
Composition Patterns: An Approach to Designing Reusable
Aspects

Siobhán Clarke
Department of Computer Science,

Trinity College,
Dublin 2, Republic of Ireland.

+353 1 6083690
siobhan.clarke@cs.tcd.ie

Robert J. Walker
Department of Computer Science,

University of British Columbia,
201-2366 Main Mall,

Vancouver, BC, Canada V6T 1Z4.
walker@cs.ubc.ca

ABSTRACT
Requirements such as distribution or tracing have an impact
on multiple classes in a system. They arecross-cutting
requirements, oraspects.Their support is, by necessity,
scattered across those multiple classes. A look at an
individual class may also show support for cross-cutting
requirements tangled up with the core responsibilities of
that class. Scattering and tangling make object-oriented
software difficult to understand, extend and reuse. Though
design is an important activity within the software lifecycle
with well-documented benefits, those benefits are reduced
when cross-cutting requirements are present. This paper
presents a means to mitigate these problems by separating
the design of cross-cutting requirements intocomposition
patterns. Composition patterns require extensions to the
UML, and are based on a combination of the subject-
oriented model for composing separate, overlapping
designs, and UML templates. This paper also demonstrates
how composition patterns map to one programming model
that provides a solution for separation of cross-cutting
requirements in code—aspect-oriented programming. This
mapping serves to illustrate that separation of aspects may
be maintained throughout the software lifecycle.

1 INTRODUCTION
Software design is an important activity within the software
lifecycle and its benefits are well documented [4, 5]. These
include early assessment of the technical feasibility,
correctness, and completeness of requirements;
management of complexity and enhanced comprehension;
greater opportunities for reuse; and improved evolvability.
However, in practice, object-oriented design models have
been less useful throughout the lifetime of software systems
than these benefits suggest. As described in [3], a structural
mismatch between requirements specifications and object-
oriented software specifications cause a reduction in the

expected benefits of design. A single requirement, such as
distribution or synchronisation, may impact a number of
classes in a system, and therefore its support isscattered
across those multiple classes. Such requirements are
described ascross-cuttingrequirements, oraspects.On the
other hand, a single class in a system may show support for
multiple requirementstangledwith the core responsibilities
of that class. Scattering and tangling have a negative impact
across the development lifecycle, from comprehensibility,
traceability, evolvability, and reusability points of view.

The subject-oriented design model [2, 3] removes this
structural mismatch with decomposition capabilities that
support the separation of the design for each requirement
into different design models (calleddesign subjects).
Decomposition in this manner removes requirement
scattering and tangling properties from software design,
thereby also removing their negative impact.
Corresponding composition capabilities are supported
within the subject-oriented design model.

The primary contribution of this paper is the specification
of a means to capturereusable patterns of cross-cutting
behaviour at the design level:composition patterns. A
composition pattern is a design model that specifies the
design of a cross-cutting requirement independently from
any design it may potentially cross-cut, and how that design
may be re-used wherever it may be required. Composition
patterns are based on a combination of the subject-oriented
model for decomposing and composing separate,
potentially overlapping designs, and UML templates [13].
Section 2 motivates the need for composition patterns. The
composition patterns model is described in Section 3, with
Section 4 providing examples of well-known cross-cutting
behaviours, designed to be truly reusable.

A secondary contribution is an introduction to how one
programming model that supports cross-cutting behaviour
(aspect-oriented programming [11]) is supported at the
design level by composition patterns. This support serves to
illustrate that separation of aspects may be maintained
throughout the software lifecycle. Suggested mappings to
constructs in a particular aspect-oriented programming
language (AspectJ [21]) are illustrated in Section 5.
Sections 6 and 7 present related work and conclusions,
respectively.

2 MOTIVATION
To motivate the need for composition patterns, we use the
simple example of requiring that operations be traced at
run-time. Tracing is a particularly pervasive requirement
that potentially impacts every operation in every class of a
system. Without a means to separate its design, the
potential for scattering and tangling across a system is
enormous. A simplified design for tracing an operation in
classX is contained in Fig. 1 (using UML [13]).

Trace

+ traceEntry(String)
+ traceExit(String)

X

+ foo()

Collab_X_foo()

} basic foo() behaviour

goes here

:X
foo()

Trace

traceEntry(foo.name)

traceExit(foo.name)

Fig. 1: Pervasive Trace Design

From a structural design perspective, the design elements
supporting tracing may be separated into a class,Trace ,
upon which any class requiring trace behaviour may
depend. However, to design the trace behaviour of
operations, this separation is not possible to maintain. In
the interaction diagram, we see that, when thefoo()
operation of classX is invoked, it immediately calls the
traceEntry() operation of classTrace with a
parameter denoting the name of the entered method, i.e.,
foo . Likewise, when thefoo() operation has finished
and is about to return, it finally calls thetraceExit()
operation of classTrace . Any other operations requiring
trace behaviour would need to be designed analogously.

