862.14286
791.42857
985.85714
843.28571
900.14286
971.42857
1000

1000

1000
952.57143
971.42857
771.71429
957.28571
749.14286
857.42857
1000

1000
952.57143

39
814.71429
829.14286
871.57143
871.57143
938.42857
971.42857
985.85714
900.14286
971.42857

929

924
957.28571
952.57143
909.85714
871.57143
957.57143
938.42857
866.85714
952.57143
872.28571
952.57143

729

658
681.57143
957.28571
952.57143
895.71429
952.57143
957.28571
743.14286
909.85714
767.28571
814.71429

40
891.14286
862.85714

877

877
872.28571
929
957.57143
1000
805.42857
748.57143
843.71429
877
952.57143
824.14286
943.14286
1000
952.57143
872.28571
872.28571
952.57143
786.57143
877
787.14286
686.71429
877
866.85714
867.42857
952.57143
943.14286
891.14286
829.57143
829.57143
877
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0
411.57143 0
1000 1000 0
909.85714 957.28571 724.71429 0
77228571 957.28571 805.14286 667.28571 0
985.85714 1000 891.14286 919.71429 1000 0
985.85714 1000 891.14286 919.71429 753.71429 535.28571 0
1000 1600 849 905.57143 852.71429 919.71429 919.71429 0
1000 1000 858.14286 905.57143 838.85714 905.57143 844.28571 472.85714
866.85714 900.14286 891.14286 729.42857 938.71429 696.14286 745 -639.57143
985.85714 1000 829.57143 919.71429 1000 834.57143 - 877 554.71429

N & bbb b hah
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

41
843.28571
943.14286

767
957.28571
1000
971.42857
1000
910.14286
924

924

- 885.71429

772.28571

1000
914.85714
753.14286
952.57143
914.28571
957.57143
871.85714
777.14286

1000
957.28571
776.42857
957.28571
772.28571

1000
957.28571

1000
853.28571
971.42857
957.28571
957.28571
814.71429

42
871.57143
909.85714
957.28571
957.28571
985.85714
971.42857
985.85714
915.14286
971.42857
971.42857
885.71429
814.71429
1000
957.28571
957.28571
1000
829.42857
1000
914.28571
919.71429
1000
957.28571
762.28571
957.28571
909.85714
1000
943.14286
1000

744
971.42857
814.71429
957.28571
909.85714

43
905.57143
877.28571
905.57143
905.57143
602.14286
971.71429
971.42857
971.42857
763.28571

849

844
905.57143
544.85714
672

1000
814.71429
924
858.14286
858.14286
938.42857
687.28571
863.14286
T 649
858.14286
905.57143
521.28571
857.42857
767.28571
1000

849
634.85714
858.14286
905.57143

44
706.14286
877
815.42857
759.14286
919.71429
677.14286
744.28571
809.71429
829.57143
591.85714
834.57143
664
985.85714
421

711
938.42857
857.42857
905.57143
905.57143
985.85714
905.57143

801.57143 .

592.42857
759.14286
759.14286

' 985.85714

914.85714
943.42857
909.85714
877
383
616.57143
664

45
881.57143
871.57143
796.14286
714.85714
1000
734.42857
872.28571
687.85714
957.28571
862.14286
814.71429
663
905.57143
544.42857
553.57143
905.57143
816
857.71429
739.57143
924.57143
985.85714
810
776.57143
857.42857
900.71429
905.57143
734.42857
905.57143
811.14286
681.28571
667.28571
943.14286
848

46
919.71429
863.14286
919.71429
872.28571
891.14286
1000

711
719.57143
919.71429
877.28571
919.71429
872.28571
885.71429
1000
985.85714
582.85714
814.71429
905.57143
905.57143
985.85714
891.14286
919.71429
919.71429
919.71429
919.71429
971.42857
1000
730.14286
748.14286
919.71429
919.71429
919.71429
919.71429

47
919.71429
682.28571
606.85714
548.57143
891.14286
1000
814.71429
615.85714
738.85714
696.42857
596.28571
605.71429
971.42857
1000
985.85714
591.57143
711
905.57143
701.71429
658.14286
710.28571
919.71429
919.71429
738.85714
919.71429
971.42857
771.71429
862.14286
558.71429
777.14286
919.71429
919.71429
738.85714

48
677.28571
791.57143
777.42857
777.42857
863.14286
924.28571
952.57143
914.28571
735.85714
778.28571
778.28571
905.57143
929.28571
985.85714
914.28571
985.85714

1000
383.28571
530.28571
606.42857
498.14286

1478.42857

806.57143
706.71429
654
929.28571
1000
943.42857
1000
360.57143
792.42857
611.57143
863.14286
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49 0
50 664.28571
51 734.71429

50

0
611

51

52

53

54

55

56
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

49
738.85714
763.28571
673.71429
777.42857
872.28571
943.42857
985.85714
838.85714
863.14286
905.57143
815.71429
905.57143
938.42857
938.42857
914.28571
971.71429
877.14286
125.85714
293.14286
654.42857
720.57143

639
872.28571

730
724.71429
795.57143
910.14286
881.85714
938.71429
596.57143
858.14286
634.85714
863.14286

50
677.28571
919.71429
655.42857
877.28571

877
957.57143
800.57143
691.57143
829.85714
872.28571
791.57143
919.71429
971.42857

1000
952.57143
909.85714
653.57143

768

621

602

611
919.71429
819.85714
877.28571
919.71429
971.42857
943.42857
914.85714
891.28571
877.28571
919.71429
734.71429
877.28571

51
905.57143
844.28571
877.28571
877.28571
587.42857
805.14286
748.28571
790.71429
731.14286
687.85714

745
919.71429

525
952.57143
805.14286

929
743.28571
706.42857
706.42857
601.71429
417.42857

849
801.57143
759.14286
763.28571
729.14286
771.85714

558
805.14286
792.42857
801.57143
673.42857
791.57143

52

0

796

796
753.57143
891.42857
848.57143
795.57143
800.85714
781.85714
877

1 592.42857

806.28571
985.85714
886.57143
858.28571
1000
757.57143
696.42857
610.71429
1000
905.57143
425.14286
648.71429
611
530.28571
985.85714
896
957.57143
929

411
891.14286
287.57143
706.14286

53

0
372.71429
372.71429

816
971.42857
1000
914.28571
368.85714
564.14286
47257143
696.14286
896.28571
814.71429
857.42857
776.85714
1000

834
919.71429
819.28571
635.14286
653.71429
834.57143
515.28571
591.85714
957.57143
957.28571
1000
943.14286
667.85714
834.57143
781.85714
648.71429

54

0
316.14286
919.71429
914.85714

1000
805.57143
368.57143
648.71429

416

682
985.85714
943.14286
824.14286
757.71429
938.71429
777.42857
801.85714
516.42857
682.28571

682

877
458.71429
482.57143
985.85714
914.85714
943.42857
848.57143
653.71429
862.85714
725.28571

497

55

0
919.71429
957.28571

1000
914.28571
416
696.14286
231
460.14286
985.85714
839.42857
767.85714
805.14286
1000
819.85714
763
762.71429
682.28571
620.71429
815.71429
355
521.42857
985.85714
814.71429
901
957.28571
511.14286
801.57143
621.57143
465.14286

56

0
719.42857
690.85714
776.57143
801.85714
801.85714
858.14286
919.71429
482.85714
952.57143
819.28571
971.42857
729.14286
872.28571
872.28571
952.57143
725.85714
877.28571
815.71429
872.28571
919.71429
335.85714
757.71429
600.71429
819.28571
863.14286
744.14286
872.28571
919.71429
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52
33
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

