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Abstract. We present a computational framework designed to provide adaptive 
support aimed at triggering learning from problem-solving activities in the 
presence of worked-out examples. The key to the framework’s ability to 
provide this support is a user model that exploits a novel classification of 
similarity to infer the impact of a particular example on a given student’s meta-
cognitive behaviors and subsequent learning. 

1 Introduction 

Research demonstrates that students rely heavily on examples, especially in the early 
phases of learning (e.g., [3, 4, 14, 15]). Therefore, there is a substantial amount of 
work in the cognitive science and Intelligent Tutoring Systems (ITS) communities 
exploring how examples impact learning, and how computer-based adaptive support 
can be provided so that examples are used effectively (e.g., [1, 8, 18]). This support 
typically takes one of two forms. One form involves selecting examples for students 
during problem-solving activities (e.g. [1, 18]). A second form involves providing 
guidance on skills needed to learn from examples effectively, based on evidence that 
different learners have various degrees of proficiency for using examples (e.g., [4]). 
For instance, the SE-Coach provides support for the meta-cognitive skill of self-
explanation (the process of explaining instructional material to one self) during 
example studying, before students start solving problems [8]. Here, we describe the  
E-A (Example-Analogy) Coach, a computational framework designed to provide 
adaptive support for meta-cognitive skills required for effective analogical problem 
solving (APS), i.e., using examples during problem-solving activities. 

A key factor that must be taken into account when providing support for APS is the 
similarity between the problem and example, since there is evidence that this 
similarity impacts the problem-solving process. For instance, students have difficulty 
using examples that are not similar enough to the target problem (e.g., [10, 12]). Thus, 
systems that select examples for students typically aim to minimize the differences 
between a problem and the chosen example [18]. Although this approach has been 
shown to be effective, we believe that student characteristics should also play a role in 
a system’s analysis of the example’s impact on APS. For instance, problem / example 
differences which the student has the knowledge to reconcile do not have the same 



impact on learning as differences which correspond to a student’s knowledge gaps. In 
addition, there is evidence that even given very similar examples, students do not 
necessarily learn well, possibly because they engage in excessive copying that 
interferes with learning [15, 17]. Although it is clear that problem / example similarity 
affects APS, there is not much understanding on how this happens for different types 
of learners (personal communication, M. T. Chi). Here, we propose that certain kinds 
of similarity can have a positive impact on students who lack meta-cognitive skills 
needed for effective APS. We incorporate this assumption into the E-A framework, 
and thus extend existing work on supporting APS by: 1) proposing a novel 
classification of similarity, and 2) devising a user model that relies on this 
classification, as well as student knowledge and meta-cognitive skills, to assess the 
impact of various examples on APS. This assessment is used by the framework to 
provide tailored interventions (including example selection) to improve this process. 

In the rest of the paper, we first discuss the skills needed for APS. We then 
describe the overall E-A framework. Finally, we present the E-A user model, and 
discuss how it can be used to generate adaptive support for effective APS. 

2 Skills Needed for Analogical Problem Solving  

Analogical problem solving consists of the example retrieval and transfer phases. The 
retrieval phase involves the selection of an example to help solve the target problem. 
This phase is governed by expertise, in that novice students tend to experience 
difficulties finding examples that both facilitate problem solving and support learning 
(e.g., [10]). The transfer phase involves incorporating information from an example 
into a problem’s solution [2, 15, 16]. The learning outcomes from this phase are 
influenced by meta-cognitive skills which can be categorized along two dimensions: 
analogy-type and reasoning. 

The analogy-type dimension characterizes a student’s preferred style of problem 
solving when examples are available (e.g., [15, 17]). Min-analogy identifies students 
who try to solve a problem on their own, and refer to an example only when they 
reach an impasse. Max-analogy identifies students who copy as much as possible, 
regardless of whether they have the knowledge to solve the problem on their own. 
Students who prefer min-analogy tend to learn more, because they have opportunities 
to 1) strengthen their knowledge through practice, and 2) uncover knowledge gaps. 

