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Abstract 

Intelligent systems are increasingly able to offer real-time information relevant to a user's 
manual control of an interactive system; however, effective presentation of this information 
creates many challenges. We consider how to use force feedback to convey information to 
a user about dynamic system control space constraints that have been computed by an 
intelligent system. Effective display of control constraints will require careful consideration 
of the usability of the forces, in addition to good technical design, to assure user acceptance 
of the feedback. Possible dynamic systems that can benefit from this kind of interaction 
feedback are tasks such as driving and the control of physically-based animations. 

In this thesis, we studied the haptic display of control constraints in a simple driving 
simulation. We developed a 'look-ahead' guidance method to display usable haptic guid­
ance suggestions to a driver based upon the predicted location of the vehicle relative to the 
road, and implemented this using a custom vehicle simulator based on Reynolds's Open-
Steer framework. The performance and usability of our Look-Ahead Guidance method are 
compared to a baseline of No-Guidance, and to Potential Field Guidance, the current state-
of-the-art haptic path guidance method. Our experimental results show that Look-Ahead 
Guidance was more usable and showed performance benefits in our task compared to both 
No-Guidance and to Potential Field Guidance. We identified several factors that we sus­
pect affect the usability of haptic path guidance and suggest future work based on these 
observations. 
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Nomenclature 

Vectors are printed in lower-case, bold-faced italics, e.g. v. Points are printed in upper-case, 
bold-faced italics, e.g. O. Scalars are printed as plain-faced italics, e.g. R and 0. 

Table 1: Symbols and Associated Descriptions 

S y m b o l D e s c r i p t i o n 

Vehicle Model Symbols 
O Center of vehicle coordinate space 

Q Front of vehicle 
V Vehicle velocity 
e Vehicle wheelbase 
e Current steering angle 
^max Magnitude of maximum steering angle 
r Current turning radius of the vehicle 
C Center of vehicle rotation 
T p a t h Path radius 

Control Knob Symbols 
A Control knob angle relative to initial position 
^desired Desired control knob angle 
e Difference between desired and current control knob angle 
hp PD controller proportionality component constant 
kd PD controller derivative component constant 

General Force Symbols 
Ckp Centering force proportionality constant 

Ckd Centering force damping constant 
Ckmax Maximum centering force contribution to final force 
ky Viscous damping constant 

Guidance Methods Symbols 
P Predicted vehicle location 
R Scaling factor from control knob angle to steering angle 

Angle between current heading and system desired heading 

'/'max Maximum magnitude for desired heading offset 
T Target vehicle location for Look-Ahead Guidance 
t Look-Ahead time in seconds 
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Table 1: continued 

Symbol Description 

O p a t h Current vehicle position projected onto path 

^ d e s i r e d Desired steering angle 

^ e n v e l o p e Distance from edge of path over which enveloping occurs in 
the Look-Ahead Guidance method 

4>LA Desired heading offset for the Look-Ahead Guidance method 

<t>PF Desired heading offset for the Potential Field Guidance 
method 

FPD Force output from the PD Controller 
Potential Field Guidance force 

FLA Look-Ahead Guidance force 

P Distance from the center of the path at which point the force 
from the Potential Field Guidance method saturates 
Angle between the current vehicle heading and the line 

( O . O p a t h ) 

d Distance of the vehicle from the path 
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Chapter 1 

Introduction 

With the spread of intelligent systems in applications as diverse as automobile driving sup­

port, surgical simulation for training, animation design aids and tools for teaching physical-

gestures, haptic force feedback presents an opportunity to enhance highly interactive user 

interfaces. Haptic interfaces can provide intuitive cues derived from an intelligent system's 

knowledge of the environment, from a user's intentions and preferences, and/or from an 

assessment of the user's current capabilities or needs. Many possible approaches to devising 

such cues exist, differing in the degree of control retained by the user. At one extreme, 

the system can behave autonomously but allow the user limited intervention when desired; 

at the other, the user is completely responsible for interface control, but the intelligent 

system can offer supplementary force suggestions. We have chosen to work in the space of 

the latter because we are interested in systems with tightly coupled user interaction, not 

semi-autonomous systems. 

1.1 Motivation 

We were motivated to investigate the problem of effective haptic path guidance while con­

sidering how to use force feedback to assist a user interacting with an intelligent system that 

computes constraints on the control space of a dynamic system (such a system is discussed 

in Section 2.1). For example, consider a driving simulation as the dynamic system in ques­

tion. Then the control space of the system is the acceleration of the vehicle, manipulated by 
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the gas and brake pedals, and the steering angle, manipulated by the angular position of the 

steering wheel. For simplicity, assign the car a constant velocity and no acceleration so that 

the only way to control the system is via the steering wheel. Now consider an intelligent 

system that computes the constraints on the steering angle that will keep the vehicle on 

the road given the car's current location, heading and speed. How can these constraints be 

conveyed to the driver in an effective and usable way? 

We felt that force feedback was an obvious interaction modality to effectively con­

vey such constraints to the driver. However, our initial attempts to use it did not go 

well. In our prototype we used a P H A N T O M , a three degree of freedom haptic interface 

(Massie and Salisbury, 1994), as the haptic interface to control the steering angle of the 

simulated vehicle based on the X-axis position of the end effector, and applied forces to 

push the end effector away from constraints. Our difficulty stemmed from the forces being 

applied too late and too strongly, thereby abruptly forcing the user away from a constraint 

and forcing the interface to the other extreme constraint, resulting in an annoying and inef­

fective end effector oscillation. It was easier to control the vehicle with no forces displayed 

at all than with our initial attempts at haptically displaying the constraints. 

We needed a more subtle approach to make the forces we displayed more useful and 

intuitive. We anticipated that by predicting the state of the system and detecting impend­

ing constraint violations (leaving the road) we could apply a force with gently increasing 

magnitude to slowly steer the user away from a constraint and thereby avoid the strong, 

oscillation-inducing forces we observed in our preliminary work. Ideally, these forces would 

be transparent to the user, who would be unaware that forces were being applied to guide 

him away from a constraint. 

Another possible haptic interaction technique is to display a rigid haptic "wall" to en­

force a constraint rather than to steer the user away from a constraint. A rigidly displayed 

constraint would be desirable where it is critical that the user not violate the control con­

straint and where the user is confident that the intelligent system is perfect at calculating 

control constraints. If not, the user may become confused and/or annoyed when the system 

computes a non-existent constraint, and/or misses a constraint altogether. We do not as­

sume that the intelligent system is perfect at computing the control constraints and consider 
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problems where the user may want to override the intelligent system's computed control 

constraints. In our approach, the user retains ultimate control, not the intelligent system. 

It is important to note that driving is just one application that could benefit from 

interaction with control constraints augmented by haptic feedback. Any situation where 

a user is navigating a control subspace computed by an intelligent system and can over­

shoot the boundaries of this subspace could benefit from predictive force feedback guidance 

through the control interface. Such applications include, for example: driving, path tracing 

(a common activity for graphic artists), and interactive animation control. For the sake of 

simplicity we studied force feedback guidance in a simple driving simulation. v 

1.2 Objectives and Approach 

As touched upon in the previous section, there are many poorly understood human-in-the-

loop considerations for haptic guidance methods. A successful approach will be one that is 

intuitive to use, aesthetically acceptable, and does not surprise or annoy the user; it should 

make the task at hand easier without being intrusive. The wrong implementation could 

result in the user reflexively fighting unexpected forces, relying too heavily on a system 

that is not meant to be completely autonomous, or being annoyed rather than aided by the 

feedback. Good haptic guidance will not require significant attentional resources from the, 

and will have a minimal learning curve, and it will either have a significant quantitative 

performance benefit when compared to no haptic feedback, and/or significantly reduce 

fatigue and increase user comfort and confidence. We felt that, if properly designed and 

implemented, a haptic guidance algorithm based on prediction would address all of these 

issues. 

We chose to study an application that should yield insights into how haptic guidance 

could benefit a larger class of interface problems: a driving simulation where we provide 

haptic cues to guide a user along a simulated road. To keep the complexity level reasonable, 

the user had control over the vehicle's steering angle, but not its velocity. This driving 

application has a number of useful characteristics: 

• It is relatively simple; therefore it can be studied in a reasonable amount of time, an 
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important quality for a Masters thesis project. 

• It requires a simple one Degree of Freedom (DoF) haptic interface, a wheel or knob, 

which is economical and easy to program compared to higher dimensional haptic 

interfaces. 

• Steering a car is an under-actuated system, a property shared by some of the other 

applications we are interested in such as interactive control of physically based anima­

tions. An under-actuated system has more degrees of freedom than there are degrees 

of freedom for control. Our driving task is under-actuated because the system has 

three degrees of freedom: position (X and Y values) and orientation (angle of the 

vehicle); and one control degree of freedom, the steering wheel angle. 

• Most people are familiar with driving; therefore users of our system will require a 

minimal amount of time to learn how to use the system. This is important because we 

wanted participants in our experiment to spend the majority of their time generating 

useful data, not learning how to use the system. 

In our experiment, we present to the user a visual representation of a vehicle on a 

road by using a modified version of OpenSteer, a vehicle simulation environment developed 

by Reynolds (2003) to study intelligent steering behaviours of autonomous vehicles. We 

implemented a predictive algorithm, Look-Ahead Guidance, by extending an approach 

Reynolds (1999) developed for steering autonomous vehicles along a path. We compare this 

to two others, a baseline with No-Guidance force feedback, and a non-predictive, reactive 

algorithm similar to what we used in our early prototypes mentioned in the previous section. 

We refer to the latter as Potential Field Guidance because the forces displayed are as 

if the vehicle is in a force field pushing it away from the the edge of the road back toward 

the middle of the road. We considered potential field guidance to be the standard path 

guidance algorithm when we started this work because many previous haptic systems used 

similar methods, as is evident in Chapter 2 on related work. 

We describe the design and execution of a formal experiment to quantitatively and 

subjectively evaluate the performance of these three haptic guidance methods. We then 

4 



present our findings with respect to this experiment and discuss how we would proceed 

with future work on haptic path guidance. 

1.3 Document Map 

The remainder of this document puts forward how we addressed the problem of haptic path 

guidance and is divided into the following Chapters: 

2 - Related Work: This Chapter presents relevant previous work. 

3 - Implementation: We present the design and implementation of the haptic path guid­

ance methods that we decided to evaluate, as well as how we modified OpenSteer to 

meet the needs of our study. 

4 - Evaluation Methods: We present an experimental design to evaluate our guidance 

methods in this Chapter. 

5 - Experimental Results and Analysis: The process, results and analysis of our ex­

periment are presented in this Chapter. 

6 - Discussion: This chapter discusses the work done in the previous three chapters. It 

provides details on problems that were encountered, what we could have done bet­

ter, and interesting observations made after the experiment, that were not initially 

apparent in the statistical analysis. 

7 - Conclusions, Contributions and Future Work: We distill what we learned, 

present our contribution to the knowledge in the area of haptic guidance, and what 

can be done in the future to learn more about this problem. 
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Chapter 2 

Related Work 

The use of force feedback to guide users in performing a variety of tasks dates back a 

number of years. In one of the earliest examples, Rosenberg (1993) used 'virtual fixtures' to 

support a teleoperated peg-in-hole task by providing simple guides and constraining entry 

to forbidden regions. The haptic guidance work done since can be loosely categorized into 

four areas: 

• Training 

• Non-Training Surgical Applications 

• Shared Control of Vehicles 

• Path Guidance 

2.1 Non-Haptic Control Guidance 

Work by Reynolds (1999) on the control of autonomous vehicles provided inspiration for our 

Look-Ahead Guidance method. He presents a number of steering behaviors for autonomous 

vehicles that create realistic, complex behaviors such as flocking, obstacle avoidance and 

path following. An integral component of his path following algorithm is a predictor of a 

vehicle's position a fixed time interval into the future, which he accomplishes by using a 

simple linear algorithm based on the velocity and heading of the vehicle. If the predicted 

location of the vehicle is off of the path, then the system commands the vehicle to steer 
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toward the point on the path closest to the predicted location. We call this kind of predictive 

path following a look-ahead algorithm. 

Reynolds (2003) also developed and made publicly available a software toolkit, Open­

Steer, a test bed for steering behaviors. We used OpenSteer as the basis of our simulation 

and rendering engine which saved us the time and effort of developing a similar system on 

our own. However, OpenSteer did not satisfy all of our requirements which meant that we 

had both to modify parts critical to our study and to accept the drawbacks to some other, 

less critical, features such as path representation. In Chapter 3, we discuss in detail our 

usage and modifications to OpenSteer. 

Look-ahead methods are used by Feng, Tan, Tomizuka, and Zhang (1999) to provide 

non-haptic path guidance for driving tasks, especially under low visibility conditions. This 

work focuses on the design of a complex vehicle location predictor, and approximations to 

this predictor to reduce its computational requirements to the point where the algorithm 

can run in real-time. They use a graphical display to present the driver with the predicted 

location of the vehicle derived from the approximated location predictor. Feng et al. use a 

more complicated vehicle model and predictor than we need. They test their system exper­

imentally, but this is done primarily to verify that their approximated location predictor 

algorithm performs well compared to the full algorithm, not to compare the performance 

of their system to the performance of driving unaided by their predicted location display. 

They also provide some basic experimental results indicating that a larger look-ahead dis­

tance improves path following performance but they do not provide any details on their 

experimental procedure and only fleetingly mention the driver's feelings about using the 

system. 

Kalisiak and van de Panne (2004) have created an an intelligent system to compute a set 

of safe control inputs for a dynamic system which they call viability envelopes. A viability 

envelope is the set of control inputs that will keep a dynamic system in a safe state given 

the current system state — for instance, the set of steering angles that will keep a driver in 

his lane given his current heading and speed. Viability envelopes could also be useful for 

helping to control physically-based animations which typically have a small subset of the 

entire control space that leads to a 'good' animation, such as keeping a character upright 
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while walking. Viability envelopes could be used to make interactive control of such systems 

much easier by constraining the control inputs to keep the system in a 'good' state. A user of 

a viability envelope system could potentially realize a large benefit from the haptic display 

of the viability envelope since graphical cues may be non-intuitive and/or distract the user 

from the task at hand. 

2.2 Haptic Training 

Haptic feedback has been used to help teach complex motor tasks such as writing Asian 

text. The surgical community has several haptic training tools that are primarily used to 

simulate the feel of surgery and occasionally to repeat the motions of an expert surgeon. 

Teo, Burdet, and Lim (2002) used a 6-DoF haptic device to teach Chinese handwriting. 

They model both pen-based writing (2D motions) and calligraphic writing (3D motions). 

They employed experts in Chinese writing to record the motions required for a set of 

characters, which can then be played back to students (spatial and temporal constraint) or 

used as a guide (spatial constraint only). Both styles of constraints are implemented with a 

slight variation on a simple spring and damper constraint where the haptic interface's control 

point and the closest point on the constraint path to the control point are attached with 

a virtual spring and damper. They develop a complicated scoring scheme for a student's 

characters that involves the shape, motion, force and smoothness of their strokes. They do 

some basic experiments to measure the quantitative performance of their system via their 

score metric and do not formally evaluate the users' feelings about their interactions with 

the system. They report that spatial path constraints without a temporal constraint were 

"agreeable to users" and resulted in a performance increase, especially for beginners. 