57

0
563.28571
738.85714
800.57143
705.42857
881.85714
862.14286
710.57143
568.57143
472.57143
905.57143
738.85714
943.42857
943.42857
943.42857
829.14286

767

929
957.28571
957.28571
710.57143
493.42857
724.71429
790.71429
895.71429
633.85714
957.28571

862.14286

S8

0
396.85714
1000

1000

1000

1000
710.28571
919.71429
738.85714
535.57143
301.71429
985.85714
985.85714
985.85714
971.42857

952.57143

943.42857

1000

1000
710.28571
682.28571
634.85714
676.71429
952.57143
914.28571
857.42857

1000

59

0
952.57143
952.57143

1000
957.57143
710.28571
877.28571
605.71429

687
222.42857
857.71429
882.14286
924.57143

971.42857

914.28571
985.85714
914.28571
957.57143
710:28571
724.71429
601
317.28571
914.28571
1000
857.42857
1000

60

0
460.14286
331.14286
696.14286

868
871.57143
781.14286
757.71429

1000
834.85714
834.85714

692
265.42857
526.14286

778
487.85714
568.57143
843.57143

971.42857

943.42857

924
612.14286
763.85714
668.71429
653.71429

61

0
611.28571
601

868
719.57143
828.85714
715.28571
1000
834.85714
834.85714
734.42857
536.14286
763.85714
778
482.85714
720.57143
929.28571
971.42857
985.85714
924
749.71429
526.14286

720.57143"

515.28571

62

0
653.71429
924.28571
867.42857

929
805.14286
866.85714
787.42857
558.85714
644.57143

550
711.14286
687.28571

398
526.14286

92428571
719.85714

853.57143
971.42857

512
758.85714
578.85714
611.28571

63

0
985.85714
701.85714
615.85714
805.14286

1000
863.14286
863.14286
719.42857
724.71429
801.57143

'815.71429

578.28571
716.71429

985.85714 .

871.57143
943.42857
686.57143

877
563.85714
759.14286
412.42857

64

0
858.14286
738.85714
791.28571
662.85714
938.42857
938.42857
938.42857
792
901
910.14286
938.42857
985.85714
44957143

"596.28571

363.28571
819.28571
929.28571
853.57143
938.42857
985.85714
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
n
72
73
74
75
76
77
78
79
80
81
82
83
84

65

0
678.14286
905.57143
872.28571

896
896
938.42857
852.71429
881.85714
667.85714
792
797
772.42857
758.85714
815.71429
914.85714
957.28571
416
792
744.28571

66

0
872.28571
696.42857
914.28571

1000

1000
857.42857
667.71429
896
767.85714
853.57143
738.85714
696.14286
696.42857
715
885.71429
800.85714
853.57143
758.42857

67

0
639.28571
971.71429
971.71429

791
776.57143
985.85714

1000
805.14286
985.85714

877
919.71429
801.57143

810
985.85714
985.85714
985.85714
805.14286

68

0
938.42857
791.42857
877.14286

924

1000
852.71429
952.57143
1000
662.85714
677.28571
648.71429
502.28571
1000
952.57143
809.71429
1000

69

0
241.28571
687.42857
692.28571
568.28571
801.57143
701.71429
611.57143
795.57143
910.14286
924.28571
957.57143

507
787.42857
606.57143
905.57143

70

0
626.14286
692.28571

654
715.85714
787.42857
611.57143
938.42857
767.28571
924.28571
896.28571
511.42857
787.42857
606.57143
905.57143

71

0
406.85714
915.14286
881.85714
644.57143
772.57143
938.42857
824.42857
881.85714

853
872.71429
867.71429
825.28571
620.14286

72

0
649.85714
759.14286
564.14286
834.85714
767.57143
952.57143
867.42857

1000
735.85714
745

745
682.28571
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74
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80
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
7
73
74
75
76
77
78
79
80
81
82
83
84

73

0

560
407.42857
454.85714
94342857
957.28571
985.85714
957.28571
212.14286
646
312.28571
659

74

75

0

553
745
910.14286

'853.28571

952.57143
957.28571
635.42857
474.28571

555
673.14286

0
593.28571
938.42857

1909.85714

853.57143
957.28571
440.42857
683.42857
360.85714
393.28571

76

0

985.85714

957.28571
943.42857
914.85714
530.28571
730.85714
326.71429
483.14286

77

0
691.42857
506.14286
819.28571
929.28571

896
938.42857
985.85714

78

691.42857
690.85714
828.85714
909.85714
909.85714
957.28571

79

724.14286
943.42857
938.42857
853.57143

901

80

0

0

971.42857 -

814.71429
957.28571

957.28571
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
71
78
79
80
81
82
83
84

81 82 83

0
763.85714 0
345.28571 683.42857 0
692 706.42857 488.42857

84
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Proceeding pages display the averaged dissimilarity matrix for part one of the subset
study described in Section 7.2.
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W AN SR W=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

1

0
687.3333
906.7778
829.7778
967

967

967
810.6667
884.5
965.44446
703
928.7778
983.5
466.5
945

549
909.6667
909.6667
819.3333
884.7778
950.5
578.3333
857
827.1667
654.3333
906.5
967

967

967
717.1667
965.44446
761.1667
1000
687.3333
624.44446
945
860.6667
852.3333
1000

835

967

1000

670
983.5
930.3333
912

967
948.1667
967

1000

879

0

494
788.6667
934

967

934
755.6667
956
929.3333
791
687.3333
967

791

802

857
876.6667
794.6667
848.1111
761.1667
967
840.5
675.5
591.44446
848.1111
824

857

956

934
761.1667
896.3333
574.1667
1000
826.1111
731.3333
824

527
881.1111
967

967

967

901

978

703
983.5
961.5
989
915.1667
857

978
950.5

0
886.0833
967

901

934
893.1667
908.3333
870.1111
967
873.7778
879
886.3333
809.3333
835
761.1667
798.3333
876.6667
905.3333
923

912
829.5
518.1111
871.1667
787.3333
912

879

967
876.6667
826.1111
865.6667
930.3333
827.1667
965.44446
849.6667
912
739.1667
912
919.3333
802

901
980.75
945

835
972.5
901
931.6667
1000
917.5
950.5

0

769

967
950.5
827.1667
703
936.1111
868
917.7778
945
952.3333
948.6667
802
772.1667
928.7778
909.6667
822.8333
956
854.25
912
793.1111
491.66666
673.6667
945
952.3333
934
601.6667
954.44446
794.1667
919.3333
761.1667
866.44446
901

527
689.6667
-1000
937.6667
934

967
980.75
1000
1600
759.1667
934
948.1667
967

967
851.5

895.5
813
802
868
967

983.5

1000
1000
967
967
769
835
967
868
934
857
967
901

730.5
901
307
967
901
747
967
934
967
967
934
967
967
769
604
967

1000

950.5

1000
967
1000
1000
868
802
967

950.5
967
967

587.5
703
835
835
835
868
967
967
857

1000
769
934
967
868
868
967
967

983.5
637
967
703
406

631.5
868
868
967
835
835
824
857
967
967
967
868

950.5
934
868
967
967
934
835
703
736
934
835

0

868
785.5
967
884.5
1000
950.5
983.5
934
1000
934
945
983.5
884.5
631.5
967
967
897.3333
967
851.5
538
406
703
917.5
934
868
884.5
835
967
983.5
934
983.5
802
868
983.5
670
983.5
978
978
917.5
785.5
703
802
818.5
967

0

835
656.6667
692
783.1667
835

1000
1000
895.5
725
689.6667
805.1667
744.6667
780
862.5
827.6667
593
711.6667

780

912

505
794.1667
882.1667
761.6667
582
755.6667
865.6667
967
796.5
747
983.5
967

934

956
950.5
879

923
950.5
771.3333
877.44446
725

769

967

934
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

1

835
928.5
989
952.3333
362
1000
852.3333
890

945
928.5

- 945
882.6667
904.1667
983.5
1000
941.3333
852.3333
967
929.3333
934

736
1000
758

890
1000
764.3333
882.1667
983.5
912

901
917.5
967

2
897.3333
956

1000

945
983.5
902.55554
925.1111
952.3333
707.6667
967
961.5

663.6667 -

948.1667
703

862.5

923
870.1111
891.55554
917.7778
983.5

868

967

967 .

