Composition Patterns: An Approach to Designing Reusable

Aspects
Siobhan Clarke Robert J. Walker
Department of Computer Science, Department of Computer Science,
Trinity College, University of British Columbia,
Dublin 2, Republic of Ireland. 201-2366 Main Mall,
+353 1 6083690 Vancouver, BC, Canada V6T 1Z4.
siobhan.clarke@cs.tcd.ie walker@cs.ubc.ca
ABSTRACT expected benefits of design. A single requirement, such as

Requirements such as distribution or tracing have an impactdistribution or synchronisation, may impact a number of
on multiple classes in a system. They am®ss-cutting classes in a system, and therefore its supposcitered
requirements, omspects.Their support is, by ecessity, across those multiple classes. Such requirements are
scattered across those multiple classes. A look at andescribed asross-cuttingequirements, oaspects.On the
individual class may also show support for cross-cutting other hand, a single class in a system may show support for
requirements tangled up with the core responsibilities of multiple requirementtangledwith the core responsibilities
that class. Scattering and tangling make object-orientedof that class. Scattering and tangling have a negative impact
software difficult to understand, extend and reuse. Though across the development lifecycle, from comprehensibility,
design is an important activity within the software lifecycle traceability, evolvability, and reusability points of view.
with well-documented benefits, those benefits are reduced . . . .
The subject-oriented design model [2, 3] removes this

when cross-cutting requirements are present. This PaPEl v uctural mismatch with decomposition capabilities that
presents a means to mitigate th_ese problt_ams by separatin upport the separation of the design for each requirement
the design of cross-cutting requirements istamposition ; : . ) X

- : ; into different design models (calledlesign subjec)s
patterns Composition patterns require extensions to the Decomposition in this manner removes requirement
UML, and are based on a combination of the subject- ; . ; :

. . .~ scattering and tangling properties from software design,
oriented model for composing separate, overlapping . ; . .
designs, and UML templates. This paper also demonstrate thereby also  removing —their negative impact,
h gns, anc ’ P i pap ; SCorresponding composition capabilities are supported

ow composition patterns map to one programming model within the subiect-oriented desian model
that provides a solution for separation of cross-cutting J 9 '
requirements in code—aspect-oriented programming. ThisThe primary contribution of this paper is the specification
mapping serves to illustrate that separation of aspects mayf a means to captureeusable patterns of cross-cutting
be maintained throughout the software lifecycle. behaviour at the design levelcomposition patternsA
1 INTRODUCTION composition pattern is a design model that specifies the

Software design is an important activity within the software design Qf a cross-cuttlng requirement independently frpm
lifecycle and its benefits are well documented [4, 5]. These any design it may potentially cross-cut, and how that design

include early assessment of the technical feasibility, may be re-used wherever it may b_e required. Qompo§|tlon
correctness, and  completeness  of requirements;pattems are based on a combination of the subject-oriented

. . 'model for decomposing and composing separate,
management of complexity and enhanced comprehension : : .
greater opportunities for reuse; and improved evolvability. potentially overlapping designs, and UML templates [13].

However, in practice, object-oriented design models have Section 2 motivates the need for composition patterns. The

been less useful throughout the lifetime of software systemscompOSItlon pa'ltt'erns model is described in Section 3, ‘.N'th
than these benefits suggest. As described in [3], a structuralsecno.n 4 prowdmg examples of well-known cross-cutting
. : e .. behaviours, designed to be truly reusable.

mismatch between requirements specifications and object-

oriented software specifications cause a reduction in theA secondary contribution is an introduction to how one
programming model that supports cross-cutting behaviour
(aspect-oriented programming [11]) is supported at the
design level by composition patterns. This support serves to
illustrate that separation of aspects may be maintained
throughout the software lifecycle. Suggested mappings to
constructs in a particular aspect-oriented programming
language (Aspectd[21]) are illustrated in Section 5.
Sections 6 and 7 present related work and conclusions,
respectively.



2 MOTIVATION it may potentially cross-cut, and the specification of how
To motivate the need for composition patterns, we use thethat design may be re-used wherever it may be required—
simple example of requiring that operations be traced ati.e., its pattern of composition.

run-time. Tracing is a particularly pervasive requirement
: : o 3 COMPOSITION PATTERNS: THE MODEL
that potentially impacts every operation in every class of a Composition patterns were introduced, without in-depth

system. Without a means to separate its design, thediscussion as part of the subiect-oriented desian model
potential for scattering and tangling across a system is. ’ P subject-oriented desig ode

enormous. A simplified design for tracing an operation in :;iggieghg)és?grﬁ t:jggl (f)cr)]r %;é)onr}]bpl)ggit%n :;tho;uptggfgé
classX is contained in Fig. 1 (using UML [13]). separate, potentially overlapping designs, and UML