Solis, Avizzano, and Bergamasco (2002) use a custom haptic device to teach the writing 

of Japanese characters. The main thrust of their work is in using Hidden Markov Models to 

recognize the character that the user is trying to write, and providing haptic path guidance, 

for that particular character. This contrasts with the work done by Teo et al. which does 

no such recognition. The path guidance method employed by Solis et al. is once again a 

simple spring and damper method that attempts to keep the control point on the outline 
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of the current character. They evaluate their system by considering the accuracy of their 

task recognition algorithm, and they do not look at user interaction issues with the haptic 

device or if haptic guidance improves a user's ability to write Japanese characters. They 

evaluate the task recognition of their system on ten different kanji characters, and report 

recognition rates varying between 76% and 100%. 

Feygin, Keehner, and Tendick (2002) present, and carefully evaluate, a haptic training 

method for a perceptual motor skill: tracking the spatial and temporal motion of a point 

following a 3D path over time. The trajectory of the point is specified through three 10-

second sinusoidal curves; one for each of the X, Y and Z axes. A P H A N T O M is used to 

interact with their system. Their experimental task consists of first presenting the tra­

jectory of the point and then having the user recall the presented trajectory. They have 

three different presentation methods: purely visual (watching the P H A N T O M follow the 

trajectory), purely haptic (subject cannot see his hand), and simultaneous visual and haptic 

presentation; and two recall methods: purely haptic and a combination of haptic and visual. 

No active force feedback is presented during recall. The trajectory is presented to the user 

by using a simple spring and damper model to guide the user along the trajectory. They 

perform a well-designed and detailed experiment with an equally detailed analysis of the 

performance of the different presentation and recall methods. They present some interesting 

metrics for positional, shape and temporal recall accuracy. Our experimental task is differ­

ent enough from their task that we cannot use their performance metrics directly, but we 

foresee these performance metrics being useful for future haptic path guidance work. They 

conclude that "haptic guidance can benefit performance, especially when training temporal 

aspects of a task." 

2.3 Haptic Non-Training Surgical Applications 

An example of a haptic system used for guiding but not for training a surgical task is found 

in the work done by Okamura's group on virtual fixtures for micro-surgical applications 

(Bettini, Lang, Okamura, and Hager, 2001, 2002; Marayong, Bettini, and Okamura, 2002; 

Marayong, Li , and Allison Okamura, 2003; Marayong and Okamura, 2003). These fixtures 
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provide variable admittance to a user's input forces which are factored into components 

parallel and perpendicular to a given constraint. The system guides a user along a con­

straint by making movement in the direction parallel to the guidance constraint easier than 

movement in the perpendicular direction. With this setup, the system can vary the provided 

guidance from none to a rigid constraint. Furthermore, the user can be pulled toward the 

constraint by making perpendicular motion toward the constraint easier than away from it. 

This system is implemented using admittance control, meaning that the device's position 

changes in response to forces exerted on it by a user, as opposed to impedance control 

devices, such as ours, which apply forces based on the position of the device's end effector. 

Okamura's group has done a number of studies on the performance impact of varying the 

amount of guidance provided by the system across a number of different tasks. These tasks 

include standard path following, path following while avoiding an obstacle on the path, and 

path following with a secondary off-path targeting task. They have also looked at using ma­

chine learning to attempt to identify the different tasks a user is trying to do, and changing 

the guidance characteristics appropriately. While we do not look at task recognition in this 

thesis, we anticipate that our system would benefit from such functionality. As is the case 

with much of the previous work, this system uses a haptic interface with at least the same 

degree of freedom as the system being controlled. Another difference between this work and 

ours is that the nature of microsurgical tasks dictates that the interaction with the haptic 

device involves very slow motions. This is not a characteristic of systems where predictive 

haptic path guidance will be most useful, such as interactive control of physically-based 

animation. 

2.4 Shared Control of Vehicles 

A significant amount of work has been done on active steering in vehicles to help the driver 

with tasks such as lane keeping and passing. The majority of the lane keeping work appears 

to be motivated by a final goal of autonomous driving, and shared control of the vehicle is 

a stepping stone toward that goal. 
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Steele and Gillespie (2001) used haptic guidance in the shared control of a vehicle, and 

experimentally examined its effect on visual and cognitive demand. Their path guidance 

implementation uses the current lateral displacement of a vehicle from a path to calculate 

a desired steering angle "appropriate for good path following". This is done by applying a 

force to the steering wheel proportional to the difference between the desired steering angle 

and the current steering angle. This is very similar to our Potential Field Guidance method 

described in Section 3.2.4. 

They performed two experiments, one designed to test the effect of haptic guidance on 

the demand for visual cues, and another to test for the effect of haptic guidance on a driver's 

cognitive processing capacity. In their experiments, a small John Deer tractor was outfitted 

with a haptic steering wheel and L C D monitor. Both tasks involved having a user follow a 

straight path, with obstacles placed in the middle of the path at various points along the 

path length. The participant was given the primary goal of avoiding the obstacles, and the 

secondary goal of following the middle of the path as closely as possible. 

To measure visual demand in the first task, users saw nothing on the screen until they 

pushed a button on the wheel. After pressing this button, they would then, for half a 

second, see the simulated environment oh the monitor. The number of times the button 

was pushed was used to measure the visual demand required to perform the task. This 

task was done once with haptic feedback and once without. The authors found that haptic 

feedback provided both a significant decrease in visual demand and in lateral deviation from 

the path when compared to the no haptic guidance condition. 

In the second task, participants were asked to count backwards from 1000 by increments 

of 3 while they followed the path and avoided obstacles. They were instructed that the 

mental arithmetic was of lower priority than following the path and avoiding obstacles. 

The authors hypothesized that if haptic guidance affected the cognitive processing ability 

of the driver, then there would be a difference in the number of subtractions the driver 

could perform with haptic guidance compared to no haptic guidance. They did not find a 

significant difference between the number of subtractions performed with or without haptic 

guidance. 

The components of this study relevant to our work are the use of a similar desired-
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steering-angle approach to generate control forces, and their finding that haptic guidance 

provides a significant reduction in path following error compared to no haptic guidance. 

However, they only studied one kind of haptic guidance on a straight path and did not 

consider the drivers' feelings about the haptic guidance compared to no haptic guidance, 

something that we believe is necessary for user acceptance of shared control systems. 

Rossetter et al. (Rossetter, 2003; Rossetter and Gerdes, 2002a,b; Rossetter et al., 2003) 

employ force feedback potential fields in combination with a look-ahead algorithm to enforce 

vehicle guidance functions such as lane keeping and general hazard avoidance. They focus 

almost completely on safety concerns for implementing lane assistance in a real vehicle. They 

carefully develop a detailed vehicle model and use this model to design a mathematically 

stable lane keeping controller based on a potential field. To help make their controller stable 

they needed to add a look-ahead to their potential field method. This was encouraging 

information during the development of our system, because it echoed our experiences with 

potential field path guidance. 

The output of their lane-keeping controller is applied to the steering control of a vehicle 

which is shared with the driver via the steering wheel, so that the driver feels the output 

of the lane-keeping controller. They made a great effort to ensure that their controller will 

keep a car in its lane even in the absence of driver input. This is something that we are not 

interested in implementing as we envision a tightly coupled interaction between the system 

and the user for our applications, not automation. Only fleetingly in their work do they 

discuss the interaction between their system and the driver, mentioning that the forces feel 

intuitive without more formally evaluating this observation. In the future work section of 

'his Ph.D. thesis, Rossetter (2003) acknowledges that user interaction with the system is an 

important issue that requires attention in order to create a good path guidance method. 

Throughout the design, implementation and evaluation of our system we took into account 

the user interaction issues with our system. 
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2.5 Haptic Path Guidance 

The majority of existing haptic path guidance work has either been for training or for the 

guidance of vehicles. There are some examples of haptic path guidance systems that do not 

fall into these categories and we present them in detail here. 

Cobots are an example of passive haptic path guidance: the user's input energy is 

steered, dissipated or stored to guide the user along a desired trajectory (Colgate et al., 

1996; Swanson and Book, 2003). This is different from every other system that we have 

presented so far. Passive haptic guidance is a good candidate when safety is a primary 

concern since the haptic interface does not add energy to the system, making it possible to 

guarantee stability. This work is not as closely related to our work as some of the other 

previous work we have presented but it is an interesting approach to a related problem. 

Another example of a non-vehicle haptic path guidance algorithm is the work done by 

Donald and Henle (2000) on the haptic control of animation. Here, high-dimensional motion 

capture data is transformed to a three-dimensional trajectory that is interacted with via a 

P H A N T O M . They present two haptic methods to interact with motion capture data. In the 

first method the P H A N T O M follows a force 'river' around the 3-D trajectory representing 

an animation in a high-dimensional configuration space (a 57 degree of freedom humanoid 

character). They use a handcrafted transfer function that maps the 3-D configuration 

space to the character's 57-D configuration space. The user can manipulate the animation 

by pushing on the end effector of the P H A N T O M , altering its path as it follows the force 

river representing the motion capture animation. The P H A N T O M is connected to the 

animation trajectory via a virtual spring that pulls the end effector toward the trajectory, 

while another force tries to push the end effector along the trajectory at the pace set by the 

motion capture data. 

The second interaction method they present is not as direct; the P H A N T O M is used 

to interact with the force river from the outside instead of by following it. The force 

river is rendered as a 3-D tube and can be manipulated with direct haptic feedback from 

the P H A N T O M . The current temporal position of the animation is indicated by a ball 

following the tube. The tubes are designed to feel 'stretchy' when manipulated, and the 

user can change the shape of the tube by pulling on it with the P H A N T O M . 
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This work presents an interesting way to use a haptic device to interact with higher 

dimensional configuration spaces than the interaction device has, and uses paths to ac­

complish this. However, their system is more autonomous than what we would like to 

implement and uses a more complicated haptic interface than we would like to use. They 

do not perform a user study to analyze the human computer interaction issues with their 

system, something that is very important to us and we believe that this requires a simpler 

system and task to analyze properly. 
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Chapter 3 

Implementation 

Our system is comprised of several components, depicted in Figure 3.1, which we discuss in 

detail throughout this Chapter. 

3.1 Simulation and Rendering Engine 

In this section we describe how our system simulates and renders a simple virtual envi­

ronment. For the purposes of our experiment, we needed to be able to draw a path and 

something resembling a vehicle that a user can control to follow the path on the screen. The 

OpenSteer framework by Reynolds (2003) provides a good base set of functionality towards 

our goals, allowing more time to be spent developing the guidance algorithms and running 

experiments than would have been available if we developed everything from scratch. Open­

Steer was designed to help develop intelligent behaviours for autonomous vehicles, and we 

extended it to allow for user controlled vehicles with force feedback. 

3.1.1 OpenSteer 

This section summarizes relevant components of Reynolds's OpenSteer framework, a basic 

simulation and rendering engine. For a complete reference to OpenSteer see its on-line 

documentation (Reynolds, 2003). Our changes to OpenSteer are presented in Section 3.1.2. 
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Figure 3.1: System Block Diagram 
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3.1.1.1 Path Model 

OpenSteer defines an abstract path representation consisting of a radius (1/2 width) and 

methods to: 

• Get the total length of the path 

• Get a point on the path a certain distance from the beginning of the path 

• Get the distance along the path of an arbitrary point 

• Project a given point onto the path 

• Test if a given point is within the radius of the path 

Only one concrete implementation of this abstract definition is provided based on a polyline, 

a series of connected line segments. 

3.1.1.2 Vehicle Model 

OpenSteer's vehicle model is a very simple one, consisting of a position (which is its center of 

mass and rotation), a velocity vector, a radius (size of the vehicle) and mass. The direction 

of the velocity vector is always aligned with the heading of the vehicle (i.e. the velocity 

vector is always coincident with the center line of the vehicle). The system steers a given 

vehicle by applying a 2-D force to the vehicle's position which in turn affects the vehicle's 

velocity via a physical simulation engine that integrates this force over time. This vehicle 

model is inadequate for our needs, and the vehicle model we replace it with is described in 

Section 3.1.2.1. 

3.1.1.3 Simulation 

OpenSteer has three simulation loop steps: 

1. Limit simulation update rate (optional). 

2. Update the system state. 

3. Render. 
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The update rate of the simulation can be limited either by the processor speed or by 

purposely setting a fixed rate, which is useful for applications such as games that typically 

need a fixed update rate. The update rate is limited by doing a busy wait until the next 

update time. 

The state of the system is updated by iteratively updating the state of each vehicle in 

the simulation. A typical vehicle update involves the following steps: 

• Calculate a 2-D steering force based on the current state of the vehicle and the rest 

of the system. 

• Update the vehicle's velocity by integrating the steering force over the simulation 

time-step. 

• Use the new vehicle velocity to update the position and orientation of the vehicle. 

3.1.1.4 Rendering 

After the simulation state has been updated, a visual representation of the new state is 

drawn from the point of view of a virtual camera. This camera has a number of possible 

behaviors. The default OpenSteer camera behaviours are: 

• Static: Render the simulation from a static position and orientation. 

• Straight Down: Render the world looking straight down at the selected vehicle from 

above. The Y-axis of the view is aligned with the heading of the selected vehicle. 

• Fixed Distance Offset: Loosely follow the selected vehicle from a constant distance 

and focus on the vehicle. 

• Fixed Local Offset: Follow the selected vehicle at a constant position and orientation 

offset relative to the vehicle's coordinate frame. 

• Offset Point of View: A view from above and behind the selected vehicle aligned 

with the heading of the vehicle and focused on a point a fixed distance ahead of the 

vehicle. This is the camera positioning mode that we used for our experiment as it is 

similar to the view one would have while driving. 
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Many of the positioning modes depend on a selected vehicle. If the current simulation 

contains any vehicles, then there is always exactly one selected vehicle, and if there are 

multiple vehicles in the simulation then the user can select a vehicle by clicking on it. 

The default visual representation of a vehicle is a solid red triangle inscribed in a white 

circle centered at the position of the vehicle. A neighbourhood of the plane around the 

vehicle is drawn in a checkerboard pattern, which provides visual feedback about the speed 

of the vehicle as it moves over the checkerboard. OpenSteer draws paths as a red line, one 

pixel in width, and does not draw the full extent of the path. 

Overall, OpenSteer is a useful simulation engine for our purposes, but some parts of 

OpenSteer needed to be changed to suit our needs. The next section describes these changes. 

3.1.2 OpenSteer Modifications 

This section describes the major changes we made to the stock version OpenSteer to support 

our work on haptic path guidance. The majority of our changes are to the vehicle model 

and the rendering components of OpenSteer. We change the vehicle model and vehicle 

simulation algorithm to enable a user to have control of a vehicle's steering angle. We 

change OpenSteer's rendering of the simulated system to meet the requirements of our 

experiment and to reduce the computational resources required for rendering. 