765.8333

1000
932.44446
- 7305

967

952.3333
956
923
985.3333

3

983.5
945
969.75
947.75
1000
804.3333
887.6667
879
829.2222
970.6667
945
876.8889
948.1667
934

835
952.3333
805.1667
787.8333
810.6667
983.5

1000 .

945
1000

- 815.3333

945
865.6667
758
978
765.3333
934
974.3333
879

4
917.5
956

945
947.75
934

1000
772.1667
912
926.6667
948.6667
961.5
963.3333
964.6667
989
983.5
715.55554
854.6667
983.5
926.1667
950.5
1000

945

©-901 =

' 961.5
945
948.1667

937.1667

824
930.3333

1000
952.3333

862.5

5
967
1000
1000
1000
983.5
967
1000
868
967
1000
967
1000
1000
967
967
967
736
967
934
917.5
1000
1000

1000
934

967
1000

.- 1000

934
934
1000
1000
1000

1000
901
967
868
934
967
934
934
835
967

1000
967
868

1000

895.5
791
901
670
736
703
967

1000

934

934
802

1000

967

T 967

967
934
967
934

7
1000
1989

983.5
851.5
974.3333
829.5
818.5
945
967
978
1000
1000
967
961.5
967
868
835
851.5
653.5
714
703
835
11000
" 950.5
967
901
967
967
983.5
785.5
1000
950.5

8
813

884.5
873.5
884.5

1

893.1
798.8

000
901
667
333

917.5

1
875.3

000
333
725

976.44446

824
857
879

730.5
785.5

766.6

1
1
A

667
736
000
000
000

862.5

964.6
.888.44

799.8

857
667
446

- 846

889
967
835
934
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p—
[— -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0

917.5
791

934

956
941.3333
978

802

967
851.5
1000

857

923
820.3333
835
961.5
824
919.3333
923
882.6667
868

472
884.5
879

725

1000
884.5
974.3333
934

956

835

868

868

967
838.6667
989

989

681

967

945

934

967
706.6667

10

0

967
706.6667
593

934

956

879
898.6667
530.1667
670
717.6667
824

1000
862.5
931.6667
670
983.5
945

912

967
931.6667
541.6667
909.6667
626
929.3333
976.44446
972.5

970.6667 -

929.3333
1000
917.5

461

703

978

901
825.55554
941.3333
967

816.1667 .

967
703
978

11

868
934
802
934
857
802
681
626
901
604
659
857
862.5
802
967
890
901
851.5
780
1000
461
868
593
1000
967
1000
967
736
538
785.5
736
1000
934
967
967
934
967
862.5
1000
967

12

0

505

1000
1000

967
882.1667
695.1667
296
475.66666
708.5
952.3333
796.5
893.1667
560

967

967

956

1000
931.6667
703
794.1667
538
786.3333
943.44446
835
919.3333
786.3333
736

967

340

582

978
741.5
840.2222
945

1000

931.6667 ..

934
967
934

13

0

934
934
967
868
780
923
813
743.3333
978
1000
950.5
1000
989
1000
1000
1000
934
719.5
934
772.6667
637
983.5
923
1000
967
802
952.3333
670
395
1000

820:3333
- 919.3333

923
857

. 1000
967
1000
978

14

0
842.3333
802

868
983.5
868
1000
989
607.6667
945
961.5
956

945
1000
974.3333
967

934
1000
934

956

967
411.5
915.6667
945

956

967

945

967

868
7323333
967
919.3333
9413333
1000
1000
868
1000
945

15

0

813

846

967

868

923

912
897.3333
1000
950.5
901
915.6667
912
893.6667
967

967
840.5
879

978

956
807.5
417
917.5
736

912
853.3333
934

934

989

934

978 -

967
1000

- 967.
-, 1000

956
985.3333

16

945
824
857
1000
967
648
851.5
659
604
890
917.5
1000
934
824
1000
912
890
824
835
945
912
670
983.5
780
934
983.5
835
1000

- 1000

802
967
1000
857

1000

835




53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

9
1000
917.5
934
952.3333
983.5
769
956
1000
950.5
919.3333
923
967
967
945
1000
846
791
967
923
884.5
912
967
967

- 967
1000
967
1000
846
917.5
901
835
824

10

934
950.5
708.2222
923
1000
835
863.3333
967
893.6667
906.5
754.8333
791
796.5
956
1000
967
830.3333
868
698.3333
967
1000
945

868
884.5
857
929.3333
810.6667
1000
895.5
934
983.5
791

11
593
752.5
835
835
917.5
934
967
1000
703
769
703
637
868
967
879
967
703
802
967
917.5
868
736
703
802
505
1000
890
1000
967
736
769
835

12

1000
917.5
631.2222
923

967
1000
852.3333
923

923

967
732.8333
794.6667
835

813

868
941.3333
786.:3333
1000
929.3333
824
1000
1000
835

681

747
929.3333
788.6667
956

945
1000
967

835

13

967
983.5
794.6667
875.3333
950.5
967

670

967

846

879

945

791

967
893.6667
983.5
934
1000
1000
1000
967

967

967

868

835

747
1000
648
864.3333
752.5
967

934

901

14
802
879
923
956

466.5
1000
956
1000
967
875.3333
1000
912
912
956
1000
983.5
956
1000
956
967
967
967
857
758
1000
538
901
945
950.5
1000
941.3333
956

15
923
961.5
945
967
1000
505
967
967
972.5
959.6667
967
950.5
1000
934
857
879
901
956
1000
961.5
1000
945
967
1000
912
956
912
978
983.5
923
978
1000

16
857
1000
945
1000
967
934
736
1000
945
945
983.5
1000
983.5
1000
890
802
1000
1000
967
1000
934
972.5
1000
1000
956
967
901
835
967
1000
835
1000
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17

0
926.1667
893.1667
893.1667

879
961.5
052.3333
780
794.1667
505
9175
824

703
948.1667
904.1667
802

857

- 860.1667

964.6667
912
862.5
461
851.5
879

901

846
983.5
967
917.5
1000
705.3333
884.7778
967

879

1000

18

0
591.44446
848.1111
582
952.3333
807.5
877.8333
928.7778
983.5
725
928.5
967
884.7778
612.6667
706.1667
846
793.1111
948.1667
983.5
945
906.7778
703
664.5
549

703

956

868

890

923
963.3333
915.1667
912

890

989

19

0

626

758

846

824
892.1111
798.3333
901

857

1000

967
909.6667
505
673.1667
956
804.1111
929.3333
967

890
884.7778
505

329

538

835

1000

967
837.3333
950.5
974.3333
948.1667
890

989
851.5

20

0
864.3333
914.75
862.5
807.7778
631.5
912

670

912

934
865.6667
593
761.1667
395
744.6667
899.44446
923
875.3333
810.6667
835
787.3333
307

824
983.5
930.3333
849.9167
950.5
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Proceeding pages display the averaged dissimilarity matrix for part one of the subset
study described in Section 7.2.
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12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

47
48
49
50
51

1
-0
792.6
905.3333
814.5833
950.5
960.4
960.4
833.25
868
920.2308
736
928.7778
975.25
457.85715
946.375
659
906.7778
895.125
860.1667
905.3333
943.4286
610.6
868

