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Figure 1: Pipeline: The user specifies the model and its corresponding animation. Our system computes the required activations, and
simulates the muscles, tendons, and bones. The skin is then attached to the skeleton, and the subcutaneous deformation from tendon motion
is added as a post-process.

Abstract

We describe an automatic technique for generating the motion of
tendons and muscles under the skin of a traditionally animated
character. This is achieved by integrating the traditional animation
pipeline with a novel biomechanical simulator capable of dynamic
simulation with complex routing constraints on muscles and ten-
dons. We also describe an algorithm for computing the activation
levels of muscles required to track the input animation. We demon-
strate the results with several animations of the human hand.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: musculoskeletal simulation, character animation, sec-
ondary motion

1 Introduction

Human bodies are more than skin and bones. When the body
moves, tendons and muscles move under the skin in visually im-
portant ways that are correlated with both the movement and the in-
ternal forces. For example, the appearance of tendons on the back
of the hand is related to how the hand is moving and how much
force it is exerting. Even though there has been some work on in-
corporating muscles into animations (see Sec. 2 for a review) it has
been very difficult to incorporate biomechanically realistic subcuta-
neous movements into a traditional animation pipeline. Integration
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with a traditional character animation pipeline is important since,
unlike secondary motion of inanimate objects, the movements of
characters are of central importance to the story and are typically
hand crafted by expert animators.

In this paper we describe an automatic technique for generating
biomechanically realistic secondary motion that fits into a tradi-
tional animation pipeline. In our system, animators are given a
rigged character, and animate it as they normally would, for in-
stance, using key frame techniques or motion capture. The anima-
tion is then exported to our efficient biomechanics simulator, based
on Lagrangian dynamics. We constrain the animated bones to fol-
low the animator’s chosen motion path. We perform an optimiza-
tion to determine the appropriate activation levels for each muscle
throughout the animation. We then export the resulting physically
based animations of musculotendons from our simulator and import
them back into the rigged animation scene. The tendons are auto-
matically skinned to the character’s surface skin, providing com-
plex secondary motion of the skin as a result of biomechanically
realistic tendon motion.

Our method works well with areas where muscles and tendons are
near the surface with little subcutaneous fat. We show the effective-
ness of the method by simulating the musculotendons of the human
hand and forearm.

Our main contributions are:

• A novel, efficient biomechanical simulator that can simulate
thin strands including tendons and muscles, with complex
routing constraints.

• Seamless integration of biomechanically realistic secondary
animation into a traditional animation pipeline.

• An incremental algorithmic controller that determines the
muscle activation levels required to dynamically track a tar-
get animation.

2 Related Work

We will first review several common muscle models used in both
the computer graphics and biomechanics communities; we also
briefly cover work related to strand simulation. Then we will dis-
cuss various methods for musculoskeletal control.
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2.1 Muscle Simulation

Much of the work in musculoskeletal models has its roots in the
biomechanics community [Delp and Loan 1995; Hogfors et al.
1995; Delp and Loan 2000; Pandy 2001; Maural et al. 1996; Chao
2003; Blemker and Delp 2005; Rasmussen et al. 2005; Wu et al.
2007]. With a few exceptions, muscles are modeled by simple lines
of force that can bend around kinematic wrapping surfaces. None
have been able to represent the complex tendon routing constraints
that we demonstrate in this paper.

There has also been significant development of musculoskeletal
models in the graphics community. Some have focused only on the
muscle anatomy, and not on dynamic simulation [Scheepers et al.
1997; Wilhelms and Gelder 1997; Albrecht et al. 2003]. Ng-Thow-
Hing [2001] and Teran et al. [2003; 2005] developed volumetric
muscle models to simulate muscles with both active and passive
components. Zhu et al. [1998] use a linear elastic muscle model
along with finite elements for muscle volume deformation. Maural
et al. [1996] and Aubel and Thalmann [2001] constructed muscle-
based virtual human characters. Musculoskeletal models have also
been used extensively for facial animation [Waters 1987; Lee et al.
1995; Sifakis et al. 2005]. Shao and Ng-Thow-Hing [2003] pre-
sented a general joint component framework designed to improve
the realism of joint articulation in virtual humans. Lee and Ter-
zopoulos [2006] used a neuromuscular control model for the sim-
ulation of a human neck. Zordan et al. [2004] developed muscle
elements based on springs for simulated respiration.