] templates. The subject-oriented design model supports
Trace X separate design models as independent views caélsign
+foo() subjects(denoted with a «subject» stereotype on a UML
+ traceEntry(String) package). Design subjects may specify cross-cutting
+ traceExit(String) behaviour to be composed with other design subjects within

the subject-oriented design model, but by parameterising

CO"ab—x—_f)fOO Trace such a design subject, and providing a mechanism for
foo() K ! binding those parameters to model elements in other design
traceEntry(foo.name) | subjects, we can specify the composition of cross-cutting

K mmmmm - TU behaviour with base designs imreusableway.

basic foo() behaviour
1

Specifying Templates
E The UML defines a template as a parameterised model
' element that cannot be used directly in a design model.
K--mmmmmmmooe . Instead, it may be used as the basis to generate other model
: ' elements using a “Binding” dependency relationship. A
Binding relationship defines arguments to replace each of
Fig. 1. Pervasive Trace Design the template parameters of the template model element.
The UML orders template parameters in a dotted box on
Yhe template class. Since a composition pattern is a design
subject with potentially multiplgpattern classegclasses
that are placeholders to be replaced by real class elements),
the representation of all the template parameters for all
pattern classes is combined in a single box and placed on
the subject box. Within this box, template parameters are

grouped by class (each class grouped wittsinbrackets).

goes here

traceExit(foo.name)

supporting tracing may be separated into a clasace |,
upon which any class requiring trace behaviour may
depend. However, to design the trace behaviour of
operations, this separation is not possible to maintain. In
the interaction diagram, we see that, when ftbe()
operation of clasX is invoked, it immediately calls the

traceEntry() operation of classTrace with a
parameter denoting the name of the entered method, i.e., <Subject e
foo . Likewise, when thdoo() operation has finished Trace \<TracedClass, _tracedOp(..)>!
and is about to return, it finally calls theaceExit() R
; ; T Trace TracedClass

operation of clas3race . Any other operations requiring
trace behaviour would need to be designed analogously. + traceEntry(String)

. . — ) + traceExit(String) [ * tracedOp(..)
This design has a number of difficulties. First, any new - _tracedOp(..)

operation requiring trace behaviour must specify an
interaction model indicating this—a tedious and error-
prone process. Secondly, changing or eliminating the trace

behaviour design requires changes to all operation kg > jjystrates a composition pattern with one pattern
:]rlw_;feractlon models. Finally, reuse of this design in a class, TracedClass , denoting that any class may be
liferent system is nqt stralghtforward. Structurally, 'ghe supplemented with trace behaviour. A template parameter
Trace class may be_ 5|mply cop|ed_, but the_t_racg behaviour is defined for the pattern class, calledracedOp() |,
:)nue‘c;gggnr;dsg'?;ielg the interaction specification of each which represents any operation requiring tracing behaviour.
P ' One standard class, callddace , is also included in the
Composition patterns mitigate these problems by design. The design of tracing behaviour is now contained in
supporting the separate design refusable cross-cutting the Trace composition pattern model, with references

requirements. A composition pattern supports the design ofmade to the pattern class and template operation as
a cross-cutting requirement independently from any designrequired.

Fig. 2: Specifying templates in alTrace Composition Pattern



Specifying Cross-Cutting Behaviour the execution of the replacing operation and in the
Cross-cutting behaviour essentially supplements (or mergesexecution oftraceExit() after the execution of the
with) behaviour it cuts across. The subject-oriented designreplacing operation. The.. ” parameter specification of
model supports merging of operations by allowing a tracedOp(..) indicates that an operation of any
designer to identify operations in different design subjects signature may replace the template. The parameter
that correspond and should be merged. This means thabossibilities are defined in Tablel. Thigrace
execution of any one of the corresponding operations composition pattern subject effectively specifies the

results in the execution of all of the corresponding merging of trace behaviour with any operation replacing
operations. This is achieved within the model with the tracedOp(..)

generation of an interaction model realizing the composed —

operation as delegating to each of the corresponding (re-
named) input operations [1, 2].

This semantics can be utilized for the specification of
patterns of cross-cutting behaviour. The designer may
explicitly refer to the input and composed operations

separately. The designer defines an input operation as demplates. The UML

template parameter and refers to an actual,
operation by pre-pending an underscore to the template
name. The generated output operation is referenced with
the same name, but without the pre-pended underscore.

«subject»
Trace

Collab_TracePattern
:Trace(I:ICIass

tracedOp(..) |

traceEntry(tracedOp.name) |

f _tracedOp(..)

traceExit(tracedOp.name)

—

Fig. 3: Specifying Patterns of Cross-Cutting Behaviour

Parameter Usage

op() In this case, the replacing operatipn
must have no parameters.

op(..) Here, the replacing operation may
have any signature.

op(.., Here, the replacing operation may

Type, ..) have any signature but the pattgrn
needs a'ype object for execution.