This design has a number of difficulties. First, any new
operation requiring trace behaviour must specify an
interaction model indicating this—a tedious and error-
prone process. Secondly, changing or eliminating the trace
behaviour design requires changes to all operation
interaction models. Finally, reuse of this design in a
different system is not straightforward. Structurally, the
Trace class may be simply copied, but the trace behaviour
must be re-defined in the interaction specification of each
operation to be traced.

Composition patterns mitigate these problems by
supporting the separate design ofreusable, cross-cutting
requirements. A composition pattern supports the design of
a cross-cutting requirement independently from any design

it may potentially cross-cut, and the specification of how
that design may be re-used wherever it may be required—
i.e., its pattern of composition.

3 COMPOSITION PATTERNS: THE MODEL
Composition patterns were introduced, without in-depth
discussion, as part of the subject-oriented design model
in [3]. They are based on a combination of the subject-
oriented design model for decomposing and composing
separate, potentially overlapping designs, and UML
templates. The subject-oriented design model supports
separate design models as independent views calleddesign
subjects(denoted with a «subject» stereotype on a UML
package). Design subjects may specify cross-cutting
behaviour to be composed with other design subjects within
the subject-oriented design model, but by parameterising
such a design subject, and providing a mechanism for
binding those parameters to model elements in other design
subjects, we can specify the composition of cross-cutting
behaviour with base designs in areusableway.

Specifying Templates
The UML defines a template as a parameterised model
element that cannot be used directly in a design model.
Instead, it may be used as the basis to generate other model
elements using a “Binding” dependency relationship. A
Binding relationship defines arguments to replace each of
the template parameters of the template model element.
The UML orders template parameters in a dotted box on
the template class. Since a composition pattern is a design
subject with potentially multiplepattern classes(classes
that are placeholders to be replaced by real class elements),
the representation of all the template parameters for all
pattern classes is combined in a single box and placed on
the subject box. Within this box, template parameters are
grouped by class (each class grouped within<> brackets).

<TracedClass, _tracedOp(..)>
«subject»

Trace

TracedClass

+ tracedOp(..)
- _tracedOp(..)

Trace

+ traceEntry(String)
+ traceExit(String)

Fig. 2: Specifying templates in aTrace Composition Pattern

Fig. 2 illustrates a composition pattern with one pattern
class, TracedClass , denoting that any class may be
supplemented with trace behaviour. A template parameter
is defined for the pattern class, called_tracedOp() ,
which represents any operation requiring tracing behaviour.
One standard class, calledTrace , is also included in the
design. The design of tracing behaviour is now contained in
the Trace composition pattern model, with references
made to the pattern class and template operation as
required.

Specifying Cross-Cutting Behaviour
Cross-cutting behaviour essentially supplements (or merges
with) behaviour it cuts across. The subject-oriented design
model supports merging of operations by allowing a
designer to identify operations in different design subjects
that correspond and should be merged. This means that
execution of any one of the corresponding operations
results in the execution of all of the corresponding
operations. This is achieved within the model with the
generation of an interaction model realizing the composed
operation as delegating to each of the corresponding (re-
named) input operations [1, 2].

This semantics can be utilized for the specification of
patterns of cross-cutting behaviour. The designer may
explicitly refer to the input and composed operations
separately. The designer defines an input operation as a
template parameter and refers to an actual, replacing
operation by pre-pending an underscore to the template
name. The generated output operation is referenced with
the same name, but without the pre-pended underscore.

<TracedClass, _tracedOp(..)>

«subject»
Trace

Collab_TracePattern
:TracedClass

tracedOp(..)

Trace

traceEntry(tracedOp.name)

_tracedOp(..)

traceExit(tracedOp.name)

Fig. 3: Specifying Patterns of Cross-Cutting Behaviour

Parameter Usage

op() In this case, the replacing operation
must have no parameters.

op(..) Here, the replacing operation may
have any signature.

op(..,
Type, ..)

Here, the replacing operation may
have any signature but the pattern
needs aType object for execution.

Table 1: Parameter Scope

As specified by the composition pattern in Fig. 3 for pattern
class TracedClass , execution of any operation that
replaces the_tracedOp(..) template will, in the output
subject, result in the execution oftraceEntry() before

the execution of the replacing operation and in the
execution of traceExit() after the execution of the
replacing operation. The “.. ” parameter specification of
_tracedOp(..) indicates that an operation of any
signature may replace the template. The parameter
possibilities are defined in Table 1. ThisTrace
composition pattern subject effectively specifies the
merging of trace behaviour with any operation replacing
_tracedOp(..) .

