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ABSTRACT

Most haptic interfaces are designed with a desire to produce
simultaneous perception across multiple senses, with haptic
behaviors that complement the task at hand. However,
software architectures for haptic interfaces often distribute a
virtual model and tasks among multiple processes and CPUs.
This functional segregation can reduce the quality of haptic
experience, by hiding important details of the dynamic model
and reducing the communication bandwidth between the
haptic controller and the application.

We present a means of closely coordinating a haptic interface
with a virtual model, application content and other sensory
displays. Our architecture features the ability to customize
haptic behavior at a low level, in the dynamic relations
among control parameters. Furthermore, we have located
significant application control within the haptic process in
order to facilitate effective bidirectional communication.

We describe some applications for haptically manipulating
dynamic media; and propose extensions to our architecture
for increased generality, decreased code size and high-level
programmability for efficient application development.

1 INTRODUCTION

When a manual interface is used to manipulate a computer
model or database, tight coupling between the manual
interface and the model strengthens a user’s control over his
task. Active haptic interfaces provide an opportunity to
enhance interaction beyond what is possible with passive
mechanical controls such as a computer mouse or joystick.
They can be used both to display and control data, and adjust
their behavior to reflect or transmit context changes.
However, to take full advantage of this input/output
capability, we have found that certain criteria in the software
architecture must be satisfied. These relate to the location of
functional elements within software modules, communication
between the modules, and the ability to craft and customize

low-level details of the haptic control code. Here we propose a
software architecture whose departure from common practice
is aimed at haptic media control tasks. For the purposes of
this paper, we will define media as stored or live dynamic
content primarily in the form of digital audio and video. Our
manipulation of media moves beyond literal representation to
use an abstract or metaphorical physical model as the virtual
model, placed between the user and the medium.

This paper will begin with a discussion of the pros and cons
of current conventions in software architecture and hardware
configuration. We then describe the key features and
implementation of a modified architecture that alleviates
constraints imposed by existing systems for tightly coupled
media applications. The paper concludes with some
application examples employing this architecture and a
discussion of future work.

1.1 Function Segregation in Haptic Applications

Multiple tasks must be accomplished in a haptic interface
application. For example, a typical set might be:

• Haptic device control (sensing and actuation)

• Virtual model definition, update and transitions

• Update of other sensory displays, e.g. visual or audio

• Monitoring of mouse and keyboard input.
It has become commonplace to separate functions into
computational threads and sometimes CPUs, to accommodate
different update rates, distribute compute load and optimize
type of computation. For example, a graphics process might
run on an SGI workstation while haptic control is handled by
a realtime OS [11]. Such functionally separated threads are a
practical way to access adequate processing power, but give
rise to new questions: how to tightly couple threads, and to
distribute tasks among threads.

A functional element critical to our discussion is the virtual
model (VM), through which haptic interfaces typically
communicate with the rest of the computer program. The VM
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might be a literal description of a model or database entity,
such as a geometric structure. The VM can also represent an
abstract construct mediating user operations on the data – for
example a physical metaphor such as a flywheel for editing a
stream of digital video or audio media.

Tight Perceptual Coupling
By tightly coupled inter-module communication or perceptual
simultaneity, we mean that when a user moves the haptic I/O
device, the virtual model and other sensory displays react
simultaneously, to human perceptual limits. Known
perceptual time constants translate to minimum display
refresh or sample rates (30 Hz for vision, 500-1000 Hz  for
touch [5]) and synchronization latencies (10 msec for haptic-
audio simultaneity [4]). When controlling digital audio, for
example, a haptically commanded transition must cause the
corresponding audio event within 10 msec to appear
simultaneous.

Location of the Virtual Model
When control of the sensory interfaces is separated, the
location of the VM comes into question. Options include
splitting, duplicating or isolating the model within a single
process. A process that doesn’t contain the VM may receive
state updates with a fixed or variable delay. This is especially
true if its update rate exceeds that of the VM process.

In some cases, the location of the VM is constrained. When
the task is to directly manipulate a literal representation of a
complex data model, it might be necessary for the VM to live
in a graphics process since much of its content is needed by
the graphics display but not by the haptic interface. Moreover,
the haptic process will generally have the highest update rate
in the system – when the VM is complex, updating it at the
haptic rate may impose an excessive computational load.