3.1.2.1 Vehicle Model and Dynamics 

OpenSteer steers a vehicle by applying autonomously computed 2-D force vectors to the 

vehicle. We allow users to steer a vehicle in an OpenSteer simulation via a knob. In an 

effort to minimize changes to OpenSteer, we attempted to incorporate the user's input via 

the knob with OpenSteer's existing vehicle steering algorithm. This was accomplished by 

applying a force to the vehicle perpendicular to its centerline and with magnitude propor­

tional to the control knob angle. Through some simple tests we found that this method 

of enabling user control of a vehicle was not going to work because of problems with how 

OpenSteer integrates steering forces over time. Rather than implement a better simulation 

integration method, we decided to implement a different vehicle model that does not depend 

on the integration of forces over time. 

19 



Our vehicle model consists of: a position (O), wheelbase (£), velocity (v) and steering 

angle (9). Table 1 on page xi lists and describes the symbols used in the definition of our 

vehicle model, and Figure 3.2 presents a graphical representation of the model. As in the 

stock OpenSteer vehicle model, the coordinate frame of our vehicle model is always aligned 

with the velocity of the vehicle and centered at O. Unlike the stock version of OpenSteer, 

the vehicle speed, can either be directly proportional to the position of a foot pedal or 

be set to a fixed value. A major departure from the OpenSteer vehicle model is that our 

model allows the user to steer the vehicle via a knob. 

The dynamics of the control of our vehicle is based upon that of a tricycle; the angle 

of the control knob changes the angle of the virtual front tire of the vehicle. Refer to 

Figure 3.2 on the next page for a schematic view of the vehicle dynamics presented here. 

The angle of the front wheel, 9, is proportional to the control knob angle A: 

0 = RA (3.1) 

where R is a constant, manually tuned for good steering control. 

The value of A and 9 is initially zero, and counter-clockwise rotation of the control knob 

increases A while clockwise rotation decreases A . In prototype implementations we found 

that without a limit on the magnitude of 9 users could get lost in very tight turns. This 

was addressed by constraining 9 to the range [—#max, #max] where #m a x is a reasonably small 

constant (see Appendix A for the value used in the experiment). 

The vehicle steering angle, 9, defines the circle, with center C and radius r, that the 

vehicle will follow if the steering angle is held constant. The center of the circle, C , is 

the intersection of two lines. The first is line a in Figure 3.2, which is the line that passes 

through the rear axle of the virtual vehicle. The other line, c in Figure 3.2, is perpendicular 

to the front tire and lies on the tire's center of rotation, Q. 

The point C is the intersection of line a and line c and its position can be calculated 

trigonometrically. By definition, C is on line a and the sign of 9 tells us on which side of 

the vehicle it will be . If we can find the distance, r, between C and O then we will know 
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Figure 3.2: Schematic of Vehicle Dynamics: shaded area represents the vehicle itself. 

the position of C exactly. By trigonometry IOCQ = 6 and then, 

The dynamics of our vehicle model is different from OpenSteer's. We do not integrate 

a steering force every simulation step, but instead move our vehicle along the circle (C, r) 

according to its speed. The parameters of the circle are computed at the beginning of each 

step using Equation 3.2. The simulation update rate is 60 Hz; therefore the distance that 

the vehicle moves each simulation step is \v\ ^ . If 0 < \8\ < 0.05° then the vehicle moves 

this distance in a straight line, otherwise the vehicle moves this distance along the circle 

(C, r) from the position of point O at the beginning of the simulation step. To finish the 

vehicle update, the direction of the vehicle's velocity is modified to be in the same direction 

as the tangent to the circle at the vehicle's new position. 

This vehicle model and dynamics are sufficient for the requirements of our work: a 

simple vehicle simulation that can be intuitively controlled via a knob. The model is not 

physically accurate because apart from the development time, exact physical accuracy is not 

critical to understanding the general performance and utility of haptic guidance methods. 

(3.2) r = < 

oo :9 = 0. 
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Figure 3.3: The dark line represents a segment of a path. The light lines show the 
extent of the path and are the elements of our path rendering method. 

Figure 3.4: The view of a path with extent, as seen from above, with the checkerboard 
ground plane also visible. 

3.1.2.2 Rendering 

We changed how OpenSteer draws paths and the ground plane, and added the ability to 

vary the level of visibility. 

Path Rendering: The default visual representation of a path in OpenSteer is a thin red 

line along its center and its horizontal extent is not drawn. We need to display the 

extent of a path so users can tell if they are on it or not. We display the extent by 

drawing a filled rectangle around each line segment in a path, and filled circles at the 

ends of each segment. An example path line segment with extent drawn is shown in 

Figure 3.3. By drawing every line segment this way, every point within the radius of 

the path is visible to the user (Figure 3.4). 

Ground Plane Rendering: The plane on which vehicles in OpenSteer simulations move 

is drawn as a checkerboard pattern. We changed the ground plane rendering process to 
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use textures instead of OpenGL geometry because modern graphics accelerator cards 

can draw textures very quickly and the texture can repeat to infinity. The ground 

plane in the stock version of OpenSteer was only drawn in a small neighbourhood 

around the vehicle because of the large computational demands required to draw a 

larger ground plane with OpenGL geometry. To ensure the best visual quality of the 

ground plane rendering we employ anisotropic filtering (Everitt, 2000). 

Fog: One of the independent variables in our experiment (described in Chapter 4) is the 

level of visibility. We change the level of visibility in OpenSteer simulations by using 

OpenGL fog, specifically the GL_EXP2 exponential fog method (Woo and Shreiner, 

2003) where the density of the fog increases exponentially with distance from the 

viewpoint. The color of the fog can be set to any 24 bit RGB value, and we use a dark 

grey with RGB values (0.3, 0.3, 0.3). 

These are the major changes that we made to OpenSteer which we then used to develop 

our path guidance methods and perform our experiment. 

3.2 Guidance Algorithms 

This section presents how we compute forces for our haptic guidance methods and which 

forces are present in the baseline "No-Guidance" method. The two active haptic path 

guidance methods we implement are Potential Field Guidance and Look-Ahead Guidance. 

A pure potential field haptic path guidance method calculates guidance forces based solely 

upon the distance between the vehicle and the path. A look-ahead method, on the other 

hand, computes guidance forces based upon a predicted future position of the vehicle. 

3.2.1 Forces Common to All Guidance Methods 

During the iterative development of the guidance methods described in Sections 3.2.3 and 

3.2.4, we introduced a centering force and a viscous damping force for the sake of usability. 

These forces are present in each method, and they increase the usability of our system both 

through positive transfer, they make the interaction with the control knob more like the 

interaction with a real steering wheel, and by increasing the stability of the interaction. 
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3.2.1.1 Centering Force and Steering Angle Limit 

With early prototypes, some users had difficulty controlling the vehicle when no forces were 

applied to the control knob and they found that the active path guidance methods would 

steer the vehicle more accurately without their input than with it. We suspected that one of 

the problems was the lack of a limit to the magnitude of the vehicle's steering angle, 6. An 

unlimited steering angle range allowed a user to get into very tight turns, from which it was 

difficult to return. The steering angle limits discussed in Section 3.1.2.1 help address this 

issue by clipping the magnitude of the vehicle's steering angle, avoiding problematic tight 

turns the simulated vehicle could achieve. However, the maximum steering angle limits did 

not limit travel of the physical interface, and this actually increased user confusion. 

Rather than display a haptic 'wall' to enforce the steering angle and related knob angle 

limits, something that is difficult to do with our relatively low-power haptic interface, we 

implemented a centering spring force that attempts to keep the knob angle (and therefore 

the vehicle's steering angle) at zero. This works as a reasonable substitute for a haptic wall 

by providing a different, but just as useful, haptic cue indicating how far the knob is from 

center. The centering force also addressed another problem users had with early prototypes; 

it was difficult to drive in a straight line because there was no physical indication of how far 

the knob was away from the center. The steering wheel of a real car at speed has a gentle 

centering force because the tires naturally want to point straight ahead since this minimizes 

friction on the tires. 

The centering force is implemented as a simple damped spring with constants: Ckp, Ckd, 

Ckmax) f ° r proportionality, damping and maximum force output respectively. The centering 

force's contribution to the final output force is: 

F ' = F + c l ip ( -AC k p + A c k d , - C ,

k r a a x , C k m a x ) . (3.3) 

The output of the centering force is clipped to [—C k m a x, C k r a a x ] , manually tuned to provide 

just enough centering force without masking the guidance forces (see Appendix A for the 

values of C k p , C ka, and C k m a x used in the experiment). Our haptic interface calculates A in 

hardware, freeing us from doing this calculation in software which could introduce artifacts 

into the force output (similar differentiation artifacts are discussed in Section 3.4.1). 
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3.2.1.2 Viscous Damping 

To improve the 'feel' of the force feedback, and to help smooth the output signal of the PD 

controller described in section 3.4.1, we added a viscous damping component to the force 

output. This viscous damping is proportional to the angular velocity of the control knob 

and its contribution to the overall output force is defined as follows: 

F' = F - kv A . (3.4) 

Informal experimentation indicated that these two force components improved the us­

ability and feel of our interface considerably. They provide a good base feeling for the haptic 

interface on which to layer the path guidance forces. 

3.2.2 Desired Steering Angle Algorithm and Force Output 

Before it is possible to describe the haptic path guidance methods in detail, it is useful 

to understand a little bit about the process these algorithms use to have a force displayed 

to the control knob. The low-level force control for the haptic interface is a PD controller 

on the angular position of the control knob (described in Section 3.4). The Look-Ahead 

Guidance and Potential Field Guidance methods compute a desired vehicle direction, which 

is first transformed into a desired steering angle; and then to the desired angular position of 

the knob, which is given to the PD controller. The ultimate goal is to reduce the difference 

between the current and the desired vehicle heading by steering the vehicle towards the 

desired heading. 

The guidance algorithms described in the following two sections express the desired 

vehicle heading as an offset from the current vehicle heading, c6. Equation 3.5 shows how 

the desired steering angle, #desired> is a function of the desired heading offset, (j>, and Figure 

3.5 illustrates this function. The reader may wish to refer to Table 1 on page xi, the reference 

to symbol definitions. 

^desired {4>) = { 
fmax 

^max • & — 0max 

#max : -0raax < <j> < </>raax ( 3 - 5 ) 

^max : ^ ^max-
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Figure 3.5: Transfer function from heading angle delta to desired steering angle 

The desired steering angle is linearly proportional to the desired vehicle heading offset 

when the desired vehicle heading offset is in the range [—</>max, </>max] and equal to ±0max 

otherwise. 

Then by Equation 3.1, the desired knob angle is calculated by scaling the desired steering 

angle by 1/R: 

A d e s i r e d (« />) =
 g d e s i g W

 (3.6) 

This is used as the set-point for the haptic interface's PD controller which computes a 

force to display to the interface knob, written as FPD(</>) (See Section 3.4.1 and Figure 3.1). 

That still leaves the question of how (f> is calculated, which is discussed in the following two 

sections. 

3.2.3 Look-Ahead Guidance 

Our Look-Ahead Guidance method, illustrated in Figure 3.6, is an extension of the path 

following behavior developed by Reynolds (1999). He predicts the vehicle's future position, 

P, if it were to travel in a straight line for t seconds at the current speed \v\. His system 

then calculates T, the point on the path closest to the point P. If the distance between T 

and P is greater than the path radius, r p a t h , then the system steers the vehicle towards T; 

otherwise the system does not steer the vehicle. In Reynolds's look-ahead path guidance 

method, the system steers a vehicle by applying a 2-D force vector directly to the vehicle's 
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Figure 3 . 6 : Components of Look-Ahead Guidance 
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center of mass, thus changing its velocity and heading. 

It is not possible to display a 2-D steering force to a user via a control knob, only a 

directional 1-D force. We use the angle IPOT in Figure 3.6 as the desired heading offset 

angle (cf>) to compute the desired steering angle as discussed in the previous Section 3.2.2. 

C6LA = IPOT. (3.7) 

The guidance force component of the final force displayed to the control knob is proportional 

to the angle IPOT. If P is within the path then the desired heading offset is zero and the 

final force output does not contain a guidance component. 

When P leaves the path, the distance between P and T will be non-zero (assuming 

the path radius is greater than zero) and therefore the magnitude of <f> will jump from zero 

to non-zero as P leaves the path. To avoid having this discontinuity appear in the force 

output, we envelope the force from the Look-Ahead Guidance method as P leaves the path: 

FLA(^LA) = FpvfaA) • { 

0 : \P - T\ < r p a t h 

( | P Z'rr t h ) 2 : Otherwise (3-8) 
^envelope 

1 • | P ~ r | > ?*path " I " ̂ envelope 

where ^envelope is the distance past the edge over which force enveloping occurs. A graphical 

depiction of the force enveloping components can be seen in Figure 3.7. 
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3.2.3.1 Look-Ahead Position Predictor Improvements 

Our current Look-Ahead Guidance method uses a simple linear method to predict the 

location of the vehicle t seconds into the future, multiplying the current vehicle velocity by 

t and adding this to the vehicle position. This predictor is accurate when the vehicle is 

moving in a straight line, but incorrect if the vehicle is in a turn. 

A more intelligent predictor has the potential to be more accurate across a wider range of 

vehicle behaviors than for one merely traveling in a straight line. For example, the position 

predictor could consider the movement of the vehicle in the recent past, or the predictor 

could look at the current turning radius of the vehicle to more accurately predict the future 

position of a vehicle while in a turn. 

However, departures from a linear predictor can lead to subtle problems. For instance, 

consider a predictor based on the current turning radius of the vehicle, illustrated in Figure 

3.8, where the predicted location of the vehicle is inside the path, but the vehicle would 

leave the path before arriving at this location. Our current Look-Ahead Guidance method 

would not display any guidance forces under this condition, which is not correct. A possible 

solution to this problem is to adjust the Look-Ahead Guidance method to apply guidance 

forces to keep the entire predicted vehicle trajectory inside the path, but it should be 

apparent that any predictor changes can, and do, have subtle implications on the guidance 

method that affect usability. 

3.2.4 Potential Field Guidance 

It is difficult to implement a haptic potential field guidance method with a one degree of 

freedom (DoF) haptic interface. We define potential field guidance as a force dependent 

only upon the distance of the vehicle from the path. With a two DoF haptic interface, one 

can apply a 2-D force pushing the end-effector of the haptic interface towards the center 

of the path. With a one DoF haptic interface such as ours, one can only apply a force to 

change the steering angle of the vehicle, and we found that the simple algorithm of applying 

a raw force proportional to the distance from the path was unstable and hard to use. We 

create a more usable, one DoF potential field guidance force that is proportional to the 

distance between the vehicle and the path, up to a maximum force at a distance p from 
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Figure 3 . 8 : An example of the subtleties involved with advanced location predictors 

the path. We create this force by computing an artificial desired heading offset, 0pf, that 

is proportional to the distance of the vehicle from the path. By taking advantage of the 

relationship between 4>p{ and the magnitude of the PD controller output force, Fpn^pf) ( s e e 

Equations 3.5, 3.6, and 3.13), we are able to produce a stable guidance force proportional 

to the distance from the path. 