Composition Binding Specification
The subject-oriented design model defines a composition
relationship to support the specification of how different
subjects may be integrated to a composed output, and the
UML defines a Binding relationship between template
specifications and the elements that are to replace those
templates. The UML restricts binding to template
parameters for instantiation as one-to-one. The composition
patterns model combines the two notions by extending
standard composition relationships with abind[]
attachment that defines the (potentially multiple) elements
that replace the templates within the composition pattern.
Ordering of parameters in thebind[] attachment matches
the ordering of the templates in the pattern’s template box.
Any individual parameter surrounded by brackets{}
indicates that a set of elements, with a potential size > 1,
replace the corresponding template parameter.

bind[<{*}, {*}>]

«subject»
Trace

<TracedClass, _tracedOp(..)>

«subject»
S1

X

+ foo()

Fig. 4: Specifying Binding for Composition

In Fig. 4, all classes withinS1 are replacements for pattern
class TracedClass , with every operation (denoted
by {*}) in each class (in this example, justS1.X)
supplemented with the pattern behaviour specified for
_tracedOp(..) . Where specific elements from classes
replace templates, they may be explicitly named.

Composition Output
As illustrated in Fig. 4, a composition relationship’s
bind[] attachment may specify multiple replacements for
pattern classes and template operations within those
classes. Where multiple replacements are specified for a
pattern class, the pattern class’s properties are added to
each of the each replacement classes in the output subject.
For example, in Fig. 5, classX has classTracedClass ’s
properties. Where multiple replacements are specified for
operations, each operation is supplemented with the
behaviour defined within the pattern subject. Non-template-
parameter elements are added to eachresult scopeonce.
For example, non-pattern classes are added once to the

result. ClassTrace is a non-pattern class defined in the
Trace composition pattern (see Fig. 2), and it therefore
appears in the output subject.

«subject»
TraceS1

Trace

+ traceEntry(String)
+ traceExit(String)

X

+ foo()
- S1_foo()

Collab_TracePattern - foo()

:X
foo()

Trace

traceEntry(foo.name)

S1_foo()

traceExit(foo.name)

Fig. 5: Output from Composition with Trace Subject

Wherever a pair of operations has been defined (e.g.,
tracedOp() and_tracedOp()) and referenced within
the same pattern class, and one is a template parameter for
that class, composition applies merge operation semantics.
For each operation substituting the template operation, each
reference to_tracedOp() is replaced by the suitably re-
named substituting operation, and a new interaction for
tracedOp() is also defined. Each operation’s delegation
semantics is realized by a new collaboration as specified
within the composition pattern.

Other implications of composition relating to the subject-
oriented design model not demonstrated in this example are
discussed elsewhere [2]. For example, merging
generalizations may result in multiple inheritance in the
composed subject, where there was only single inheritance
in each of the input subjects. Multiple inheritance,
supported in the UML, can be eliminated through the
process of flattening [20]; this process can be automated
during composition.

Composition of the design subjects can occur during the
design phase (via a design composition tool, for example),
which would be useful for the purposes of checking the
semantics of the composed subject and the correctness of
the composition relationships. Implementation may be
based on such a composed design, but ideally, composition
should be delayed until after the implementation phase,
with each design subject being implemented separately, and
being composed afterwards. We discuss a means of

delaying the composition process until after the
implementation phase in Section 5.

4 ASPECTS AS PATTERNS: EXAMPLES
We now look at some more examples of well-known
aspects designed using composition patterns. These
examples illustrate how cross-cutting requirements may be
designed independently of any base design, making aspect
design truly reusable. The aspects illustrated are
synchronisation and the observer pattern.

Library Base Design
The base design on which the aspect examples are applied
is a small library design (see Fig. 6). This library hasbooks
of which all copies are located in the same room and shelf.
A book manager handles themaintenance of the association
between books and their locations. Thebook manager also
maintains an up-to-date view of the lending status ofbook
copies.

BookCopy

+ borrow()
+ return()

BookManager

+ add(Book)
+ remove(Book)
+ search(Book)
+ addView(BookCopy)
+ removeView(BookCopy)
+ updateStatus(BookCopy)

«subject»
Library

Book

+ name
+ author
+ ISBN

+ getName()
+ getAuthor()
+ getISBN()

copies *

Location

+ addBook()
+ removeBook()

+ roomNumber
+ shelfNumber

Fig. 6: Base Library Design

Example 1: Synchronisation Aspect
This first cross-cutting requirement is that thebook
manager should handle several requests to manage books
and their locations concurrently. This aspect example, first
described in [12], supports thebook manager handling
several “read” requests concurrently, while temporarily
blocking “write” requests. Individual “write” requests
should block all other services.