Unfortunately, these constraints can make the achievement of
tight perceptual coupling challenging, if the VM changes
have a time constant smaller than the haptic-to-visual
communication latency. For example, if the VM is updated at
30 Hz and the haptics process at 1 kHz, the haptics process
may wait up to (33-1)=32 msec, which is haptically
perceptible. Interpolation or filtering can help to reduce
artifacts [14, 16] but the haptic process inevitably uses old
data and will be less responsive.

This paper addresses a less-studied class of applications
where it is natural for model detail to reside in the haptic
process, by virtue of its relative simplicity and principal
relevance to the haptic interface function. By managing an
efficient VM in the fastest-running process and sharing state
data with the slower processes as they require it, latency can
be maintained below perceptual levels in all sensory domains
and the goal of tight perceptual coupling accomplished.

Bidirectionality: Haptic Media Control
An interface display reveals information such as system state
and content to a user – for example, a graphical display
allows one to visualize a rendering of a computer model. An
interface controller permits manipulation and control of
information – e.g., a computer mouse is used to select or
move elements seen on the visual display. A haptic interface
is said to be bidirectional if it can be used as both a display
and a controller (Figure 1).

Prevalence of Unidirectional Haptic Control
However, many haptic interface applications are dominated
by the medium’s display affordance rather than by its control
capability, using haptic feedback as a rendering tool  to
provide another view of a  virtual object. In these cases, the
haptic action does not affect the model or other sensory
displays, aside from cursor position. We will call such an
architecture haptically unidirectional in its communication
between the haptic process and a procedurally separate VM.
The prevalence of haptically unidirectional architectures has
influenced what the field has learned about using haptic
interfaces (both psychophysical and algorithmic), and the
software architectures and computer configurations devised to
control and connect them to their applications.

There are other examples of haptically bidirectional
architectures: for example, any VM that includes a compliant
element, and haptic probing of dynamic VMs which makes
the VM move [11, 16]. But to our knowledge, this work has
focussed on direct interactions with  and rendering of
complex data models. That is, the VM and the data being
manipulated are similar in form and directly coupled: one
feels the virtual biological membrane being pierced, or the
three-dimensional virtual shape shown on the screen.

Haptic Media Control
It is also possible to manipulate and operate on media,
indirectly, mediated by a VM that has an abstract and tool-
like relation to the data set. By indirect, we imply not laxity
in either the haptic-VM or VM-media couplings, but the
abstract relation of the VM to the media. This kind of VM is
felt, but not necessarily seen. For example, a metaphor of
turning a wheel might be used to haptically browse a stream
of video frames [9]. The user holds a physical wheel, imbued
with virtual dynamics that aid in controlling the video stream;
but he sees the video frames, not an image of a turning wheel.

model
control

model 

HAPTIC
PROCESS

VIRTUAL 
MODEL

Figure 1: Bidirectional haptic communication with a VM.
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We refer to this operational, manipulative type of interaction
as haptic media control.

An attribute of this type of haptic control is the inherent
simplicity of the VM. Since the VM’s function is now purely
to enable haptic interaction, rather than to represent every
feature of, say, a complex 3D data set intended for graphical
display, it need not contain details extraneous to the haptic
simulation. Because it is perused serially, updating even a
multi-degree-of-freedom haptic model will generally be less
involved than a graphical display.

Thus, in the case of haptic media control, it is both critical
and possible for the haptic process to have a tight
bidirectional connection to the VM, by including the VM
within the haptic process.

1.2 Crafted Code for Haptic Expressiveness

The success of some haptic applications relies in no small
part on the interaction’s aesthetic and expressive qualities.
We believe that attention to these details maximizes a user's
sense of connection to and control over the media, increasing
the value added by haptic feedback. This requires that the
application designer have access to low-level details of the
dynamic model used for haptic feedback.

Any haptic display built today and in the near future has a
constrained palette compared to the physical world we feel
with our bare hands. Whether the goal is to present a rich,
pleasing sense of presence, facilitate manual control or
increase efficiency in performing a specific task, the designer
needs to use the palette well. He should be able to extend it
creatively, and obtain the full benefit of the high local haptic
update rates that many systems can now achieve.

This ability is limited in commercially available software
tools that require a designer to download a packaged virtual
model to a local haptic CPU, then update its parameters at a
rate slower than the haptic update period. While some of
these packages expedite the job of prototyping feels through
quick parameter iteration, this limitation means the designer
can’t try out new low-level models and algorithms which
aren’t included in the tool library, or respond to haptic events
or model transitions at haptic perceptual rates.

