Jesse Hoey

Robert St- Aubm
Alan Hu
Craig Boutilier

Department ot

SPUD D Computer Science
Stochastic Planning using Decision Diagrams 2 ING SRS

bia

Motivation

MDP solution techniques must use structured representations for large problems

The more COIMPACT the representation, the better Algebl‘aic Decision Diagram
ADD: provide a cOmMPACT representation What are they?

SPUDD implements VALUE ITERATION using an ADD representation of the MDP ® (eneralization of Bryant's Binary Decision Diagrams (BDDs)

® Represent real-valued boolean functions 3" — R (may have multiple terminal nodes)
® (anonical: each distinct function has a unique fully-reduced representation

< ® Requires a total ordering of the variables
garl m ® (Can yield a much more compact structured representation as compared

to the equivalent tree structure
Example:

As a tree: As an ADD:

MDPs

Markov Decision Processes

Assumptions:
® Domain modeled as a fully observable MDP
® Finite set of states, S, and actions, A.
® The actions induce stochastic state transitions.
Pr(s,a,t): probability that action a, performed in state s, will result in a transition to state t.
e Real-valued reward function R. R(s): immediate value of being in state s.

e Stationary policyt: S — A.
n is @ mapping from states to actions such that the optimality criterion is satisfied

@ Optimality criterion: Expected total discounted reward (infinite horizon).
® [Future rewards are discounted at a rate b

Value lteration:
v+ 1l(s)=R(s) + max { B Pris,a,t) VI }

(1)

Start with:

Reward (R) Action Diagrams Dual Action Diagrams
(for each action)

the value of the X X k_\ primed variables
present state is \ s : 1 :] : - N2 are post action variables
10 if x is true. / & . N
. ' 1 ., X X,
(0] 1] 1 I\
10 - 1 -~ 1 5 - 1 1
1 AU | L e 1 v LY

M N Yo 1 . \
the value of all 09 0.0 0.9 0.2 he 4 5.0
present states : : : i
where x is false t
is O if x and y are true in the pre-action state,
then x will be true in the post-action state
with probability 0.9

Stopping Crlterlon°

(2)

Set V R (the O-stage to go value function)
Set n=0
() () @. f
op tlmlza tlons Repeat until |V v || < er- b2)b per ormance
. (@) Create 'Primed' version of VARRVAS by adding a prime to all variables
value diagram:Vn action diagram for X ; . (d) the (n+1)-stage-to-go

value function for this actio

(z?) primed value ” . 3
diagram \—? ,“ - do thls
: | 3 : for each
’Q’ : . - 9 %
- L : action worstcase: best case:
=ICiehy / : T (;(.-) . : a = evelyistate hasa unique value; value function grows LINEARLY
e . S ‘ value function grows EXPONENTIALLY in the number of variables
i i | ' In theinumber of variables
;(the best case for SPUDD actually involves
tlme (b) Multiply vh by dual action diagrams (€) Sum over sumdiagrams of a problemin Whlc.h allvgrlables arerrelevant
SRS
recalculate this eve ry ti me? too bi g ? (€) Maximize over all actions to create V" are required in the prediction of a state value

action a1l
has highest

perform final assign to terminal e-optimal e

value iteration >» nodes actions a » policy
step which contributed in diagram:
N the maximization

precompute! descend the diagiram! (4)

15000
tradeoff space/time

4000
Break variables into subsets

precompute over subsets
perform space optimization
over subsets

Space Savings 3000 Running Time
From using ADDs SPUDD

(tree nodes/ADD nodes) 2000 (s)

"tuning knob": number of subsets

1000

O
0.13 0.5 2.1 4.2 33.6 States (millions)

Future work 17 19 21 22 25 Variables

« . . Our 268 million (28 variable) exampl
® ASPUDD:ApprOXImatIOH methOdS US|ng ADDS *coumpleted ino S11:illt6e51 secaonads ?4ioaursr)).e

ADDs are appropriate because they group similar states.

SPUDD on the We

http://www.cs.ubc.ca/spider/staubin/Spudd/index.html

Tree-structured data

® Dynam|c Va nable Re—ordenng was not obtainable for comparison.

Tries to overcome the limitation of a static variable ordering.
Can reduce space requirements.

. rements. RUN SPUDD ON YOUR OWN DATA
® Space/Time optimizations
Further investigations into the capabilities of our space/time tuning knob.
Dynamically choose subsets for further optimization.

® Other dynamic programming algorithms

BROWSE PROBLEM EXAMPLES