Pattern Specification
Synchronisation of concurrent processes is a common
requirement, and therefore it is useful to design this
behaviour without any reference to our library example.
Fig. 7 illustrates how this can be achieved. The
Synchronize composition pattern has one pattern class,
SynchronizedClass , representing any class requiring
synchronisation behaviour.

<SynchronizedClass, _write(..), _read(..)>

«subject»
Synchronize

SynchronizedClass

activeReaders : int
activeW riters : int

waitWriterReaders() {concurrent}
waitWriter() {concurrent}
wait() {concurrent}
- incrementReaders()
- decrementReaders()
- incrementWriters()
- decrementWriters()
+ write(..)
- _write(..)
+ read(..)
- _read(..)

Collab_SynchronizeW ritePattern

:SynchronizedClass

write(..) waitWriterReaders()

_write(..)

incrementWriters()

decrementW riters()

wait()

Collab_SynchronizeReadPattern

:SynchronizedClass

read(..) waitWriter()

_read(..)

incrementReaders()

decrementReaders()

wait()

Fig. 7: Synchronisation Aspect Design

Within this pattern class, two template parameters are
defined, called _read(..) and _write(..) , to
represent reading and writing operations. This example also
illustrates how non-template elements may be specified
within a pattern class to define the inherent cross-cutting
behaviour. These elements are merged unchanged into the
composed class. Synchronisation behaviour introduces a
number of such elements, both structural and behavioural,
to synchronised classes. Structural properties
activeReaders and activeWriters maintain
counts of the number of read and write requests currently in
process (for write, this number will never be > 1). Two
interaction patterns define the required behaviour for
reading and writing. The read pattern ensures that any
currently writing process is complete prior to processing a
read request. The write pattern ensures that all currently
reading and writing processes are complete prior to
processing a write request. The designer represents the
actual replacing read and write operations with an “_” pre-
pended to the template parameter name—that is, using
_read(..) and _write(..) , and the generated
operations realized by the interactions asread(..) and
write(..) . In this way, when a replacing operation is
executed in the context of synchronisation, the required
behaviour is clearly defined within the interactions.

Pattern Binding
Specifying how to compose theLibrary base design
subject with theSynchronize composition pattern is a
simple matter of defining a composition relationship
between the two, denoting which class(es) are to be
supplemented with synchronisation behaviour, and which
read and write operations are to be synchronised.

In this case, the library’sBookManager class replaces
the pattern class in the output,add() and remove()
operations are defined as write operations, and the
search() operation defined as read (see Fig. 8).

«subject»
Synchronize

«subject»
Library

bind[<BookManager, { add(), remove() }, search()>]

<SynchronizedClass, _write(..), _read(..)>

Fig. 8: ComposingSynchronize with Library

Composition Output
Pattern specification and binding, as previously illustrated,
is all the designer has to do to define truly reusable aspects
patterns, and specify how they are to be composed with
base designs. The composition process, utilizing UML
template semantics, produces the design illustrated in
Fig. 9, where BookManager now has synchronising
behaviour. Note also that the object names in the
interactions have been renamed as appropriate.

Example 2: Observer Aspect
The second example is the observer pattern [6], which,
unlike the synchronisation example, describes the pattern of
collaborative behaviour between more than one object—a
subject and observers. This example also illustrates how
non-pattern classes may be used within a composition
pattern.

Pattern Specification
In theObserver composition pattern, two pattern classes
are defined. Subject is defined as a pattern class
representing the class of objects whose changes in state are
of interest to other objects, andObserver is defined as a
pattern class representing the class of objects interested in a
Subject ’s change in state (see Fig. 10).

«subject»
SynchronizeLibrary

:BookManager

add() waitWriterReaders()

Library_add()

incrementWriters()

decrementWriters()

wait()

SynchronizeWritePattern - add()

SynchronizeWritePattern - remove()

:BookManager

search() waitWriter()

Library_search()

incrementReaders()

decrementReaders()

wait()

SynchronizeReadPattern - search()

BookCopy

+ borrow()
+ return()

BookManager

+ updateStatus()
+ addView(BookCopy)
+ removeView(BookCopy)
+ add(Book)
- Library_add(Book)
+ remove(Book)
- Library_remove(Book)
+ search(Book)
- Library_search(Book)
waitWriterReaders() {concurrent}
waitWriter() {concurrent}
wait() {concurrent}
- incrementReaders()
- decrementReaders()
- incrementWriters()
- decrementWriters()

activeReaders : int
activeWriters : int

Book

+ name
+ author
+ ISBN

+ getName()
+ getAuthor()
+ getISBN()

copies *

Location

+ addBook()
+ removeBook()