Our muscle-tendon model relies on simulating thin structures we
call strands. There have been several papers in the graphics litera-
ture investigating the use of thin physical structures for simulation
of various phenomena [Qin and Terzopoulos 1996; Remion et al.
1999; Pai 2002; Grinspun et al. 2003; Lenoir et al. 2004; Cole-
man and Singh 2006; Bertails et al. 2006; Spillmann and Teschner
2007]. Our model extends these with new constraints and activa-
tion.

2.2 Muscle Control

There has been significant work in developing algorithmic con-
trollers for physically based animation, without taking muscles into
account [Faloutsos et al. 2001; Pollard and Zordan 2005]. Some
controllers are able to achieve high realism by incorporating mo-
tion and force capture data [Yin et al. 2003; Zordan et al. 2005; Kry
and Pai 2006].

Among the papers that take muscles explicitly into account and
solve for their control signals, many use joint moment-arms, which
are commonly used biomechanical approximation of distributed
muscle forces around joints [Thelen et al. 2002; Tsang et al. 2005;
Thelen and Anderson 2006]. Sifakis et al. [2005] determine activa-
tions of a detailed non-linear, but quasistatic, FEM muscle model.
Weinstein et al. [2008] use a novel approach to PD control of mus-
cles to track an animation. Lee and Terzopoulos [2006] use neural
networks to learn to control the complex musculature of the neck.

3 Strand Based Musculoskeletal Simulation

Our simulator is built on two primitives: rigid bodies for bones
and spline-based strands for tendons and muscles. Our decision
to use strands was motivated by the anatomical structure of real
muscle tissue. Muscles consist of fibers, curved in space, which are
bundled into groups called fascicles. When a muscle is activated,
the fibers contract, which transmits a contractile force directly along
each fiber. By using strands in our muscle simulation, we are able
to directly model this behavior. Strands allow us to define smooth

curves to represent tendons, muscles, or the individual fascicles of
each muscle. The forces applied to the strands can be transmitted
directly along the curve, and also laterally through constraints.

We extend the physically-based spline models previously used in
computer graphics [Qin and Terzopoulos 1996; Remion et al. 1999;
Lenoir et al. 2004] to include activation (Sec. 3.2), simple yet ro-
bust sliding and surface constraint models (Sec. 3.3), and implicit
integration with Rayleigh damping (Sec. 3.4).

A strand, containing n ≥ 4 control points, has 3n degrees of free-
dom, corresponding to the x, y, and z coordinates of the n control
points. The state of the system is given by the stacked positions
and velocities of the rigid bodies and strand control points. These
are the generalized coordinates and velocities of the system, respec-
tively:

χ =
[
· · · Ei · · · qj · · ·

]T
Φ =

[
· · · φi · · · q̇j · · ·

]T
.

(1)

Here, Ei ∈ SE(3) and φi ∈ se(3) are the configuration and the
spatial velocity, respectively, of the ith rigid body (SE(3) is the
space of 3D positions and orientations, and se(3) is the space of
translational and rotational velocities), and qj ∈ R3 and q̇j ∈ R3

are the position and the velocity of the jth spline control point.

For each generalized coordinate, we construct an impulse-
momentum equation which, when discretized at the velocity level,
is

MΦ(k+1) = MΦ(k) + hf −GTλ, (2)

where M is the block-diagonal generalized mass matrix of rigid
bodies and strand control points [Remion et al. 1999], h is the step
size, f is the generalized force (body forces for rigid bodies, elastic
and damping forces for strands, etc., Sec. 3.2), and GTλ is the
constraint force (Sec. 3.3).

3.1 Rigid Bodies and Joints

We can treat bones as rigid, since their deformation is not important
for our purposes. The world position and velocity of a point on a
rigid body at a local coordinate r are given by

x = E r

ẋ = E−T Γ(r)φ,
(3)

where E is the usual coordinate transformation matrix and the 3×6
matrix, Γ = (−[r] I), transforms the local spatial velocity of the
rigid body, φ, into the velocity of a local point, r, on the rigid body
in local coordinates. The 3 × 3 matrix, [r], is the cross-product
matrix such that [r]v = r × v. Joint constraints are implemented
using the adjoint formulation [Murray et al. 1994], with which we
can easily derive different types of joints by simply dropping rows
in the 6 × 6 adjoint matrix. For example, we drop the top three
rows (corresponding to the three rotational DoFs) for a ball joint, or
the third row (corresponding to the rotation about the z-axis) for a
hinge joint.

