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Abstract. We present a computational framework designedduige adaptive
support aimed at triggering learning from probleshvig activities in the
presence of worked-out examples. The key to thendweork’s ability to
provide this support is a user model that explaitsiovel classification of
similarity to infer the impact of a particular expl® on a given student’s meta-
cognitive behaviors and subsequent learning.

1 Introduction

Research demonstrates that students rely heavigxamples, especially in the early
phases of learning (e.g., [3, 4, 14, 15]). Themfdhere is a substantial amount of
work in the cognitive science and Intelligent Tingr Systems (ITS) communities
exploring how examples impact learning, and how poter-based adaptive support
can be provided so that examples are used efféctieay., [1, 8, 18]). This support
typically takes one of two forms. One form involasecting examples for students
during problem-solving activities (e.g. [1, 18]). gecond form involves providing
guidance on skills needed to learn from exampléecefely, based on evidence that
different learners have various degrees of praficyefor using examples (e.g., [4]).
For instance, the SE-Coach provides support forntie¢a-cognitive skill ofself-
explanation (the process of explaining instructional matetial one self) during
example studyingbefore students start solving problems [8]. Here, we deecthe
E-A (Example-Analogy) Coach, a computational frarogwdesigned to provide
adaptive support for meta-cognitive skills requifed effectiveanalogical problem
solving(APS), i.e., using examplesiring problem-solving activities.

A key factor that must be taken into account wheavigling support for APS is the
similarity between the problem and example, sinkerd is evidence that this
similarity impacts the problem-solving process. kmtance, students have difficulty
using examples that are not similar enough todhget problem (e.g., [10, 12]). Thus,
systems that select examples for students typi@fty to minimize the differences
between a problem and the chosen example [18].o4d¢th this approach has been
shown to be effective, we believe that studentattaristics should also play a role in
a system’s analysis of the example’s impact on AR8.instance, problem / example
differences which the student has the knowledgeetoncile do not have the same



impact on learning as differences which correspona student’s knowledge gaps. In
addition, there is evidence that even given vermjilar examples, students do not
necessarily learn well, possibly because they emgagexcessive copying that
interferes with learning [15, 17]. Although it ikear that problem / example similarity
affects APS, there is not much understandindgn@n this happens for different types
of learners (personal communication, M. T. Chi)réjeve propose that certain kinds
of similarity can have a positive impact on stugewho lack meta-cognitive skills
needed for effective APS. We incorporate this aggiom into the E-A framework,
and thus extend existing work on supporting APS lYy: proposing a novel
classification of similarity, and 2) devising a usmodel that relies on this
classification, as well as student knowledge antbhregnitive skills, to assess the
impact of various examples on APS. This assessisemted by the framework to
provide tailored interventions (including exampédestion) to improve this process.

In the rest of the paper, we first discuss thelskieeded for APS. We then
describe the overall E-A framework. Finally, we s@et the E-A user model, and
discuss how it can be used to generate adaptiyeosuijor effective APS.

2 Skills Needed for Analogical Problem Solving

Analogical problem solving consists of the exangleieval andtransferphasesThe
retrieval phase involves the selection of an example to selge the target problem.
This phase is governed by expertise, in that nogtelents tend to experience
difficulties finding examples that both facilitapeoblem solving and support learning
(e.g., [10]). Thetransfer phase involves incorporating information from a@mple
into a problem’s solution [2, 15, 16]. The learniagtcomes from this phase are
influenced by meta-cognitive skills which can béegarized along two dimensions:
analogy-typeandreasoning

The analogy-typedimension characterizes a student’s preferrec sif/lproblem
solving when examples are available (e.g., [15).IM]n-analogy identifies students
who try to solve a problem on their own, and rdferan example only when they
reach an impasse. Max-analogy identifies studemts wopy as much as possible,
regardless of whether they have the knowledge Iwedie problem on their own.
Students who prefer min-analogy tend to learn mioeeause they have opportunities
to 1) strengthen their knowledge through practice] 2) uncover knowledge gaps.