Figure 3.9 on the following page illustrates the components of our Potential Field Guid­

ance algorithm. The angle 0 is the angle between the current vehicle heading, v, and the 

line between the location of the vehicle, O, to the point on the path closest to the vehicle, 

<2path- This angle is negative if Q is to the left of the line (O, O p a t h) and positive if Q is 

to the right of this line. The angle (3 is important because it represents the vehicle heading 

offset required to head straight back to the path. We do not want the desired heading offset, 

<j>pf, to be greater than (3 because this will result in non-intuitive guidance forces; the PD 

controller will apply guidance forces to achieve a vehicle heading that is beyond the line 

straight back to the path. Now we can describe the mathematical derivation of the artificial 

desired heading offset, </>pf, for the Potential Field Guidance method as a function of the 
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Figure 3 . 9 : Components of the Potential Field force feedback method 

31 



Figure 3.10: Values of <f> for a given d and (3. 

distance d from the path and the angle f3 as described above: 

0raw(d) 

and, 4>pf(d,/3) 

The value of <jf>pf is computed in two steps. Equation 3.9 computes a 'raw' desired heading 

offset that considers only the distance of the vehicle from the path. Equation 3.10 modifies 

this raw value to have the same sign as f3, and to limit the magnitude of cipf to that of /?, if 

necessary, to avoid steering forces for a desired vehicle heading past the direction straight 

back to the path. The sign of 4>pf needs to have the same sign as (3 to ensure that the 

guidance force has the correct direction to steer the vehicle towards the path. Figure 3.10 

shows the value of Equation 3.10 over reasonable values for d and j3. The force generated 

by Potential Field Guidance can expressed as follows: 

FpF(d,(3) = Fm(<j)pf(d,p)), (3.11) 

where once again c6pf is the desired heading offset for Potential Field Guidance. 

We found that if p, the distance from the path at which the maximum potential field 

guidance force is generated, was the same as the path radius then guidance forces were too 
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strong. We tested p at this value because the prototypical potential field method is actually 

trying to push you away from constraints, such as the edge of the path, and having p be 

equal to the radius of the path achieves this effect. Through informal experimentation, we 

found that when p was twice as large as the path radius the potential field guidance forces 

felt 'good'. 

3.3 Haptic Interface Device 

We used a number of different haptic interfaces during the development of our haptic path 

guidance system. Initial prototyping was done using a "Twiddler" (Shaver and MacLean, 

2003), an inexpensive one DoF haptic interface developed in our lab. We evaluated a 

commercial haptic gaming steering wheel to use as our haptic interface but found it was 

not controllable enough for our needs. We did not have the time or resources to build an 

ideal custom solution so we conducted the experiment using the highest quality one DoF 

interface available in our lab. 

The haptic interface that we used for the final development phase and the experiments 

consisted of a 20 W Maxon motor with a 4000 counts per revolution encoder mounted on a 

custom aluminum rig. The shaft of the motor is directly attached to a plastic, beveled-edge 

knob, 9 cm in diameter. Figure 3.11 shows the motor, knob, and mounting rig as they 

were configured for development and experiments. The knob interfaces with the computer 

via an Immersion data acquisition PCI board and associated amplifier board, the Impulse 

Drive Board 1.0. This board calculates the velocity of the knob in hardware, a feature we 

took advantage of in our implementation of the centering force and viscous damping force 

described in section 3.2. The host P C was a Dell Precision 530 with a 2 GHz Intel Pentium 

4 Xeon processor and 512MB of R A M running the Microsoft Windows 2000 operating 

system. 

While this was a reasonable interface for our purposes, we would have liked a larger 

knob/wheel and more powerful interface which we describe in Section 7.3.1.1. The Immer-

sion/Maxon haptic interface provides a reasonable base for a haptic interface but it needs 

to be controlled well to make it a good haptic interface. 
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Figure 3.11: The haptic interface used for experiments. Consisting of a Maxon motor, 
encoder, mounting rig and plastic knob. 

3.4 Servo Control 

Force commands need to be sent to the haptic interface at approximately 1000 Hz to achieve 

a high fidelity force rendering. We have three force components that need to be rendered 

at this rate: the knob centering force, the viscous damping force and the guidance force. 

The guidance force is generated by a PD controller on the haptic interface knob angle. The 

set-point for this PD controller, the desired knob angle, is updated at 60 Hz (once every 

simulation update). 

These two different update rates are accomplished using separate threads of execution. 

The simulation code, including guidance algorithm calculations and rendering, runs in a 

normal priority thread at 60 Hz which is maintained by using a busy wait if necessary. 

The force rendering code runs at 1000 Hz in a separate thread created with the highest 

priority for user threads in Windows 2000. Due to the priority difference between these two 

threads, the force rendering thread will pre-empt the simulation thread if necessary, which 

is why a busy wait can be used to limit the update rate of the simulation thread. However, 

this means that if the execution of the force rendering code takes too long, not only could 

the force rendering loop not run at 1000 Hz and cause haptic artifacts, but it could also 

starve the simulation thread, resulting in choppy simulation rendering and choppy desired 

knob angle calculations. Care must then be taken to ensure that the force rendering code is 
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efficient, and that each update takes less than one millisecond to maintain a 1000 Hz update 

rate. 

Figure 3.1 on page 16 is a block diagram of the entire system and is useful to help 

understand how the different components of the system fit together. The PD controller 

is an important component of our system as the source of the actual guidance forces, and 

deserves a detailed discussion. 

3.4.1 PD Controller 

A PD controller attempts to minimize the difference between a set-point and a process 

variable; our process variable is the current knob angle, A , and our set-point is the desired 

knob angle, A j e s i r e d - It attempts to reduce the difference A d e s ; r e ( j — A by applying a force 

to the control knob that is proportional to both the difference and the rate of change of the 

difference. The equation for our PD controller is as follows: 

e((f>) = A d e s i r e d ( 0 ) " A (3.12) 

Fpn(4>) = kpe(ct>)-kd e{cp) (3.13) 

where kp is the constant of proportionality and kd is the differential constant. The value of 

these constants during the experiments can be found in Appendix A. 

Calculating e smoothly is difficult because e comes from an encoder reading, A . It 

is known that it is difficult to differentiate encoder values using finite difference methods 

(Belanger, 1992), as we found out when attempted to estimate e using a finite difference 

method over several time steps as follows: 

k(A \ e (^" ) ~ £ ( ^n - r ) / O - M N 
e(<Pn) = 1—1 (3-14) 

We tested this method with values of r in the range [1,5] and found that this method 

produces unacceptable vibrations in our PD controller output, especially when e is small. 

A simple low pass filter to smooth out the e signal before differentiation did little to help 

reduce vibrations. We could have used the angular velocity of the knob angle, A , from 

the Immersion Impulse Board (see Section 3.3) in our calculation of e, but we had finished 
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implementing our PD controller before we started using the Impulse Board and did not 

have time to.go back and update the implementation to take advantage of this. 

We used a variable windowing algorithm developed by Janabi-Sharifi et al. (2000) to 

differentiate e. This method was developed to calculate the velocity of a position encoder 

which we applied to our problem of computing the rate of change of e. Their algorithm uses 

a finite difference method with an adaptive time window to differentiate position encoder 

readings over a wide range of velocities. They present a number of additions to their basic 

method to improve its performance, but we found that the most basic method which they 

call end-fit first-order adaptive windowing (end-fit-FOAW) was sufficient for our needs. We 

followed their suggestion to use a median filter on the output signal (e) to eliminate fine 

irregularities and outliers in the signal while preserving input signal discontinuities. This 

method of calculating e significantly reduced the vibration in our system from the PD 

controller. 

3.5 Summary 

This chapter presented our implementation of two different haptic path guidance algorithms, 

using a simple one DoF haptic interface. We first developed a simulation environment to 

present to the user a path to follow, which was done with the help of the OpenSteer library 

developed by Reynolds. Users interact with this environment via a one DoF interface that 

controls a simulated vehicle. We evaluated three different haptic interfaces and settled 

with one that was not exactly what we wanted, but was adequate for our needs. No 

existing commercially available haptic interfaces met our criteria for form factor, power 

and controllability. We implemented two haptic path guidance algorithms: Potential Field 

Guidance and Look-Ahead Guidance, to display path guidance forces to a user via our 

haptic interface. We will now describe how we designed and executed an experiment to 

evaluate the performance of these guidance algorithms. 
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Chapter 4 

Evaluation Methods 

In this Chapter we present our hypotheses about haptic path guidance and an experimental 

design to test these hypotheses. 

4.1 Hypotheses 

We hypothesized the following about the performance of our haptic path guidance methods: 

• Look-Ahead Guidance will have measurable performance benefits over our 

No-Guidance baseline. 

• Look-Ahead Guidance will have measurable performance benefits over Potential Field 

Guidance. 

• Look-Ahead Guidance will perform well across a range of path complexities. 

• Look-Ahead Guidance will perform well over a range of visibility conditions. 

• Users will subjectively prefer the Look-Ahead Guidance to Potential Field Guidance 

and the baseline of No-Guidance. 

We designed an experiment to test our hypotheses and performed two small pilot stud­

ies before a full scale experiment. The pilot studies were useful in helping us refine our 

experimental design and procedure for the full experiment. 
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4.2 Design 

This section presents the procedural and statistical design of the experiment we used to 

test the hypotheses presented above. We considered many different independent variables to 

explicitly control, and chose three to study in our final experiment. We ran two pilot studies 

to refine our experimental design before running a formal experiment. The experiment 

was designed with the target completion time of approximately one hour. Within this 

hour we wanted each participant to see each of the unique combinations of the levels of 

the independent variables at least three times, to achieve an improved estimate of actual 

performance than that provided by a single repetition. The final design of our experiment 

was a 3 x 3 x 2 within-subject design, with five repetitions of each of the eighteen unique 

combinations of the levels of the independent variables. 

4.2.1 Choice of Independent Variables 

We considered over twelve different independent variables which might affect path following 

performance. We narrowed these twelve down to those we considered the most interesting: 

guidance method, path complexity and visibility. Table 4.1 on the following page summa­

rizes the levels of the factors we chose to study and we will now describe these in detail. 

Guidance Method: It was necessary to study guidance method, because it is our primary 

focus, but choosing the number and identity of the comparison cases was difficult. We 

decided to compare Look-Ahead Guidance to No-Guidance as a baseline, and Potential 

Field Guidance which we considered to be an instance of the standard path guidance 

method based on the previous work we presented in Chapter 2.. The No-Guidance 

method does present some force feedback to the user for the sake of usability as 

discussed in Section 3.2.1 but does not present any guidance forces. We considered 

comparing the Look-Ahead Guidance method to the potential field guidance method 

by Rossetter et al.(Rossetter, 2003; Rossetter and Gerdes, 2002a,b; Rossetter et al., 

2003), but time did not permit such a comparison, because it would have taken a 

significant amount of time to implement their vehicle model and simulation dynamics. 

Path Complexity: We wanted to evaluate the performance of Look-Ahead Guidance com-

38 



Table 4.1: Factors and Levels Presented to Experiment Participants 

Factor Levels 

Guidance Method No-Guidance Potential F ie ld Look-Ahead 
Pa th Complexity Low Medium High 
Vis ib i l i ty Low High 

pared to the other guidance methods over a range of path complexities, on the premise 

that some methods might be more or less helpful for challenging steering situations. 

We used an ad-hoc method to quantify path complexity based on the number and 

radius of corners in the path to choose three paths with low, medium, and high com­

plexity; all of which are illustrated in Figure 4.1 and referred to as curve, bump and 

zigzag respectively. 

Curve Bump ZigZag 
(in world units, not to scale) 

Figure 4.1: Examples of Paths used in the Experiment 

Visibility: The Look-Ahead Guidance method is a predictive method, so we speculated 

that its strength might be in low visibili ty conditions. To test if this hypothesis 

was true we varied the level of visibili ty between high and low, as illustrated in F ig ­

ure 4.2 on the following page. 
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Low Visibility High Visibility 

Figure 4.2: The high and low visibility levels that are displayed to an experiment 
participant. 

We had considered two additional levels for the guidance method factor, no forces and 

vibration, and a medium visibility level. We did not include these extra levels because the 

size of the experiment would have been unwieldy. If we had studied all of these levels then 

we would have had: 

• five guidance levels, 

• three path complexity levels, 

• and three visibility levels, 

which results in forty-five unique combinations of levels. Estimating that it would take a 

participant thirty seconds to see one combination of levels, we realized that it was not going 

to be possible to have a participant see at least three repetitions of each combination of 

factors and still have the duration of the experiment be one hour, accounting for approx­

imately five minutes for instruction and ten minutes for a debriefing interview. We could 

either extend the duration of the experiment or reduce the number of levels to study. We 

carefully considered the importance of the levels for each factor and eliminated the no force 

feedback and vibration levels from the guidance methods and the medium level from the 

visibility factor. 

The no force feedback guidance method was removed because it had serious usability 

problems and we felt that it would not provide us with any more useful information than 

would the No-Guidance level with its centering and viscous damping forces. The vibration 
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guidance method was similar to the feeling of 'rumble strips' found on some highways. We 

eliminated this level from our study because we felt that it was too qualitatively different 

from the other guidance method levels that actively steer the user along the path. The 

medium visibility level was dropped because we felt that looking at low and high visibility 

levels would tell us if the future study of other visibility levels would be necessary. 

Some of the other independent variables we considered studying were: velocity, look-

ahead distance, steering angle limits, path width,Took-ahead predictor algorithm, control 

gains, damping, the relative force contributions of the different force generating components, 

view point, and rendering detail. 

4.2.2 Minimizing the Impact of Learning 

Learning is a common complication of within-subject experimental designs. Because users 

perform multiple related trials in sequence, they typically perform better at the end of the 

experiment than at the beginning. We used multiple approaches to address the problem of 

learning. Firstly, we chose an experimental task, driving, that is familiar to most people 

and therefore we expected participants to be reasonably proficient at our experimental task 

at the outset. Secondly, we have a brief familiarization phase before the real experiment 

where the participant performs all eighteen unique trials to become familiar with the haptic 

interface and the conditions that they will see. To prevent participants from becoming too 

familiar with the three different path types, we present reflections of the paths along the 

X and Y axes of the paths to increase variety while keeping to our three path complexity 

levels. 

