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Abstract

We present a graphical model for beat tracking in recorded music. Using
a probabilistic graphical model allows us to incorporate local information
and global smoothness constraints in a principled manner. We evaluate
our model on a set of varied and difficult examples, and achieve impres-
sive results. By using a fast dual-tree algorithm for graphical model in-
ference, our system runs in less time than the duration of the music being
processed.

1 Introduction

This paper describes our approach to the beat tracking problem. Dixon describes beats as
follows: “much music has as its rhythmic basis a series of pulses, spaced approximately
equally in time, relative to which the timing of all musical events can be described. This
phenomenon is called the beat, and the individual pulses are also called beats”[1]. Given a
piece of recorded music (an MP3 file, for example), we wish to produce a set of beats that
correspond to the beats perceived by human listeners.

The set of beats of a song can be characterised by the trajectories through time of the tempo
and phase offset. Tempo is typically measured in beats per minute (BPM), and describes
the frequency of beats. The phase offset determines the time offset of the beat. When
tapping a foot in time to music, tempo is the rate of foot tapping and phase offset is the
time at which the tap occurs.

The beat tracking problem, in its general form, is quite difficult. Music is often ambiguous;
different human listeners can perceive the beat differently. There are often several beat
tracks that could be considered correct. Human perception of the beat is influenced both by
‘local’ and contextual information; the beat can continue through several seconds of silence
in the middle of a song.

We see the beat tracking problem as not only an interesting problem in its own right, but
as one aspect of the larger problem of machine analysis of music. Given beat tracks for
a number of songs, we could extract descriptions of the rhythm and use these features for
clustering or searching in music collections. We could also use the rhythm information to
do structural analysis of songs - for example, to find repeating sections. In addition, we
note that beat tracking produces a description of the time scale of a song; knowledge of the
tempo of a song would be one way to achieve time-invariance in a symbolic description.
Finally, we note that beat tracking tells us where the important parts of a song are; the



beats (and major divisions of the beats) are good sampling points for other music-analysis
problems such as note detection.

2 Related Work

Many researchers have investigated the beat tracking problem; we present only a brief
overview here. Scheirer [2] presents a system, based on psychoacoustical observations, in
which a bank of resonators compete to explain the processed audio input. The system is
tested on a difficult set of examples, and considerable success is reported. The most com-
mon problem is a lack of global consistency in the results - the system switches between
locally optimal solutions.

Goto [3] has described several systems for beat tracking. He takes a very pragmatic view
of the problem, and introduces a number of assumptions that allow good results in a limited
domain - pop music in 4/4 time with roughly constant tempo, where bass or snare drums
keep the beat according to drum patterns known a priori, or where chord changes occur at
particular times within the measure.

Cemgil and Kappen [4] phrase the beat tracking problem in probabilistic terms, and we
adapt their model as our local observation model. They use MIDI-like (event-based) input
rather than audio, so the results are not easily comparable to our system.

3 Graphical Model

In formulating our model for beat tracking, we assume that the tempo is nearly constant
over short periods of time, and usually varies smoothly. We expect the phase to be con-
tinuous. This allows us to use the simple graphical model shown in Figure 1. We break
the song into a set of frames of two seconds; each frame is a node in the graphical model.
We expect the tempo to be constant within each frame, and the tempo and phase offset
parameters to vary smoothly between frames.
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Figure 1: Our graphical model for beat tracking. The hidden state X is composed of
the state variables tempo and phase offset. The observations Y are the features extracted
by our audio signal processing. The potential function φ describes the compatibility of
the observations with the state, while the potential function ψ describes the smoothness
between neighbouring states.

In this undirected probabilistic graphical model, the potential function φ describes the com-
patibility of the state variables X = {T, P} composed of tempo T and phase offset P with
the local observations Y . The potential function ψ describes the smoothness constraints
between frames. The observation Y comes from processing the audio signal, which is de-
scribed in Section 5. The φ function comes from domain knowledge and is described in
Section 4. This model allows us to trade off local fit and global smoothness in a princi-
pled manner. By using an undirected model, we allow contextual information to flow both
forward and backward in time.

In such models, belief propagation (BP) [5] allows us to compute the marginal probabilities
of the state variables in each frame. Alternatively, maximum belief propagation (max-BP)



allows a joint maximum a posteriori (MAP) set of state variables to be determined. That
is, given a song, we generate the observations Yi, i = 1 . . . F , (where F is the number of
frames in the song) and seek a set of states Xi that maximize the joint product

P (X,Y ) =
1

Z

F
∏

i=1

φ(Yi,Xi)
F−1
∏

i=1

ψ(Xi,Xi+1) .