Table 1: Parameter Scope

As specified by the composition pattern in Fig. 3 for pattern
class TracedClass , execution of any operation that
replaces thetracedOp(..) template will, in the output
subject, result in the execution whceEntry() before

Composition Binding Specification

The subject-oriented design model defines a composition
relationship to support the specification of how different
subjects may be integrated to a composed output, and the
UML defines a Binding relationship between template
specifications and the elements that are to replace those
restricts binding to template

replacingparameters for instantiation as one-to-one. The composition

patterns model combines the two notions by extending
standard composition relationships with kind[]
attachment that defines the (potentially multiple) elements
that replace the templates within the composition pattern.
Ordering of parameters in thend[]  attachment matches
the ordering of the templates in the pattern’s template box.
Any individual parameter surrounded by brackdis
indicates that a set of elements, with a potential size > 1,
replace the corresponding template parameter.

«subject» «subject»
Trace |r-====——— e — - : S1
1 <TracedClass, _tracedOp(..)>, X
L e e oo
]..\ _ __ | +foo0()

bind[ <{*}, {*}>]
Fig. 4: Specifying Binding for Composition

In Fig. 4, all classes withiis1 are replacements for pattern
class TracedClass , with every operation (denoted
by{*} ) in each class (in this example, ju81.X)
supplemented with the pattern behaviour specified for
_tracedOp(..) . Where specific elements from classes
replace templates, they may be explicitly named.

Composition Output

As illustrated in Fig. 4, a composition relationship’s
bind[] attachment may specify multiple replacements for
pattern classes and template operations within those
classes. Where multiple replacements are specified for a
pattern class, the pattern class’s properties are added to
each of the each replacement classes in the output subject.
For example, in Fig. 5, class has clas3racedClass 's
properties. Where multiple replacements are specified for
operations, each operation is supplemented with the
behaviour defined within the pattern subject. Non-template-
parameter elements are added to esesult scopeonce.

For example, non-pattern classes are added once to the



result. ClassTrace is a non-pattern class defined in the delaying the composition process until after the
Trace composition pattern (see Fig. 2), and it therefore implementation phase in Section 5.

appears in the output subject. 4 ASPECTS AS PATTERNS: EXAMPLES
«subject» We now look at some more examples of well-known
TraceS1 aspects designed using composition patterns. These

examples illustrate how cross-cutting requirements may be
designed independently of any base design, making aspect
+ traceEntry(String) * foo0 design truly reusable. The aspects illustrated are

+ traceExit(String) - S1.1000 synchronisation and the observer pattern.

Trace X

Collab_TracePattern - foo()

Trace Library Base Design
f00() X E The base design on which the aspect examples are applied
T traceEntry(foo.name) ! is a small library design (see Fig. 6). This library ta®ks
4----------TU of which all copies are located in the same room and shelf.
E S1_foo() | A book manager handles theaintenance of the association
[_; E between books and their latons. Thebook manager also

traceExit(foo.name) maintains an up-to-date view of the lending statubafk

o ____ copies.
< !
: «subject»
Library
Fig. 5: Output from Composition with Trace Subject Book
Location
Wherever a pair of operations has been defined (e.g., e + roomNumber
tracedOp() and_tracedOp() ) and referenced within +ISBN :Zzzgﬁzlj;;’ef
the same pattern class, and one is a template parameter for 13323{;;% + removeBook()
that class, composition applies merge operation semantics. + getiSBN() Sockanager
For each operation substituting the template operation, each copies |
reference to tracedOp() s replaced by the suitably re- BookCopy \_+add(Book)
named substituting operation, and a new interaction for :;i:;‘;ﬁéi%i‘;)
tracedOp() s also defined. Each operation’s delegation 1:’;::’:60 + addView(BookCopy)
semantics is realized by a new collaboration as specified * removeView(BookCopy)
L. o + updateStatus(BookCopy)
within the composition pattern.
Other implications of composition relating to the subject- Fig. 6: Base Library Design

oriented design model not demonstrated in this example are

discussed elsewhere[2]. For example, merging Example 1: Synchronisation Aspect

generalizations may result in multiple inheritance in the This first cross-cutting requirement is that thmok
composed subject, where there was only single inheritancemanager should handle several requests to manage books
in each of the input subjects. Multiple inheritance, and their locations concurrently. This aspect example, first
supported in the UML, can be eliminated through the described in[12], supports theook manager handling
process of flattening [20]; this process can be automatedseveral “read” requests concurrently, while temporarily
during composition. blocking “write” requests. Individual “write” requests

- . . ) should block all other services.
Composition of the design subjects can occur during the

design phase (via a design composition tool, for example), Pattern Specification

which would be useful for the purposes of checking the Synchronisation of concurrent processes is a common
semantics of the composed subject and the correctness ofequirement, and therefore it is useful to design this
the composition relationships. Implementation may be behaviour without any reference to our library example.
based on such a composed design, but ideally, compositionFig. 7 illustrates how this can be achieved. The
should be delayed until after the implementation phase, Synchronize composition pattern has one pattern class,
with each design subject being implemented separately, andSynchronizedClass |, representing any class requiring
being composed afterwards. We discuss a means ofsynchronisation behaviour.