3.2 Strand Dynamics

The path of a strand is described by a cubic B-spline curve,

p(s, t) =

3∑
i=0

bi(s)qi(t), (4)

where qi(t) denote the control points of the strand, with velocities
q̇i(t). The cubic B-spline basis functions, bi(s), depend on where
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the point is along the spline. Although a strand can have an arbitrary
number of control points, a point on a strand only depends on four
control points, due to the local support of the B-spline basis. The
velocity and the tangent vectors of a point p(s, t) can be obtained
in a similar manner.

ṗ(s, t) ≡ dp

dt
=

3∑
i=0

bi(s)q̇i(t)

p′(s, t) ≡ ∂p

∂s
=

3∑
i=0

b′i(s)qi(t).

(5)

Based on these quantities, we can compute the passive and active
elastic forces in the strand (which contribute to f in Eq. (2)). Our
simulator has the ability to use an arbitrary Force-Length (FL) re-
lationship, which can be obtained from a standard Hill-type model
[Zajac 1989] or from physiological experiments. However, consti-
tutive properties of muscles are still not well established and are the
subject of intense ongoing research. For graphics applications, we
use linear FL curves for both the passive and active forces, since
they work just as well for producing realistic animations. The ac-
tive force of a muscle is modeled by shifting the FL curve upwards,
so that the resulting stress is higher at each length and becomes zero
at a shorter length.

The dynamics equation for the control points of the strands is given
by

M q̇(k+1) = M q̇(k) + h(fd + fg + fp + fa)−GTλ, (6)

where M is the mass matrix, fd is the Rayleigh damping force, fg

is the gravity force, and fp is the passive elastic force. The active
force, fa, is linear in the activation levels, and can be expressed as
a matrix-vector product, Aa, where a is the vector of muscle acti-
vation levels between 0 (no activation) and 1 (full activation), and
A, which is of size (#DoF× #muscles), is the “activation transport”
matrix that takes as input the activations of the muscles and outputs
the corresponding forces on the strand DoFs, by scaling the activa-
tions as a function of the local strain and spline blending functions.
This separation of force and activation will help us later when de-
riving the controller in Sec. 4. The last term, GTλ, is the constraint
force term, which will be discussed in Sec. 3.3.

We use Rayleigh damping given by

fd =

(
αM + β

∂fT

∂q

)
q̇, (7)

where f is the cumulative force (excluding fd) from Eq. (6) and α
and β are positive damping parameters.

3.3 Constraints

Constraints are required for musculotendon origins/insertions and
for tendon routing. Although wrapping surfaces implemented in
biomechanical simulators [Delp and Loan 2000; Garner and Pandy
2000] are effective for kinematic constraints, they do not work for
dynamic constraints, and are also limited to simplified geometries,
such as spheres and cylinders.

Tendon routing is particularly difficult, and ignored by existing
biomechanical simulators. We have two types of constraints for ten-
don routing: sliding and surface constraints. A sliding constraint is
useful when the strand is to pass through a specific point in space.
Surface constraints are used to allow the strand to slide laterally on
the surface as well.

Although our simulator is a general multi-body simulator with de-
formable strands, there is one assumption in our application that
simplifies the constraint formulation. Since tendons and muscles
stay in contact with surrounding tissue and do not come apart, we
deal only with equality constraints; inequality constraints, which
are more difficult to solve numerically, do not need to be modeled.
In addition, no general-purpose proximity detection is required. Be-
cause strands are based on spline curves, keeping track of contact-
ing points is computationally inexpensive. Potential contact points
are first predetermined along each strand. After each time step the
closest points are updated using Newton-Raphson search. Contact
points on rigid bodies for surface constraints are tracked in a simi-
lar manner, by first wrapping each rigid body with a cubic tensor-
product surface.