Our smoothness function ψ is the product of tempo and phase smoothness components ψT

and ψP . For the tempo component, we use a Gaussian on the log of tempo. For the phase
offset component, we want the phases to agree at a particular point in time: the boundary
between the two frames (nodes), tb. We find the phase θ of tb predicted by the parameters
in each frame, and place a Gaussian prior on the distance between points on the unit circle
with these phases:

ψ(X1,X2 | tb) = ψT (T1, T2) ψP (T1, P1, T2, P2 | tb)

= N (log T1 − log T2, σ
2
T
) N ((cos θ1 − cos θ2, sin θ1 − sin θ2), σ

2
P
)

where θi = 2πTitb − Pi and N (x, σ2) is a zero-mean Gaussian with variance σ2. We set
σT = 0.1 and σP = 0.1π. The qualitative results seem to be fairly stable as a function of
these smoothness parameters.

4 Domain Knowledge

In this section, we describe the derivation of our local potential function (also known as the
observation model) φ(Yi,Xi).

Our model is an adaptation of the work of [4], which was developed for use with MIDI
input. Their model is designed so that it “prefers simpler [musical] notations”. The beat
is divided into a fixed number of bins (some power of two), and each note is assigned to
the nearest bin. The probability of observing a note at a coarse subdivision of the beat is
greater than at a finer subdivision. More precisely, a note that is quantized to the bin at beat
number k has probability p(k) ∝ exp(−λ d(k)), where d(k) is the number of digits in the
binary representation of the number k mod 1.

Since we use recorded music rather than MIDI, we must perform signal processing to
extract features from the raw data. This process produces a signal that has considerably
more uncertainty than the discrete events of MIDI data, so we adjust the model. We add
the constraint that features should be observed near some quantization point, which we
express by centering a Gaussian around each of the quantization points. The variance of
this Gaussian, σ2

Q
is in units of beats, so we arrive at the periodic template function b(t),

shown in Figure 2. We have set the number of bins to 8, λ to one, and σQ = 0.025.

The template function b(t) expresses our belief about the distribution of musical events
within the beat. By shifting and scaling b(t), we can describe the expected distribution of
notes in time for different tempos and phase offsets:

b(t | T, P ) = b

(

Tt−
P

2π

)

.

Our signal processing (described below) yields a discrete set of events that are meant to
correspond to musical events. Events occur at a particular time t and have a ‘strength’ or
‘energy’ E. Given a set of discrete events Y = {ti, Ei}, i = 1 . . .M , and state vari-
ables X = {T, P}, we take the probability that the events were drawn from the expected
distribution b(t | T, P ):

φ(Y ,X) = φ({t, E}, {T, P}) =

M
∏

i=1

b(ti | T, P )Ei .
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Figure 2: One period of our template function b(t), which gives the expected distribution of
notes within a beat. Given tempo and phase offset values, we stretch and shift this function
to get the expected distribution of notes in time.

This is a multinomial probability function in the continuous limit (as the bin size becomes
zero). Note that φ is a positive, unnormalized potential function.

5 Signal Processing

Our signal processing stage is meant to extract features that approximate musical events
(drum beats, piano notes, guitar strums, etc.) from the raw audio signal. As discussed
above, we produce a set of events composed of time and ‘strength’ values, where the
strength describes our certainty that an event occurred. We assume that musical events
are characterised by brief, rapid increases in energy in the audio signal. This is certainly
the case for percussive instruments such as drums and piano, and will often be the case for
string and woodwind instruments and for voices. This assumption breaks for sounds that
fade in smoothly rather than ‘spikily’.

We begin by taking the short-time Fourier transform (STFT) of the signal: we slide a 50
millisecond Hann window over the signal in steps of 10 milliseconds, take the Fourier
transform, and extract the energy spectrum. Following a suggestion by [2], we pass the
energy spectrum through a bank of five filters that sum the energy in different portions
of the spectrum. We take the logarithm of the summed energies to get a ‘loudness’ signal.
Next, we convolve each of the five resulting energy signals with a filter that detects positive-
going edges. This can be considered a ‘loudness gain’ signal. Finally, we find the maxima
within 50 ms neighbourhoods. The result is a set of points that describe the energy gain
signal in each band, with emphasis on the maxima. These are the features Y that we use in
our local probability model φ.

6 Fast Inference

To find a maximum a posteriori (MAP) set of state variables that best explain a set of
observations, we need to optimize a 2F -dimensional, continuous, non-linear, non-Gaussian
function that has many local extrema. F is the number of frames in the song, so is on the
order of the length of the song in seconds - typically in the hundreds. This is clearly
difficult. We present two approximation strategies. In the first strategy, we convert the
continuous state space into a uniform discrete grid and run discrete belief propagation. In
the second strategy, we run a particle filter in the forward direction, then use the particles
as ‘grid’ points and run discrete belief propagation as per [6].