«subject» [ _____

Synchronize ] ) ) '
i <SynchronizedClass, _write(..), _read(..)>,
I

Collab_SynchronizeReadPattern Collab_SynchronizeWritePattern b e e e m -
:Synchlronizedclass :Synchlronizedclass SynchronizedClass
) | - —
read(..) L waitwriter() write(..) waitWriterReaders() # activeReaders : int

# activeWriters : int

wait() wait()

# waitWriterReaders() {concurrent
# waitWriter() {concurrent}
incrementWriters() # wait() {concurrent}

- incrementReaders()

- decrementReaders()

- incrementWriters()

incrementReaders()

_read(..) _write(..) -
- decrementWriters()
+ write(..)
decrementReaders() decrementWriters() - _write(..)
+ read(..)

- _read(..)

Fig. 7: Synchronisation Aspect Design

Within this pattern class, two template parameters are
defined, called read(..) and _write(..) , to «subject» | ________ .
represent reading and writing operations. This example also Synchronize
illustrates how non-template elements may be specified
within a pattern class to define the inherent cross-cutting

behaviour. These elements are merged unchanged into the :
composed class. Synchronisation behaviour introduces a “i‘ifr‘zrc;»
number of such elements, both structural and behavioural, >

to synchronised classes.  Structural  propertes —  TTte-e =77
activeReaders and activeWriters maintain bind[ <BookManager, { add(), remove() }, search()> |
counts of the number of read and write requests currently in
process (for write, this number will never be > 1). Two

interaction patterns define the required behaviour for Composition Output

reading and writing. The read pattern ensures that anyPattern specification and binding, as previously illustrated,

currently writing process is complete prior to processing a is all the designer has to do to define truly reusable aspects
read request. The write pattern ensures that all currentlypatterns, and specify how they are to be composed with
reading and writing processes are complete prior to base designs. The composition process, utilizing UML

processing a write request. The designer represents theemplate semantics, produces the design illustrated in

Fig. 8: ComposingSynchronize  with Library

actual replacing read and write operations with ahgre- Fig. 9, where BookManager now has synchronising
pended to the template parameter name—that is, usingbehaviour. Note also that the object names in the
_read(..) and _write(..) , and the generated interactions have been renamed as appropriate.

operations realized by the interactionsraad(..) and

write(..) . In this way, when a replacing operation is Example 2: Observer Aspect

executed in the context of synchronisation, the required The second example is the observer pattern [6], which,
behaviour is clearly defined within the interactions. unlike the synchronisation example, describes the pattern of

- collaborative behaviour between more than one object—a
Patte_rn_Bmdmg ) ) subject and observers. This example also illustrates how
Specifying how to compose theibrary — base design  on_pattern classes may be used within a composition
subject with theSynchronize  composition pattern is a  pattern.
simple matter of defining a composition relationship o
between the two, denoting which class(es) are to be Pattern Specification
supplemented with synchronisation behaviour, and which In theObserver composition pattern, two pattern classes
read and write operations are to be synchronised. are defined. Subject is defined as a pattern class

) i ) representing the class of objects whose changes in state are
In this case, the library'@ookManager  class replaces ot interest to other objects, ar@bserver s defined as a

the pattern class in the outpuadd() and remove() pattern class representing the class of objects interested in a
operations are defined as write operations, and theSubject 's change in state (see Fig. 10).

search() operation defined as read (see Fig. 8).



«subject»
SynchronizeLibrary

SynchronizeWritePattern - remove()

:BookNlanager
add() !
—

wait()

SynchronizeWritePattern -

waitWriterReaders()

incrementWriters()

Library_add()

decrementWriters()

add()

SynchronizeReadPattern - search()

:BookNanager
I -
search() > waitWriter()

wait()

incrementReaders()

Library_search()

decrementReaders()

BookManager Book
# activeReaders : int +name
# activeWriters : int + Tsugﬁr
+

+ updateStatus() ;

) getName()
+ addView(BookCopy) + getAuthor()
+ removeView(BookCopy) + getiSBN()
+ add(Book)
- Library_add(Book) I
+ remove(Book) Location

- Library_remove(Book)

+ search(Book)

- Library_search(Book)

# waitWriterReaders() {concurrent

# waitWriter() {concurrent}

# wait() {concurrent}

- incrementReaders()
- decrementReaders()

- incrementWriters()

- decrementWriters()

| |+ roomNumber

+ shelfNumber

+ addBook()
+ removeBook()

copies

BookCopy

+ borrow()
+ return()

Fig.