Thereasoningdimension is characterized by how a student tdasnderstand the
example solution prior to using it to solve thelgem. A behavior that is believed to
result in good learning isxplanation based learning of correctnéEBLC), a form
of self-explanation used to overcome impasses vexisting domain knowledge is
insufficient to understand the example solution16]. This process involves using
common-sense knowledge (instead of domain knowledme conjunction with
general rules, to derive new rules that can justifyunclear step in the example. For
instance, Fig. 1 shows a problem and example irdtdmain of Newtonian physics,
while Fig. 2 (top) shows how EBLC can be used tpl&x the existence of the
normal force mentioned in line 3 of the exampl&ig. 1 [16]. This reasoning can be
compressed into a rule (Fig. 2, bottom) that theletit can then use to solve the



Problem: A 5k is being pushed up a ramp inclinéd 4 Since the crate is in contact with the flog,

degrees, with an acceleration of 3mEhe force is applied to the it follows (from a commonsense rule) that
block at 15 degrees to the horizontal, with a magiei of 100N. the crate pushes down on the floor.
Find the normal force on the blo Therefore (by a general rule), the push i
an official physics force that acts on the

Example: A workman pulls a 50 e along the fldde pulls floor and is due to the crate. Therefore {by
it hard, with a magnitude of 120 N, applied at agla of 25 Newton's third law), there is a reaction
degrees. The crate is accelerating at 6.ri#hat is the normal force to it that acts on the crate and is dyie
force on the crate? to the floor.

[1] To solve this problem, we apply Newton'sc6ed Law. . o

[2] We choose tl ate as the body. R_ule: If_an objecO1 s in surface contact|

[3] One of the forCes acting on te thie normal force with objectO2 then )

[4] It is directed straight-up there is a normal force on obj&21

Fig. 1: Sample Problem & Example Fig. 2: Reasoning via EBLC

problem in Fig. 1, top. There some indication tbattain students have an inherent
tendency for this type of reasoning [6]. Unfortweigt many students employ more
shallow processes when using examples during ARBhweither do not result in
learning, or result in shallow forms of knowledgeq(, [13, 15, 16]). For instance,
rather than reasoning via EBLC, students could doon adapting example line 3
(Fig. 1) to copy it over to the problem. This cam done by substituting example
constants by problem ones (ieate by blocK to generate the correct answer in the
problem (this process is known siansformational analogyr mappingapplication

[2, 15]). Although this reasoning does accomplisé adaptation needed for correct
transfer, it doesn’t lead to learning the apprdprieule. Given that learners have
various degrees of proficiency for using exampéeg.( [4, 6, 15]), the overall goal of
our work is to provide a framework that encouraggrs-analogy and EBLC and
discourages its ineffective counterparts. We begidescribing the E-A architecture.

3 The E-A Architecture

The overall architecture of the E-A Coach is shawrrig. 3. The system contains
two data bases of problems: worked-out examplegamiolems for students to solve.
The solutions to these are automatically generhtethe problensolver, using the
problem specificatiomnd the rules found in tHenowledge baseomponent. The E-A
interfaceallows students to interactively solve problengsrfrtheproblem pooland to

User Model Coach

Example
Retrieval

pecification

Fig. 3: The E-A Architecture



refer to worked-out examples in tegample poolThe E-Acoachrelies on theuser
model’'sassessment of a given student’s knowledge and #daviors to provide
adaptive support for APS. This support includegyssting appropriate examples and
generating hints to encourage EBLC and min-analaggn needed.

Our approach for providing tailored support for ARSdomain independent and
applies to any problem-solving domain for which wdetbased representation is
applicable. However, the current instantiationhs £-A framework is embedded in
Andes, a tutoring system for Newtonian Physics Eijdes provides support for
problem solving and example studying in isolatihe E-A Coach is designed to
provide a bridge between these two modes, alloimga smooth transition from
pure example studying to independent problem sglvife now describe the E-A
user model.

4 The E-A User Model

The E-A user model allows the framework’s coaclprtovide individualized support
to students during APS, by operating in two modesessmerdnd simulation In
assessmemhode, the model generates an appraisal of howansldent is using an
example to solve a given problem, based on thatestls interface actions. This
allows the E-A coach to generate interventions eraging EBLC and min-analogy
only when it becomes apparent that the studentois Iearning effectively. In
simulation mode, the model generates a prediction of studmstiavior and
consequent learning for a particular problem / eplampair. This allows the
framework to find an example in its example poaittimaximizes learning for a
particular student. To perform both assessmentsamailation, the model reasons
about the student’s cognitive skills (knowledge}l aneta-cognitive traits (analogy
and EBLC tendencies). To do so accurately, it takés account the impact of
problem / example similarity on these student otteréstics, as we discuss below.