Since the landscape we are optimizing has many local maxima, we must use a fine dis-
cretization grid (for the first strategy) or a large number of particles (for the second strat-
egy). The message-passing stage in discrete belief propagation takes O(N 2) if performed
naively, whereN is the number of discretized states (or particles) per frame. We use a dual-
tree recursion strategy as proposed in [7] and extended to maximum a posteriori inference



in [8]. With this approach, the computation becomes feasible.

As an aside, we note that if we wish to compute the smoothed marginal probabilities rather
than the MAP set of parameters, then we can use standard discrete belief propagation or
particle smoothing. In both cases, the naive cost in O(N 2), but by using the Fast Gauss
Transform[9] the cost becomes O(N). This is possible because our smoothness potential
ψ is a low-dimensional Gaussian.

For the results presented here, we discretize the state space intoNT = 90 tempo values and
NP = 50 phase offset values for the belief propagation version. We distribute the tempo
values uniformly on a log scale between 40 and 150 BPM, and distribute the phase offsets
uniformly. For the particle filter version, we use NT × NP = 4500 particles. With these
values, our Matlab and C implementation runs at faster than real time (the duration of the
song) on a standard desktop computer.

7 Results

A standard corpus of labelled ground truth data for the beat-tracking problem does not exist.
Therefore, we labelled a relatively small number of songs for evaluation of our algorithm,
by listening to the songs and pressing a key at each perceived beat. We sought out examples
that we thought would be difficult, and we attempted to avoid the methods of [10]. Ideally,
we would have several human listeners label each song, since this would help to capture
the ambiguity inherent in the problem. However, this would be quite time-consuming.

One can imagine several methods for speeding up the process of generating ground truth
labellings and of cleaning up the noisy results generated by humans. For example, a human
labelling of a short segment of the song could be automatically extrapolated to the remain-
der of the song, using energy spikes in the audio signal to fine-tune the placement of beats.
However, by generating ground truth using assumptions similar to those embodied in the
models we intend to test, we risk invalidating the results. We instead opted to use ‘raw’
human-labelled songs.

There is no standard evaluation metric for beat tracking. We use the ρ function presented
by Cemgil et al [11] and used by Dixon [1] in his analysis:

ρ(S, T ) =
100

(NS +NT )/2

NS
∑

i=1

max
j∈T

exp

{

−
(Si − Tj)

2

2σ2

}

where S and T are the ground-truth and proposed beat times, and σ is set to 40 milliseconds.
A ρ value near 100 means that each predicted beat in close to a true beat, while a value near
zero means that each predicted beat is far from a true beat.

We have focused on finding a globally-optimum beat track rather than precisely locating
each beat. We could likely improve the ρ values of our results by fine-tuning each predicted
beat, for example by finding nearby energy peaks, though we have not done this in the
results presented here.

Table 1 shows a summary of our results. Note the wide range of genres and the choice of
songs with features that we thought would make beat tracking difficult. This includes all
our results (not just the ones that look good).

The first columns list the name of the song and the reason we included it. The third column
lists the qualitative performance of the fixed grid version: double means our algorithm
produced a beat track twice as fast as ground truth, half means we tracked at half speed,
and sync means we produced a syncopated (π phase error) beat track. A blank entry means
our algorithm produced the correct beat track. A star (?) means that our result incorrectly
switches phase or tempo. The ρ values are after compensating for the qualitative error (if
any). The fifth column shows a histogram of the absolute phase error (0 to π); this is also



Song Comment BP Perf. BP ρ Phase Err PF Perf. PF ρ Phase Err

Glenn Gould / Bach Goldberg Var’ns 1982 / Var’n 1 Classical piano 88 86

Jeno Jandó / Bach WTC / Fuga 2 (C Minor) Piano; rubato at end 77 77

Kronos Quartet / Caravan / Aaj Ki Raat Modern string quartet 75 71

Maurice Ravel / Piano Concertos / G Major - Presto Classical orchestra ? sync 44 ? sync 50

Miles Davis / Kind Of Blue / So What (edit) Jazz instrumental half 61 half 59

Miles Davis / Kind Of Blue / Blue In Green Jazz instrumental 57 59
Holly Cole / Temptation / Jersey Girl Jazz vocal 78 77

Don Ross / Passion Session / Michael Michael Michael Solo guitar ? threehalf 40 ? threehalf 42