858
667.6667
917.5
967

901
960.4
763.125
960.8461
796.125
985.8571
753
638.7273
934
870.75
893.1667
1000
839.125
967
983.5
652
987.625
947.75
884.5
980.2
961.125
983.5
1000

901

2

0
523.8571
818.8571

960.4
983.5
943.4286
804.375
961.5
937.8
829.5
733.2
960.4
874.6
752.5
912
880.1429
832
869.5833
767

967
806.7143
645.25
584.7273

8263077

763.5
912
961.5
917.5
808.5
918
620.8571
1000
841.53845
838.8
815.2
478.6
877.8333
967

967
980.2
901
981.1429
736
957.5714
967
984.7692
936.375
914.2
954.3077
957.5714

0
847.26666

884.5
854.8

938.125
847.1429
917.5
869.5833
884.5
873.7778
881.2
887.8
828.4

846

775.5

781
870.375
889.06665
923
911.1539
839.7143
480.5
903.375
808.6
947.2
891.1
894.4
880.1429
853.0833
300
894.4
781.1429
959

838

844
705.375
802
907.6
785.5
730.5
983.5
940.6
361.4
978
915.1429
941.4286
1000
929.2857
957.5714

0

725
894.4
950.5
790.5714
732.7
943.8333
934
917.7778
950.5
947.2
953.8
653.5
804.375
941.7273
93225
829.6667
956
857.8461
910.4286
813.8

457875

706.3
967
907.6
874.6
644.4286
957.5833
738.7143
884.5
795.2857
869.9
871

451
721.875
945
943.9
950.5
912
976.4286
1000
1000
736.93335
943.4286
955.5714
983.5
971.7143
872.7143

0

887.8
864.3333
8614
917.5
917.5
991

1000
983.5
950.5
967
820.8571
582

978
943.4286
950.5
8944
960.4
920.8
769
917.5
318

967
884.5
755.8
962.875
901
3614
950.5
940.6
960.4
943.4286
642.5
509.7143
985.8571
934

955
971.7143
960.4
1000
1000
873.5
637
980.2
946
894.4
881.2

0

571

615
785.5
821.8
838
851.5
901
943.4286
912
924.5714
841.6
835
983.5
835

769
950.5
-884.5

£ 985.8571

802
917.5
631.5
367.5

580

824

802
920.8

655.8571

835

879

863.2857
912
967
910.4286

868

910.9
811.4286

901
980.2
980.2
960.4

901

835
759.1

835
881.2

0

670

802
960.4
901

802
925.75
978
943.4286
983.5
950.5
909.25
987.625
901
649.375
967
829.5
916
975.25
872.7143
543.5
349.42856
670
875.3333
940.6
861.4
791
858.5714
967
980.2
957.5714
987.625
884.5
886.8571
919.3333
802

989
983.5
983.5
938.125
759.5714
=851.5
827.6667
844.4286
937.6667

0

884.5
717.75
846
713.625
821.8
983.5
980.2
868
711.25
730.125
841.5
719.8571
824
864.3333
850.2308
645.25
734.25
782.2
842.3333
729.4
417
807.2
886.875
788.25
587.5
767.25
909.5
912
825.1
698.875
934
960.4
901

901
962.875
927.4
934
957.5714
779
915.1539
835
826.75
975.25
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

1

868
946.375
991.75
964.25
664.5
983.5
792.6
928.5
950.5
938.7143
963.3333
918.7692
928.125
985.8571
901
925.75
911.4
983.5
964.6667
960.4
851.5
1000
815.2
926.6667
835
858.6
911.625
987.625
877.9
841.6
929.2857
980.2

2
914.75
928

1000
952.8571
987.625
926.9167
940.53845
939.5
804.8
983.5
967
798.2
948.75
656.8
825.5714
934
902.46155
918.6667
938.3333
987.625
934

967

934
799.2857
934
953.2308
769
983.5
951.7692
961.9231
961.5
982.2308

3

975.25
940.6
969.2
951.6
1000
853.25
903.7143
909.25
836.4
970.6667
884.5
899.4167
955.5714
940.6
863.875
961

833
840.875
858
987.625
1000

956
894.4
849.125
923
884.8571
792.5714
980.2
771.75
915.1429
974.3333
896.2857

4

938.125
960.4
956
958.2
945
950.5
804.7143
888.625
934
948.6667
909.25
956
969.7143
990.1
987.625
758.2727
875.4286
987.625
944.625
962.875
980.2
972.5
874.6
971.125
890
955.5714
946.1429
821.8
881.75
1000
952.3333
882.1429

5
985.8571
1000
1000
1000
930.7
901
1000
863.2857
983.5
1000

901
1000
1000
983.5
978
960.4
722.8
943.4286
929.2857
912
983.5
1000
1000
956
985.8571
1000
1000
967
818.5
1000
1000
1000

6

967"

915.1429
940.6
881.2
950.5
983.5

967
967
835
967
1000
980.2
868

985.8571

930.3333
874.6

934

681
714
683.2
967
915.1429
925
950.5
901
983.5
980.2
983.5
872.125
917.5
868
917.5

7

1000

991
987.625
888.625
982.2308
872.125
844.4286
958.75
983.5
983.5
1000
1000
983.5
974.3333
946.6923
868
858.5714
843.25
694.75
760.75
807.5
868

1000

967
917.5
915.1429
980.2
971.7143
980.2
759.5714
975.25
957.5714

8
859.75
913.375
891.5714
901

1000
925.75
919.875
849.125
938.125
1000
906.5
793.75
983.6923
912
862.5
875.3333
797.875
839.125
825

868

1000
1000
945
908.3333
843.25
973.5
916.3333
907.6
805.61536
962.875
884.5
950.5
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[y
[N~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3
32
33
34
35
36

37 .

38
39
40
41
42
43
44
45
46
47
48
49
50
51

0

925.75
783.1429
945
931.46155
931.25
942.25
763.5
967

813
985.8571
871.3
870.53845
835
851.5
963.3333
858.5714
923

868
895.5
835

472

901
808.6
694.75
901

901
936.53845
950.5
952.8571
901

868

868
884.5
844
992.38464
990.1
712.9
967
972.5
934
-983.5
751

10

0

807.5
706.6667
513.25
929.2857
954.625
923
910.44446
540.375
593
667.25
721.8571
990.1
872.125
924
818.5
938.125
906.5
847.375
901

924
517.6923
870.375
594.5714
799.2
971.7273
967
961.5
948.1667
857
826.75
571

692

982
913.375
819.6667
914.75
980.2
800.25
983.5
821.8
982

11

0

868
741.5
802

967
884.5
901
574.3
561.5714
807.5
554.5
730.5
879
884.5
915.1429
983.5
882.1429
950.5
883
798.3333
857
617.2
844.4286
648

813
962.875
1000
943.4286
769
653.5
766
707.125
967
950.5
967
983.5
967

967

925

967

967

12

0
591.625
1000
1000
980.2
899
734.25
557.8
475.66666
772.6667
961
760.75
866

736
975.25
980.2
905.125
901
862.125
703
795.2857
611.3333
871.8
953.7273
857

907
871.8
716.2
975.25
465.4
729.4
980.2
806.125
840.2222
945
920.8
948.75
960.4
960.4
940.6

13

0

937
917.5
960.4
917.5
665.875
802
745.9
683.75
980.2
980.2
938.125
967
975.25
967
958.75
920.8
881.2
608.125
940.6
805
498.4
987.625
934

967
957.5714
709.6
947.75
626
445.6
1000
868
917.5
930.7
835
1000

- 967
1000
980.2

14

0

862
719.5
901
987.625
861.4
990.1
983.5
631.5
956

967
953.8
946

967

970
957.5714
934
985.8571
874.6
954.3077
960.4
387.66666
880.6923
952.3333
953.8
983.5
901
950.5
851.5
772