The reasoning dimension is characterized by how a student tries to understand the 
example solution prior to using it to solve the problem. A behavior that is believed to 
result in good learning is explanation based learning of correctness (EBLC), a form 
of self-explanation used to overcome impasses when existing domain knowledge is 
insufficient to understand the example solution [6, 16]. This process involves using 
common-sense knowledge (instead of domain knowledge), in conjunction with 
general rules, to derive new rules that can justify an unclear step in the example. For 
instance, Fig. 1 shows a problem and example in the domain of Newtonian physics, 
while Fig. 2 (top) shows how EBLC can be used to explain the existence of the 
normal force mentioned in line 3 of the example in Fig. 1 [16]. This reasoning can be 
compressed into a rule (Fig. 2, bottom) that the student can then use to solve the 



     

problem in Fig. 1, top. There some indication that certain students have an inherent 
tendency for this type of reasoning [6]. Unfortunately, many students employ more 
shallow processes when using examples during APS, which either do not result in 
learning, or result in shallow forms of knowledge (e.g., [13, 15, 16]). For instance, 
rather than reasoning via EBLC, students could focus on adapting example line 3 
(Fig. 1) to copy it over to the problem. This can be done by substituting example 
constants by problem ones (i.e. crate by block) to generate the correct answer in the 
problem (this process is known as transformational analogy or mapping-application 
[2, 15]). Although this reasoning does accomplish the adaptation needed for correct 
transfer, it doesn’t lead to learning the appropriate rule. Given that learners have 
various degrees of proficiency for using examples (e.g., [4, 6, 15]), the overall goal of 
our work is to provide a framework that encourages min-analogy and EBLC and 
discourages its ineffective counterparts. We begin by describing the E-A architecture. 

3 The E-A Architecture  

The overall architecture of the E-A Coach is shown in Fig. 3. The system contains 
two data bases of problems: worked-out examples and problems for students to solve. 
The solutions to these are automatically generated by the problem solver, using the 
problem specification and the rules found in the knowledge base component. The E-A 
interface allows students to interactively solve problems from the problem pool and to 

 
 

Problem: A 5kg block  is being pushed up a ramp inclined 40 
degrees, with an acceleration of 3m/s2. The force is applied to the 
block at 15 degrees to the horizontal, with a magnitude of 100N. 
Find the normal force on the block. 

Example: A workman pulls a 50 kg. crate  along the floor. He pulls 
it hard, with a magnitude of 120 N, applied at an angle of 25 
degrees. The crate is accelerating at 6 m/s2. What is the normal 
force on the crate? 
    [1] To solve this problem, we apply Newton’s Second Law. 
    [2] We choose the  crate  as the body.  
    [3]  One of the forces acting on the crate   is  the normal force  
    [4] It is directed straight-up 

Since the crate is in contact with the floor, 
it follows (from a commonsense rule) that 
the crate pushes down on the floor. 
Therefore (by a general rule), the push is 
an official physics force that acts on the 
floor  and is due to the crate. Therefore (by 
Newton's third law), there is a reaction 
force to it that acts on the crate and is due 
to the floor. 
 
Rule: If an object O1 is in surface contact 
with object O2 then  
  there is a normal force on object O1  

Fig. 1: Sample Problem & Example Fig. 2: Reasoning via EBLC 

 
Fig. 3: The E-A Architecture 



refer to worked-out examples in the example pool. The E-A coach relies on the user 
model’s assessment of a given student’s knowledge and APS behaviors to provide 
adaptive support for APS. This support includes suggesting appropriate examples and 
generating hints to encourage EBLC and min-analogy when needed. 

Our approach for providing tailored support for APS is domain independent and 
applies to any problem-solving domain for which a rule-based representation is 
applicable. However, the current instantiation of the E-A framework is embedded in 
Andes, a tutoring system for Newtonian Physics [7]. Andes provides support for 
problem solving and example studying in isolation. The E-A Coach is designed to 
provide a bridge between these two modes, allowing for a smooth transition from 
pure example studying to independent problem solving. We now describe the E-A 
user model. 

4 The E-A User Model 

The E-A user model allows the framework’s coach to provide individualized support 
to students during APS, by operating in two modes: assessment and simulation. In 
assessment mode, the model  generates an appraisal of how well a student is using an 
example to solve a given problem, based on that student’s interface actions. This 
allows the E-A coach to generate interventions encouraging EBLC and min-analogy 
only when it becomes apparent that the student is not learning effectively. In 
simulation mode, the model generates a prediction of student behavior and 
consequent learning for a particular problem / example pair. This allows the 
framework to find an example in its example pool that maximizes learning for a 
particular student. To perform both assessment and simulation, the model reasons 
about the student’s cognitive skills (knowledge) and meta-cognitive traits (analogy 
and EBLC tendencies). To do so accurately, it takes into account the impact of 
problem / example similarity on these student characteristics, as we discuss below. 