Don Ross / Huron Street / Luci Watusi Solo guitar 70 69

Tracy Chapman / For You Guitar and voice double 59 double 61

Ben Harper / Fight For Your Mind / Oppression Acoustic 70 68

Great Big Sea / Up / Chemical Worker’s Song Newfoundland folk 79 78

Buena Vista Social Club / Chan Chan Cuban 72 72
Beatles / 1967-1970 / Lucy In The Sky With Diamonds Changes time signature ? 42 ? 41

U2 / Joshua Tree / Where The Streets Have No Name (edit) Rock 82 82

Cake / Fashion Nugget / I Will Survive Rock sync 81 sync 80

Sublime / Second-Hand Smoke / Thanx Dub (excerpt) Reggae 79 79

Rancid / ... And Out Come The Wolves / Old Friend Punk half 82 half 79
Green Day / Dookie / When I Come Around Pop-punk 75 74

Tortoise / TNT / A Simple Way To Go Faster Than Light... Organic electronica double 79 double 79

Pole / 2 / Stadt Ambient electronica 71 71
Underworld / A Hundred Days Off / MoMove Electronica 79 79

Ravi Shankar / The Sounds Of India / Bhimpalsi (edit) Solo sitar 71 67

Pitamaha: Music From Bali / Puri Bagus, Bamboo (excerpt) Indonesian gamelan 86 sync 89

Gamelan Sekar Jaya / Byomantara (excerpt) Indonesian gamelan 89 88

Table 1: The songs used in our evaluation. See the text for explanation.
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Figure 3: Tempo tracks for Cake / I Will Survive. Center: ‘raw’ ground-truth tempo (instan-
taneous tempo estimate based on the time between adjacent beats) and smoothed ground
truth (by averaging). Left: fixed-grid version result. Right: particle filter result.

after correcting for qualitative error. The remaining columns contain the same items for the
particle filter version.

Out of 25 examples, the fixed grid version produces the correct answer in 17 cases, tracks
at double speed in two cases, half speed in two cases, syncopated in one case, and in three
cases produces a track that (incorrectly) switches tempo or phase. The particle filter version
produces 16 correct answers, two double-speed, two half-speed, two syncopated, and the
same three ‘switching’ tracks.

An example of a successful tempo track is shown in Figure 3.

The result for Lucy In The Sky With Diamonds (one of the ‘switching’ results) is worth
examination. The song switches time signature between 3/4 and 4/4 time a total of five
times; see Figure 4. Our results follow the time signature change the first three times.
On the fourth change (from 4/4 to 3/4), it tracks at 2/3 the ground truth rate instead. We
note an interesting effect when we examine the final message that is passed during belief
propagation. This message tells us the maximum probability of a sequence that ends with
each state. The global maximum corresponds to the beat track shown in the left plot. The
local maximum near 50 BPM corresponds to an alternate solution in which, rather than
tracking the quarter notes, we produce one beat per measure; this track is quite plausible.
Indeed, the ‘true’ track is difficult for human listeners. Note also that there is also a local
maximum near 100 BPM but phase-shifted a half beat. This is the solution in which the
beats are syncopated from the true result.

8 Conclusions and Further Work

We present a graphical model for beat tracking and evaluate it on a set of varied and diffi-
cult examples. We achieve good results that are comparable with those reported by other
researchers, although direct comparisons are impossible without a shared data set.

There are several advantages to formulating the problem in a probabilistic setting. The beat
tracking problem has inherent ambiguity and multiple interpretations are often plausible.
With a probabilistic model, we can produce several candidate solutions with different prob-
abilities. This is particularly useful for situations in which beat tracking is one element in
a larger machine listening application. Probabilistic graphical models allow flexible and
powerful handling of uncertainty, and allow local and contextual information to interact in
a principled manner. Additional domain knowledge and constraints can be added in a clean
and principled way. The adoption of an efficient dual tree recursion for graphical models
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Figure 4: Left: Tempo tracks for Lucy In The Sky With Diamonds. The vertical lines
mark times at which the time signature changes between 3/4 and 4/4. Right: the last max-
message computed during belief propagation. Bright means high probability. The global
maximum corresponds to the tempo track shown. Note the local maximum around 50
BPM, which corresponds to an alternate feasible result. See the text for discussion.

[7, 8] enables us to carry out inference in real time.

We would like to investigate several modifications of our model and inference methods.
Longer-range tempo smoothness constraints as suggested by [11] could be useful. The
extraction of MAP sets of parameters for several qualitatively different solutions would
help to express the ambiguity of the problem. The particle filter could also be changed.
At present, we first perform a full particle filtering sweep and then run max-BP. Taking
into account the quality of the partial MAP solutions during particle filtering might allow
superior results by directing more particles toward regions of the state space that are likely
to contain the final MAP solution. Since we know that our probability terrain is multi-
modal, a mixture particle filter would be useful [12].
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