973
9274
947.2
980.2
983.5
917.5
901

910

15

0
' 808.6
887.8
975.25
787.8571
901
917.5
907.6
861.4
943.4286
917.5
926.38464
907.6
911.1539
967
960.4
868
907.6
973

945
855.625
376
826.75
830.2857
887.8
845.1539
901
940.6
989
950.5
980.2
970.3
983.5
980.2
983.5
978
985.3333

16

0

934

912
928.5
846
960.4
769
863.875
775.6
646.4286
914.2
940.6
980.2
896.2857
874.6
901
910.4286
857

879
782.2
773.7143
725

758

961
848.2
943.4286
943

901

1000
1000
807.5
950.5
1000
882.1429
- 934
851.5

208




53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

9

1000

- 945
940.6
957.1
989

901
906.5
1000
930.7
944.1539
961.5
975.25
917.5
958.75
1000

868

879
971.7143
952.8571
814.375
858.5714
934
983.5
983.5
1000
983.5
1600
848.75
955
884.5
855.3077
912

10

950.5
950.5
772.9167
934

1000
917.5
918

901
894.4
919.8571
825.55554
847.6923
847.375
962.2857
980.2
975.25
898.2
884.5
717.1667
920.8
1000

956
881.2
912

879
957.6
858

1000
907.6
920.8
985.8571
874.6

11
797.2857
802
884.5
901

946
971.7143
983.5
985.8571
773.7143
868
818.5
802

868
943.4286
858.1
967
851.5
915.1429
985.8571
901
915.1429
814.375
802

857
686.5
983.5
848.2
1000

956

769

802
884.5

12

894 .4
886.8571
631.2222
923
980.2
1000
911.4
934

934

978

771
794.6667
876.25
831.3333
782.2
907.6
871.8
1000
957.6
894.4
1000
980.2
796.5
726.5714
689.8
957.6
818.8571
967
952.3333
960.4
956
795.4

13
971.7143
975.25
805.3
877.9
962.875
943.4286
802
985.8571
886.3333
909.25
956
830.875
940.6
895
975.25
950.5
980.2
1000
1000
971.7143
934
960.4
920.8
901
8284
1000
749.2
881.75
851.5
980.2
950.5
940.6

14

881.2
839.7143
930.7
960.4
600.3333
1000
894.4
1000

967
865.25
1000
924.5714
956
931.46155
945
946.375
953.8
1000
973.6
967

901

901
825.5714
854.8
983.5
557.8
940.6
953
960.4
1000
947.75
874.6

15

967

967
950.5
970.3
975.25
698.2857
950.5
985.8571
979.375
969.75
980.2
962.875
960.4
928
877.4286
896.2857
934
981.1429
1000
971.125

- 1000
967
983.5
1000
947.2
862.5
907.6
969.53845
990.1
961.5
983.5
1000

16

846
901
972.5
868
971.7143
950:5
664.5
939.5
972.5
887.8
987.625
884.5
975.25
934

846

863

967
1000
983.5
1000
868

904
853.8571
1000
976
983.5
915.1429
716.2
901
1000
901
884.5
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W 1NN bW

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

17 18

0
944.625 0
917.7778  597.3333
907.5 797.7273
907.6 463.75
896.875 934
906.5 793.75
752.5 888.2143
820.875 946.5833
326.8 987.625
934 755.8
874.6 896.875
802 379
943.44446 851.7273
914.1111 577.5
. 835 677.4286
394.4 760.75
823.5714 794.7273
965.44446 961.125

840.5 989
838.3  963.3333
365.66666  888.8333

888.625 576.5
907.6 711.25
934 505
872.125 510.5
975.25 964
983.5 888.625
938.125 901
987.625 937
747.4286 970

913.5833 936.375
983.5 941.3333
896.2857 892
938.125 991

19

0

575.125

763.5
825.5714
855.625
893.7273
852.7692
943.4286
862.5
943.4286
983.5
919.875
543.5
606.375
973.6
828.3333
957.6
901
895.5
918.8571
543.5
340

637

725

1000
971.7143
865.625
962.875
980.75
961.125
952.8571
983.5
872.7143

20

0
864.3333
913.6923

868

817.1
723.625
920.8
802
920.8
874.6
870.7143
573.75
781.1429
363.1
781.1429
899.6
898

859

858

670
808.6
444.5
697.5
985.8571
9274
860.13336
927.4
910.4286
814.1429
1000
971.7143
922.2143

21

0

973
769
909.25
967
983.5
835
763.5
818.5
818.5
660.5714
643.6
802
554.5
989
909.25
978
950.5
920.8
700.25
861.4
505
950.5
945
915.6667
978
846
983.5
881.2
1000
980.2

22

0

648
854.8
651.1429
917.5
960.4
957.1
967

824
920.8
814.375
983.5
769
749.75
887.25
813
891.5714
947.2
841.6
960.4
980.2
768
990.1
950.6923
869.46155
955.5714
959.6667
914.2
957.5714
910.4286

23

0
707.125
847375

907.6
930.3333
920.8
901
825.1
913.375
785.5
818.5
855.625
953.8
769
808.6
896.875
950.5
914.2
736
896.875
940.5
934
922.5714
894.2857
936.375
977.1539
894.4
975.25
950.5

24

0
836.5833
726.5714

912
952.8571
901
833.7273
899.25
622.8571
985.8571
767.7273
899.25
810.25
798.3333
634
960.4
957.5714
915.1429
920.8
979
975.25
722.8
967
848.2727
961.125
924.5714
973

1000
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

17
890
863.875
987.625
938.125
967

978
922.5714
777.8889
938.125
1000
911.1539
835
916.3333
967
983.5
952.3333
726.5714
802
965.44446
815.2
967
987.625
980.2
924.1
913.375
941.4286
949.3333
967
7853077
915.1429
1000
924.5714

18
832.25
865.6429
844

895

1000
811.4167

869.7273.

964.25
704.55554
851.5
835
626.375
886.875
938.125
906.5
946.375
887.7273
869.1667
866.8333
901

901
686.5
780
782.2727
785.5
935.7273
797.2857
921.625
888.3077
811
641.125
856

19
856.2143
892
890.375
868

945
992.9286
946.5833
955.2143
895.5
829.5
788.8889
945

802
920.8
921.625
934
921.8333
964.6429
984.8571
987.625
1000
763.5
785.5
809.3333
802
949.3333
858

868
938.7143
865.25
681

901

20
863.875
920.8
811.73334
916.4
1000
1000
880.1429
946.375
910.9
967

779
851.5
858.5714
953.8
938.125
979
894.2857
987.625
911.625
934

1000 -

901
874.6
835

923
955.5714
875.4286
976.9
920.25
1000

967
872.7143

21
983.5
938.125
937.6667
791
987.625
934
917.5
983.5
846

901
980.2
839.7143
934
947.75
975.25
975.25
983.5
950.5
934
913.375

_ 1000
940.6

- 785.5
940.6
927.4
1000
927.4
958.75
976.9
917.5
832.46155
11000

22
844.4286
990.1
984.7692
941.61536
754.3333
969.7143
948.1429
936.7143
955

982
921.625
934
941.3333
947.75
1000
935.7273
877.4286
971.7143
967
919.3333
861.4
960.4
983.5
'929.875
9142
844.4286
1000
980.2

. 946.5833

1000
910
952.8571

23
946.375
950.5
1000
952.8571
1000
961.125
896.875
932.25
975.25
1000
964.25
942.25
941.61536
983.5
862.5
928.7778
921.625
987.625
975.25
934

1000
962.875
1000
930.3333
987.625
938.125
906.5
1000

872
962.875
884.5
1000

24

889
960.4
960.4
877.9
1000

973
920.7273
854.2727
962.875
987.625
934

934
961.125
929.2857
691
952.3333
778

991
887.7273
980.2
950.5
980.2
957.5714
943

901
953.7273
908.4286
971.7143
792.1667
955
971.125
979
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01 AU AW =

26

25

0

730.5
957.5714
846

802
787.875
818.5
823.5714
901

806
858.6
928.5
582
811.0769
985.8571
967
950.5
985.8571
938.125
1000
890.375
698.875
954.3077
948.75
901
961.9231
950.5

26

0

940.6
878.1539
609.5
940.6
892.75
927.4
961
917.5
954.625
892
752.5
500.2857
947.2
926.38464
950.5
980.2
945

967
990.1
887.8
730.5
980.2
934

813

967

27

0

5314
752.5
846

780
909.25
851.5
747

967
948.1429

-948.1429

950.5
907.6
670
934
851.5
868
967
881.2
960.4
917.5
750.6667
582
934

846 .