+ roomNumber
+ shelfNumber

Fig. 9: Library Design with Synchronize

<Subject, _aStateChange(..)>
<Observer, update(), _start(..,Subject,..), _stop(..,Subject,..)>

«subject»
Observer

Collab_ObserverPattern

:Subject

aStateChange()
_aStateChange()

notify()

:Observer

update()

action :Subject :: notify()

post all observers in :Subject.observers

 are sent update() event

Vector

Subject

+ addObserver(Object)
+ removeObserver(Object)
+ aStateChange(..)
- _aStateChange(..)
- notify()

1 observers

Observer

+ update()
+ start(..,Subject,..)
- _start(..,Subject,..)
+ stop(..,Subject,..)
- _stop(..,Subject,..)

*subjects

Fig. 10: Observer Aspect Design

The interaction in Fig. 10 illustrates another example of
specifying behaviour that cross-cuts templates, with
Subject ’s template parameter_aStateChange(..)
supplemented with behaviour relating to notifying
observers of changes in state. Again, this achieved by
referring to the actual replacing operation with a pre-
pended “_”, i.e.,_aStateChange(..) . Here also is an

example of an operation template parameter that does not
require any delegating semantics. Theupdate()
operation in observers is simply called within the pattern,
and is not, itself, supplemented otherwise. It is defined as a
template so that replacing observer classes may specify the
operation that performs this task.

This pattern also supports the addition and removal of
observers to a subject’s list using_start(..,
Subject, ..) and _stop(.., Subject, ..)
template parameters, where each is replaced by operations
denoting the start and end, respectively, of an observer’s
interest in a subject. For space reasons, the interactions are
not illustrated here, as they do not illustrate any additional
interesting properties of the composition pattern model.

Pattern Binding
As with the Synchronize pattern, specifying the
composition ofLibrary with the Observer pattern is
done by specifying a composition relationship between the
two, defining the class(es) acting as subject, and the
class(es) acting as observer. In this example, there is only
one of each (see Fig. 11),BookCopy andBookManager ,
respectively.

«subject»
Observer

bind[<BookCopy, {meta:isQuery=false}>,
<BookManager, updateStatus(), addView(), removeView()>]

«subject»
Library

<Subject, _aStateChange(..)>
<Observer, update(), _start(..,Subject,..), _stop(..,Subject,..)>

Fig. 11: ComposingObserver with Library

One additional point of interest with this binding is how the
meta-properties of a design subject’s elements may be

queried to assess an element’s eligibility to join a set of
replacing elements. The UML’s Operation metaclass
defines more properties for operations than most coding
languages—for example, in addition to its signature, a
designer may specify that an operation is a query operation.
The composition patterns model supports the
discrimination of replacing operations on the basis of any
of a design element’s properties.

In this example, the_aStateChange() template
parameter is replaced with all operations within
BookCopy that have been defined as being non-query—
i.e., those operations that affect a change in state that may
be of interest to an observer. The keywordmeta within the
set parameter specification denotes that a UML meta-
property is queried, and only those operations with
isQuery=false will replace _aStateChange() for
the purposes ofObserver .

Composition Output
The output of composingObserver with Library ,
illustrated in Fig. 12, showsBookCopy demonstrating
subject behaviour, with the operationsborrow() and
return() initiating the notification of observers, as they
are the only state-changing operations.BookManager , as
an observer, has definedupdateStatus() as the
operation to be called for notification purposes. Though not
shown,addView(..) andremoveView(..) initiate a
BookCopy adding and removing aBookManager from
its list of observers.

5 MAP TO ASPECTJ
The previous section illustrated the output resulting from
the integration of composition patterns with base design
models. Of course, each output demonstrates the tangling
properties aspects are designed to avoid. While
composition at the design level is useful to validate the

design of a composition pattern, and its impact on a base
design, it is also possible to maintain the separation to the
code phase, using an appropriate implementation model.

Conceptually, subject-oriented design evolved from the
work on subject-oriented programming [8,14]. Efforts into
the development of a tool to support multi-dimensional
separation of concerns (as evolved from subject-oriented
programming) are currently centred around Hyper/J [18].
Though the precise mappings from constructs in
composition patterns to constructs in Hyper/J has not yet
been done, it is expected that it should be relatively
straightforward. As a demonstration of the independence of
composition patterns as adesignmodel, from any particular
programmingmodel, this section looks at the mapping of
composition pattern concepts to the aspect-oriented
programming paradigm.