9: Library

Design with Synchronize

«subject»
Observer

' <Subject, _aStateChange(..)>

1 <Observer, update(), _start(..,Subject,..), _stop(..,Subject,..))'=
1 1

Subject

Observer

+ addObserver(Object)

+ removeObserver(Object)
+ aStateChange(..)

- _aStateChange(..)

- notify()
subjects | *

+ update()
+ start(..,Subject,..)

- _start(..,Subject,..)

+ stop(..,Subject,..)

- _stop(..,Subject,..)

1| observers| Vector

Collab_ObserverPattern

% T

action :Subject :: notify()
post

:Subjlect :Observer
1
aStateChM ! !
_aStateChange()
1
1
1
1
notify() ,
update() !

all observers in :Subject.observers
are sent update() event

Fig. 10: Observer Aspect Design

relating

The interaction in Fig. 10 illustrates another example of
specifying behaviour that cross-cuts templates, with
Subject ’'s template parameteraStateChange(..)
supplemented with behaviour
observers of changes in state. Again, this achieved by
referring to the actual replacing operation with a pre-

pended “_”, i.e., aStateChange(..) . Here also is an

to notifying

example of an operation template parameter that does not
require any delegating semantics. Thepdate()
operation in observers is simply called within the pattern,
and is not, itself, supplemented otherwise. It is defined as a
template so that replacing observer classes may specify the
operation that performs this task.

This pattern also supports the addition and removal of
observers to a subject’'s list using start(..,

Subject, ..) and _stop(.., Subject, .)

template parameters, where each is replaced by operations
denoting the start and end, respectively, of an observer’'s
interest in a subject. For space reasons, the interactions are
not illustrated here, as they do not illustrate any additional
interesting properties of the composition pattern model.

Pattern Binding

As with the Synchronize pattern, specifying the
composition ofLibrary  with the Observer pattern is
done by specifying a composition relationship between the
two, defining the class(es) acting as subject, and the
class(es) acting as observer. In this example, there is only
one of each (see Fig. 11BpokCopy andBookManager ,
respectively.

«subject» i
Observer |1 <Subject, _aStateChange(..)> !
| <Observer, update(), _start(..,Subject,..), _stop(..,Subject,..)>|

‘
“ ~ «subject»
Sl R 4 Library

bind[ <BookCopy, {meta:isQuery=false}>,
<BookManager, updateStatus(), addView(), removeView()> ]

Fig. 11: ComposingObserver with Library

One additional point of interest with this binding is how the
meta-properties of a design subject’s elements may be



gueried to assess an element’s eligibility to join a set of design of a composition pattern, and its impact on a base
replacing elements. The UML’s Operation metaclass design, it is also possible to maintain the separation to the
defines more properties for operations than most coding code phase, using an appropriate implementation model.
languages—for example, in addition to its signature, a
designer may specify that an operation is a query operation.
The composition patterns model supports the
discrimination of replacing operations on the basis of any
of a design element’s properties.

Conceptually, subject-oriented design evolved from the
work on subject-oriented programming [8,14]. Efforts into
the development of a tool to support multi-dimensional
separation of concerns (as evolved from subject-oriented
programming) are currently centred around Hyper/J [18].
In this example, the_ aStateChange() template Though the precise mappings from constructs in
parameter is replaced with all operations within composition patterns to constructs in Hyper/J has not yet
BookCopy that have been defined as being non-query— been done, it is expected that it should be relatively
i.e., those operations that affect a change in state that maystraightforward. As a demonstration of the independence of
be of interest to an observer. The keywondta within the composition patterns astgsignmodel, from any particular
set parameter specification denotes that a UML meta- Programmingmodel, this section looks at the mapping of
property is queried, and only those operations with COmposition pattern concepts to the aspect-oriented
isQuery=false will replace_aStateChange()  for programming paradigm.

the purposes dDbserver . At the conceptual level, composition pattern design and
aspect-oriented programming also have the same goals.
Composition patterns provide a means for separating and
illustrated in Fig. 12, show8ookCopy demonstrating de;igning reusable_cross-cptting behaviour, and qspect-
. . ! . oriented programming provides a means for separating and
subject behayl_ou_r, with th?. op_erat|orhmrrow() and programming reusable cross-cutting behaviour. This
return()  initiating the notification of observers, as they  gaction introduces possibilities for mapping composition
are the only state-changing operatioBeokManager , as  pattern constructs to current aspect-oriented programming
an observer, has definedpdateStatus() as the  constructs. Research into, and development of, technology
Operation to be Ca”ed fOI’ nOtificatiOI’l purposes. Though not Support for the aspect_oriented programming paradigm iS
shown,addView(..) ~ andremoveView(..)  initiatea  currently centred around Aspect], and so, using the