We found through the process of performing pilot studies as outlined in Section 4.6 

that there appeared to be significant learning happening over the course of the experiment 

despite our efforts to minimize learning. However, through the same pilot studies we found 

that our initial estimate of thirty seconds to complete a trial was quite conservative and 

we had the time to double the number of trials presented to each participant. We used the 

first half of the full experiment as a learning phase and analyzed the data from the last half 

of the experiment, the test phase. 
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4.2.3 Blocking and Randomization 

There are eighteen unique combinations of levels of the factors we decided to study (3 x 

3 x 2 = 18) and we present five repetitions of each combination in both the learning and 

test phases for a total of 180 trials per experiment session. A trial consists of a participant 

traversing one of the possible paths from beginning to end, with the levels of the guidance 

method and visibility fixed to one of their possible values. 

The simplest presentation order of the trials is completely random. This makes the 

statistical design and analysis easy, but a participant would not then have the chance 

to become familiar with a given guidance method, and this could hide any performance 

difference between the guidance methods. Furthermore, the learning and test phases need 

to present the same set of trials to a participant; five repetitions of the eighteen unique 

trials are seen in each phase. We addressed these concerns by grouping the ninety trials in 

each phase into three blocks of thirty trials, where all of the trials in a block had the same 

guidance method. Within a block, the levels of the factors other than the guidance method 

were presented in a random order. An additional benefit of blocking the trials based on the 

guidance method is that it is possible to ask participants questions about their experiences 

with the trials in a block and their answers will be for a single guidance method. 

Blocking trials is a restriction on randomization that needs to be accounted for in the 

design of the experiment. To counterbalance for the effect of blocking we need to have each 

of the six unique orderings of blocks for each phase performed at least once, preferably more, 

to average out any order effect across multiple participants. This led to our decision to have 

eighteen participants in our study, each of whom were assigned a block ordering randomly 

without replacement such that each unique block ordering per phase was performed three 

times. Additionally, we ensure that each participant sees a unique ordering of all six blocks. 

These measures counterbalance for the blocking restriction on randomization. Table 4.2 on 

the next page shows one possible set of block orderings for eighteen participants that meets 

all of our criteria, and is the ordering used in our experiment. 
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Table 4.2: Possible Balanced Block Ordering. N G = No-Guidance, P F = Potential 
Field, L A = Look-Ahead 

Subject 
Block Ordering 

Subject Learning Test 
1 L A PF NG N G L A P F 
2 N G L A PF PF L A N G 
3 PF L A N G L A N G P F 
4 L A N G P F N G PF L A 
5 N G P F L A P F N G L A 
6 P F N G L A L A P F N G 
7 L A P F N G P F L A N G 
8 N G L A PF L A NG P F 
9 P F L A N G N G P F L A 
10 L A N G PF P F N G L A 
11 N G P F L A L A P F N G 
12 PF N G L A N G L A P F 
13 L A P F N G L A N G P F 
14 N G L A PF N G PF L A 
15 PF L A N G P F N G L A 
16 L A N G PF L A P F N G 
17 N G P F L A N G L A P F 
18 PF NG L A PF L A N G 

4.3 Performance Metrics 

To test our hypotheses we needed to measure path following performance and usability. 

However, we wanted a single quantitative performance metric for how well a participant 

had followed a path to make the analysis of path following performance as simple as possible. 

We did not believe that it was possible to condense usability into a single metric and instead 

opted to solicit participants' feelings about their experiences, and to use this to analyze the 

usability performance of the path guidance methods. 

4.3.1 Quantitative Path Following Performance Metric 

There are many possible ways to describe how well a path has been followed, including: 

• Time to reach the end of the path 

• Mean distance from the middle of the path 



• Mean rate of change of the distance from the middle of the path 

• Mean of the square of distance from the middle of the path. 

• Frequency of leaving the path's channel 

• Smoothness of the trajectory 

• Length of the traversed path compared to the path length 

• Shape of traversed path compared to shape of the path being followed. 

We wanted to keep our analysis as simple as possible and therefore wanted a single 

quantitative path following metric. It is possible to use multiple measurements to represent 

path following performance, but this requires complicated multi-variate analysis without 

necessarily clarifying the results. 

After some careful consideration we decided that the Mean Square Error (MSE), where 

the error is the distance of the vehicle from the middle of the path, was the most suitable 

all-around path following performance metric for our needs. Equation 4.1 shows how the 

MSE is computed, where On is the location of the vehicle at time n, and O p a t h n is the point 

on the centerline of the path closest to point On at time n: 

V ^ - 1 D - D , |2 
MSE = ^ w = 0 1 w p a t h J • (4.1) 

The MSE performance metric is inversely proportional to overall path following per­

formance; a low MSE score indicates better path following performance than a high MSE 

score. However, it does not take into account the width of the path being followed. 

We had originally envisioned an experimental task of following the path while trying 

to stay within the extent of the path. In the pilot studies discussed in Section 4.6, we 

found that with these instructions participants often cut corners, staying within the path 

but moving away from the center of the path, adversely affecting their MSE score. In an 

attempt to get participants to use a path following-strategy that would yield consistent, and 

thus directly comparable, MSE scores, we augmented the experiment instructions on path 

following to have a primary task of staying within the extent of the path, and a secondary 

task of following the middle of the path closely as possible. 
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: Done Block. Please answer the following questions. 
' Onlyconsider the trials sincethe last set ofquestions. 

Did you feel any force .feedback? . 
' OYes pHo • ;•'*;. ... . : / , " , U 
What level of control did you feel you had over the vehicle? 
.CompleteContrql :G , . ^ , - 0 No Control y : . . 

If.you felt force Feedback please answer these questions too. 

How helpful did you find the force feedback? 
Very Helpful , Helpful Neutral Unhelpful Very Unhelpful 

v . " / , © O O O . O 

How much did you like the force feedback? 
Strongly Like Like - Neutral. 

. ' - \v ; ; . \ ; iT o, - o 

!, Continue I 

F i g u r e 4.3: Dialog box presented after each block 

Dislike • Strong Dislike 
O O 

4.3.2 Subjective Evaluation Methods 

While we were interested in learning which guidance method performed the 'best' according 

to a numerical measurement, we were also interested in the usability of each guidance 

method, which required us to inquire about users' reactions to each guidance method. 

We felt that the usability of each guidance method could be assessed by asking each 

participant to evaluate three different subjective performance indicators: 

1. Perceived degree of vehicle control 

2. Perceived helpfulness of the provided guidance 

3. Degree of pleasure afforded by the force feedback 

Questions to address these three issues were presented to the participant via a dialog 

box (Figure 4.3), following each block of thirty trials. These questions had to be answered 

before the participant could move on to the next block of trials. 
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The session ended with a debriefing interview, the purpose of which was to solicit rel­

evant background information along with the participant's impressions of his experiences. 

The interview questions are included as Appendix C. The interview questions inquire about 

experience with video games, driving and other force feedback devices. We also inquired 

about which guidance method participants liked the most, and if they felt that any partic­

ular guidance method improved their performance. Other experiments conducted by this 

research group have found anecdotal evidence that suggests a correlation between perfor­

mance with experimental tasks similar to ours and video gaming experience, hence our 

interest in video gaming experience. The debriefing interview was audio-recorded for later 

analysis. 

4.4 Data Collected 

We collected a variety of data over the course of an experiment session. Data about the state 

of the simulation, such as the distance of the vehicle from the path, was collected at 60 Hz 

during every trial and saved to disk in a comma separated value (CSV) file. Participants 

were automatically asked questions after each block and the answers to these questions were 

saved to a text file. 

4.5 Procedure 

To minimize possible distractions to the participants, the experiment was conducted in a 

special acoustically insulated, windowless experiment room (the Imager lab experimentation 

facility), and lasted approximately one hour. The experiment room contained a flat-screen 

L C D monitor on a table next to the haptic interface, and an adjustable office chair faced 

the desk and monitor. The experiment consisted of four different stages: instruction, famil­

iarization, experiment, and interview. 

Upon arrival, a participant was shown to the experiment room and given a waiver to 

read and sign (see Appendix E). The participant was then seated in front of the computer 

screen on which instructions for the experiment were displayed. The on-screen instructions 

inform the participant of experiment objective and what to expect; they also instruct the 
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participant to get comfortable and to be sure to check with the experimenter if, at any 

time, questions arise (see Appendix B). Once the participant has read and understood the 

instructions the experimenter begins the familiarization phase. The experimenter stays in 

the room to observe the participant performing the familiarization trials and to answer any 

questions. The full experiment of six blocks, each of thirty trials, starts once the participant 

completes the familiarization phase, and both the participant and experimenter feel that 

the participant is ready to continue. 

The experimenter leaves the room to let the participant complete the full experiment 

without further assistance. Initially, the screen contains a message telling the participant 

to hit the space bar to start the first trial. A trial ends when the participant successfully 

navigates to the end of the path, at which point the screen clears and the "Click on space 

bar to continue" screen appears. The next trial does not begin until the space bar is 

pressed. This process is repeated until the participant has completed the block of thirty 

trials and then a dialog box (Figure 4.3) appears with questions for the participant regarding 

his experiences over the previous block as described in Section 4.3.2. The whole process 

repeats for the second block and so on, until the participant has completed all six blocks 

(180 trials); at which point the participant has been instructed to retrieve the experimenter 

for the debriefing interview. 

The participant is told prior to the beginning of the debriefing interview that the inter­

view will be recorded for later analysis. The experimenter then conducts the interview and 

records answers to the simpler questions, such as age, on a prepared form. Once the ques­

tioning part of the interview is over the audio recording is stopped and the experimenter 

explains to the participant the purpose of the experiment and answers any questions the 

participant may have about the experiment. At the end of this process the participant is 

given an honorarium of $10.00 for his hour's effort. 

4.6 Pilot Studies 

We performed two pilot studies before conducting the final experiment to verify both our 

experimental process and our software. The first pilot (seven participants) suggested many 
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improvements and the second pilot (five participants) was more of a fine tuning before the 

full experiment. Both pilots consisted of a familiarization phase followed by three blocks 

of thirty trials each and were done less formally than was the final study (e.g. not in the 

experiment room) with members or friends of our lab as participants. 

The first pilot differed from the final experiment principally in the paths used. In the 

pilot we used the paths: straight, curve and zigzag for low, medium and high complexity 

levels (as opposed to the curve, bump, zigzag paths used in the final experiment); and these 

paths were also twice as wide as the paths in the final version. We discovered in the first 

pilot study that in general, these paths were too easy to follow. To address this issue we 

made the paths narrower, and removed the straight path as the lowest complexity path 

type because due to the knob centering force, it could be followed exactly without touching 

the knob. A new path, bump, replaced the curve path as the medium complexity path and 

the curve path became the low complexity path. 

The first pilot study also identified some conflicts between our guidance methods, quan­

titative metric and instructions. Our performance metric penalizes any path following 

behavior that does not try to follow the center of the path, and some pilot participants 

were cutting corners. We changed the experiment instructions tell the participants to try 

stay on the path as well as to follow the center of the path. As a visual cue, the center of 

the path was rendered as a thin, red line on top of the path extent. 

Pilot Study Two was performed in the same manner as Pilot Study One, but with the 

above noted changes implemented. After running Pilot Study Two and analyzing the data 

from both pilot studies we noticed that there was a substantial learning effect as participants 

progressed through the study. We also noticed that the time to perform one trial was much 

less than the thirty seconds we had budgeted for. With the extra time we had as a result 

of this, we doubled the number of trials each participant would do as discussed in Section 

4.2.2. 
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C h a p t e r 5 

E x p e r i m e n t R e s u l t s a n d A n a l y s i s 

In this chapter we report our experiment results and their analysis. Section 5.1 describes 

participant profiles, 5.2 our quantitative results and 5.3 our qualitative (subjective) results. 

5.1 Experiment Participant Demographics 

Our experimental design called for eighteen participants. We recruited participants via 

Usenet posts, by using our group's database of previous participants, and by word of mouth. 

In total, we recruited twenty participants but only analyzed the data from eighteen of 

these participants as two participants did not complete the experiment. One participant 

left after the eighteen trial familiarization phase because she was too frustrated with the 

difficulty of the task to continue. The other participant left after partially completing the 

full experiment when she started to feel ill from either motion or V R (Virtual Reality) 

sickness. The remaining eighteen participants completed the full experiment. 

The first half of the post-experiment interview (Appendix C) was used to solicit relevant 

demographic information about the participant. In addition to the standard age, gender and 

handedness information, we were also interested in the participant's driving, video game 

and haptic interface background. Table 5.1 summarizes the results of the demographic 

questions for the eighteen participants that successfully completed the study. 

Thirteen participants reported playing video games, with eight of those reporting average 

playing times of at least one hour per week on average at the time of their participation in 
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Table 5.1: Participant Demographics (18 participants) 

Age 
Min 
19 

Max 
33 

Avg 
24.3 

Dominant Hand 
Right 
17 

Left 
1 

Gender 
Male 
12 

Female 
6 

Has Driving License 
Yes 
17 

No 
1 

Driving Frequency 
(out of 17) 

Daily 
4 

Weekly 
4 

Infrequently 
9 

Plays Video Games 
Yes 
13 

No 
5 

Previous Haptic 
Interface Experience 

Yes 
15 

No 
3 

Previous Advanced Haptic 
Interface Experience 

Yes 
5 

No 
13 

the experiment. The other five video game playing participants reported playing less than 

one hour per week on average. Figure 5.1 shows the distribution of average weekly gaming 

time for video game players. The average reported weekly game playing time for participants 

playing at least 1 hour per week (eight participants) was 4.4 hours. Seventeen participants 

held a valid license to drive, and the average length of time each had been licensed was 

5.8 years. Most of the fifteen participants that reported previous experience with force 

feedback devices only had experience with simple haptic interfaces, primarily vibrotactile 

game controllers. Five of the participants with previous force feedback experience reported 

being participants for other experiments done by our lab. 

5.1.1 Outlier Participant 

One participant had a problem in the middle of the experiment in which he became lost and 

could not find the path again. The experimenter had to help the participant find the path 

to finish the trial and continue the experiment. The participant finished the experiment 

but later analysis of his data suggested that he was not attempting to actually follow the 

path for a large number of trials (e.g. Figure 5.2 on page 52 and pages 138, 139 and 
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Figure 5.1: Distribution of reported average video game playing time for self-reported 
gamers. A reported time of zero hours indicates that the participant reported playing 

video games, but for less than one hour per week on average. 

140). After some deliberation, and verifying that he did not attempt to follow the path in 

multiple trials, we concluded that he was not following the experiment instructions, and 

therefore was not representative of a typical participant, and we excluded his data from 

further analysis. Unless otherwise noted, the results presented below are based on the data 

from the remaining seventeen participants. 

5.2 Quantitative Results and Analysis 

This section presents the quantitative results and the analysis of the data generated by 

the seventeen experiment participants. As described in Section 4.2, the experiment design 

is a 3 x 3 x 2 within-subject study with repetition and one restriction on randomization 

(blocking on guidance method). We used Matlab (MathWorks, 2001) and the free statistical 

package R (R Development Core Team, 2003) to manipulate and analyze the data from the 

experiment. 
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Figure 5.2: Example of shortcut path trajectory for outlier participant 

5.2.1 Data Handling 

The data produced by each experiment trial was saved to individual text files. The content 

of these files consists of a listing of the system variables held constant for the trial followed 

by the state of the system sampled at every simulation step (60 times a second). We used 

Matlab to read the information from all of the data files and to convert them to a more 

convenient format for analysis. Part of this process was to calculate our performance metric, 

the mean square error (MSE) of the distance of the vehicle from the path (as presented in 

Section 4.3.1) for each trial. 