4.1 Impact of Similarity on the E-A User Model's Assessient

To show how the E-A user model incorporates sintjlanto its assessment, we need
to first describe how similarity impacts APS. Themitarity between a problem and
example is typically classified as eithsuperficial or structural (e.g., [5, 10]).
Superficial similarity is assessed using features not parthef underlying domain
knowledge, such as the objects in the problem Bpation and/or its solution (e.g.,
block and crate in the problem and example in Fig. IStructural similarity is
assessed using the domain principles (rules) neiedgenerate the solution (e.g., the
rule derived via EBLC, Fig. 2).

Let’s now look at how these two kinds of similaritgpact problem solving, and in
particular, how they can be used to encouragetefeedPS. One of the downfalls of
using examples is that some students copy from tivtimout trying to learn the
principles that generated the example solution.sThould be prevented by
introducing structural differences into the examplewever, the benefit of doing so



strongly depends on whether the student knows thllesrinvolved in these

differences. If the student knows the rules, thek laf similarity with the example

forces her to do pure problem solving, which carhlgghly beneficial. If, however,
the student does not know these rules, the exawmifil@ot be helpful for acquiring
them to generate the problem solution, and no llegrgains will occur.

On the other hand, superficial differences do mevent students from learning the
underlying concepts, which increases the chancasthiey can carry on in their
problem-solving. However, as we already discussednpe students do not reason
effectively from superficially-similar examples. thbugh there is some evidence that
superficial similarity impacts example retrievabasiassification [5, 11], it is still not
clear how different levels of superficial similgritfluence students’ meta-cognitive
behaviors necessary for effective reasoning. Irptieeess of investigating this issue,
we realized that we needed a finer-grained clasditin of superficial similarity than
one currently available in the literature. Thus, developed one, based on further
categorizing superficial differences as:

- trivial: differences between problem / example solution el@s which
correspond to constants that appeamath the example specification and its
solution, and have a corresponding constant in piablem specification. In
addition, in order for a difference to be classifees trivial, simple substitution of
the example constant by the corresponding problenstant is sufficient (i.e.
requires no further inference) to generate a cbselution step in the problem.
For instance, drivial difference between the problem and example in Eig.
corresponds to the objects chosen to be the bothein solutionscrate (line 2,
example solution) anbllock (problem solution, not shown);

- non-trivial: differences between problem / example solutioremeints
corresponding to constants that do not appear ith woblem / example
specifications, or that require additional infererio generate a correct problem
solution. One suchon-trivial difference in Fig. 1 relates to the problem solati
step requiring that a normal force be drawn perjmettat to the ramp, as opposed
to straight up for the example (line 4, examplehisTdifference depends on a
constant defining the incline of the surfaces orictvithe block and crate rest,
which only appears in the problem specificationt lwhich also requires
additional inference in order to be reconciled. (tkat the force is directed 90
degrees away from the surface’s incline).

Note that the classification is based on compasiigtions, which the E-A Coach
has access to (students only have access to thapkxasolution). Given this
classification, we have two hypotheses regardimgittpact of superficial similarity
on APS behaviors, which are based on cognitiveritbe®f learning from examples
[2, 15, 16]. First, trivial differences do not stitate EBLC and min-analogy for
students who do not spontaneously engage in theseegses and have poor
knowledge. There is some evidence backing up g8garaption: students do not have
difficulty reconciling trivial differences during RS to generate the problem solution,
but do not always learn from doing so [13, 15]. @el; non-trivial differences can
have a positive impact on learning for studentfi\ibor APS skills. This assumption
is based on our observation that only the ‘goodSARocesses (i.e. EBLC and min-
analogy) make it possible to resolve the non-tridiéference and generate a correct
problem solution. For instance, students can netyafyansformational analogy to
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Fig. 4: Fragment of the E-A User Model (not all ipabilities/links between slices are shown)

transfer example solution line 4 in Fig. 1, andl sibtain the correct solution. To
correctly continue problem solving, they need toegate the rule via EBLC.

Our proposed classification allows the E-A user etdd reason about the impact
of superficial similarity on students’ APS behagior his extends existing approaches
to providing such support, since these do not makeexplicit distinction about
different kinds of superficial similarity, or their impact on sents’ meta-cognitive
behaviors [1, 18]. We will now discuss in more deteow the classification and
related hypotheses are incorporated into the Eek nmdel.

4.2 Assessment Mode

We first describe how the E-A user model operategssessment mode to evaluate a
student’s APS behavior. The model relies on theeSnabproach, which involves: 1)
automatically generating a solution graph congstiof all the steps and
corresponding knowledge needed to solve the praldsrwell as paths between these
steps, and 2) automatically converting this solutipaph into a Bayesian network,
used in real-time to perform assessment [7]. Thde&nmodel, however, does not
account for the presence of examples during prolselving activities. Thus, we
have extended this model, as is described below.