2 CONFIGURATION & ARCHITECTURE:
CURRENT CONVENTIONS

Having described what we consider critical features for a
haptic control architecture (tight bidirectional coupling
between haptic process and virtual model, exploited by
designer access to low level haptic code), we offer an
overview of the software architectures and computer
configurations in common use. First we consider the
functional division of the complete application code; then to
the way computational units are utilized and connected.

While this paper deals principally with software, hardware
trends are relevant in the opportunities and pressures they
present to software developers.

These observations are not exhaustive, and we have omitted
specific attribution when we consider the subject evolved
communal property. The point is that despite promising
forays in other directions, the community as a whole is
choosing a constraining set of architecture models with few
and diminishing exceptions.

2.1 Software Architectures

In this context, we use the term software architecture to
describe the distribution of virtual model update and other
tasks among CPUs and processes, and the manner and rate of
synchronization and data sharing. All of these examples
assume adequate realtime performance of the host operating
system; we will not cover OS issues here.

Single Process
The most straightforward and venerable method of
integrating haptic control with content control is for both
functions to reside in a single-threaded program (Figure 2).
The principle advantage of this approach is the ready
availability of data to all parts of the program. Latency issues
that relate to inter-module communication are avoided.

Multiple update rates can be achieved through timer
interrupts or interleaved functions (e.g. execute haptics
function five times, then graphics function one time). Both
approaches effectively put the burden of scheduling on the
programmer, and while the result can give good realtime
performance, development effort becomes excessive for any
but the simplest systems.

Multiple Processes or Programs
The logical next step is to segregate functions with
dramatically different requirements into separate and
appropriate processes or programs (Figure 3). The processes
may have independent clocking rates and their own data sets.
Depending on the affordance of the OS (in the beginning
there was DOS, and it is still in use), mechanisms for
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Figure 2: Single-threaded architecture
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interprocess communication (IPC) include local variables,
shared memory, sockets, message passing and realtime
clocks. The functions may also be executed by independent
programs that communicate in similar ways; this method is
particularly common when multiple CPUs are used.

The virtual model must now either be located in just one
process, or partially duplicated. There have been numerous
approaches to splitting and locating models and in choices of
the information to be shared between the high-speed haptic
control function and the rest of the system. Each approach
has its own design priorities and constraints, and varying
degrees of success have been achieved.

2.2 Hardware Configurations

The three computer hardware configurations described here
loosely cover most possibilities for computer-controlled haptic
feedback.

Single CPU
All application software resides on a single CPU. The
advantages of this approach are simplicity of development,
sometimes cost, and ease of fast interprocess communication.

The primary limitation of this configuration is that servo rates
of the various functions are not independent as computational
bandwidth is approached. Further, different operating systems
and computer architectures are more suitable for different
functions. For example, an SGI running IRIX might be
desirable for graphic performance, but is not ideal for
realtime low latency hardware control.

Although the speedup and convergence of computer hardware
platforms suggest that more is possible in this mode, the
dominant Wintel operating system does not show signs of
becoming a more hospitable host to quality haptic control.
Even as computers become more powerful, limits are
inevitably pushed. Thus, a choice of system and priority of
update must often be made on the basis of the dominant
concern (e.g. graphics display) and the performance of the
other functions will consequently suffer.

Multiple Networked CPUs
To solve the problem of computationally hungry processes
starving others and to allow optimization of the host OS to
the thread’s function, multiple CPUs can be networked
together. Each hosts one or more processes or programs, and
thus requires a multi-threaded software architecture. The
communication, usually bidirectional, has most often been
implemented using sockets over Ethernet protocols [10, 11] or
serial links. The latencies inherent to shared network paths
make serial and parallel links an increasingly attractive
option when the CPUs are physically nearby.

For the same CPU power, this configuration allows higher
and more consistent local rates and more complex models,
but the price is paid in a finite synchronization rate and a
consequent degradation of perceptual tightness. For example,
an artifact might be introduced to the haptic process at the
connection rate, often 30 - 100 Hz.

Low Cost Embedded Haptic Controller
When the goal is to build a lower cost or physically
diminutive haptic interface, the obvious hardware
configuration is a variant on the multiple-CPU configuration:
replacing the haptic control computer with a dedicated and
relatively low-cost microprocessor [2, 7].