Each block consists of thirty trials: five repetitions of the six unique combinations of the 

path complexity and visibility factors given the fixed guidance method for the block. We 

used Matlab to compute the means of the repetitions, after which each block is represented 

by six scores (means of five MSE values). 

Matlab was used to generate some basic diagnostic views of the raw data as well. For 

example, plots of participant's trajectories overlaid on the actual path being followed were 

useful to verify that the MSE performance metric was fair and performed well compared 

to other possible performance metrics. Figures 5.3, 5.4, and 5.5 show the path traces for 

the worst, median and best MSE scores respectively out of all trials. Appendix F contains 

plots of all the path trajectories for every participant over the last three blocks. 
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Figure 5 . 3 : Path trajectory for the trial with worst MSE score over the last three 
blocks. Score = 3.36 
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Figure 5.4: Path trajectory for a trial with an average M S E score over the last three 
blocks. Score = 0.070 
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Figure 5.5: Path trajectory for the trial with the best MSE score over the last three 
blocks. Score = 0.0008 

55 



The data needed for a complete statistical analysis was exported from Matlab to a 

comma separated value (CSV) file and imported into R for analysis. The following data 

was exported: participant number, guidance method level, path complexity level, visibility 

level, MSE (performance metric), and block number. R makes it easy to perform complex 

ANOVA analyses, such as the one we needed to do. 

5.2.2 Statistical Analysis 

We designed and executed a 3 x 3 x 2 repeated measures experiment with balanced blocking 

on the three different levels of the guidance method factor. We analyzed the final three 

blocks of the experiment; the data from the first three blocks was treated as a learning phase 

and was not analyzed. The box-plot shown in Figure 5.6 on the next page shows the scores 

for all six experimental blocks and suggests that the performance improves considerably 

over the first three blocks and is consistent for the final three blocks. The variability of 

scores decreases rapidly over the first two blocks. We believe that it safe to say that any 

learning effects have been significantly reduced by the final three blocks. Satisfied that there 

was minimal learning happening over the final three experimental blocks, we performed a 

within-subject ANOVA, using R to test the effect, if any, of our independent variables on 

our performance metric. 

We performed a full within-subject ANOVA, after averaging out the repetitions, to 

test for an effect of our three independent variables on the MSE performance metric (the 

dependent variable). This procedure is accomplished in R by the aovO function which is 

discussed in Appendix D. Table 5.2 shows the results of the within-subject ANOVA. It is 

evident from the ANOVA table that all of the main effects are significant at the p < 0.05 

level, but there are no significant interaction effects. 

The significant results from the ANOVA indicate that there are main effects but does not 

indicate the relative effects for the different levels of the independent variables if they have 

more than two levels. We performed a post-hoc, pairwise comparison (with the Holm p-value 

adjustment) between the levels of the guidance method and the path complexity factors to 

see where the difference between levels are. The results of the pairwise comparisons between 

levels of the guidance method factor are presented in Table 5.4 on page 59 and the results 
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Score versus Block Boxplot 
J L 

Figure 5.6: Boxplot of scores across all six blocks, in order of execution. Appendix 
D.2 describes the meaning of the components of boxplots. 

for the path complexity factor are presented in Table 5.5 on page 59. Table 5.3 on page 59 

presents the means for each level of each factor across all other factors (i.e. the first row 

shows the mean of the scores for all trials with the baseline No-Guidance level of the guidance 

method factor). 

Table 5.4 shows that the Look-Ahead Guidance method is significantly different from 

the other two path guidance levels at the p < 0.05 level, but the Potential Field Guidance 

method is not significantly different from the No-Guidance method. By referring to Table 

5.3 we see that the average score for the Look-Ahead Guidance method is less than the 

average scores for the other two levels, indicating that the Look-Ahead Guidance method 

performs better than the Potential Field Guidance method, and better than the baseline 

No-Guidance method with respect to the MSE performance metric (the lower the MSE 

score the better). 

Table 5.5 shows that the average score for the low complexity path is significantly 

different from average score for the medium and high complexity paths at the p < 0.05 level. 

There is no significant difference between the mean MSE score for the bump and zigzag 

path types. Table 5.3 shows that the average score for the curve path is less than that of 
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Table 5.2: Within-Subject ANOVA table for MSE score. G M = Guidance Method 
Factor, Path = Path Complexity Factor, Vis = Visibility Factor. A colon (:) between 

factors indicates an interaction. 

Effect Df Sum Sq Mean Sq F value Pr(>F) 
Residuals 16 1.711 0.107 
G M 2 0.187 0.094 4.860 0.0144 * 
Residuals 32 0.617 0.019 
Path 2 0.241 0.121 8.984 0.0008 * 
Residuals 32 0.430 0.013 
Vis 1 0.013 0.013 4.887 0.0420 * 
Residuals 16 0.043 0.003 
GM:Path 4 0.042 0.011 1.646 0.1736 
Residuals 64 0.410 0.006 
GM:Vis 2 0.027 0.013. 1.603 0.2170 
Residuals 32 0.268 0.008 
Path:Vis 2 0.024 0.012 2.162 0.1317 
Residuals 32 0.180 0.006 
GM:Path:Vis 4 0.021 0.005 0.594 0.6683 
Residuals 64 0.578 0.009 

the two other path levels, indicating that it is easier to closely follow the low complexity 

path compared to the medium or high complexity path. 

The ANOVA table indicates a significant effect on the M S E score due to the visibility 

factor, which has two levels and does not require a post-hoc comparison to distinguish 

levels. The mean scores for the levels of the visibility factor found in Table 5.3 show that 

participants performed slightly better when the visibility was high, compared to when it 

was low. 
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Table 5.3: Mean scores for the levels of each factor across all other levels 

Factor Level Mean Score 

Guidance 
Method 

No-Guidance 0.108 
Guidance 
Method 

Potential Field 0.099 
Guidance 
Method 

Look-Ahead 0.051 

Path 
Complexity 

Low 0.049 
Path 
Complexity 

Medium 
High 

0.094 
0.116 

Visibility 
Low 
High 

0.093 
0.080 

Overall Mean 0.086 

Table 5.4: P-values from post-hoc test on guidance method levels 

No-Guidance Potential Field 
Potential Field 0.614 

Look-Ahead 0.004 * 0.012 * 

Table 5.5: P-values from post-hoc test on Path Complexity levels 

Low Medium 
Medium 0.018 * 

High 0.000 * 0.190 
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Figure 5.7: The relative difference between the average path following score for each 
guidance method and the average path following score across all guidance methods for 

that path. Negative differences indicate an improvement in performance. 

5.2.3 Independent Variable Interactions 

Our results show that the Look-Ahead Guidance method improves path following perfor­

mance compared to No-Guidance and Potential Field Guidance methods, with a mean path 

deviation score of about half of the other methods (Table 5.3). However, we did not see 

the hypothesized significant interactions between the guidance method and path complexity 

factors, and between the guidance method and visibility level factors. 

Path Complexity and Guidance Method Interaction 

Look-Ahead Guidance did not prove especially useful for more complex paths compared 

to less complex paths. Figure 5.7 shows the relative performance of each guidance method 

for a given path type. It shows that the Look-Ahead Guidance method performs better 

than the average score for each path type, but the improvement is relatively consistent 

across path types. 

Visibility Level and Guidance Method Interaction 

We thought that Look-Ahead Guidance might have offered a performance benefit in 

low visibility conditions compared to other guidance methods because the system can 'see' 
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Mean Scores for all Combinations of Independent Variables 

No—Guidance Potential Field Look—Ahead 
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Visibility 
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Curve Bump Zigzag Curve Bump Zigzag Curve Bump Zigzag 

Figure 5 . 8 : The effect of visibility compared to path type and guidance methods. The 
Look-Ahead Guidance method shows consistent performance across visibility levels. 

Lower scores are better. 

further than the user can. Figure 5.8 shows the average scores for all eighteen unique 

combinations of independent variable levels, illustrating the effect of visibility on each path 

type for each guidance method. Counter intuitively, the No-Guidance method performs 

better under low visibility conditions for two path types: bump and zigzag. However, some 

participants reported preferring the low visibility condition more than the high visibility 

condition because it focused their attention on the portion of the path immediately in front 

of the vehicle and not on upcoming path features, allowing them to follow the center of the 

path more accurately. This provides a possible explanation for the observed performance 

increases with low visibility compared to high visibility. The Potential Field method had a 

similar performance gain in low visibility conditions with the curve path, but it performed 

much worse in low visibility conditions on the other two path types. The Look-Ahead 

Guidance method performs consistently across visibility conditions. 
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Figure 5.9: Mean score across all conditions for each block given gaming experience 

5.2.4 Influence of Video Game Experience 

In terms of ability to perform the task at hand, we noticed that the participants in our 

experiment appeared to fall into two categories. Some participants had no problem following 

the path accurately after the first few familiarization tasks, while other participants had 

difficulty throughout the primary familiarization phase and generally performed worse than 

the other group of participants. An extreme example of this is the participant who left after 

the familiarization phase because of frustration with the task. While running the experiment 

we hypothesized that this difference between participants may have been related to video 

game experience, based on past experiences in our research group. 

Figure 5.9 shows the performance of gamers and non-gamers according to block number, 

illustrating how performance changes over time. Both groups tend to improve over time, but 

the improvement is more pronounced in non-gamers than it is in gamers with the exception 

of the last block. This suggests that non-gamers improve more than gamers do over time, 

although still not reaching the performance level of gamers. The poor performance of non-

gamers in the last block possibly suggests that they become fatigued and/or disinterested 

in the experiment by the last block. 
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Mean Score for Each Participant 
Given Game Playing Status 

Plays Video Games 
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Mean Score 

Figure 5.10: Boxplots of Participants' Scores Given Game Playing Status. The verti­
cal line indicates the overall mean score. See Appendix D.2 for a description of boxplot 

features. 

Figure 5.10 shows individual participant scores in boxplot form and are shaded according 

to game playing status. The vertical line in the figure indicates the mean score across all 

participants and all conditions. The game players tend to have lower (better) scores than 

non-game players with an average score of 0.13 for non-gamers and 0.067 for gamers, but 

there is considerable overlap. Figure 5.11 shows boxplots for the scores of game players 

and non-game players, and shows that game players have lower mean scores and are more 

consistent as a group than are non-gamers. This supports our feeling that video game 

experience could act to separate the participants into two performance groups. 

The reported average weekly gaming times fell into six bins: less than 1 hour per week, 

and 1, 3, 5, 9, and 10 hours per week. Figure 5.12 on page 65 shows boxplots for the scores 
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Figure 5.11: Boxplots of participants' scores given game playing status. Boxplot 
components are described in Appendix D.2 
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Boxplots (with Regression Line) 
of Score versus Gaming Time 
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Figure 5.12: Boxplots of reported weekly gaming time with a regression line fitted to 
individual scores. Regression line parameters: intercept = 0.085, slope = -0.046 

in each gaming time bin, with a gaming time of 0 for the scores of participants who reported 

playing less than 1 hour of video games per week on average. A regression line showing 

the fitted linear relation between gaming time and score is also drawn. This line suggests 

that path following ability improves with game playing time. Separating the effect of game 

playing time on the path following score by guidance method is shown in Figure 5.13. This 

plot suggests that the effect of video game experience on path following performance is 

lower with Look-Ahead Guidance than with the other guidance methods. 
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Boxplots (with Regression Lines) of 
Score versus Gaming Time given Guidance Method 
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Figure 5.13: Boxplots of reported weekly gaming time with regression lines given 
guidance method level. No-Guidance regression line parameters: intercept = 0.111, 
slope =• -0.0062. Potential Field Guidance regression line parameters: intercept = 
0.091, slope = -0.0044. Look-Ahead Guidance regression line parameters: intercept = 

0.054, slope = -0.0032 
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5.3 Subjective Results 

An important objective of our evaluation was to acquire information about the subjective 

(aesthetic) performance of the path guidance methods. Section 4.3.2 describes how we mea­

sured subjective performance, and this section presents the results of those measurements. 

After each block a dialog box appeared and asked the participant a set of questions 

before the next block could be started. The first question asked if the participant had felt 

force feedback in the previous block. Table 5.6 summarizes the responses to this question. 

Most people reported feeling force feedback when they had just finished a block with either 

Potential Field Guidance or Look-Ahead Guidance. In the case when the block prior to 

the question had presented the baseline No-Guidance level, the majority of participants 

reported not feeling a force, even though a centering force was being displayed. 

Table 5.6: Answers to post block questions 

Question: Felt Force Feedback 
Guidance Method Yes No 

No-Guidance 3 14 
Potential Field 15 2 
Look-Ahead 17 0 

We aimed to provide assistive path guidance, not autonomous control, which motivated 

the next question. We asked if the participant felt 'in control' while performing the trials in 

the block to see if the participant felt as if he was driving the simulation and not vice-versa. 

Table 5.7 on the following page summarizes the results of this question, and Figure 5.14 

displays them as a histogram. People felt most in control of the vehicle with the Look-Ahead 

Guidance method, and the least in control with the No-Guidance method. 

The last two questions after each block are only answered if the participant reported 

feeling force feedback. The two questions try to discriminate between perceived helpfulness 

and how much the participant liked the force feedback. It may seem strange for something 

to be helpful and disliked, but consider 'Clippy' from Microsoft Office. Clippy is the active 

Office assistant that pops up with helpful suggestions about tasks the system thinks that you 

are doing, and even though Clippy's information is useful, many people do not like Clippy. 
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Table 5.7: Counts for answers to the 'In Control' question 

Question: What level of control did you feel you had over the vehicle? 
Guidance No Complete Mean 
Method Control Control Score 

1 2 3 4 5 

No-Guidance 1 4 1 7 4 3.5 
Potential Field 0 3 4 8 2 3.5 
Look-Ahead 0 2 2 5 8 4.1 
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Figure 5.14: Histograms for answers to the 'In Control' question for each path guid­
ance method. 1 — No Control, 5 = Complete Control. 
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They are either annoyed with being interrupted, annoyed with obvious information being 

presented to them or confused because the system recognized the task at hand incorrectly. 

We do not want a haptic Clippy, where the guidance forces are helpful but annoy and/or 

frustrate the user. Table 5.8 and Figure 5.15 on the next page present the results of the 

helpfulness question, and Table 5.9 on the following page and Figure 5.16 on page 71 

present the results of the like/enjoyment question. Participants enjoyed and found more 

helpful Look-Ahead Guidance over Potential Field Guidance. 