The constraints in our system are formulated at the velocity level.
Let g(χ) be a vector of position-level equality constraint functions,
such that when each constraint i is satisfied by the generalized co-
ordinates, χ, gi(χ) = 0. By differentiating g with respect to time,
we obtain a corresponding velocity-level constraint function that is
consistent with our discretization.

d g(χ)

dt
=
∂ g(χ)

∂χ
Φ = 0. (8)

Denoting the gradient of g by the constraint matrix G, we obtain
the constraint equation GΦ = 0.

This constraint equation may allow the system to drift away from
the constraint manifold because it is formulated at the velocity, not
position level. We add a stabilization term [Baumgarte 1972] to
help correct this drift by pushing the system back towards the con-
straint manifold. The stabilized velocity constraint equation is then

GΦ = −µg, (9)

where µ is the stabilizer weight. If there is no positional error (g =
0), then the constraint equation is exactly GΦ = 0. On the other
hand, if there is a small positional error (g 6= 0), then a non-zero
stabilization force, −µg, will be added to push the system back to
the constraint manifold. For critical damping, we set µ = 1/h, so
that unnecessary oscillations are minimized.

Fixed Constraints: We use fixed constraints for strand origins
and insertions, as well as for attaching several strands to form
branching structures. For example, if we want to constrain a point
on a strand, p, to a point on a rigid body, p0, we can set their relative
velocities to be equal.

ġ = ṗ− ṗ0, (10)

where both ṗ and ṗ0 are linear with respect to the DoFs of the
system, as given by Eqs. (3) and (5).

Surface Constraints: Surface constraints are similar to the usual
rigid body contact constraints. A point on a strand is constrained to
lie on a point on the surface of a rigid body. Let p denote the 3D
position of the strand point to constrain and p0 and n its corre-
sponding contact point and normal on the rigid body. Equating the
relative velocities along the normal gives

ġ = nT (ṗ− ṗ0). (11)

The constraint point on the strand is fixed, whereas the point on the
surface is updated before each step by finding the closest point on
the tensor-product surface attached to the rigid body (Fig. 2(a)).
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(a) (b)

Figure 2: (a) Surface constraint and (b) sliding constraint. With a
surface constraint, the constraint point moves on the rigid body sur-
face, whereas with a sliding constraint, the constraint point moves
along the strand.

Sliding Constraints: In most situations, such as in the carpal
tunnel, tendons are confined to slide axially but not laterally. We
can achieve this behavior by adding an additional dimension to the
surface constraint. Given the tangent vector of the point to constrain
on a strand, we generate the normal, n1, and binormal, n2, vectors,
and apply the constraint with respect to both of these vectors.

ġ1 = nT
1 (ṗ− ṗ0)

ġ2 = nT
2 (ṗ− ṗ0).

(12)

Unlike the surface constraint, the constraint point on the rigid body
is fixed, whereas it is allowed to slide on the strand (Fig. 2(b)).

3.4 Integration

We must be careful when choosing a numerical integrator to step
the system forward in time. Our choice will have an impact on
the efficiency, stability, and accuracy of the system. We currently
use a semi-implicit Euler stepping scheme, because of its efficiency
and stability. Although our system is stable for large step sizes, we
must restrict the step size to avoid unacceptable numerical damp-
ing introduced by the implicit method. In the rest of this section,
we describe our stepping scheme in detail. It is important to note,
however, that our system is not limited to this integrator.

The semi-implicit Euler scheme [Hairer and Wanner 2004] for non-
linear systems is a variant on the fully implicit Euler scheme, where
only one iteration of Newton search is taken per time step, rather
than iterating until convergence. The rationale is that for small
enough step sizes, the integrator will converge to the true solution
quickly over multiple steps. This amounts to adding a linear Tay-
lor expansion term about the current term and augmenting the mass
matrix with the gradients of implicit elastic and damping forces.
Combining the dynamics equation (Eq. (2) with the modified mass
matrix, Eq. (7)) and the constraint equation (Eq. (9)), we obtain
a linear system (called a KKT system, [Boyd and Vandenberghe
2004]) that we solve at each time step to obtain the generalized ve-
locities at the next step.(

M GT

G 0

)(
Φ(k+1)

λ

)
=

(
MΦ(k) + hf
−µg

)
, (13)

where λ is the vector of Lagrange multipliers for the constraints.
We use a direct method based on Gaussian Elimination [Davis
2006] to solve this matrix.