While this is an attractively efficient approach which will
become more prevalent as the price/power ratio of
embeddable CPUs drops, it is especially prone to certain
shortcomings. Factors of size, cost and capability of the haptic
control CPU may dictate aspects of the communication
protocol. There might only be enough bandwidth for a small
amount of information to flow, and perhaps only in one
direction. Thus, artifacts such as buzzing and loss of
perceptual synchronization are introduced, as described for
the multiple-CPU configuration.

Even more relevant to our design priorities, the more limited
nature of software development tools for embedded CPUs and
the unfamiliarity of application designers with embedded
code development makes the pre-packaging of code modules
attractive to many users of commercially available systems.

2.3 Non-Conventional Approaches:
Related Research

We are not the first to object to 100 Hz refresh jitter, or to
choose to do something about it.  A few efforts recounted here
substantiate our own belief that the problem is both important
and solvable.  These prior solutions have been either
presented incidentally, or not made general enough for
adoption by the community. We are striving to highlight the
importance of such architectures and generalize for
contemporary and future haptic programming needs.

Those who define the haptic Holy Grail as smooth perceptual
synchronization with a virtual model have often been

VIRTUAL 
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MEDIA 
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Figure 3: Multi-threaded architecture
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associated with dynamic modeling. Perhaps the most pointed
observation of synchronization artifacts and effective solution
is offered by Vedula [16]. In this case, attention to detail in
dynamic computer models led to dissatisfaction with low
fidelity in the haptic display. Using two CPUs connected over
Ethernet, Vedula created a more sophisticated local model in
the haptic controller such that slower-than-desirable
synchronization updates could be spread over the entire
update period. Gillespie [1] addresses many of the issues
inherent in precise simulation of complex mechanical
systems, including discretization instability and dynamic
coupling between manipulandum and virtual model. A single-
CPU configuration and a dynamic model updated with every
haptic servo provides high fidelity haptic feedback in a piano
key simulation.

Others using single-CPU configurations have focussed on
haptically smooth presentation of virtual models, dynamic or
static, whose spatial resolution is low enough to perceive
haptically – a different but related problem. These include the
constraint-based methods of [11, 17] and force shading [8].

More a historical note than a comprehensive solution, the
Montage commercial non-linear video editing system was
notable for its originality at the time [7]. One of the first
implementations of embedded control of haptic feedback, it
included a haptic browse-wheel which reconfigured the
number of detents per rotation depending on whether film or
video footage was being edited. Montage's exact architecture
for haptic control is unknown. We believe it was a one-way
link from haptic display to media with a dedicated processor
whose behavior could be changed by downloading different
position/force tables.

2.4 Implications

Modularization and separation of components is the dominant
methodology in haptic software architecture design. While
this approach is an effective solution for one problem, it is
currently linked to a movement towards generic low level
haptic control utilities that tend to isolate the application
builder from crafting and individualization of the haptic
experience. One of the primary factors in this evolution is in
many respects a positive one: the availability of software
packages which allow a relative novice to write code for a
haptic device, without requiring expertise in robotic control
or hardware design [3, 12].

Today’s prevalent haptic architectures have been driven by
the real need to develop simple, higher level control functions
while ensuring safety. These control functions rely on models
residing within the haptic controller, which are periodically
updated through lower-frequency calls from the user’s code.
Introducing open-loop execution between interprocess
updates reduces the quality of haptic feedback, and often
introduces unwanted artifacts. Sealing off the model within

the embedded controller and preventing the user from
modifying the closed-loop haptic code compromises the
diversity of expression inherently possible with the device.
Such models broaden the market acceptance of haptic devices
initially, but in the longer term may reduce quality and
creative sophistication in applications.

As proponents of highest quality haptic force feedback, we
argue for allowing the casual as well as expert user to
experiment creatively with the potential of haptic feedback by
manipulating both the dynamic model and its parameters.

3 NEW ARCHITECTURE MODEL

While constrained APIs are neither theoretically necessary
nor inevitable for any of these hardware configurations, they
have obvious advantages. We propose an alternate approach
which retains these features while alleviating their
drawbacks, applicable to a particular class of applications –
those where the virtual model is simple enough to be updated
at haptic control rates. We predict that this class will increase
in importance due to two factors: faster cheap, embeddable
CPUs, and the spread of haptic media control applications.