In the post-experiment interview we asked participants which of the final three blocks 

they liked the most in the force feedback sense. This was intended to allow the partici­

pants to consider their feelings over the last three blocks. It is important to note that the 

participants were unaware of how the guidance methods worked at this point, just that 

each block presented a different force feedback method. Figure 5.17 on page 71 shows the 

histogram for the answers to this question. Thirteen of the seventeen participants liked 

Look-Ahead Guidance the most, compared to three for Potential Field Guidance and one 

for No-Guidance. 
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Table 5.8: Counts for answers to the 'Helpful' question 

Question: How Helpful did you find the force feedback? 
Guidance Very Very NA Mean 
Method Unhelpful Unhelpful Neutral Helpful Helpful NA Score 

No-Guidance 0 2 0 0 1 14 3 
Potential Field 0 1 7 7 0 2 3.4 
Look-Ahead 0 1 1 7 8 0 4.3 
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Figure 5.15: Histograms for answers to the 'Helpfulness' question for each path guid­
ance method. Participants who did not report feeling force feedback were not asked 
this question, hence fewer responses for the first condition. 1 = Very Unhelpful, 2 = 

Unhelpful, 3 = Neutral, 4 = Helpful, 5 = Very Helpful. 

Table 5.9: Counts for answers to the 'Like' question 

Question: How much did you like the force feedback? 
Guidance Strong Strongly NA Mean 
Method Dislike Dislike Neutral Like Like NA Score 

No-Guidance 0 1 1 0 1 14 3.3 
Potential Field 0 2 5 7 1 2 3.5 
Look-Ahead 0 1 3 9 4 0 3.9 
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Figure 5.16: Histograms for answers to the 'Like' question for each path guidance 
method. Participants who did not report feeling force feedback were not asked this 
question, hence fewer responses for the first condition. 1 = Strong Dislike, 2 = Dislike, 

3 = Neutral, 4 = Like, 5 = Strongly Like. . 
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Figure 5.17: Histogram for the answers to the overall preference question asked in 
the debriefing interview 
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C h a p t e r 6 

D i s c u s s i o n 

In this Chapter we discuss issues and insights from the previous three Chapters about the 

implementation, evaluation and results of our experiment. 

6.1 Results and our Hypotheses 

In this Section we present a discussion about what we learned about our hypotheses (Section 

4.1) given the results we presented in the previous Chapter. 

6.1.1 Quantitative Performance of Look-Ahead Guidance 

We hypothesized that Look-Ahead Guidance would exhibit performance benefits compared 

to No-Guidance, our baseline, and to our alternative haptic method, Potential Field Guid­

ance. The results we present in Section 5.2 verify that Look-Ahead Guidance provides a 

significant performance benefit compared to the other guidance methods across the set of 

independent variables we varied; with respect to our chosen performance metric, the mean 

square error of lateral deviation from the center of the path. Our best attempt at Poten­

tial Field Guidance for our haptic interface did not offer a significant performance benefit 

compared to No-Guidance, suggesting that the specific mechanism and implementation of 

haptic guidance are crucial in providing a performance benefit. The lack of significant in­

teractions in the ANOVA analysis (Table 5.2) suggests that Look-Ahead Guidance offers 

a performance benefit, compared to the other guidance methods, across a range of path 
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complexities and visibility levels — it is not limited to offering performance benefits for a 

small subset of path following tasks. 

However, there are some details related to our implementation and evaluation method­

ologies that should be taken into account before concluding that Look-Ahead Guidance is 

an improvement over all potential field guidance methods, or across all path complexities 

and visibility levels. These details include Potential Field Guidance implementation choices 

and the choice of our quantitative performance metric. 

6.1.1.1 Design and Implementation of Guidance Methods 

As our primary focus, Look-Ahead Guidance received more development time than did 

Potential Field Guidance. A potential field guidance method is easy to implement using 

a two DoF interface for a two DoF task, such as tracing a path with a pen-like interface, 

but potential field guidance for an under-actuated task, such as our driving task, is not 

as straightforward. There are multiple possible implementations that could be called a 

'potential field' method, and we implemented as close to a direct ID analog of the 2D 

path tracing potential field method we could devise (Section 3.2.4) that had a reasonable 

level of usability. However, we used the same desired steering angle control system for the 

Potential Field Guidance method as we did for the Look-Ahead Guidance method (Section 

3.2.2), which is awkward because the idea of a desired steering angle seems to violate the 

'spirit' of potential field methods. However, time constraints prevented us from developing 

an alternative control system especially for our Potential Field Guidance method. We are 

satisfied that our implementation is representative of potential field methods in general, but 

there are many possible ways to implement such methods and the one we have chosen to 

use may not be the absolute best. Vector fields are a possible alternative implementation 

style to base potential field guidance upon that may be an improvement compared to our 

style. 

6.1.1.2 Quantitative Performance Metric and Experiment Task Interaction 

The choice of how to measure path following performance is a critical component of the 

evaluation of any path following experiment. We chose to use the mean square error of the 
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deviation from the center of the path as discussed in Section 4.3.1. There were trade-offs 

associated with this choice, and slight modifications to the design of our experiment were 

required to accommodate this choice. 

We wanted the participant to stay inside a path while following it from beginning to end, 

but to be fair to our,chosen performance metric we were required to add the secondary task 

of following the center of the path as closely as possible as well. Following the center of the 

path is more difficult than merely staying within the extent of the path, and this may have 

influenced participants' path following strategies. Participants attempting to follow the 

center of the path as closely as possible will probably focus on the path just in front of the 

vehicle, limiting the perception of upcoming path features which could influence high level 

path following strategies. Participants only trying to stay within the extent of the path have 

more leeway and can afford to move their focus further away from the vehicle than can the 

center following participants, and therefore are more likely to use upcoming path features 

in their path following strategy. It is possible this speculated focus-point artifact may have 

contributed to the observed consistent performance benefit of the Look-Ahead Guidance 

method because it may have been always looking further ahead than the participants were, 

signaling path changes haptically before the participant visually recognized them. 

6.1.2 Guidance Methods and Path Complexity 

We evaluated path following performance across three different path complexities: low 

(curve), medium (bump) and high (zigzag). We used an ad-hoc method to create paths 

for each of these categories, and our statistical results suggest that only two different path 

complexities existed. Table 5.5 on page 59 shows that there was a significant performance 

difference between the low complexity path and both the medium and high complexity 

paths, but there was no significant performance difference between the medium and high 

complexity paths, suggesting that the complexities of these two paths were at a similar 

level. 

Figure 5.7 on page 60 shows that Look-Ahead Guidance offers a consistent performance 

benefit compared to the average performance for each path type. Similarly, No-Guidance 

performs consistently worse than average across all three path complexities. The perfor-
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mance of Potential Field Guidance varies considerably across path complexities, but this 

could be due to its poor performance in the low visibility condition with the medium and 

high complexity paths as evident in Figure 5.8 on page 61. 

6.1.3 Guidance Methods and Visibility 

Our results show that there is a statistically significant difference in performance between 

low and high visibility conditions (Table 5.2), but the interaction between guidance method 

and visibility is not significant. We had speculated that Look-Ahead Guidance would per­

form better in low visibility conditions compared to the other guidance methods because 

it 'sees' through the darkness of the low visibility condition, which the other methods do 

not do. Figure 5.8 shows that Look-Ahead Guidance does perform better than the other 

guidance methods in low visibility conditions, but does not itself exhibit a large performance 

difference between visibility conditions. The same cannot be said for the other guidance 

methods. 

Both No-Guidance and Potential Field Guidance exhibit a counter-intuitive performance 

benefit in low visibility conditions with the low complexity curve path. However, these 

methods do tend to perform worse under the low visibility condition for the more complex 

path types. One possible explanation for this is mentioned in Section 5.2.3. The low 

visibility condition forced participants to focus on the path closer to the vehicle than they 

normally would. A narrowed focus helps users to follow the center of the path in simple 

situations, such as the low complexity curve path with a single corner, but has the potential 

to adversely impact higher-level path planning required to accurately follow more complex, 

multi-cornered paths such as bump and zigzag. One possible explanation for why this 

performance trend is not apparent with Look-Ahead Guidance is that it is always looking 

further ahead than the participant is, and so low visibility does not have any power to impact 

performance. Perhaps this would not be the case if participants were not attempting to 

follow the center of the path in addition to staying within its extent. 
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6.1.4 Subjective Performance of the Guidance Methods 

Our subjective evaluation methods sufficiently addressed the issues in which we were in­

terested: perceived level of control, the preferred guidance method and any discrepancy 

between perceived helpfulness and aesthetic preference. Look-Ahead Guidance gave partic­

ipants a better sense of control over the vehicle compared to the other guidance methods, 

an important characteristic for a usable guidance method. A guidance method could force 

the user to follow a path exactly, but if the user did not feel that he had control there is a 

good chance that the guidance method would not be accepted. When participants reported 

feeling force feedback, Look-Ahead Guidance was reported to be more helpful and liked 

more than the other guidance methods. This consistency between like and helpfulness is 

important, as it indicates that Look-Ahead Guidance is not the haptic equivalent of Clippy. 

The majority of participants reported preferring the block corresponding to Look-Ahead 

Guidance during the debriefing interview. Participants were considering individual blocks 

for the subjective measurements taken before the interview, yet even when concurrently 

considering the final three blocks in the interview thirteen of seventeen participants (76%) 

preferred Look-Ahead Guidance. While these results are encouraging, we consider that they 

could have been reinforced with more detailed subjective evaluation methods. 

The post experiment interview was used to solicit participants' feelings about the exper­

iment as a whole, to complement the questions asked automatically after each experimental 

block. One thing that we did not ask, but wish that we had, concerned which of the last 

three blocks a participant liked the least, in addition to asking which block they liked the 

most. We should also have attempted to elicit more detailed descriptions of why partici­

pants selected the block that they did as their favourite. Most answers were very short and 

not particularly informative in the structured component of the debriefing interview. The 

occasional participant would provide more interesting answers but this usually happened in 

the more free-form Q & A session, after the audio recording was stopped. The experimenter 

stopped the audio recorder at the end of the interview questions before they explained the 

purpose of the experiment to save recording media. This explanation of the study occa­

sionally prompted a discussion about the details of the system, and here the participant 

would discuss his preferences and interpretations with more detail than he did previously. 
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These discussions were only captured in note form by the experimenter and some potentially 

interesting discussion details were lost. ' 

6.2 General Observations 

In this section we develop general observations about our experimental methodology and 

results not directly related to our hypotheses. 

6.2.1 Issues with Physical Interaction and Real World Similarity 

The perceived similarity between the experimental task and driving may have caused some 

interaction problems and influenced learnability. We purposely made the experimental task 

similar to driving in an attempt to reduce the learning curve compared to more abstract 

tasks. This was desirable because our goal was to have a one hour long experiment per 

participant, and we did not want to spend too much time familiarizing participants with 

the task. However, the difference between the final implementation of our task and driving 

in the real world may have been too significant for successful task transfer. 

The physical characteristics of our control knob offers a very different interaction style 

than what one would have with a full-sized steering wheel. Interaction with our control 

knob is performed with one arm and primarily involves wrist and finger motions, with 

some small elbow rotations. A steering wheel, on the other hand, is typically controlled 

with shoulder and elbow rotations from both arms. An advantage of a full sized steering 

wheel is that small movements of the wheel engage similar motor units as do those of 

large wheel movements. In contrast, the typical grasp of our device facilitated small knob 

movements, and large movements involved significantly different motor units, requiring the 

user to release the knob and reposition his fingers on the knob, similar to the way one lifts 

and 'scrolls' the mouse on reaching the edge of the mouse pad. 

Releasing the control knob of our haptic interface has a number of potential pitfalls. 

One is that a spring centering force is being applied to the knob at all times, and as the 

knob is released there is a force trying to center it. This can cause the knob to move in a 

counter-productive direction before the user resumes grasping the knob. Once the desired 
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large motion has been completed the user must release the knob again to return to the 

starting knob position; the problem compounds itself. We were unaware of this potential 

problem during development because, being familiar with the interface, we could control 

the vehicle well without releasing the knob; and it was not identified as a problem during 

the pilot studies. 

This knob interaction issue combined with the deliberate absence of user control over 

vehicle velocity contributed to a significant difference between our experimental task and 

driving. We suspect that this difference had an impact on the time required to become 

proficient at interacting with our experimental system. However, our results do suggest 

that learning had stabilized by our second set of blocks, which we base our analysis on. 

6.2.2 Explicitness of Experiment Instructions 

Upon reflection, the instructions presented to the participants could be improved. The 

problems associated with interacting with a small control knob discussed in Section 6.2.1 

may have been reduced if the instructions were more specific with regard to control knob 

interaction. The only instruction concerning interaction with the knob was to hold onto 

it in a comfortable manner. This resulted in participants trying, different grasp techniques 

and placing the knob at different locations on the desk, both of which may have influenced 

path following performance and time taken to learn an effective strategy. We purposely 

did not provide specific instructions on how to grasp the control knob because we wanted 

participants to use the grasp that was most natural to them. We did not anticipate that 

this flexibility in instruction would cause so much difficulty. 

Participants observed by the experimenter to be releasing the control knob while per­

forming familiarization trials were instructed that it might be easier to follow the path 

without releasing the control knob. Some participants did not believe that this was possible 

and asked the experimenter to show them that it was. This is evidence that some partici­

pants had more difficulty using the interaction device than was expected. We expect that 

such problems would not be present if the interaction device was a full sized steering wheel. 
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6.2.3 Observations on When Haptic Guidance is Useful 

We observed'an interesting detail about user interaction with guidance methods while watch­

ing participants and other users to whom we demonstrated our system. It appeared that 

when users were able to follow the path closely the guidance force feedback was helpful, but 

once users made significant deviations from the path and became lost, the force feedback 

was less useful, and may actually have made the problem worse. One possible explanation 

for this observation is that once you have left the path you are no longer attempting to 

do what the system thinks you should be doing and therefore the forces you feel do not 

correspond with the direction you think you should be going. The guidance forces are al­

ways attempting to steer the user along the path, even when he is not on the path, but 

these forces are not valid if they do not correlate with the user's strategy to correct his 

path following mistake. An intelligent algorithm that evaluates whether the guidance forces 

correspond to the user's goals is one possible approach to address to this problem. 

6.2.4 Effect of Gaming on Performance 

In Section 5.2.4 we present data that suggests video game experience has an effect on the 

performance of our experimental task. It is difficult to evaluate video game experience, as 

we discuss below, and it is difficult to say conclusively if this performance trend is actually 

due to gaming experience or to some other correlated factor in our participant pool. 

However, if the apparent division of participants into two groups is due to gaming 

experience then future evaluation of haptic guidance methods should include participants 

with a diverse range of gaming backgrounds. It also suggests that future work should 

be done to investigate why gamers show this performance advantage and if Look-Ahead 

Guidance truly is less sensitive to the effect of gaming experience as is suggested in Figure 

5.13 or if this artifact is the result of gamers' innate skill at path following with our haptic 

interface. 