Once the new velocities, Φ(k+1), are computed, the new positions,
χ(k+1), are trivially computed, for example, using Rodrigues’ for-
mula.

4 Controller

The subcutaneous movement of tendons and muscles depends on
how those muscles were activated to achieve the desired movement
of the character. Because of the complexity of the routing of ten-
dons and muscles, even simple tasks, such as moving a finger from
one position to another, requires the coordinated activation of sev-
eral muscles, acting as synergists and antagonists. It is a virtually
hopeless task to attempt control of such a system by hand (for ex-
ample with a GUI) — an algorithmic controller is needed.

For the purpose of our simulation, a controller’s job is to compute
the activation levels of the muscles, given some target movement of
parts of the skeleton. The simulation loop can be summarized by
this simple pseudocode:

REPEAT
Compute activation levels, a.
Compute new velocities,Φ.
Update positions, χ.

(14)

The controller computes the activation levels, a, from a set of tar-
get velocities specified by the user, for example, from motion-
capture data, key-framed animations, or even from other skeletal
controllers.

For brevity, we will use the following notation for the constrained
dynamics equation:(

M GT

G 0

)
︸ ︷︷ ︸

M̃

(
Φ(k+1)

λ

)
︸ ︷︷ ︸

Φ̃

=

(
(MΦ(k) + hf) + hAa
−µg + 0

)
︸ ︷︷ ︸

f̃+Ãa

. (15)

The dimensionality of Φ̃ is the number of DoFs in the system plus
the number of constraints. Note that here, we have extracted out the
active force, fa = Aa, which contains the activation levels, a, that
we are trying to solve for.

The reference animation specifies the target velocities of rigid bod-
ies, vx. This can be either a 3D point velocity or a 6D spatial ve-
locity, and the total size of vx is (6 × #spatial targets + 3 × #point
targets). If the input target is a sequence of rigid body configura-
tions rather than velocities, it can be converted into the required
form by computing the spatial velocities needed to move the bodies
from their current configurations to the target configurations in a
time step, using the matrix logarithm.

We then require that the controller computes the activations of the
muscles such that the resulting system velocities match the desired
velocities. That is,

ΓxΦ̃ = vx, (16)

where the entries of the Jacobian Γx contain the 6 × 6 identity
matrix for spatial velocity targets and the 3 × 6 matrix Γ from Eq.
(3) for point velocity targets. Substituting Eq. (15) into Eq. (16),
we arrive at the targeting constraint equation

Hxa+ vf = vx, (17)

where Hx = ΓxM̃
−1Ã and vf = ΓxM̃

−1f̃ . The matrix Hx

can be thought of as the effective inverse inertia experienced by the
muscle activation levels in order to produce the target motion. The
“free velocity” vector, vf , is the velocity of the targets due to the
non-active forces acting on the system. Thus, we are looking for the
activation levels, a, that zero out the difference between the desired
target velocities and the sum of active and passive velocities.

In some cases, it is possible to solve for the activations using the tar-
geting equation (17) as a hard constraint. However, in most cases,

4



To appear in the ACM SIGGRAPH conference proceedings

Figure 3: A screenshot of the simulator. Fixed constraints are
shown in cyan, sliding constraints in green, and surface constraints
in maroon. Surface constraints allow the strands to move axially as
well as laterally. The input animation target is shown in wireframe.

the dynamics of the system cannot exactly follow the requested tar-
gets. For example, the bone joint constraints may prevent certain
poses, or muscles may not be strong enough to produce the required
force. Instead, we convert the targeting equation into a quadratic
minimization problem.

To make the dynamics follow the target trajectory as closely as pos-
sible, the controller may sometimes return activations that switch
spastically. In order to prevent this, we add a damping term to the
objective function, using the linear approximation of the derivative
of the activation. In addition, to minimize the total activation, we
add an “activation energy” term to the objective. Putting this all
together, the activation optimization problem is

min
a

wa‖a‖2 + wx‖(Hxa+ vf )− vx‖2 + wd‖a− a0‖2

s.t. 0 ≤ a ≤ 1,
(18)

where wa, wx, and wd are the blending weights, and a0 is the acti-
vation from the previous time step. The first term minimizes the to-
tal activation and also adds regularization to the quadratic problem,
whereas the second and third terms function as a spring-and-damper
controller to guide the dynamics of the system towards the target
motion. For easy motions that are not over-constrained, wa and wd

can be set to zero to achieve close tracking of the target. However,
for some motions, especially those that involve configurations that
are almost singular, such as full flexion or extension, regularization
(wa) and damping (wd) help stabilize the solution. For the anima-
tions in this paper, we used (wa, wx, wd) = (1, 1, 0.01).