Composition Output
The output of composingObserver with Library

BookCopy adding and removing BookManager from synchronisation example, we assess how composition
its list of observers. patterns map to AspectJ programming constructs.
> MAP TO ASPECTJ AspectJ Programming Elements

The previous section illustrated the output resulting from Aspect] is an aspect-oriented extension to Java that
the integration of composition patterns with base design supports programming cross-cutting code (i.e., aspects) as
models. Of course, each output demonstrates the tang','ngseparate aspect programs. As described in [21], Aspect]
properties aspects are designed to avoid. While 544s four kinds of program elements to Java. These are: an
composition at the design level is useful to validate the aspect a pointcut a piece ofdviceand anintroduction

«subject»
ObserverLibrary
Book
| Collab_ObserverPattern - return() BookCopy copies + name
- + author
Collab_ObserverPattern - borrow() + addObserver(Object) * +ISBN
+ removeObserver(Object)
:BookICopy :BookManager Vector ) + borrow() + getName()
observers
borrow() ! : 1 - Library_borrow() + getAuthor()
— . + getISBN()
Library_borrow() | + return()
' - Library_return()
! - notify()
1
: + |subjects
1
____________ I BookManager
S i
1 | + updateStatus()
L . . + addView(BookCopy)
action :BookCopy :: notify() - Library_addView(BookCopy)
post all observers in :BookCopy.observers are + removeView(BookCopy) Location
sent updateStatus() event — -+Leizzia(gg(r)ignOVEViEW(BOOkcopy) + roomNumber
+ remove(Book) hd sgngulr(nber
+ search(Book) +a ook()
+ removeBook()

Fig. 12: Library  Design with Observer



Element AspectJ Composition Patterns

Aspect An aspect is cross-cutting type, with a wellA composition pattern subject is a design equivalent

defined interface, which may be instantiated and an aspect.

reasoned about at compile time. Keywo
aspect

d:

Pointcut

During the execution of a program, and as par

that execution’s scope, there are points wh

cross-cutting behaviour is required. These po
arejoin points.A pointcut is across-cutting set o
join points.Keyword: pointcut

I @peration template parameters may be defined

ereferenced within interaction specifications, denot|

ntisat they are join points for cross-cutting behavio

f These templates may be replaced by ac
operations multiple times, and are theref
equivalent to pointcuts.

and
ng
ur.
ual
re

Advice

A piece of advice is code that executes alf

pointcut, using some of the execution sco
Keywords:before , after , around

Within an interaction diagram,
péehaviour may be specified to execute wher
template operation is called. This behaviour
equivalent to advice code.

Introduction

An introduction is a programming element, su
as an attribute, constructor or method, that

added to a type that may add to or extend t
type’s structure. Keywordntroduction

chesign elements that are not template elements

Iz defined within composition patterns. These n
hbet classes, attributes, operations or relationships,
are equivalent to an introduction.

cross-cutting

a
is

may
nay
and

Table 2: Mapping AspectJ Program Elements

to Composition Pattern Elements

Table 2 describes these elements and maps them to théndicates that th®ookManager operationsadd(Book)

corresponding design elements in composition patterns.

Synchronize

in AspectJ
The Synchronize

and remove(Book)

replacewrite(..) As regard

S

the advice code, the interaction (sequence) diagrams

composition pattern (Fig. 7) with its

specified within theSynchronize
indicate when “advice” operations should be called relative

composition pattern

composition specification to the Library subject (Fig. 8) to the template operations. These directly translate to the

provides the information required for the structure of an pefore
aspect program. The composition pattern has one classglement.

and after
This

defined, which is a pattern class, and therefore is replacedprogramming elements of aspects:

with  a concrete design class. The composition b Svnchroni
relationship’s  binding  specification  indicates that PUPlic aspect Synchronize{
BookManager replaces the SynchronizedClass pointcut  write(BookManager b):

pattern, and therefore, all non-pattern elements defined

within

SynchronizedClass

are introduced to

BookManager (only those relating to write operations are

discussed here for space reasons).

public  aspect
introduction

Synchronize{
BookManager{

int activeWriters;

int activeReaders;

private void incrementWriters();
private void decrementWriters();
protected synchronized void

protected synchronized void wait(); } }

}

waitWriterReaders();

after

instanceof(b) & receptions(
void addBook(Book),
void removeBook(Book));

before (BookManager b): write(b) {

b.waitWriterReaders(); }
(BookManager b): write(b) {
b.decrementWriters(); }

constructs of the AspectJ advice
information maps to the following

This example illustrates the possibilities for mapping

composition pattern constructs to AspectJ programming
elements. The advantages of this are two-fold. First, from a
design perspective, mapping the composition pattern
constructs to constructs from a programming environment
ensure that the clear separation of cross-cutting behaviour

First, the composition pattern’s name may be used for thes maintained in the programming phase, making design

aspect

declaration.
parameter defined isynchronize
be seen as a pointcut in replacing classes. The compositiorapproach
relationship betweenSynchronize