4.1 Impact of Similarity on the E-A User Model’s Assessment 

To show how the E-A user model incorporates similarity into its assessment, we need 
to first describe how similarity impacts APS. The similarity between a problem and 
example is typically classified as either superficial or structural (e.g., [5, 10]). 
Superficial similarity is assessed using features not part of the underlying domain 
knowledge, such as the objects in the problem specification and/or its solution (e.g., 
block and crate in the problem and example in Fig. 1). Structural similarity is 
assessed using the domain principles (rules) needed to generate the solution (e.g., the 
rule derived via EBLC, Fig. 2).  

Let’s now look at how these two kinds of similarity impact problem solving, and in 
particular, how they can be used to encourage effective APS. One of the downfalls of 
using examples is that some students copy from them without trying to learn the 
principles that generated the example solution. This could be prevented by 
introducing structural differences into the example. However, the benefit of doing so 



     

strongly depends on whether the student knows the rules involved in these 
differences. If the student knows the rules, the lack of similarity with the example 
forces her to do pure problem solving, which can be highly beneficial. If, however, 
the student does not know these rules, the example will not be helpful for acquiring 
them to generate the problem solution, and no learning gains will occur.  

On the other hand, superficial differences do not prevent students from learning the 
underlying concepts, which increases the chances that they can carry on in their 
problem-solving. However, as we already discussed, some students do not reason 
effectively from superficially-similar examples. Although there is some evidence that 
superficial similarity impacts example retrieval and classification [5, 11],  it is still not 
clear how different levels of superficial similarity influence students’ meta-cognitive 
behaviors necessary for effective reasoning. In the process of investigating this issue, 
we realized that we needed a finer-grained classification of superficial similarity than 
one currently available in the literature. Thus, we developed one, based on further 
categorizing superficial differences as: 
- trivial : differences between problem / example solution elements which 

correspond to constants that appear in both the example specification and its 
solution, and have a corresponding constant in the problem specification. In 
addition, in order for a difference to be classified as trivial, simple substitution of 
the example constant by the corresponding problem constant is sufficient (i.e. 
requires no further inference) to generate a correct solution step in the problem. 
For instance, a trivial  difference between the problem and example in Fig. 1 
corresponds to the objects chosen to be the body in their solutions: crate (line 2, 
example solution) and block (problem solution, not shown);  

- non-trivial: differences between problem / example solution elements 
corresponding to constants that do not appear in both problem / example 
specifications, or that require additional inference to generate a correct problem 
solution. One such non-trivial difference in Fig. 1 relates to the problem solution 
step requiring that a normal force be drawn perpendicular to the ramp, as opposed 
to straight up for the example (line 4, example). This difference depends on a 
constant defining the incline of the surfaces on which the block and crate rest, 
which only appears in the problem specification, but which also requires 
additional inference in order to be reconciled (i.e. that the force is directed 90 
degrees away from the surface’s incline). 
Note that the classification is based on comparing solutions, which the E-A Coach 

has access to (students only have access to the example solution). Given this 
classification, we have two hypotheses regarding the impact of superficial similarity 
on APS behaviors, which are based on cognitive theories of learning from examples 
[2, 15, 16]. First, trivial differences do not stimulate EBLC and min-analogy for 
students who do not spontaneously engage in these processes and have poor 
knowledge. There is some evidence backing up this assumption: students do not have 
difficulty reconciling trivial differences during APS to generate the problem solution, 
but do not always learn from doing so [13, 15]. Second, non-trivial differences can 
have a positive impact on learning for students with poor APS skills. This assumption 
is based on our observation that only the ‘good’ APS processes (i.e. EBLC and min-
analogy) make it possible to resolve the non-trivial difference and generate a correct 
problem solution. For instance, students can not apply transformational analogy to 



transfer example solution line 4 in Fig. 1, and still obtain the correct solution. To 
correctly continue problem solving, they need to generate the rule via EBLC. 

Our proposed classification allows the E-A user model to reason about the impact 
of superficial similarity on students’ APS behaviors. This extends existing approaches 
to providing such support, since these do not make an explicit distinction about 
different kinds of superficial similarity, or their impact on students’ meta-cognitive 
behaviors [1, 18]. We will now discuss in more detail how the classification and 
related hypotheses are incorporated into the E-A user model.  

4.2 Assessment Mode 

We first describe how the E-A user model operates in assessment mode to evaluate a 
student’s APS behavior. The model relies on the Andes approach, which involves: 1) 
automatically generating a solution graph consisting of all the steps and 
corresponding knowledge needed to solve the problem, as well as paths between these 
steps, and 2) automatically converting this solution graph into a Bayesian network, 
used in real-time to perform assessment [7]. The Andes model, however, does not 
account for the presence of examples during problem-solving activities. Thus, we 
have extended this model, as is described below.  