Although the original dynamics equation can be large (albeit very
sparse), the dimensionality of the quadratic minimization is the
number of muscle strands, which in general is small (< 100). The
main computational cost is in the construction of the quadratic ma-
trix, which requires min(#targets,#muscles) sparse solves on
the KKT matrix from Eq. (13). However, since the LU factors of
the KKT matrix are required for solving the system dynamics any-
way, the only additional cost is the backsolve, which is relatively
cheap. In practice, we note that the controller adds no significant
computational cost to the overall system.

5 Pipeline

We have integrated our muscle simulator into a standard animation
pipeline in order to demonstrate its effectiveness in a production
environment (Fig. 4). Although the simulator could be used in con-

Figure 4: Maya interface with our custom shelf. Strands are shown
in blue, and constraints are shown in green.

junction with any 3D animation software, we have chosen to imple-
ment a plug-in for Maya (Autodesk, Inc., San Rafael, CA).

Our implementation makes some important design choices. First,
we clearly separate the secondary motion simulation from the char-
acter animation, so that the animators can perform most of their
work in the usual way. Only the rigger (as opposed to the animator)
needs to be aware of the presence of a muscle simulation under-
neath the hood. Second, we provide tools to make it easy to add
strands and edit their properties using GUIs in Maya. Finally, the
effect of the subcutaneous strand motion on the skin is performed
as a post-process to the normal skinning, and can be considered as
an animation pass to add secondary motion.

From an animator’s point of view, there are three main differences
with a standard animation pipeline. Please see the accompanying
video to see how this works (Fig. 1).

First, an animation rig is constructed in the usual way, but in addi-
tion, strands are placed within the character. The strands are built
using the standard spline tools available in Maya. Though not a
requirement, it is much easier to place the strands if the bone and
muscle meshes are available. A GUI allows easy setting and editing
of physical parameters such as mass, density, and dimensions. In
addition to these simple scalar parameters, the proper constraints
must be added to ensure that the strands function appropriately.
Constraints can be easily added through our plug-in by selecting the
appropriate strands and specifying the normalized parameter point
to which the constraint should be added. After the strands have
been created, they never need to be manually manipulated again.

The rigger also skins the standard rig in the normal way. This will
allow the animators to continue their work unaffected by the addi-
tion of muscle strands. Along with this skinned base mesh, there
is another version of the skin mesh, which will be deformed by the
muscle strands. We will call this additional mesh the deformed
mesh. The deformation process is completely automated in our
plug-in. We automatically determine the skin mesh vertices that
are affected by each strand by using proximity computations. Al-
though we have added an additional skin mesh to each character, we
do not foresee any problems since it is already common practice to
include several different resolution meshes with each character.

Second, the animators construct a reference animation as they nor-
mally would, adding life to the characters in their scenes. Once
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the character has been animated to their liking, the next step is to
add the secondary motion provided by the muscles. The plug-in
exports the models, muscle data, and animation keyframes to XML
files. The muscle simulator then uses these XML files to recre-
ate the Maya scene within the simulation software. The simulator
calculates the dynamic activation levels for the muscles that best
match the animation keyframes provided (Sec. 4). The simulation
is then saved as keyframes in an XML file, which are loaded from
our Maya plug-in and baked onto the strand control points. Now
the Maya strands will move in a biomechanically accurate way.

The simulated rigid body motion is similar, but not identical, to the
input skeletal motion. In the example animations, the average and
worst per-vertex reconstruction errors are around 1mm and 5mm
respectively. These reconstructions errors are actually automatic
corrections of physically unattainable motions and configurations.
Nevertheless, once the simulation is completed, the animator can
choose to use the new skeletal animation or to stick with the original
input animation of the rigid bodies, and remap the tendon motion
back to the original motion.