Also, the operation

, write(..) , may

and Library

that

template changes easier to incorporate into code. Secondly, from the
programming perspective, the existence of a design
supports separation of cross-cutting
behaviour makes the design phase more relevant to this



kind of programming, lending the standard benefits of decomposition of software designs along “vertical” and
software design to the approach. “horizontal” lines, providing the ability to separate both
6 RELATED WORK functional and technical kinds of concerns. While both

Conceptually, the subject-oriented design and composition gpproaches provide advances in the separation capabilities

patterns model has evolved from the work on subject- N p_bjegt—orlented des_lgn, neither addresses 'the
. - . . specification and composition of patterns of cross-cutting
oriented programming [8, 14]. Different subjects may be behaviour
designed (or programmed) to support separate '
requirements, be they functional (and conceptually A focus of work in the field of collaboration-based design
overlapping) or cross-cutting requirements. Subsequentis on separation of each of the roles classes may play in
composition of separated subjects is specified with different collaborations into different modules. For
composition relationships (or defined by composition rules example, modularisation of roles within collaborations are
in subject-oriented programming). Without composition supported by mixins in the work described in [19], utilising
patterns, reusing cross-cutting behaviour in subject-orienteda C++ template class for each role in each collaboration;
design typically requires the detailed specification of complete classes are “composed” by placing these mixins
multiple composition relationships for each instance of in a hierarchy. This work is extended in [16] to overcome
reuse—a tedious and error-prone process that should beroblems of scalability by grouping sets of roles within
simple. From the perspective of cross-cutting requirements, each collaboration. There are two main drawbacks to these
this paper has illustrated how the subject-oriented designapproaches, relative to the composition patterns model.
and composition patterns model also closely relates to theFirst, while classes can be mixed together simply by adding
aspect-oriented programming model [11]. While there are mixins to a class hierarchy, individual methods cannot; this
many approaches to flexible separation of concerns at theis part of the reason tool support is needed in subject-
programming level, space precludes their inclusion. oriented and aspect-oriented programming. Secondly,

whenever the mixins are interdependent, one needs to

There are some interesting approaches that start with thetangle the dependencies between them by embedding
aspect-oriented programming paradigm, and attempt todetails of the dependencies within each mixin, typically via

eztrzgf;lli[e rtgaed:ggag t%?s 2)5262\8/33; toot:?hg'glr:‘é Jg\r'l%explicit calls to super-methods and other constraint
9 PP 9. information. In any situation where prior knowledge of

there are approaches to extending the UML with future changes is unknown, such dependencies would

stereotypgs . specific  to particular aspects  (e.g., require error-prone modifications to pre-existing mixins.
synchronisation [9] or command pattern [10]). In such As a result, each mixin cannot be designed cleanly and

approaches, the constructs required by each part'CUIargwdependentlyas composition patterns allow.
aspect are stereotyped so that a weaver (an automate

composition tool) can determine which elements match the The need for advanced separation of concerns across the
appropriate aspect construct. In both these examples, manylevelopment lifecycle is described in [7], motivated by
of the behavioural details of synchronisation and of the agent-based product-line component based development for
command pattern are not explicitly designed in the UML— e-Commerce. A development process is proposed that
the onus appears to be on the weaver to provide the aspecatiraws together high-level analysis and design separation
behaviour. Other general approaches attempt a moretechniques and corresponding, supporting implementation
generalised way to support aspect-oriented programming intechniques. Composition patterns provide a solution to
UML. For example, in[17] a new metaconstruct called designing cross-cutting features in a re-usable way that
Aspect is created, and stereotypes are defined for advice could be considered for inclusion in a development process
behaviour. Operations requiring advice behaviour are such as this.

constrained by the advice stereotypes. Where the

composition patterns model distinguishes itself from both 7 CONCLUSIONS

these general approaches is with its generic approach toSoftware design is an important activity in the development
designing re-usable cross-cutting behaviour in a mannerlifecycle but its benefits are often not realized. Scattering
that is independent of a particular programming and tangling of cross-cutting behaviour with other elements
environment. causes problems of comprehensibility, traceability,

Two approaches that emphasise a more flexible se arationevolvability, and reusability. Attempts have been made to
PP t emp . ) paration, y4ress this problem in the programming domain but the
of concerns than exists in standard object-oriented design

are OORam [15] and Catalysis [5]. In role modelling in problem has not been addressed effectively at earlier stages

OORam, large systems are described with multiple In the lifecycle. This paper presents an approach to

. . addressing this problem at the design stage with
dn‘fe;rent role model_s t.hat.m.ay be synthe§|sed to.cre?‘tecomposition patterns. Composition patterns are based on
derived models. This is similar to merge integration in

biect-oriented  desi Catalvsi | s th the combination of merge integration from subject-oriented
subject-oriente esign. Latalysis also  supports edesign and UML templates. Examples are presented that



illustrate the flexible and reusable nature of composition International Software Product Line Conference,
patterns as a design approach for cross-cutting behaviour. pp. 271-288, 2000.