The Andes model assesses student knowledge based on problem-solving actions, 
but does not assess how knowledge can evolve through these actions. Since the E-A 
model does need to assess learning resulting from EBLC reasoning, we have switched 
to using a fully dynamic Bayesian network. In this network, each problem-solving 
action results in the addition of a new slice. Fig. 4 shows a small portion of this 
network, assuming that a student 1) is solving the problem and has access to the 
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Fig. 4: Fragment of the E-A User Model (not all probabilities/links between slices are shown) 
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example in Fig. 1, and 2) has generated two problem-solving actions (key nodes of 
interest are shown in bold). First, we describe the semantics of each type of node 
(unless otherwise stated, all nodes have True/False values): 

- Fact: facts and goals (F & G prefixes in Fig. 4) corresponding to solution steps  
- Rule: whether the student knows the corresponding rule 
- RA: whether the student can generate the corresponding fact, either by copying or 

by reasoning 
- Copy: whether the student copied a step. This node has three values: Correct, 

Incorrect, NoCopy 
- Similarity: the similarity between a problem fact node and the corresponding fact in 

the example solution. This node has three values: Trivial (no difference or trivial 
superficial difference), NonTrivial and None (i.e. structural difference) 

- Analogy Tend: whether the student has a tendency for min or max analogy  
- Eblc: whether the student has explained the step through EBLC 
- EBLC Tend: a student’s EBLC tendency. 

Each slice in the network contains the solution graph and the two tendency nodes 
(analogy and EBLC). Each student problem-solving action is entered as evidence into 
the network, and results in the addition of corresponding copy, similarity and EBLC 
nodes. For instance, in slice t, the student chose the block as the body to solve for in 
the problem in Fig. 1 (‘F:Block is body’ node). In slice t+1, the student drew a normal 
force (‘F:normal dir’, ‘F:normal-force’ nodes). We now describe how the model 
performs its various types of assessment during APS. 

Assessment of Copy Episodes. The model tries to assess whether a student copied a 
step to evaluate: 1) the evolution of student knowledge, since self-generated entries 
provide a stronger indication of knowledge than copied ones, 2) student analogy 
tendency. If direct evidence of copying is available, the model uses it to observe the 
copy node to the appropriate value. In the absence of direct evidence of copying, the 
model uses information about student knowledge, and analogy tendency from the 
previous time slice, as well as problem / example similarity, to assess the probability 
that a copy took place in the current slice. Fig. 4 demonstrates this process. In slice t, 
where the student produced an entry corresponding to the ‘F:Block is body’ node, the 
model’s belief that this step was copied is high (‘Copy’, Correct =.96), due to the 
similarity with the corresponding example step (‘Similarity’, Trivial=1.0), this 
student’s tendency for max-analogy (slice t-1, ‘Analogy’, max=.9) and low knowledge 
of the rule necessary to generate the copied step (slice t-1, ‘R:body’, True=.2). In slice 
t+1, the student produced a correct entry specifying the normal force, including its 
direction (‘F:normal-dir’ node). The corresponding copy node is observed to 
NoCopy. This happens because the superficial similarity (‘Similarity’, NonTrivial = 
1.0) makes it impossible to copy and still generate a correct solution entry. 

Assessment of EBLC Episodes. These episodes are used to assess the evolution of 
student knowledge. Currently, the model does not have direct evidence of positive 
instances of EBLC, and so aims to assess it by taking into account the following 
factors: 1) similarity, encoding our assumption that non-trivial superficial differences 
have a higher potential to stimulate EBLC than trivial ones, 2) student tendency for 



EBLC, and 3) knowledge, in that students who already know a rule do not need to 
generate it via EBLC. The impact of these factors is demonstrated by the differences 
in the model’s assessment of EBLC in slices t and t+1 in Fig. 4. In slice t, the 
probability of EBLC is low (‘EBLC’, True=.12), because although the student has low 
prior knowledge of the rule (‘R:body’, True=.2, slice t-1), she has a poor tendency for 
EBLC (‘EBLC Tend’, True=.1, slice t-1) and the similarity type is trivial, allowing for 
the correct generation of the solution step even in the absence of the appropriate rule. 
In slice t+1, the probability of EBLC has increased (‘EBLC’, True =.61), because this 
is the only process that would allow the student to overcome the non-trivial difference 
between the problem and example to generate the solution step correctly. 