The key difference in our architecture is in the division and
coordination of the code: we let the haptic process drive the
model, and use a sufficiently sophisticated local haptic model
such that the discretization of model synchronization is not
perceptible. We argue that the only necessary tradeoff is extra
care in the system design to prioritize coupling and
customization of low level haptic code. Further, we maintain
that such architectures can migrate into commercial general-
purpose software packages.

Designed for the tightly coupled haptic manipulation of
continuously streaming media such as audio and video, our
architecture had the following requirements:

• Rich, dynamically configurable haptic behaviors.

• Functionally separate control of the haptic interface,
multiple types of media and standard input/output such
as the keyboard and mouse.

• Tight integration of haptic motion with the manipulated
media, providing the sensation of direct control.

Up to a point, these constraints are respected by prior systems
we have developed, as well as many found in the general
research community and industry. However, our desire to
integrate the haptic interface more closely with continuous
media, to dynamically configure behaviors and to allow non-
expert users to prototype haptic behaviors led us to a
significant variation on this prior work. The architecture has
the following key elements:

• Bulk of computation on the haptics side of the model for
very tight feedback with user.

• Multiple processes running at different refresh rates.
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• Two-way communication via shared memory, message
passing and remote serial/Ethernet protocols.

The first point is where our model departs from most current
convention. Other features of our architecture include run-
time targeting to different or multiple haptic devices, cross-
platform development and a simple callback model for
registering haptic and non-haptic processes and establishing
the shared memory and other communication protocols. The
callback model allows the authors of haptic experiences to
focus solely on the haptic coding and ignore the details of
timing, filtering and other computation.

3.1 Control Weighted towards Haptics Process

Haptics Process as Master
Many multi-threaded architectures have employed the haptics
process as a slave, responding to commands from a master
process [2, 3, 12]. In our media control applications, we have
found that exactly the opposite is desirable: the haptics
process runs at the highest refresh rate and must be
immediately responsive to the user and to the media. It should
both drive the VM update and derive its behavior from the
most current representation in the system. We have found the
absence of this balance obstructive in our attempts to use off-
the-shelf haptics software toolkits.

We have therefore located the virtual model in the haptic
process, and made it responsible for driving or coordinating
events in the other processes. Since the VM for our type of
application is usually a simple mechanical system, this does
not impose a computational strain even in single-CPU
configurations.

Option to Customize Haptic Code
While API modules are invaluable for streamlining standard
tasks, access to low level haptic code is also desirable from
several standpoints. For example, with their different refresh
rates, the haptic and media experiences must be mediated:
e.g., the high resolution haptic state information must be
integrated or otherwise analyzed to relate correctly to the
visual or audio media displays. Conversely, low refresh rate
information from the media can be interpolated or filtered in
the haptic process. We have found it essential to directly
explore the many methods for accomplishing these tasks in a
given context.

As to the haptic behavior itself, it is the freedom to
experiment with what happens in between interprocess
updates that we wish to preserve. For instance, we have found
that a haptic behavior may be enhanced if its parameters are
updated at the higher haptic refresh rate, and this necessitates
custom programming within the haptic servo loop. In some
cases this behavior consists of triggering a haptic transition or
a non-haptic event such as a sound. In others, the event is a
switch to a new continuous model.

Any of these customizations might later be packaged into an
API model for easy re-use, but they can’t be created without
the ability to prototype completely new behaviors that are not
combinations of existing models.

Therefore, though we modularized our architecture into a
framework for IPC and low-level functions such as velocity
signal filtering and gainset choice, we allow any of these to be
easily over-ridden with custom code. We also make it easy for
a programmer to completely compose just the critical parts of
the haptic process by registering callback routines.

3.2 Multiple Processes

We subdivide our code into separate processes or threads.
Each process runs at either a continuous, guaranteed refresh
rate, or as an event-driven blocking process. One instance of
our architecture uses two different computers, one for
dedicated control of haptics and a second for the control of
digital video. A Pentium desktop computer running QNX
hosts the haptics control process, but these functions are
intended eventually for an embedded processor. In this
particular example, the following processes run at all times
(Figure 4).

Haptic Servo Loop. The haptic process updates at 1Khz and
continuously measures the position of the haptic device,
computes filtered velocity and position values and outputs a
force derived from the current virtual model representing the
media.