28

0

554.5
920.8
661.75
828.4
856

868
975.25
892
950.5
952.8571
8614
819.7692
829.5
920.8
893.6667
958.75
980.2
877.9
917.5
861.4
796.5
818.5
901

29

0

901
841.6
920.8
740.7143
785.5
967
910.4286
895.5
934
811.4286
384.5
881.2
783.1429
980.2
1000
1000
920.8
747

934

901
763.5
980.2

30

0

924
719.7778
818.5
684.75
810.5
983.5
851.5
936.375
1000
881.2
674.125
821.8
901
980.2
971.7143
901
962.875
909.5
921.625
962.875
766.625

3

0

808.5
717.1429
819
953.7273
830.875
958.75
931.6667
582
855.625
521.5
708.5
877
962.875
866.4167
961.5
980.2
891
862.5
861.4
976

32

0

920.8
649.1429
888.44446
848.2
820.3333
797.875
698.2857
663.4
762.4
754.8571
929.2857
953.8
896.2857
929.2857
860.5714
952.0833
914.2
985.8571
919.8571
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69
70
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74
75
76
77
78
79
80
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82
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84

25
954.3077
917.5
853.25
934

989
984.7692
818.6923
959.38464
1000
950.5
861.5
928.5
851.5
1000
975.25
604
894.8461
946.6923
950.6923
975.25
943.4286
1000
950.5
958.75
844.4286
968.46155
969.7143
785.5
948.1429
1000

978
951.7692

26

1000
985.8571
950.5
950.5
987.625
1000

978
971.7143
975.25
1000
980.2
925.75
868

955
985.8571
971.7143
730.5
901
882.1429
851.5
1000
940.6
1000
1000
940.6
983.5
1000
984.7692
910.9
1000

989
961.5

27
928.5
983.5
947.2
841.6
950.5
917.5

901
950.5
697.5
873.5

879

967

915.6667

967

895.5
1000
950.5

802
719.5
8614

898
887.8

967
950.5
963.7
884.5

901

1000

982
983.5

824

967

28
929.2857
985.8571

868
782.2
950.5

1000

978
957.5714
876.25

956

815.2
905.125
940.6
940
985.8571
985.8571
895.5
769
679.4286
715.375
1000
960.4
1000
1000
881.2
983.5
980.2
972.0769
- 1000
1000
972.5
928.5

29

950.5
929.2857
960.4
901
990.1
983.5
1000
983.5
917.5
1000
980.2
1000

934
985.8571
978
980.2
884.5
769

835
752.5
1000
971.7143
970
987.625
915.1429
1000
1000

967
921.625
983.5
9501

967

30

835

982
957.5714
957.5714
967
950.5
936.375
987.625
851.5
967

890
962.875
869.9
983.5
963.3333
901
911.625
987.625
886.875
956
785.5
980.2
945
975.25
940.6
948.75
917.7778
762.4
950.5
876.25
868
962.875

31

851.5
975.25
800.4167
829.5
945

934
838.8
901

901
924.5714
843 8889
868
806.125
924.5714
960.4
936.75
878.4
868
865.6667
835
917.5
868
841.6
842.3333
912
957.6
948.75
987.625
990.1
881.2
976.4286
835

32

785.5
844.4286
1000

967

1000
975.25
922.5714
873.875
971.7143
881.2
865.25
942.25
941.0833
980.2
934
909.25
740.7143
987.625
961.125
901
917.5
872.7143
841.6
853.3333
787.8571
969.7143
930.0833
980.2
880.1667
886.8571
907.6
929.2857
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980.2
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889
554.5
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943
897.7
901

934
851.5
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980.2
955

34

0

838.8
960.4
775.6
864.0833
752.5
934
663.4
752.5
985.8571
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985.8571
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961.125
894.4
922.38464
981.1429

35

0
827.6667
883.2308

937.8
980.2
962.875
980.2
980.2
814
938.125
950.5
930.7
1000
949.1
901
960.4
892

36

0
808.6
780
858.5714
862
957.5714
924.5714
939.5
876.25
946

934
960.4
983.5
929.2857
920.8
917.5

37

0

769

945
954.625
967
928.5
967

978

982

871
980.2
980.2
967
937.8
932.8333

38

0

846
957.5714
886.8571
796.5
967
985.8571
851.5
888.625
811.4167
907.5
957.5714
890
929.2857

39

0

947.2
566.2857
673

945
881.2
983.5
972.5
1000
938.125
1000
879

956

40

0

967
854.8
923
939.5
907.6
907.6
961.5
901
917.5
1000
776.3333
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33

854.8
929.2857
765.7
957.1
1000
1000
940.6
1000

846
917.5
887.8
849.1429
934
979.6923
967
987.625
960.4
980.2
980.2
897.3333
950.5
901

835
841.6
890
980.2
927.4
961
877.9
861.4
851.5
676.6

34 35
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910.4286 970.3
839.7143 960.4
950.5 703

967 920.8

905 957.6
980.75 1000
901 946

1000 890
797.2857 989
953.8 973
874.5 932.6
1000 923
919.8571 829.5
934 923
935.46155 937.8
989 960.4
941.0833 957.6
983.5 967
1000 917.5
. 868 960.4

835 967

868 945

818.5 980.2
973.53845 478.6

922.5714  895.7778
950.5 888.625

868 980.2
906.0769 920.8
884.5 923
946.6923 980.2

36
983.5
839.125
913
955
950.5
538
854.8
967
953.8
895.5
983.5
925.75
967
855.3077
877.9
919.3333
934
1000
928.5
1000

915.1429 .
905.7143 -

825.5714
934
863.2857
940.6
769

937

934
980.2
931.25
8944

37
882.1667
921.44446
965.7273
923.7273
957.5714
983.5
835
851.5
935.5833
970.6667
896.3
963.0833
970.3
912
915.1429
837.53845
894.4
964.6667
1000
983.5
985.8571
972.5
879
945.8
923

1000

" 959.6667
731.875
844

957.6

989

957.6

38
985.8571
1000
1000
958.75
967
964.6429
927.3333
786.5
983.5
983.5
926.6667
879
973.5
980.2
938.125
934
694.75
992.9286
961.2857
884.5
983.5
1000
1000
926.6667
983.5
965.8333
911.625
985.8571
694.5714
991.75
961.5
961.5

39
730.5
821.8

835

912
1000
1000
934

967

901
755.8
806.125
967
938.125
868
950.5
939.5
983.5
967

967

879
924.1

838 .