Analogy and EBLC Tendency Assessment. An assessment of these two meta-
cognitive tendencies allows the E-A Coach to generate tailored interventions when 
needed. To assess analogy tendency, the model uses its appraisal of students’ copying 
behaviors. For instance, lack of copying (slice t+1) decreases the model’s belief in the 
student’s tendency for max analogy (‘Analogy’, max= .91 in slice t decreases to max 
=.87 in slice t+1). To assess EBLC tendency, the model uses its appraisal of EBLC 
episodes. For instance, given belief in occurrence of EBLC, belief in EBLC tendency 
increases (‘EBLC Tend’, True=.11 in slice t increases to True =.16 in slice  t+1).  

Knowledge Assessment. The model assesses knowledge both diagnostically and 
causally. Knowledge is assessed diagnostically from students’ problem-solving 
actions. Specifically, the corresponding fact nodes are observed, resulting in belief 
propagation to either the parent rule node or the copy node. If there is a high 
probability of copying, the copy node explains away much of the evidence coming 
from student input. For instance, in slice t in Fig. 4, the high probability of a correct 
copy (‘Copy’, Correct=.96) associated with the fact node ‘F: Block  is body’ explains 
most of the evidence away from the corresponding rule node. In slice t+1, the copy 
node is observed to NoCopy, so the evidence does propagate up from the fact node to 
the rule (‘R:dir ’) and prerequisite nodes. The model also aims to assess student 
learning from EBLC in a causal fashion through the link between EBLC and rule 
node. For example, in Fig. 4, belief in EBLC in slice t+1 increases the probability that  
the ‘R:dir’ rule has been generated by the student. 

4.3 Simulation Mode 

One of the ways in which the E-A Coach supports effective APS is through example 
selection for students, the goal being to choose an example that maximizes learning 
while helping the student achieve problem-solving success. To meet this goal, the 
framework relies on its user model. Specifically, the network described in Section 4.2 
is used to predict the impact of each example found in the E-A example pool on the 
student’s problem-solving (PS) success and subsequent learning during APS. 

To generate this prediction, the model simulates the student’s reasoning and 
actions, as if the student was solving the target problem and had access to the 
candidate example. This means that for each problem-solving step required for the 



     

target problem’s solution, appropriate nodes are added to the network to assess copy 
and EBLC behaviors, as in assessment mode. Unlike in assessment mode, however, 
the only evidence available in simulation mode corresponds to the similarity between 
the current problem and candidate example. This evidence is combined with the 
model’s belief in the student’s knowledge and tendency for analogy and EBLC to 
generate a prediction of that student’s problem-solving success (the probabilities for 
the fact nodes, i.e., problem-solving steps) and consequent learning (the value of the 
rule nodes). Note that problem-solving success is achieved either if the student has the 
knowledge to generate the problem solution, or if the example helps her do so 
(through the absence of structural differences). Both predictions (problem-solving 
success, learning) are a factor of student characteristics (knowledge, EBLC and 
analogy tendencies), as well as the similarity between the problem and example. 

Given the model’s predictions of learning and problem-solving success, to choose 
an example in a principled manner, the framework relies on a decision theoretic 
approach. Specifically, to calculate the utility of a candidate example, utility nodes are 
added and linked to the network’s rule and fact nodes (fragment shown in Fig. 5). The 
‘Learning’ utility node reflects the objective to maximize learning, and is calculated 
using individual utility nodes for each rule in the network. The ‘PS Success’ utility 
node reflects the objective to ensure problem-solving success, and is calculated using 
individual utility nodes for each fact in the network. Finally, the overall utility is 
calculated by combing values of the individual utility nodes using a linearly-additive 
multi-attribute utility (MAU) node (‘Overall’ utility node, Fig. 5). This process is 
repeated for each example in the framework’s example pool to find the one with 
maximum utility. A similar approach has been proposed to select tutorial actions [9]; 
here, we extend it to the example selection task. 

5 Summary and Future Work 

We have presented a framework aimed at providing support for meta-cognitive skills 
needed for effective analogical problem solving. To realize this support, the 
framework relies on its user model, which exploits a novel classification  of similarity 
to infer the impact of an example on a student’s relevant meta-cognitive skills. This 

 

Fig 5: E-A Utility Model 

 



assessment allows the framework to generate tailored interventions, including hints 
and example retrievals for students.  

The next step in our research will be to evaluate the effectiveness of the proposed 
model with human participants. We plan to use the outcomes of these evaluations to 
refine the E-A user model, as well as to determine if additional factors should be 
incorporated into its assessment. We also intend to use these evaluations to assess the 
suitability of the proposed classification of similarity.  
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