Jesse Hoey

Robert St- Aubm
Alan Hu
Craig Boutilier

Department ot

SPUD D Computer Science
Stochastic Planning using Decision Diagrams 2 ING SRS

bia

Motivation

MDP solution techniques must use structured representations for large problems

The more COIMPACT the representation, the better Algebl‘aic Decision Diagram
ADD: provide a cOmMPACT representation What are they?

SPUDD implements VALUE ITERATION using an ADD representation of the MDP ® (eneralization of Bryant's Binary Decision Diagrams (BDDs)

® Represent real-valued boolean functions 3" — R (may have multiple terminal nodes)
® (anonical: each distinct function has a unique fully-reduced representation

< ® Requires a total ordering of the variables
garl m ® (Can yield a much more compact structured representation as compared

to the equivalent tree structure
Example:

As a tree: As an ADD:

MDPs

Markov Decision Processes

Assumptions:
® Domain modeled as a fully observable MDP
® Finite set of states, S, and actions, A.
® The actions induce stochastic state transitions.
Pr(s,a,t): probability that action a, performed in state s, will result in a transition to state t.
e Real-valued reward function R. R(s): immediate value of being in state s.

e Stationary policyt: S — A.
n is @ mapping from states to actions such that the optimality criterion is satisfied

@ Optimality criterion: Expected total discounted reward (infinite horizon).
® [Future rewards are discounted at a rate b

Value lteration:
v+ 1l(s)=R(s) + max { B Pris,a,t) VI }
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precompute! descend the diagiram! (4)
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« . . Our 268 million (28 variable) exampl
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ADDs are appropriate because they group similar states.

SPUDD on the We

http://www.cs.ubc.ca/spider/staubin/Spudd/index.html

Tree-structured data

® Dynam|c Va nable Re—ordenng was not obtainable for comparison.

Tries to overcome the limitation of a static variable ordering.
Can reduce space requirements.

. rements. RUN SPUDD ON YOUR OWN DATA
® Space/Time optimizations
Further investigations into the capabilities of our space/time tuning knob.
Dynamically choose subsets for further optimization.

® Other dynamic programming algorithms

BROWSE PROBLEM EXAMPLES