The paper |IIu_strates how b_oth separation of aspects, and8_ W.Harrison and H. Ossher. “Subject-Oriented
composition with other design models may be specified. P . . . M
X . o ; : rogramming (a critique of pure objects)”. Rroc. of

The impact of possible composition at the design stage is OOPSLA DD, 411-428. 1993

demonstrated. The paper also illustrates how the separation »PP- ’ '
may be maintained to the programming phase by mapping9. J. Herrero, F. Sanchez, F.Lucio, and M. Toro.
the composition patterns model constructs to Aspectd  “Introducing Separation of Aspects at Design Time”. In
constructs. Proc. of Aspects and Dimensions of Concerns

While many of the ideas evolved from subject-oriented Workshopat ECOOP, 2000,

programming, the ease in which its concepts are mapped tol0. W. Ho, F. Pennaneac’h, J. Jézéquel, and N. Plouzeau.
aspect-oriented programming constructs for cross-cutting  “Aspect-Oriented Design with the UML”. IfProc. of
behaviour illustrates that it is not closely tied to a particular Multi-Dimensional Separation of Concerns Workshop
programming paradigm. Therefore, it is insulated from at ICSE, pp. 60—64, 2000.

changes to programming environment constructs. In . .
addition, extensions to the UML are minimal—use is made, 11.G. Kiczales, ‘]: Lamplng, A. Me'ndh“ekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. “Aspect-Oriented

where possible, of standard UML constructs (e.g., N

templates). This should make use of composition patterns Eg%%rammmg - InProc. of ECOOP, pp. 220-242,
intuitive to UML designers. However, tool support is '
essential for stcessful usage, and therefore one of our next 12. C. Lopes and G. Kiczale®: A Language Framework
primary foci is the inclusion of support for composition for Distributed ProgrammingTechnical report SPL97-
patterns in a design tool. Automation of the mapping to 010. Xerox PARC, 1997. http://www.parc.
programming environments such as AspectJ would also be  xerox.com/csl/projects/aap/

useful.

13. OMG. The Unified Modeling Language Specification

ACKNOWLEDGEMENTS Version 1.3, June 1999.

Many thanks to Don Batory and the anonymous reviewers 14. H. Ossher, M. Kaplan, A.#z, W. Harrison, and

for their comments on early drafts of this paper. V. Kruskal. “Specifying Subject-Oriented

Composition”. In Theory and Practice of Object

REFERENCES Systemg(3):179-202, 1996

1. S. Clarke. “Composing Design Models: An Extension 15 T. Reenskaug, P. Wold, and O. Lehtgorking with
to the UML". In Proc. of International Conference on ObjeCtS. The OORam Software Engineering Method
the UML, pp. 338-352, 2000. Manning Publications Co., 1995

2. S. Clarke.Composition of Object-Oriented Software 1g6.v. Smaragdakis and D. Batory. “Implementing Layered
Design Models PhD Thesis, Dublin City University, Designs with Mixin Layers”. InProc. of ECOOP,
January 2001. pp. 550-570, 1998.

3. S.Clarke, W.Harrison, H.Ossher, and P.Tarr. 17,3 Suzuki and Y. YamamotdExtending UML with
‘Subject-Oriented  Design:  Towards  Improved Aspects: Aspect Support in the Design Phase’Piac.
Alignment of Requirements, Design and Code”. In of Aspect-Oriented Programming WorkshatfE COOP,
Proc. of OOPSLApp. 325-339, 1999 1999.

4. S.Cook and J. DanielsDesigning Object Systems: 18 p. Tarr and H. Ossheflyper/J™ User and Installation
Object-Oriented Modelling with SyntropyPrentice Manual http://www.research.ibm.com/ hyperspace
Hall, 1993

] 19. M. VanHilst and D. Notkin. “Using Role Components
5. D.D'Souza and A. Wills.Objects, Components and to Implement Collaboration-Based Designs”. Pnoc.
Frameworks with UML. The Catalysis Approach of OOPSLApp. 359-369, 1996.
Addison-Wesley1998. o
20. R. Walker.Eliminating Cycles from Composed Class
6. E. Gamma, R.Helm, R.Johnson, and J. Vlissides. Hierarchies Technical Report TR-00-09, Dept of
Design Patterns. Elements of Reusable Object-Oriented  computer Science, Univ. of British Columbia, 2000.
Software Addison-Wesley, 1994 ) )
21. Xerox Corporation. Aspect] 0.7b3 Design Notes
7. M. Griss. “Implementing Product Line Features by http://www.aspectj.org
Composing Component Aspects”. IRroc. of First