764.2857
755.8
820

1000
957.5714
901

952
752.5
868

692

40

901
858.5714
953.8
907.6
1000
985.8571
983.5
985.8571
764.875
802

901
859.75
1000

973
971.7143
985.8571
983.5
957.5714
957.5714
901

1000
881.2
620.5
980.2
907.6
950.5
947.2
082.2308
934
829.5
615

1000
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41

0
693.5714
1000
983.5
967
1000
835
901
982
960.4
1000

42

0

983.5
729.4
857
961.5
967

934
915.1429
895.5
1000

43

0

940.6
881.1429
883.5
955.5714
791.375
676.6
938.7143
775.6

44

607.3
874.6
980.2
960.4

846
841.6

901

45

0
869.26666
795.2857
915.1429
846
929.2857
9222143

46

0

866
830.2857
813
957.5714
787.8571

47

0
863.875
683.2
829.9231
985.8571

48

465.4
769
637
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41
830.2857
872.7143

747
917.5
1000
943.4286
1000
952.8571
934

1000
752.5
868
841.6
983.5
945

1000
914.2
971.7143
886.8571
967

1000
844.4286
891.1
835
750.1429
1000
1000
983.5
975.25
821.8
960.4
881.2

42
384.5
901
807.5
934
1000
901
884.5
983.5
917.5
1000
863.875
884.5
901
873.5
884.5
917.5
901
384.5
967
895.5
910.9
892
783.1429
716.2
868
868
891.5714
1000
898
769
920.8
747

43
714.4286
779.2727

934

836
574.6667
927.2857
728.5714
870.7143
883
818.5
876.25
877

868

907

934
919.0833
981.1429
910.4286
808.7143
810.25
802

923
854.8
830.875
895.5
844.4286
943.4286
945
974.0833
643.7143
821.8
841.7143

44
679.4286
744.25
719.5
782.2
872.125
882.1429
940.6
783.1429
849.6667
881.75
697.5
682.375
881.2
391
719.5
962.875
980.2
886.8571
858.5714
985.8571
884.5
868
920.8
774.5
696.4
980.2
769
865.25
772.3
920.8
843.25
722.8

45
880.375
811.9
833.73334
808.6
846
841.5
971.7143
672.375
894.4
871.6667
762.5
807.5
813.4286
739.3
496.75
899.7273
929.2857
950.5
925.75
909.25
934
939.5
874.6
760.75
824
985.8571
934
950.5
677.0833
971.7143
901
830.2857

46
987.625
901
920.8
925.2
923
870.375
811.4286
853.875
891.1
879

934
939.5
943.4286
868
884.5
562
811.4286
987.625
958.75
925.75
947.2
895.5
960.4
913.375
917.5
985.8571
985.8571
633.7
883.3333
985.8571
857

868

47

950.5

973
929.2857
967

901
847.5833
893.38464

741.5

980.2
1000
957.5714
960.4
962.875
901
915.1429
799.2
579.6923
876.25
851.5
901

967

901

1000
915.1429
846
984.7692
943.4286
912
730.9231
984.7692
950.5
916.2308

48
725.375
774.875
863.2857
723.8571
950.5
888.625
814.375
950.5
612.25
791
766.25
925.75
854.2308
967
895.5
948.6667
862.125
637
513.25
780
805.6667
773.125
884.5
765.3333
962.875
936.375
932.8333
1000
992.38464
713

758
675.875
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50

769
915.1429
934

692

868
943.4286
841.6
971.7143
851.5
901
917.5
912
914.2
807.5
908.3333
841.6
920.8
646.4286
533.2857
743.3333
901
943.4286
841.6
721.3333
938.7143
1980.2
854.8
714
962.875
1000

901

901

51
869.5833
785.7273
677.4286
870.7143

938.125
967
946.6923
851.5
673.8
917.5
837.7143
759.6
1000
881.2
896.2857
960.4
832.46155
721.0833
683.75
583.375
901
851.5
901

. 767
917.5
906.0769
886.8571
983.5
817.2308
932.9231
983.5
714.61536

52
762.2857
749.7273
815.1429
852.8571

835
985.8571
858.5714
943.4286
716.7273

805.3
874.5

926.7273

802

901
937.6667
912
985.8571
696.2857
816.1429
872.125
565.5
681
861.4
849.75
983.5
868
943.4286
846
958.75
903.7143
683.2
715.1429

53

0

628
684.75
595.75
824
936.3571
852.6667
879.7857
585.1667
901
562.1111
557.6667
925.75
901
872.125
960.4
991.75
739.7143
800.6429
847.375
901

527
730.5
694.1111
642.5
956
884.5
971.7143
901
689.25
752.5
749.75

54

0

807.2
805.3
796

943
866.2727
982
738.375
488.5
717.75
787.875
888.625
745.4286
784

956

982
656.7273
701.2727
868
862.5
584.2
542.7143
746.7273
5512
841

901
943.4286
917.5
487
628.75
649

55

0
710.86664
967
938.125
901
938.125
751.1
860.6667
533.875
641.3333
841.7143
854.8
888.625
964
830.2857
717.75
909.25
847.375
815.2
543.5
901
519.75
604

967
797.2857
960.4
958.75
818.8571
919.3333
587.8571

56

0
864.3333
962.875
813.4286
822.625
787.4
857
602.25
635.8333
901
749.2
843.25
961
896.2857
825
853.25
773.125
782.2
400.5
821.8

697.125 .

653.5
1000
957.5714
808.6
928.5
816.1429
915.6667
688.8571

57

0
739.6667
925.75
930.3333
868
756.625
950.5
857
697.5
860.6667
954.3077
950.5
1000
842.3333
989
921.3077
824
910.4286
917.5
860.6667
938.7143
562.75
901
839.125
937
797.875
814.375

888.625
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0

868
918.8571
771.3333
714

945
787.8333
925.75
815.2
987.625
918

934
850.1429
971.7143
1000
796.5
813
983.5
869.55554
967

824
593.375
915.1429
949.5
906.5
901
958.75

59

0

906.5
920.8
851.5
924.5714
894.4
837.375
901
957.5714
696.4
925.3077
950.5
840.5
987.625
615
752.5
917.5
910.4286
884.5
877.0769
800

384
913.6923
818.3077
846
800.53845

60

0

884.5
961.5
941.3333
879
987.625
716.2
715.375
832.2
695.9167
886.8571
893.9286
863.875
967

967
983.5
908.3333
928.5
958.75
962.875
858.5714
644.0714
925.75
983.5
925.75

61

0
717.6667
709.5
637
839.125
890
840.5
937
920.8
532.5
813
881.2
703

494

637
657.625
747
881.2
851.1429
863.875
970.3
627.6
655.3333
680.4

62

0
861.4
825.5714
758
815.75
913.375
925.75
1000
884.5
884.5
925.75
642.5
630.4
697.5
795.4
769

835
808.6
909.25
960.4
598.5
619.2308
736

63

0
668.44446
781.1667
960.4

802
941.3333
882.1429
932.44446
769

835
838.6667
632.875
742.6
569.6
719.5
985.8571
958.75
980.2
908.61536
771.7143
729.4
682.1429

64

0

835
877.4286
788.8
947.75
874.6
769
785.5
736
697.5
675.5
617.2
519.6667
642.5
1000
758.375
929.875
934
858.6
773.7143
799.2

65

0

846
983.5
934
948.75
950.5
911.625
895.5
820.3333
863.875
829.5
787.3333
896.875
800.25
792.5833
821.8
944.1539
839.125
571
872.125
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0
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821.8
940.6
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829.5
736
844.4286
854.8
714
980.2
782.2
763
930.7
841.6
909.25
881.2

67

0

730.5
886.8571
946.375
913.375
857
983.5
851.5
901
871.6667
675.5
839.7143
874.6
844.4286
811.9
896.2857
913.375
858.5714

