
SPUDD Algorithm

(2)

Set n=0

Start with:

(1)

Action Diagrams Dual Action Diagrams
(for each action)

X

10 0 Z

Y : Y

0.9 0.2

X : X

Y

0.9 0.0

X '

X

Y

0.9 0.0

X

Y

1.0 0.0

Z

1.0 0.0

Z :
primed variables
are post action variables

if x and y are true in the pre-action state,
then x will be true in the post-action state
with probability 0.9

the value of the
present s tate is
10 if x is true.

the value of all
present s tates
where x is false
is 0

Repeat until || Vn+1-Vn || < e(1-b)
2b

(3)

Sum over sumdiagrams of
primed varables

(c)

Maximize over all actions to create(e)

(d) V
n+1

 Multiply by dual action diagrams

for each primed variable in

(b) V
n'

V
n'

X '

10 0
X '

X

Y

0.9 0.0

X

Y

1.0 0.0

X '

X

Y

0.09.0

X

Y

0.09.0

(a) primed value
diagram

dual action
diagram

 Multiply Sum

(d) the (n+1)-stage-to-go
value function for this action

}
, by adding a prime to all variablesCreate 'Primed' version of (a) V

n '
V

n
,

V
n

(4)

performance

0.1

1

10

100

1000

10000

number of variables

co
m

p
u

ta
ti

o
n

 ti
m

e
(s

)

6 8 10 12 14 16 18

SPUDD worst c
ase

FLAT Value Ite
ratio

n w
orst

 case

SPUDD best case

FLAT Value Ite
ratio

n best
case

value function grows LINEARLY
in the number of variables

best case:
every state has a unique value,
value function grows EXPONENTIALLY
in the number of variables

worst case:

University of

 Department of
Computer Science

British Columbia Craig Boutilier

Jesse Hoey
Robert St-Aubin

 Alan Hu

optimizations

too big?
space

recalculate this every time?

time

precompute!

S PX ' ´ X n
­

­n
­

­

value diagram: Vn' action diagram for X i

=
X i Vn

in
sum out all
primed variables

S
sum out all
primed variables

2n
­

­and

descend the diagram!

n
­

­

...

X i
'

a b

´ n
­

­

action diagram for X i

= n
­

­S
sum out X i

'

n
­

­

...
n
­

­

perform sums
as soon as possible
diagram never gets
too big!

tradeoff space/time

Break variables into subsets
precompute over subsets
perform space optimization
over subsets

"tuning knob": number of subsets

the best case for SPUDD actually involves
a problem in which all variables are irrelevant
to the value function. This LINEAR problem
represents a best case in which all variables
are required in the prediction of a state value

Motivation
MDP solution techniques must use structured representations for large problems

The more compact the representation, the better

ADDs provide a compact representation

SPUDD implements VALUE ITERATION using an ADD representation of the MDP

perform final
value iteration
step

X

Y
Z

a1
a2 a1,a2

e-optimal
policy
diagram:

action a1
has highest
value for
this s tate

X '

X

X ' X '

X X Results

19

0

10

20

30

40

50

Running Time

Variables17 21 22

States (millions)0.13 0.5 2.1 4.2 33.6

Space Savings �
From using ADDs

(tree nodes/ADD nodes) (s)

5000

4000

3000

2000

1000

SPUDD

Our 268 million state (28 variable) example
completed in 14651 seconds (4 hours).

Tree-structured data
was not obtainable for comparison.

25

Stochastic Planning using Decision Diagrams
SPUDD

ADDs
Algebraic Decision Diagrams

X

Z

Y

0.97.07.05.2

Z

7.05.2

Z

7.05.2

Z

Y

X

0.9

Z

7.05.2

Z

Y

As a tree: As an ADD:
Example:

What are they?
Generalization of Bryant's Binary Decision Diagrams (BDDs)

Canonical: each distinct function has a unique fully-reduced representation
Requires a total ordering of the variables
Can yield a much more compact structured representation as compared
to the equivalent tree structure

MDPs

|| Vn+1-Vn || < e(1-b)
2b

Value Iteration:

Stopping Criterion:

Domain modeled as a fully observable MDP

Optimality criterion: Expected total discounted reward (infinite horizon).

Assumptions:
Markov Decision Processes

Future rewards are discounted at a rate b

SPUDD on the Web
http://www.cs.ubc.ca/spider/staubin/Spudd/index.html

RUN SPUDD ON YOUR OWN DATA

BROWSE PROBLEM EXAMPLES

Future Work
Tries to overcome the limitation of a static variable ordering.
Can reduce space requirements.

ADDs are appropriate because they group similar states.
ASPUDD: Approximation methods using ADDs

Other dynamic programming algorithms

Dynamic Variable Re-ordering

Space/Time optimizations
Further investigations into the capabilities of our space/time tuning knob.
Dynamically choose subsets for further optimization.