At the conceptual level, composition pattern design and
aspect-oriented programming also have the same goals.
Composition patterns provide a means for separating and
designing reusable cross-cutting behaviour, and aspect-
oriented programming provides a means for separating and
programming reusable cross-cutting behaviour. This
section introduces possibilities for mapping composition
pattern constructs to current aspect-oriented programming
constructs. Research into, and development of, technology
support for the aspect-oriented programming paradigm is
currently centred around AspectJ, and so, using the
synchronisation example, we assess how composition
patterns map to AspectJ programming constructs.

AspectJ Programming Elements
AspectJ is an aspect-oriented extension to Java that
supports programming cross-cutting code (i.e., aspects) as
separate aspect programs. As described in [21], AspectJ
adds four kinds of program elements to Java. These are: an
aspect, a pointcut, a piece ofadviceand anintroduction.

«subject»
ObserverLibrary

Vector

1
observers

Collab_ObserverPattern - return()

Collab_ObserverPattern - borrow()

:BookCopy

borrow()

Library_borrow()

notify()

:BookManager

updateStatus()

action :BookCopy :: notify()

post all observers in :BookCopy.observers are

 sent updateStatus() event

BookCopy

BookManager

+ updateStatus()
+ addView(BookCopy)
- Library_addView(BookCopy)
+ removeView(BookCopy)
- Library_removeView(BookCopy)
+ add(Book)
+ remove(Book)
+ search(Book)

Book

+ name
+ author
+ ISBN

+ getName()
+ getAuthor()
+ getISBN()

copies

*

Location

+ addBook()
+ removeBook()

+ roomNumber
+ shelfNumber

+ addObserver(Object)
+ removeObserver(Object)
+ borrow()
- Library_borrow()
+ return()
- Library_return()
- notify()

subjects*

Fig. 12: Library Design with Observer

Element AspectJ Composition Patterns

Aspect An aspect is cross-cutting type, with a well-
defined interface, which may be instantiated and
reasoned about at compile time. Keyword:
aspect

A composition pattern subject is a design equivalent
to an aspect.

Pointcut During the execution of a program, and as part of
that execution’s scope, there are points where
cross-cutting behaviour is required. These points
arejoin points.A pointcut is across-cutting set of
join points.Keyword:pointcut

Operation template parameters may be defined and
referenced within interaction specifications, denoting
that they are join points for cross-cutting behaviour.
These templates may be replaced by actual
operations multiple times, and are therefore
equivalent to pointcuts.

Advice A piece of advice is code that executes at a
pointcut, using some of the execution scope.
Keywords:before , after , around

Within an interaction diagram, cross-cutting
behaviour may be specified to execute when a
template operation is called. This behaviour is
equivalent to advice code.

Introduction An introduction is a programming element, such
as an attribute, constructor or method, that is
added to a type that may add to or extend that
type’s structure. Keyword:introduction

Design elements that are not template elements may
be defined within composition patterns. These may
be classes, attributes, operations or relationships, and
are equivalent to an introduction.

Table 2: Mapping AspectJ Program Elements to Composition Pattern Elements

Table 2 describes these elements and maps them to the
corresponding design elements in composition patterns.

Synchronize in AspectJ
The Synchronize composition pattern (Fig. 7) with its
composition specification to the Library subject (Fig. 8)
provides the information required for the structure of an
aspect program. The composition pattern has one class
defined, which is a pattern class, and therefore is replaced
with a concrete design class. The composition
relationship’s binding specification indicates that
BookManager replaces the SynchronizedClass
pattern, and therefore, all non-pattern elements defined
within SynchronizedClass are introduced to
BookManager (only those relating to write operations are
discussed here for space reasons).

public aspect Synchronize{

introduction BookManager{

int activeWriters;

int activeReaders;

private void incrementWriters();

private void decrementWriters();

protected synchronized void

waitWriterReaders();

protected synchronized void wait(); } }

First, the composition pattern’s name may be used for the
aspect declaration. Also, the operation template
parameter defined inSynchronize , write(..) , may
be seen as a pointcut in replacing classes. The composition
relationship betweenSynchronize and Library

indicates that theBookManager operationsadd(Book)
and remove(Book) replacewrite(..) . As regards
the advice code, the interaction (sequence) diagrams
specified within theSynchronize composition pattern
indicate when “advice” operations should be called relative
to the template operations. These directly translate to the
before and after constructs of the AspectJ advice
element. This information maps to the following
programming elements of aspects:

public aspect Synchronize{

pointcut write(BookManager b):

instanceof(b) & receptions(

void addBook(Book),

void removeBook(Book));

before (BookManager b): write(b) {

b.waitWriterReaders(); }

after (BookManager b): write(b) {

b.decrementWriters(); }

}

This example illustrates the possibilities for mapping
composition pattern constructs to AspectJ programming
elements. The advantages of this are two-fold. First, from a
design perspective, mapping the composition pattern
constructs to constructs from a programming environment
ensure that the clear separation of cross-cutting behaviour
is maintained in the programming phase, making design
changes easier to incorporate into code. Secondly, from the
programming perspective, the existence of a design
approach that supports separation of cross-cutting
behaviour makes the design phase more relevant to this

kind of programming, lending the standard benefits of
software design to the approach.