68

0

914.2
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960.4
940.6
877.4286
967
841.6
886.3333
862.5
980.2
934
457.85715
846.8
980.2
905.125
940.6

69

0

901
897.0833
925.75
917.5
950.5
1000
882.1429
928.5
976.0769
955.5714
917.5
744.6923
961.9231
978

- 913.6923

70

0
637
698.875
851.5
846
884.5
758

901

879
840.875
915.1429
957.5714
743.0833
967
734.8333
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0
641.125
840.5
950.5
884.5
769

934
891.5833
936.375
971.7143
950.5
767.4167
796.5
775.6667
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0

795.4
785.5
881.2
818.5
912
896.875
841.6
987.625
930.7
822.625

. 863.875

896.875
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600.7
868
846

8917.7

796.5
901

775.6
973

829.5

642.5
835
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787.8571
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0
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0

983.5
721.8571
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901

769
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785.5
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0
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983.5
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884.5
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79

0

894.4
958.75
943.4286
802
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Appendix B: Individual MDS Plots
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Figure 1. MDS plot for subject 1 of subset study. Axes labeled accordingly. Stimuli
numbers as in Table 3.4. Colours are to help distinguish between rhythms. All proceeding
figures are presented in the same manner, for the next 14 subjects.
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Figure 2. MDS plot for subject 2 of subset study.
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Figure 3. MDS plot for subject 3 of subset study.
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Figure 4. MDS plot for subject 4 of subset study.

231




¢8s

5

14

37

&6 &7

54

38
Low
Amplitude Low
w
High |
Frequency
1 80

12 3

High
Amplitude

»®

3120
33

18
a

Figure 5. MDS plot for subject 5 of subset study.
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Figure 6. MDS plot for subject 6 of subset study.
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Figure 7. MDS plot for subject 7 of subset study.
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Figure 8. MDS plot for subject 8 of subset study.
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Figure 9. MDS plot for subject 9 of subset study.
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Figure 10. MDS plot for subject 10 of subset study.
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Figure 11. MDS plot for subject 11 of subset study.
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Figure 12. MDS plot for subject 12 of subset study.
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Figure 13. MDS plot for subject 13 of subset study.
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Figure 14. MDS plot for subject 14 of subset study.
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Figure 15. MDS plot for subject 15 of subset study.
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Appendix C: Subsets

Table 1. Subsets Used in First Part of Subset Study. Listed are the numbers of all the
stimuli used in each of the 5 subsets given to participants in the study described in
Section 7.2.1

Subset1 Subset2 Subset3 Subset4 Subset5

1 2 2 1 1
3 5 3 3 2
4 6 4 4 3
8 7 7 5 4
9 8 9 6 8

10 1 13 7 10

12 16 14 9 12

13 17 15 10 17

14 18 18 1 18

15 19 19 12 19

16 23 20 13 20

17 24 21 14 22

20 25 22 15 23

21 27 24 18- 24

22 29 25 20 25

23 30 26 21 30

26 32 - 28 22 31

27 34 33 24 32

28 38 34 26 34

31 39 36 28 35

32 41 38 29 37

33 42 40 30 38

35 47 43 31 43

36 48 44 33 45

37 49 45 35 46

39 50 46 36 47

40 52 47 37 48

42 53 50 40 50

43 56 51 41 - 51

44 57 52 43 52

45 58 53 44 53

46 59 54 45 54

48 62 55 46 . 55

51 64 56 49 57

54 66 57 51 58

55 68 58 53 59

60 69 59 54 60

61 70 61 55 62

62 71 65 56 63

63 72 66 60 64

64 73 68 61 67

65 74 69 63 68
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78
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83

Table 2. Subsets Used in Second Part of Subset Study. Listed are the numbers of all the
stimuli used in each of the 7 additional subsets given to participants in the second part of
the subset study described in Section 7.2.4

Subset 6

N

11

13
14
15
16
19
21
25
26
27
28
29
33
34
36
38
39
40
41
42
44
47
49
50
52
57
58
59
60
61
65

Subset 7

~N oo W=

o

- 10

14
16
17
20
22
23
27
29
30
31
32
33
35
36
37
39
41
42
43
45
46
48
49
51
54
55
56

Subset 8

Subset 9

®~NON

©

11

14
16
18
21
22
23
24
25
27
29
30
33
34
35
36

37 .

39
42
43
47
48
50
51
53
56
58
60
61
64

Subset 10 Subset 11

5
6
7
8

O

11
12
13

14

15
17
18
19
21
22
23
26
28
29
30
32
33

35

36
37
38
40
41
44
48
49
52
56
57
59
60

Subset 12

N bk W=

©

11
13
16
17
18
19
20
24
25
27
31
36
37
38
39
41
42
43
44
45
46
49
51
52
53
54
55
56
57
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68
69
70
72
73
74
76
77
79
80
81
82
83
84

62
63
64
65
66
67
71
72
73
74
75
76
78
80

64
67
68
69
70
72
75
77
78
79
80
81
82
83

65
66
67
68
71
72
73
74
76
77
80
81
82
83

63
68
69
70
71
73
74
76
77
79
80
81
83
84

61
62
64
65
66
69
70
71
74
75
78
79
80
82

59
60
62
63
66
67
69
70

72

73
75
76
80
84
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THE UNIVERSITY OF BRI.TISH COLUMBIA

You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of
the consent form:

NAME

{please print)

SIGNATURE DATE

If you have any concerns regarding your treatment as a research subject you may contact the
Research Subject Information Line in the UBC Office of Research Services at 604-822-8598.
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THE UNIVERSITY OF BRITISH COLUMBIA

You héreby CONSENT to participate in this study and acknowledge RECEIPT of a copy of
the consent form:

NAME

(please print)

SIGNATURE __ DATE

If you have any concems regarding your treatment as a research subject you may contact the
Research Subject Information Line in the UBC Office of Research Services at 604-822-8598.
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THE UNIVERSITY OF BRITISH COLUMBIA

You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of
the consent form:

NAME

{please print)

SIGNATURE DATE

If you have any concems regarding your treatment as a research subject you may contact the
Research Subject Information Line in the UBC Office of Research Services at 604-822-8598.
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Figure 4. Ethics Approval Form

LIBC The University of British Cofumbia
L Office of Research Services '
B A ~ Behavioural Research Ethics Board.

Suite 102, 6190 Agronomy Roead, Vancouver, B.C. VBT 123

CERTIFICATE OF APPROVAL- MINIMAL RISK RENEWAL

INCIPAL INVESTIGATOR: DEPARTMENT: UBC BREB NUMBER:
E. Maclean UBC/Science/Computer Science HO1-80470

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT:

Institution | Site
IBC Point Grey Site :
KOther locations where the research will be conducted: .

PUA

ICO-INVESTIGATOR(S):

Ricardo Pedrosa
KColin Swindells
[Susan Gerofsky
MNoorin Fazal

Pavid Temes

Matt Savage-LeBeau
Mario Enriquez
[Steve Yohanan

ISPONSORING AGENCIES:

nnovation and Sc:ence Coundil of British Columbia - “Physical and mutimodal user inte:faoes usabmty &
gychophysics”

atural Sciences and Engineering Research Council of Canada (NSERC) -"The des;gn of nmm-modal symbolic
nformation displays” - "Orsil titte - Physical user interfaces: Commumication of information and aﬁect"'

‘arious Sources

OJECT TITLE:
il fitle - Physical user interfaces: Communication of information and affect

EXPIRY DATE OF THIS APPROVAL: June 14, 2008
IAPPROVAL DATE: June 14, 2007

The Annual Renewal for Study have been reviewed and the procedures were found to be acceptable on ethical
qrounds for research invelving human subjects.

Approval is issued on behalf of the Behavioural Research Ethics Board
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