The Andes model assesses student knowledge baspobloiem-solving actions,
but does not assess how knowledge @avlvethrough these actions. Since the E-A
model does need to assess learning resulting fldbCEeasoning, we have switched
to using a fully dynamic Bayesian network. In thistwork, each problem-solving
action results in the addition of a new slice. FMgshows a small portion of this
network, assuming that a student 1) is solving ghablem and has access to the



example in Fig. 1, and 2) has generated two profsieiving actions (key nodes of
interest are shown in bold). First, we describe samantics of each type of node
(unless otherwise stated, all nodes hamee/Falsevalues):

- Fact facts and goals (F & prefixes in Fig. 4) corresponding to solution step

- Rule whether the student knows the corresponding rule

- RA whether the student can generate the correspgridat, either by copying or
by reasoning

- Copy. whether the student copied a step. This nodetlge valuesCorrect,
Incorrect, NoCopy

- Similarity. the similarity between a problem fact node areldbrresponding fact in
the example solution. This node has three valtigsial (no difference or trivial
superficial difference)NonTrivialandNone(i.e. structural difference)

- Analogy Tendwhether the student has a tendencynfor or maxanalogy

- Eblc: whether the student has explained the step thr&Rj C

- EBLC Tenda student’'s EBLC tendency.

Each slice in the network contains the solutiorpgrand the two tendency nodes
(analogy and EBLC). Each student problem-solvirtgpads entered as evidence into
the network, and results in the addition of coroegfing copy, similarity and EBLC
nodes. For instance, in slitethe student chose the block as the body to dolvin
the problem in Fig. 1 F:Block is body’node). In slicé+1, the student drew a normal
force (‘F:normal dir’, ‘F:normal-force’ node$. We now describe how the model
performs its various types of assessment during. APS

Assessment of Copy Episode3he model tries to assess whether a student capied
step to evaluate: 1) the evolution of student kelgk, since self-generated entries
provide a stronger indication of knowledge thaniedpones, 2) student analogy
tendency. If direct evidence of copying is avaikalihe model uses it to observe the
copy node to the appropriate value. In the absefckrect evidence of copying, the
model uses information about student knowledge, amalogy tendency from the
previous time slice, as well as problem / exampilarity, to assess the probability
that a copy took place in the current slice. Figlednonstrates this process. In slice
where the student produced an entry corresponditiget F:Block is body’node, the
model’s belief that this step was copied is highofy’, Correct =.96), due to the
similarity with the corresponding example stegsifhilarity’, Trivial=1.0), this
student’s tendency for max-analogy (sli€k ‘Analogy’, max=.9) and low knowledge
of the rule necessary to generate the copied stieet-1, ‘R:body, True=.2). In slice
t+1, the student produced a correct entry specifyiregrtormal force, including its
direction (F:normal-dir node). The corresponding copy node is observed to
NoCopy This happens because the superficial similafi8infilarity’, NonTrivial =
1.0) makes it impossible to copy and still genesat®rrect solution entry.

Assessment of EBLC Episodeslhese episodes are used to assess the evolution of
student knowledge. Currently, the model does nektldirect evidence of positive
instances of EBLC, and so aims to assess it byngakito account the following
factors: 1) similarity, encoding our assumptiont then-trivial superficial differences
have a higher potential to stimulate EBLC thaniativnes, 2) student tendency for



EBLC, and 3) knowledge, in that students who alyelatbw a rule do not need to
generate it via EBLC. The impact of these facterdemonstrated by the differences
in the model’'s assessment of EBLC in sliceand t+1 in Fig. 4. In slicet, the
probability of EBLC is low (EBLC’, True=.12), because although the student has low
prior knowledge of the rule R:body’, True=.2, slicet-1), she has a poor tendency for
EBLC (‘EBLC Tend, True=.1, slicet-1) and the similarity type is trivial, allowing for
the correct generation of the solution step evethénabsence of the appropriate rule.
In slicet+1, the probability of EBLC has increase&BLC’, True=.61), because this

is the only process that would allow the studerdwercome the non-trivial difference
between the problem and example to generate thémoktep correctly.