Media Client. Delivers and receives messages from the
Media Server which may be another process on this machine,
a dedicated device external to the Haptics processor, or a

NT Device Control
Haptic Servo 

Loop

Media Server

Blackboard
(Shared 
Memory)

Local Media I/O

Media Client

Event
Managment

& Control

QNX

Blackboard
(Shared 
Memory)

SERIAL PROTOCOL

Graphical 
Display

Graphical 
Display

Figure 4: A two-machine instantiation of our architecture for
haptic control of video. Interprocess messages are shown as
curved lines; references to shared memory as straight lines.
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separate computer with digital media capabilities. This
process updates at twice the refresh rate of the digital media
(60Hz), to guarantee a minimum latency of one video frame.

Event Management and Control. A central, blocking
process to handle scheduling and termination of the
application and general I/O (keyboard management, mouse,
etc.).

Graphical Display. A local graphical display is sometimes
used for debugging or additional high bandwidth visual
feedback. This process runs continuously at the refresh rate of
the display device (60Hz). In an embedded system, this
process would most likely not be running.
The following processes run on a separate machine in the
given example, but conceptually could run on the same
machine, or be encapsulated into a dedicated device:

Media Server. Responds to Media Client messages and
controls the presentation and manipulation of digital media
(video and audio), primarily by sending messages to the
Device Control process. The Media Server updates at twice
the media refresh rate (60Hz).

Media Device Control. Handles the details of controlling the
media devices and responds to requests. This process is
blocking and event-driven.

Local Media I/O. A dedicated process to respond to local
control of the media device; it is blocking and event-driven.

3.3 Inter-Process Communication

Processes communicate via three different protocols:

• A shared memory blackboard, semaphore protected, for
maintaining the haptic model and other information on
the state of the haptic device, such as filtered velocity and
position.

• Inter-process messages, primarily for event notification
and overriding control.

• Serial, parallel or Ethernet remote connection to
transparently enable control of remote processes.

The goal in the use of these protocols is bidirectional
communication between the haptic process and the controlled
media: each interface (haptic, visual, audio) both sends and
receives data. There are two closed servo loops in this system:
the local fast haptic loop, which includes the haptic display
and the user’s hand, and the slower outer loop which
encompasses the media being controlled  (Figure 5). From
this perspective, the haptic interface is much more than a
“display” – it is a nonlinear block in the system diagram,
closely affecting downstream events. Likewise, the closing of
the outer media loop provides the haptic loop with context
information that in turn alters the haptic behavior.

Each of the lines connecting the block elements in Figure 5
are realized through one of the forms of IPC listed above. In
many of our applications the Haptic Servo Loop and Media

Client processes are on separate CPUs and their bidirectional
communication is transmitted through a serial connection.
The Media Server coordinates the serial communication from
the haptic processor side, and stores the Media data in a
semaphore-protected shared memory receptacle for access by
the Haptic Servo Loop. The Event Management and Control
process intercepts special keyboard commands such as stop,
pause, reset, and sends messages directly to other affected
processes.

While a closed-loop approach is familiar to the robotics field,
it is alien to the traditional model of media control. The prior
work in the Montage system hinted at its need – the behavior
of the haptic device was contextually sensitive to the state of
the medium. For our more sophisticated media browsing
experiments, we require a higher bandwidth context
sensitivity that provides strongly enhanced value in
comparison to passive haptic feedback devices.

3.4 Details of Implementation

Our architecture could be applied to any of the hardware
configurations mentioned in Section 2.2. For the video
applications described below (Sections 4.1 and 4.2), it is
implemented using two serially connected Pentium
computers. One runs QNX and handles the haptic and media
client processing. The other runs Windows NT and has a
Digital Disk Recorder installed to provide full-frame random
access video support. Custom software on the NT side runs
the Media Server and utility processes. A custom serial
protocol is used to communicate between the two machines.
We have found that QNX provides a dependable real-time
architecture for our experiments. Such experiments have
proven difficult or had unreliable results in other UNIX
architectures or within Windows or MacOS.

The application example Aladdin (Section 4.3) is
implemented on a single Pentium computer, since both haptic
and audio processes run under QNX. Processes communicate
via shared memory and message passing, and are
synchronized at 80-100 Hz. The haptic and audio processes
can be run on separate CPUs with no loss of performance if
interprocess communication rates of 80 Hz can be
maintained.