6 RELATED WORK
Conceptually, the subject-oriented design and composition
patterns model has evolved from the work on subject-
oriented programming [8, 14]. Different subjects may be
designed (or programmed) to support separate
requirements, be they functional (and conceptually
overlapping) or cross-cutting requirements. Subsequent
composition of separated subjects is specified with
composition relationships (or defined by composition rules
in subject-oriented programming). Without composition
patterns, reusing cross-cutting behaviour in subject-oriented
design typically requires the detailed specification of
multiple composition relationships for each instance of
reuse—a tedious and error-prone process that should be
simple. From the perspective of cross-cutting requirements,
this paper has illustrated how the subject-oriented design
and composition patterns model also closely relates to the
aspect-oriented programming model [11]. While there are
many approaches to flexible separation of concerns at the
programming level, space precludes their inclusion.

There are some interesting approaches that start with the
aspect-oriented programming paradigm, and attempt to
extrapolate the ideas as extensions to the UML. Two
general approaches to this are evolving. On the one hand,
there are approaches to extending the UML with
stereotypes specific to particular aspects (e.g.,
synchronisation [9] or command pattern [10]). In such
approaches, the constructs required by each particular
aspect are stereotyped so that a weaver (an automated
composition tool) can determine which elements match the
appropriate aspect construct. In both these examples, many
of the behavioural details of synchronisation and of the
command pattern are not explicitly designed in the UML—
the onus appears to be on the weaver to provide the aspect
behaviour. Other general approaches attempt a more
generalised way to support aspect-oriented programming in
UML. For example, in [17] a new metaconstruct called
Aspect is created, and stereotypes are defined for advice
behaviour. Operations requiring advice behaviour are
constrained by the advice stereotypes. Where the
composition patterns model distinguishes itself from both
these general approaches is with its generic approach to
designing re-usable cross-cutting behaviour in a manner
that is independent of a particular programming
environment.

Two approaches that emphasise a more flexible separation
of concerns than exists in standard object-oriented design
are OORam [15] and Catalysis [5]. In role modelling in
OORam, large systems are described with multiple
different role models that may be synthesised to create
derived models. This is similar to merge integration in
subject-oriented design. Catalysis also supports the

decomposition of software designs along “vertical” and
“horizontal” lines, providing the ability to separate both
functional and technical kinds of concerns. While both
approaches provide advances in the separation capabilities
in object-oriented design, neither addresses the
specification and composition of patterns of cross-cutting
behaviour.

A focus of work in the field of collaboration-based design
is on separation of each of the roles classes may play in
different collaborations into different modules. For
example, modularisation of roles within collaborations are
supported by mixins in the work described in [19], utilising
a C++ template class for each role in each collaboration;
complete classes are “composed” by placing these mixins
in a hierarchy. This work is extended in [16] to overcome
problems of scalability by grouping sets of roles within
each collaboration. There are two main drawbacks to these
approaches, relative to the composition patterns model.
First, while classes can be mixed together simply by adding
mixins to a class hierarchy, individual methods cannot; this
is part of the reason tool support is needed in subject-
oriented and aspect-oriented programming. Secondly,
whenever the mixins are interdependent, one needs to
tangle the dependencies between them by embedding
details of the dependencies within each mixin, typically via
explicit calls to super-methods and other constraint
information. In any situation where prior knowledge of
future changes is unknown, such dependencies would
require error-prone modifications to pre-existing mixins.
As a result, each mixin cannot be designed cleanly and
independently as composition patterns allow.

The need for advanced separation of concerns across the
development lifecycle is described in [7], motivated by
agent-based product-line component based development for
e-Commerce. A development process is proposed that
draws together high-level analysis and design separation
techniques and corresponding, supporting implementation
techniques. Composition patterns provide a solution to
designing cross-cutting features in a re-usable way that
could be considered for inclusion in a development process
such as this.