Analogy and EBLC Tendency AssessmentAn assessment of these two meta-
cognitive tendencies allows the E-A Coach to geeetailored interventions when
needed. To assess analogy tendency, the modeltsisgpraisal of students’ copying
behaviors. For instance, lack of copying (stieg) decreases the model’s belief in the
student’s tendency for max analog@alogy’, max= 91 in slicet decreases tmax
=.87 in slicet+1). To assess EBLC tendency, the model uses its aapiai EBLC
episodes. For instance, given belief in occurreafdeBLC, belief in EBLC tendency
increases EBLC Tend',True=.11in slicet increases t@rue=.16 in slicet+1).

Knowledge AssessmentThe model assesses knowledge both diagnostically a
causally. Knowledge is assessed diagnostically fretodents’ problem-solving
actions. Specifically, the corresponding fact nodes observed, resulting in belief
propagation to either the parent rule node or tbpycnode. If there is a high
probability of copying, the copy node explains awaych of the evidence coming
from student input. For instance, in slicen Fig. 4, the high probability of a correct
copy (‘Copy’, Correct=.96) associated with the fact node Block is body’explains
most of the evidence away from the correspondimg mode. In slicd+1, the copy
node is observed tdoCopy so the evidence does propagate up from the G o
the rule (R:dir’) and prerequisite nodes. The model also aimsssess student
learning from EBLC in a causal fashion through link between EBLC and rule
node. For example, in Fig. 4, belief in EBLC ircsli+1 increases the probability that
the R:dir’ rule has been generated by the student.

4.3 Simulation Mode

One of the ways in which the E-A Coach supporteaiffe APS is through example
selection for students, the goal being to choosexample that maximizes learning
while helping the student achieve problem-solvingcess. To meet this goal, the
framework relies on its user model. Specificalhe hetwork described in Section 4.2
is used to predict the impact of each example faarttie E-A example pool on the
student’s problem-solving (PS) success and subsétparning during APS.

To generate this prediction, the model simulates student’s reasoning and
actions, as if the student was solving the targeblpm and had access to the
candidate example. This means that for each problEwing step required for the



target problem’s solution, appropriate nodes aeddo the network to assess copy
and EBLC behaviors, as in assessment mode. Unlilkkssessment mode, however,
the only evidence available in simulation mode esponds to the similarity between
the current problem and candidate example. Thigsegme is combined with the
model’s belief in the student’s knowledge and tewgefor analogy and EBLC to
generate a prediction of that student’s problemisgl success (the probabilities for
the fact nodes, i.e., problem-solving steps) antsequent learning (the value of the
rule nodes). Note that problem-solving successligeaed either if the student has the
knowledge to generate the problem solution, orhé txample helps her do so
(through the absence of structural differences)thBaredictions (problem-solving
success, learning) are a factor of student chaisiits (knowledge, EBLC and
analogy tendencies), as well as the similarity leetwthe problem and example.

Given the model’s predictions of learning and peaiplsolving success, to choose
an example in a principled manner, the framewolleseon a decision theoretic
approach. Specifically, to calculate the utilityso€andidate example, utility nodes are
added and linked to the network’s rule and factasodragment shown in Fig. 5). The
‘Learning’ utility node reflects the objective to maximizenegiag, and is calculated
using individual utility nodes for each rule in thetwork. The PS Succesaitility
node reflects the objective to ensure problem-aghduccess, and is calculated using
individual utility nodes for each fact in the netkoFinally, the overall utility is
calculated by combing values of the individualigtihodes using a linearly-additive
multi-attribute utility (MAU) node (Overall’ utility node, Fig. 5). This process is
repeated for each example in the framework’s exanmaol to find the one with
maximum utility. A similar approach has been pragabto select tutorial actions [9];
here, we extend it to the example selection task.

e

Croatt O rot1 vty >
Gz > rwrvaiy >

Overall Utility
PS Success Utility

Fig 5: E-A Utility Model

5 Summary and Future Work

We have presented a framework aimed at providipgau for meta-cognitive skills
needed for effective analogical problem solving. Temlize this support, the
framework relies on its user model, which explaitsovel classification of similarity
to infer the impact of an example on a studentfeviant meta-cognitive skills. This



assessment allows the framework to generate tdiloerventions, including hints
and example retrievals for students.

The next step in our research will be to evaluatedffectiveness of the proposed
model with human participants. We plan to use thieames of these evaluations to
refine the E-A user model, as well as to deterniiregdditional factors should be
incorporated into its assessment. We also intentséothese evaluations to assess the
suitability of the proposed classification of sianity.
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