XForce MEDIA
SERVER

HAPTIC 
SERVO
w/  VM

CONTEXT
MANAGEMENT

Σ

Media S tate

Figure 5: Inner and outer closed control loops.
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4 EXAMPLE APPLICATIONS

To establish the value of our architecture, we describe three
example applications that would be difficult to realize with
the same quality and responsiveness using other systems. The
first two applications are for the browsing of video, while the
third is the use of a haptic device for delivering ambient
information about a room.

4.1 Haptic Clutching

One important metaphor we have been exploring in our
research is the engagement of a simple low-DOF haptic
device with a more complex virtual model. One example of
this is the haptic clutch, where we simulate the clutched
engagement of a concentric pair of virtual single-DF wheels
(Figure 6) with the help of force sensed on the axis
orthogonal to the single real wheel’s rotation [13, 15]. The
inner and outer virtual wheels are modeled as inertial
elements with bumps on their facing surfaces, which
correspond to features in the media. The wheels couple when
the bumps mesh, with the manipulated wheel acting as the
outer driver.

A user can interact with this virtual dynamic system in
several ways. If he pushes down with a firm force, the two
wheels engage as a single rigid body that the user can rotate it
in either direction. We have linked the rotation of the inner
wheel to the advance of frames in digital video, providing a
means to directly shuttle between frames. If the user relaxes
his downward force, however, the inner wheel is released and
continues to spin with the imparted velocity. The video
advances with the speed of this virtual inner flywheel, which
is continuously variable from slow advance to extreme fast-
forward. The user can continue to push down and shove the
inner wheel to increase the media browsing rate. By pushing
down steadily, the user can brake the inner wheel, with a
satisfying slip as bumps fly by at slower and slower speeds.
The physicality of the medium is restored with this interface –
to stop the video requires the user to exert force and dissipate
the flywheel's momentum.

This behavior is described by the following dynamic system.
These equations use rectilinear rather than rotational
coordinates for simplicity, and the kinematic state of the
virtual outer wheel corresponds to the measured state of the
real wheel.

clutchooact

clutchii

ioclutch
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xxhfF
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−= ⊥

&

&&0
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The first relation defines clutchF , the force transmitted

between the two virtual wheels. ⊥f  is derived from the

measured orthogonal applied force, used to indicate the

degree of engagement with the virtual inner wheel. h is a

dimensionless constant indicating the height of the bumps.

ox
r

and ix
r

 are the measured  state of the real wheel and the

computed position of the inner wheel, respectively; iM  and

oB  are the mass and damping of the two virtual elements.

actF  is the force applied via the 1-df actuator.

Despite its simplicity, it would be hard to implement this
system with current commercial haptic APIs, because the
virtual model's state must be communicated to the media
server faster than interprocess communication rates. There is
a large class of similarly simple dynamic systems that can be
used to create experiences beyond direct haptic metaphor or
representation.

4.2 Foreshadowing

An example that shows the need for bidirectional
communication is haptic foreshadowing for video (Figure 7).
In browsing and annotating video footage, we wished to
indicate important areas of the footage with a haptic cue. This
function is commonly required in editing tasks and is
normally accomplished with visual cues along a timeline.

Figure 6: Haptic Clutching. A clutch metaphor is used to
connect a virtual inner wheel with the physical outer wheel.
Orthogonal force is sensed on the physical device, and the
user’s pressing on the orthogonal axis causes the outer wheel
to engage the inner wheel. The user imparts momentum to
the inner wheel by engaging and releasing it; and feels relative
motion between the two wheels as bumps sliding by.

Figure 7: Foreshadowing. A piece of media with marked
temporal regions can be browsed using our foreshadowing
metaphor. The wheel acts like a normal video shuttle wheel,
but as the user approaches marks in the media, a texture is
overlaid on top of the wheel’s motion. Users can also add
marks by firmly pressing. The marks gradually rise and
lower around the point of interest, alerting the viewer to the
upcoming event before it is actually reached.
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We tried several techniques for haptic annotation and found
that a texture with gradually increasing and decreasing
magnitude worked well to “foreshadow” an important mark
before it was reached. The wheel behaves like a standard
spring-centered video shuttle wheel, with this texture overlaid
as left/right rotational noise of varying frequency, depending
on the distance to the mark. At the same time as the user is
browsing the footage, they are also able to make additional
marks by firmly pressing down  to on the wheel, equipped
with a force sensor. Thus, the haptic process must request and
deliver information to the media process bidirectionally and
at a rate that may exceed the visual media refresh rate,
depending on the speed of browsing. Further, the haptic
behavior is one that isn’t part of a supported application
toolkit, requiring custom coding. In developing this
application we tested several standard and non-standard
behaviors including nudging, buzzing and modifying
viscosity and friction. This would have been difficult with
existing commercial packages.