We asked questions in our post-experiment interview about video gaming experience 

because anecdotal evidence from similar experiments conducted by our research group sug­

gested that it might influence results. In hindsight, it would have been desirable to ask 

more specific questions about gaming experience, such as types of games played, and to 

79 



seek more accurate estimates of playing time. We speculate that participants who play 

highly interactive games, such as driving simulators and first person shooters, will poten­

tially be more adept at our experimental task than game playing participants who play less 

interactive games, such as puzzle based games. In addition, when we ran our experiment 

it was midterm time at the University, and since most of our participants were University 

students they probably had been studying more than usual during this period. This may 

have lead to less game playing time than usual in the time frame before they participated 

in our experiment. We feel that some participants may have reported a lower than normal 

average weekly game playing because of this and hence our desire for more accurate, and 

longer term, gaming time measure(s). These additional measures would help interpretation 

of the effect of gaming experience on path following performance. 
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C h a p t e r 7 

C o n c l u s i o n s , C o n t r i b u t i o n s & F u t u r e 

W o r k 

In this chapter we present the conclusions that we draw from our work, list our contribu­

tions to the knowledge of haptic guidance, and suggest future work to address interesting 

problems. 

7.1 Conclusions 

We set out with the goal of studying usable haptic guidance methods that assist users to 

accomplish a task as compared to performing the same task without haptic guidance. We 

considered a guidance method to be usable if users expressed aesthetic acceptance after 

interacting with the haptic guidance method, while also achieving a sense of improved 

performance with it. We did not think that potential field haptic guidance, the previous 

state of the art for a driving task, was a usable haptic guidance method by our definition. 

To avoid abrupt guidance forces, yet still be able to guide a user, we speculated that 

the system would need to predict the state of the system and apply the appropriate guid­

ance forces early. A search of the previous work with look-ahead guidance in autonomous 

guidance systems, and with a look-ahead being used to stabilize a particular example of a 

potential field force feedback guidance method, validated our initial speculation. 

Thus, we designed and implemented a look-ahead haptic guidance method for a one 
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degree of freedom (DoF) haptic interface. We evaluated the performance and usability 

of this guidance method in a simple path following task compared to the performance 

and usability of No-Guidance and of a version of potential field guidance. We found that 

Look-Ahead Guidance performed significantly better than both No-Guidance baseline and 

Potential Field Guidance. The majority of participants in our experiment preferred the feel 

of the Look-Ahead Guidance compared to the feel of No-Guidance and to the feel of the 

Potential Field Guidance, suggesting that Look-Ahead Guidance is more usable than the 

other methods. 

We found that the physical characteristics of haptic interfaces used to display guidance 

forces have a large effect on usability. One example is the usability of a small knob compared 

to that of a steering wheel. Another important usability consideration is the correspondence 

between a user's goals and the guidance forces applied by the system. It is important for the 

guidance forces displayed to agree with the user's goals. Finally, the design and evaluation 

of haptic guidance methods requires careful consideration of a potential user's background 

with highly interactive dynamic systems, such as video games. 

We have shown that Look-Ahead Guidance performs well across a range of path com­

plexities and visibility levels, and we expect that it will provide similar benefits for a wide 

range of guidance tasks. Specifically, we envision that any task where a user can overshoot 

a constraint will benefit from haptic Look-Ahead Guidance because it offers helpful and us­

able tactile feedback that is more tightly coupled to a user's control modality than acoustic 

or visual feedback. 

7.2 Contributions 

We have contributed a number of useful elements to the field of haptic guidance, ranging 

from simulation software to insights on haptic guidance interaction issues. 

Simulation Software 

Building upon the foundation provided by the OpenSteer framework (Reynolds, 2003), 

we developed a straightforward and easily modified simulation environment with a user 

controllable vehicle model. This simulation environment can be used as is or extended to 
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further study haptic guidance and related problems. 

Usable Haptic Guidance Method 

We developed and evaluated a predictive haptic path guidance method that exhibited 

significant usability and performance benefits compared to No-Guidance and to the popular 

Potential Field Guidance method. The insights we provide into the pros and cons of the 

design and implementation of our Look-Ahead Guidance method will help the development 

of future haptic guidance methods in areas such as the control of animation and path 

tracing, because fellow researchers may learn from our mistakes and innovations. 

Usability Considerations 

We have identified a number of factors related to the design and implementation of 

haptic guidance methods that affect usability and task execution performance. 

7.3 Future Work 

In this section we present improvements to our current system as well as future work to 

address more general haptic guidance questions. 

7.3.1 Improvements to Current System 

Time was a major constraint while developing our system's hardware and software which 

forced us to make some concessions, primarily with respect to the design of our haptic 

interface and the design of our guidance methods. In this section we address these conces­

sions and identify improvements that would be important should this line of investigation 

continue. 

7.3.1.1 Hardware Improvements 

Limited design and fabrication resources, combined with time constraints, limited the size 

and power of the physical interface we used for our experiment. We used a relatively small 

motor (see Section 3.3) to drive our one DoF haptic interface. We would have preferred to 

use a steering-wheel sized (and shaped) interface because it would have been more familiar 

to users of driving-type tasks. A steering-wheel-style force feedback interface with the 
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performance characteristics we desire (in particular, sufficient torque and dynamic response) 

would have to be custom built. The Stanford Dynamic Design Laboratory (2002) built such 

a device using an 80 W Maxon motor and a 10:1 cable drive transmission. We would like 

to build a similar device and use it for future studies on haptic path guidance. 

7.3.1.2 Velocity Control 

An obvious extension to our work is to permit the user to control the velocity of the vehicle; 

ideally via a control pedal. This would make the task more similar to driving in the real 

world and would therefore produce results more applicable to a real driving task, but this 

solution would also present some analysis difficulties. A potential problem with analysis is 

that a user could creep along the path, be able to follow it exactly, but never feel, or be 

subject to, a guidance force. A secondary task, and associated performance measure, to 

encourage the user to follow the path as accurately and quickly as possible would address this 

particular problem, but this would in turn require a multi-variate analysis of path following 

performance that addressed both time to complete task and path following accuracy. 

7.3.1.3 Vibratory Feedback 

Another method of using haptic information to assist a user in guidance tasks is that of 

haptic cues, such as vibration, to indicate an approaching constraint or constraint violation. 

We implemented rudimentary vibratory feedback based on that of highway rumble strips, 

which vibrate the steering wheel if you get too close to the edge of the road, but we did not 

evaluate this feedback method for reasons discussed in Section 4.2.1. A vibrotactile signal 

in combination with an active guidance force might provide extra and, if well designed, 

intuitive information about the state of the system being controlled than would a vibration 

or active guidance force on their own. 

7.3.1.4 Quantitative Performance Metric 

An essential tool for future path following experiments is a more robust measure of path 

following performance than the mean square error method we employed. We suggested 

many possible performance metric options to explore in Section 6.1.1.2, but it might not be 
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possible to robustly represent path following performance with a single measure. If this is 

the case, which is very likely, then multi-variate path following performance measures and 

associated analysis will be the only option for proper analysis. 

7.3.2 The 'Big Picture' 

Out of necessity, our work addressed a narrowly defined problem while attempting to address 

considerations of more general haptic guidance problems. This is a list of future work in 

the general area of haptic guidance that we speculate are interesting problems arising as a 

result of our contributions: 

Visual Feedback 

The effect of the visual feedback method could be a critical factor in the effectiveness 

of haptic guidance. Our task had direct visual feedback of the path being followed. What 

if this is not the case, and the visual feedback is more abstract such as the motion of an 

articulated figure in a physically-based dynamic simulation? Is look-ahead haptic guidance 

effective when the constraints on the dynamic simulation are not as easy to visually recognize 

as the edges of a road are? 

Measuring Performance 

We found that effectively measuring path following performance is difficult, but this 

problem is not limited to path following. More research into quantifying a user's per­

formance at controlling highly interactive tasks is an important component of any future 

research on haptic guidance of such tasks. 

Guidance Forces that Meet a User's Goals 

We believe that it is important for guidance forces to match a user's goals. It is a 

difficult problem for the guidance Intelligent System to be 'intelligent' enough to predict 

the state of the system being controlled by a user — far less trying to predict the user's 

intentions. However, doing so is potentially even more critical with more complex tasks 

than our simple driving task, especially if the user has the ability to make a choice. For 

example, what kind of guidance forces should be displayed at an intersection of two paths, 

or to avoid an obstacle? 

If guidance forces only meet a user's goals some of the time, what effect will this have on 
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the user's confidence and acceptance of the guidance feedback? Is it better not to display 

guidance forces if there is a chance they will not meet the user's goals? 

Dependence 

Will a user become dependent on haptic guidance to accurately perform a task? This 

could be a problem if guidance is not always available. 

Higher Dimensional Guidance 

We studied a simple one DoF haptic guidance problem, but many interesting dynamic 

tasks have more than one control DoF. How will look-ahead haptic guidance perform at 

such tasks? Could haptic guidance make it easier to achieve basic movements in a complex, 

multiple control DoF animation and allow more attentional effort be devoted to artistic 

movements? Is there a difference between applying multiple DoF guidance forces through 

a tightly coupled haptic interface such as a P H A N T O M compared to an uncoupled haptic 

interface such as a haptic steering wheel and haptic pedal? How do these more complex 

haptic interfaces and guidance forces interact with a user's motor control system? 

Users' Ability to Control Interactive Dynamic Simulations 

Why do gamers appear to have an advantage at controlling highly interactive dynamic 

tasks? Are there other user characteristics that have an influence on performance of these 

tasks? What can be done to make haptic guidance accessible to all users? 
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A p p e n d i x A 

V a l u e s o f S i m u l a t i o n V a r i a b l e s H e l d 

C o n s t a n t D u r i n g E x p e r i m e n t 

Table A . l : Value of Constants During the Experiment 

Symbol Value Symbol Value 

M 5.0 Ckp 10 
t 0.5 Ckd 3.0 
t 1.0s Ckmax 0.25 
R 0.7 fpath 0.5 
^max 60° ^max 15° 
hp 3.0 ênvelope 0.5 
kd 0.2 P 1.0 

20 
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A p p e n d i x B 

E x p e r i m e n t I n s t r u c t i o n s 

Haptic Path Guide Experiment Instructions 

October 20/ 2003 

I am looking at how force feedback can be used to help guide a user 
along a path. In this experiment you w i l l perform a series of t r i a l s 
where you control the direct ion of a vehicle using a knob. Your 
primary goal i s to follow the green path as closely as possible. Your 
secondary goal i s to keep the center of the vehicle as close as 
possible to the center of the path which is drawn as a red l i n e . 
Through out the experiment you w i l l be exposed to different force 
feedback methods, path shapes and v i s i b i l i t y levels . You w i l l have 
approximately 5 minutes to famil iarize yourself with the path 
following task. After this famil iar izat ion phase the experiment w i l l 
begin when you are ready. 

The experiment consists of 6 blocks of 30 t r i a l s each. Each t r i a l w i l l 
take approximately 10 to 20 seconds. After each block of 30 t r i a l s you 
w i l l be asked to answer some questions about your experiences with the 
t r i a l s in that block. At the end of the experiment I w i l l ask you a 
few questions about your experiences. 

Please adjust the height of your chair and the posit ion of the knob to 
be in a comfortable configuration. 

If you have any questions please ask them now. 

When you have f inished reading this le t the experimenter know and we 
w i l l start the famil iar izat ion phase. 
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A p p e n d i x C 

I n t e r v i e w Q u e s t i o n s 

Interview questions to ask participant by experimenter: 

How old are you? 

What i s your dominant hand? 
Right Left 

Do you play video games? 
Yes No 

If yes, approximately how many hours of video games do you play per 
week? 
Hours: 

Do you drive? 
Yes No 

If yes, how many years have you been driving? 
Years: 

How often do you drive? 
Daily Weekly Infrequently 

Do you have any previous experience with force feedback devices? 
Yes No 

There are three dis t inct force feedback methods and a l l the t r i a l s in 
one block had the same force feedback methods. So you experienced two 
blocks of each force feedback methods. Of the last three blocks which 
one had the force feedback you l iked the most? 
1 2 3 ' 
Why? 

' 9 2 



D i d you have any problems wi th any of the c o n d i t i o n s ? 

Do you f e e l that any p a r t i c u l a r f o r c e feedback c o n d i t i o n improved your 

performance? 

Any other questions/comments? 
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A p p e n d i x D 

R D e t a i l s 

D . l A N O V A 

For our experimental design detailed in Section 4.2 the proper way to call the aov() func­

tion in R looks like: 

aov(mse " f f*path*v i s ib i l i ty + 

Error(sess ion/ ( f f*path*vis ib i l i ty ) ) , data = experimentData, 

subset = block >= 4 & participant != 12) 

The experimentData object is an R data frame with one row per unique combination 

of independent variables with the MSE value averaged across the five repetitions of each 

such combination seen by each participant in the last three blocks of the experiment. Each 

row of the data frame has the following fields: mse (MSE score), f f (Guidance (Force 

Feedback) Method), path (Path Complexity Level), v i s i b i l i t y (Visibility Level), block 

(Block Number), and participant. See the R reference manual for details on the aov 

function (R Development Core Team, 2003). 

D.2 Boxplot Details 

The dot in the box is the median of the data points. The box itself extends between the 

first and third quartile. The "whiskers" extend from the box to the most extreme data 
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point that is no more than one and a half times the inter-quartile range (IQR). Any values 

falling outside of the whiskers (called outliers) are drawn as open circles. 
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A p p e n d i x E 

E x p e r i m e n t C o n s e n t F o r m s 

The following three pages are a copy of the consent forms given to each experiment partic­

ipant at the beginning of a session. 
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T H E U N I V E R S I T Y OF B R I T I S H C O L U M B I A 

You hereby CONSENT to participate in this study and acknowledge RECEIPT of a copy of 
the consent form: 

(please print) 

S I G N A T U R E ; D A T E . 

If you have any concerns regarding your treatment as a research subject you may contact the 
Research Subject Information Line in the UBC Office of Research Services at 604-822-8598. 

Page 2 of 2 revised 8/24/2004 
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A p p e n d i x F 

R a w D a t a 

The following pages are the path trajectories for every participant over the last three blocks. 

There are three pages per participant, one for each of the guidance methods. The trials 

on a given page were thus executed during the same block (30 trials). Trials on each page 

are organized by path type (zigzag, bump, and curve). The plots contain trials with both 

visibility levels to conserve space. Thus there are ten trials per path type, evenly distributed 

(on average) between the reflections of each path type. 

Participant 13 was the discarded outlier. Of the 17 participants used in the analysis 

participant 1 has the worst performance and participant 6 has the best. 
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Participant: 01, Guidance Method: N o - G u i d a n c e 



Participant: 0 1 , Guidance Method: Potential Field 
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Participant: 01 , Guidance Method: Look-Ahead 
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Participant: 02, Guidance Method: N o - G u i d a n c e 



Participant: 02, Guidance Method: Potential Field 



Participant: 02, Guidance Method: L o o k - A h e a d 



Participant: 03, Guidance Method: N o - G u i d a n c e 



Participant: 03, Guidance Method: Potential Field 
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