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if x and y are true in the pre-action state,
then x will be true in the post-action state 
with probability 0.9
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present s tate is
10 if x is  true.

the value of all
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where x is  false
is  0
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n best 
case

value function grows  LINEARLY
in the number of variables

best case:
every state has a unique value,
value function grows EXPONENTIALLY 
in the number of variables

worst case:
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optimizations

too big?
space

recalculate this every time?

time

precompute!
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perform sums
as soon as possible
diagram never gets
too big!

tradeoff space/time

Break variables into subsets
precompute over subsets
perform space optimization 
over subsets 

"tuning knob": number of subsets

the best case for SPUDD actually involves
a problem in which all variables are irrelevant
to the value function. This LINEAR problem
represents a best case in which all variables
are required in the prediction of a state value

Motivation
MDP solution techniques must use structured representations for large problems

The more compact the representation, the better

ADDs provide a compact representation

SPUDD implements VALUE ITERATION using an ADD representation of the MDP

perform final
value iteration
step
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diagram: 

action a1
has  highest
value for
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Our 268 million state (28 variable) example
completed in 14651 seconds (4 hours).

Tree-structured data
was not obtainable for comparison.
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Stochastic Planning using Decision Diagrams
SPUDD

ADDs
Algebraic Decision Diagrams
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As a tree: As an ADD:
Example:

What are they?
Generalization of Bryant's Binary Decision Diagrams (BDDs)

Canonical: each distinct function has a unique fully-reduced representation
Requires a total ordering of the variables
Can yield a much more compact structured representation as compared 
to the equivalent tree structure

MDPs

|| Vn+1-Vn || <  e(1-b)
2b

Value Iteration: 

Stopping Criterion:

Domain modeled as a fully observable MDP

Optimality criterion: Expected total discounted reward (infinite horizon). 

Assumptions: 
Markov Decision Processes

Future rewards are discounted at a rate b

SPUDD on the Web
http://www.cs.ubc.ca/spider/staubin/Spudd/index.html

RUN SPUDD ON YOUR OWN DATA

BROWSE PROBLEM EXAMPLES

Future Work
Tries to overcome the limitation of a static variable ordering.
Can reduce space requirements. 

ADDs are appropriate because they group similar states.
ASPUDD: Approximation methods using ADDs

Other dynamic programming algorithms

Dynamic Variable Re-ordering

Space/Time optimizations
Further investigations into the capabilities of our space/time tuning knob.
Dynamically choose subsets for further optimization.