4.3 Aladdin: an Expressive Haptic Door Knob

The project Aladdin is an experiment in creating and using
an ambient haptic object, integrated with an auditory display.
A normal-appearing door has a haptically active knob that
senses knob motion and touch while displaying force and
temperature (Figure 8). Audio outputs, coordinated by an
audio process, are synchronized with the driving haptic
process using small audio buffers to ensure agility of haptic-
audio coordination [6].

One potentially useful application is the delivery of
information about the space on the other side of the door, or
of a room at a remote site. In this case the media is the
information fed from sensors within the room. For example,
haptic textures, force and temperature can be sculpted into

knob behaviors that imply properties such as the number of
occupants, their mood, level of activity and desire for privacy.

Another ongoing experiment is to study the integration of
multiple modes of sensory feedback into a single display,
mimicking rich multisensory experiences in the natural
world. Aladdin assumes behaviors with expressiveness
dependent on both feel and sound. The tight perceptual
coupling allowed by this architecture is necessary to create
the illusion of a presence in the door, and to allow a user to
control that presence with the knob. Likewise, we continually
extend our expressive palette by crafting new low-level haptic
feels, and weaving than together with crafted sounds. Subtle
adjustments to the haptic code make the difference between a
compelling experience and a dull one.

5 FUTURE WORK

Our next steps relate to accommodating the diversity and
power of new embedded processors and the haptic
applications they enable; and to making our architecture more
accessible to novice (or hurried) programmers.

5.1 Embedding Haptic Displays

We have proposed an alternative to the current prevalent view
of a haptic interface as a slave to a desktop PC, whereby the
haptic interface becomes the locus of control and arbitration
for a distributed, networked system. In a more general
instantiation of our architecture, one can imagine a system
that includes a haptic interface and its local embedded
controller configured as a collection of peer appliances
connected through serial or network links (Figure 9).
Potential peer devices vary both in power and function of
local host. A single haptic interface might drive multiple peer
targets, depending on the context, or it might be specific to
one.

Figure 8: The Aladdin haptic door knob, which combines
force feedback with a thermal display.

serial or 
network

links

x86 StrongArm

(c)(b)(a)

embedded
haptic cpu

Figure 9: Embedded haptic interfaces can control arbitrary
targets such as (a) an embedded x86 driving a video
monitor; (b) a StrongArm controlling an automobile sound
system; (c) a network of analog circuits, each responsible
for one light in a room lighting system.
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This view of haptic control is both more localized than what
we have seen proposed or implemented elsewhere, and
capable of arbitrary degrees of interconnectedness with the
rest of the world. Haptic displays hereby become distributed
local control elements, part of larger interlinked I/O systems,
rather than a slave to a variant of a desktop PC.

5.2 Higher Level Authoring

Our proposed architecture presents an environment where the
authors of haptic phenomena must have intimate knowledge
of the discrete implementation of differential equations and
other low-level physics. The reconfiguration commands
coming from the other processor consist of downloading
code-fragments or commands to engage custom routines. We
believe that this level of authoring is essential to the crafting
of high-quality, non-trivial and compelling haptic
applications. However, we are also working to find ways of
authoring such experiences at a higher level.

Our current research is looking at four different levels for
authoring without recourse to hand coding. The first level is a
software toolkit of chainable routines and utility functions to
encapsulate common controls and filters. The next level is a
scripting language for specifying the connection of these
components with a simplified language. The third level is the
use of equations, rather than code, which are interpreted or
compiled on the fly to control the haptic behavior. Finally, a
graphical authoring environment that is analogous to
multimedia or music sequencing programs should one day be
possible. Before that day, however, we need to determine how
to transition, layer, combine and compose haptic phenomena.
A strong component on the road to this system includes
psychophysical experimentation to determine the “basis
functions” and degrees of freedom expressible with particular
haptic devices.
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