Finally, once a strand animation has been imported, the animator
can use the plug-in to calculate the skin deformation that corre-
sponds to the given strand motion. Skin deformation due to sub-
cutaneous strands is implemented as a post-process that offsets the
skin mesh based on the proximity to strands. The degree of in-
fluence of the strands, and hence their visual prominence, can be
controlled by the animator to produce a range of effects.

The skin deformation algorithm is as follows. Every base mesh ver-
tex is given a scalar influence weight. This allows us to control the
amount of deformation that each deformed mesh vertex undergoes.
In our system, these influence weights are painted onto the base
mesh using a color set and Maya’s Paint Vertex Color Tool. Only
mesh vertices with positive influence weights are deformed.

At each frame, the closest strand point (ps) to each base mesh ver-
tex (pv) is determined. Then the deformed mesh vertex is modified
as follows:

d = ps − pv

h = max(d · n + c, 0)

f = a exp

(
−‖d− (d · n)n‖2

2b2

)
pv = pv + (whf)n,

(19)

where n is the outward vertex normal and w is the vertex influence
weight. The parameter a controls the height of the offset, b controls
the falloff factor in the lateral direction, and c controls the falloff
factor in the normal direction. Thus, when strands protrude above
(or lie just beneath) the base skin, each vertex of the deformed skin
is moved along its normal by an amount proportional to its distance
from the strand. The level of deformation is controllable by the in-
fluence weights, and by tweaking the height and falloff parameters.

6 Results

The hand model used in our examples contains 54 musculotendons
and 17 bones. The bone and muscle meshes were purchased from
Snoswell Design in Adelaide, and the musculotendon paths were
constructed based on standard textbook models in the literature
[Moore and Dalley 1999]. The skeleton was rigged and animated
by an artist, and the resulting animations were imported into our
simulator, implemented in Java. The activations for an animation
sequence of several seconds were computed within a few minutes.

The degrees of freedom of the skeleton are flexion/extension and
abduction/adduction of the fingers, thumb, and wrist, and prona-

tion/supination of the forearm. Our controller was able to produce
motion involving all of these ranges of motion (Fig. 5). Subcuta-
neous motions are most pronounced for the extensor and abductor
tendons of the thumb (Fig. 6), and the extensor digitorum tendons
on the back of the palm (Fig. 7). Our technique correctly captures
the deformation of the skin on the back of the hand during finger
extension (Fig. 8). We can generate more subtle deformation by
varying the skinning parameters (Fig. 6(c)). Finally, we validate
our technique by comparing the simulated tendons of the thumb to
several real thumb photographs (Fig. 9).

(a) (b) (c)

Figure 5: Stillshots from an animation showing prona-
tion/supination of the forearm, as well as abduction/adduction of
the wrist, computed at interactive rates using our controller.

(a) (b) (c)

Figure 6: A frame from the thumb animation, before applying our
method (a), and with varying levels of skin deformation (b and c),
showing the “anatomical snuffbox”.

(a) (b)

Figure 7: (a) Base skin. (b) With our method applied, showing
tendons on the back of the hand realistically deforming the skin.

7 Conclusion and Future Work

We have developed a method for efficient biomechanical simulation
of subcutaneous tendons and muscles. The simulation is incorpo-
rated into a traditional animation pipeline and can automatically
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(a) (b) (c)

Figure 8: Animation showing tendons deforming the skin during
extension.

Figure 9: We compare the simulated tendons of the thumb to sev-
eral real thumb photographs.

generate secondary motion of the skin. We are able to produce
dynamic simulations with complex routing constraints that were
previously not tackled in either the graphics or the biomechanics
communities. We have also developed a novel controller that auto-
matically computes the muscle activation levels, given some target
movement of the skeleton. We demonstrated the effectiveness of
our approach by simulating the musculotendons of the human hand.

Other than the hands, our method should work well with areas
where muscles and tendons are near the surface with little subcuta-
neous fat, such as the feet, neck, forearms, and hamstrings. How-
ever, more work needs to be done before it can be applied to areas
of the body with volumetric muscles, such as the shoulder or the
spine. We also plan to extend the controller to take into account
neurally controlled muscle and joint impedances that are essential
for manipulation [Kry and Pai 2006]. Control of a body’s tone and
stiffness is also an important feature of a physiologically-based an-
imation system [Neff and Fiume 2002; Lee and Terzopoulos 2006].
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