7 CONCLUSIONS
Software design is an important activity in the development
lifecycle but its benefits are often not realized. Scattering
and tangling of cross-cutting behaviour with other elements
causes problems of comprehensibility, traceability,
evolvability, and reusability. Attempts have been made to
address this problem in the programming domain but the
problem has not been addressed effectively at earlier stages
in the lifecycle. This paper presents an approach to
addressing this problem at the design stage with
composition patterns. Composition patterns are based on
the combination of merge integration from subject-oriented
design and UML templates. Examples are presented that

illustrate the flexible and reusable nature of composition
patterns as a design approach for cross-cutting behaviour.
The paper illustrates how both separation of aspects, and
composition with other design models may be specified.
The impact of possible composition at the design stage is
demonstrated. The paper also illustrates how the separation
may be maintained to the programming phase by mapping
the composition patterns model constructs to AspectJ
constructs.

While many of the ideas evolved from subject-oriented
programming, the ease in which its concepts are mapped to
aspect-oriented programming constructs for cross-cutting
behaviour illustrates that it is not closely tied to a particular
programming paradigm. Therefore, it is insulated from
changes to programming environment constructs. In
addition, extensions to the UML are minimal—use is made,
where possible, of standard UML constructs (e.g.,
templates). This should make use of composition patterns
intuitive to UML designers. However, tool support is
essential for successful usage, and therefore one of our next
primary foci is the inclusion of support for composition
patterns in a design tool. Automation of the mapping to
programming environments such as AspectJ would also be
useful.

ACKNOWLEDGEMENTS
Many thanks to Don Batory and the anonymous reviewers
for their comments on early drafts of this paper.

REFERENCES

1. S. Clarke. “Composing Design Models: An Extension
to the UML”. In Proc. of International Conference on
the UML,pp. 338–352, 2000.

2. S. Clarke. Composition of Object-Oriented Software
Design Models. PhD Thesis, Dublin City University,
January 2001.

3. S. Clarke, W. Harrison, H. Ossher, and P. Tarr.
“Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and Code”. In
Proc. of OOPSLA,pp. 325–339, 1999.

4. S. Cook and J. Daniels.Designing Object Systems:
Object-Oriented Modelling with Syntropy. Prentice
Hall, 1993.

5. D. D’Souza and A. Wills.Objects, Components and
Frameworks with UML. The Catalysis Approach.
Addison-Wesley, 1998.

6. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

7. M. Griss. “Implementing Product Line Features by
Composing Component Aspects”. InProc. of First

International Software Product Line Conference,
pp. 271–288, 2000.

8. W. Harrison and H. Ossher. “Subject-Oriented
Programming (a critique of pure objects)”. InProc. of
OOPSLA, pp. 411–428, 1993.

9. J. Herrero, F. Sánchez, F. Lucio, and M. Toro.
“Introducing Separation of Aspects at Design Time”. In
Proc. of Aspects and Dimensions of Concerns
Workshopat ECOOP, 2000.

10. W. Ho, F. Pennaneac’h, J. Jézéquel, and N. Plouzeau.
“Aspect-Oriented Design with the UML”. InProc. of
Multi-Dimensional Separation of Concerns Workshop
at ICSE, pp. 60–64, 2000.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. “Aspect-Oriented
Programming”. In Proc. of ECOOP, pp. 220–242,
1997.

12. C. Lopes and G. Kiczales.D: A Language Framework
for Distributed Programming. Technical report SPL97-
010. Xerox PARC, 1997. http://www.parc.
xerox.com/csl/projects/aop/.

13. OMG. The Unified Modeling Language Specification.
Version 1.3, June 1999.

14. H. Ossher, M. Kaplan, A. Katz, W. Harrison, and
V. Kruskal. “Specifying Subject-Oriented
Composition”. In Theory and Practice of Object
Systems2(3):179–202, 1996.

15. T. Reenskaug, P. Wold, and O. Lehne.Working with
Objects. The OORam Software Engineering Method.
Manning Publications Co., 1995.

16. Y. Smaragdakis and D. Batory. “Implementing Layered
Designs with Mixin Layers”. In Proc. of ECOOP,
pp. 550–570, 1998.

17. J. Suzuki and Y. Yamamoto. “Extending UML with
Aspects: Aspect Support in the Design Phase”. InProc.
of Aspect-Oriented Programming Workshopat ECOOP,
1999.

18. P. Tarr and H. Ossher. Hyper/J™ User and Installation
Manual. http://www.research.ibm.com/ hyperspace.

19. M. VanHilst and D. Notkin. “Using Role Components
to Implement Collaboration-Based Designs”. InProc.
of OOPSLA,pp. 359–369, 1996.

20. R. Walker.Eliminating Cycles from Composed Class
Hierarchies. Technical Report TR-00-09, Dept. of
Computer Science, Univ. of British Columbia, 2000.

21. Xerox Corporation. AspectJ 0.7b3 Design Notes.
http://www.aspectj.org.

