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Abstract.

This paper presents the details of a student model that enables an open learning
environment to provide tailored feedback on a learner’s exploration. Open learning envi-
ronments have been shown to be beneficial for learners with appropriate learning styles
and characteristics, but problematic for those who are not able to explore effectively. To
address this problem, we have built a student model capable of detecting when the learner
is having difficulty exploring and of providing the types of assessments that the environ-
ment needs to guide and improve the learner’s exploration of the available material. The
model, which uses Bayesian Networks, was built using an iterative design and evaluation
process. We describe the details of this process, as it was used to both define the structure
of the model and to provide its initial validation.

Key words: Student Modelling, Open Learning Environments, Exploration, Bayesian
Networks, Adaptive Feedback

1. Introduction

Over the past few years, open learning environments have been introduced
as an alternative to the traditional tutor-controlled, computer-based, edu-
cational systems. While tutor-controlled systems follow the principle that
the learner should be presented with a restricted set of activities to work on
under the supervision of a computerized coach (e.g., Anderson et al., 1995;
VanLehn, 1996), open learning environments place less emphasis on support-
ing learning through explicit instruction and more on providing the student
with the opportunity to learn through free exploration of the instruction-
al domain. Learners usually explore these environments by engaging in a
variety of activities supported by the environment’s interface. These acti-
vities often involve simulations where learners can experiment with differ-
ent aspects and parameters of a given phenomenon to observe the effects
these changes have on outcomes of the simulation (e.g., Smithtown (Shute
and Glaser, 1990)). The idea is that through performing a meaningful set
of experiments and by generalizing the results of those experiments, learn-
ers can acquire deeper, more structured understandings of concepts in the
domain than they would from a less active style of learning (Shute and
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Glaser, 1990; van Joolingen, 2000). These environments should also allow
learners to practice and acquire the meta-cognitive skills associated with
effective exploration (Njoo and de Jong, 1993). These meta-cognitive skills
include hypothesis formation, the ability to construct meaningful experi-
ments, self-monitoring (the ability to monitor one’s progress and under-
standing), and self-explanation (the process of spontaneously generating
explanations to oneself to better clarify and elaborate upon given instruc-
tional material (Chi, 2000)).
Several studies have shown, however, that open learning environments

do not always achieve the expected learning objectives. In particular, it has
been shown that the effectiveness of these tools strongly depends on a num-
ber of user-specific features, including the learner’s activity level (Njoo and
de Jong, 1993; Shute and Glaser, 1990; Shute, 1993), whether or not the
learner already possesses the meta-cognitive skills necessary to learn from
exploration (van Joolingen, 1999; Reiser et al., 1994; Shute and Glaser, 1990;
de Jong and van Joolingen, 1998), general academic achievement (Recker
and Pirolli, 1992; Reiser et al., 1994) and cognitive ability (Veermans et al.,
2000). A mismatch between a particular user’s features and those neces-
sary to learn from open environments usually results in learning difficulties.
Examples of these difficulties include failing to initiate experiments (Shute
and Glaser, 1990), being unable to interpret and generalize results properly
(van Joolingen and de Jong, 1991), and failing to perform experiments that
cover all important domain concepts (Reiser et al., 1994).
In this paper, we propose a solution to the limitations of open learning

environments that relies on a user model designed to assess the effectiveness
of a learner’s exploratory behaviour. The goal of the model is to understand
both when a learner needs to be supported in the exploration process and
how to provide this support in a tailored and timely manner, without taking
away the sense of freedom and control that is a key asset of open learning
environments. Thus, the primary objective of the work presented in this
article (an extension of Bunt and Conati (2002)) is to investigate how to
incorporate a student model into an open learning environment to enable
the provision of intelligent support, making the environments beneficial for
learners with a wider range of learning styles and abilities. To meet this
objective, the work has the following goals:

1. To investigate what features are needed in a student model to assess the
effectiveness of a learner’s exploratory behaviour.

2. To create a student model that can accurately assess these features while
the learner interacts with the environment.

3. To provide initial evidence on the accuracy of the model through empir-
ical studies.

The Student Model for exploration that we present in this paper has
been implemented in the context of the Adaptive Coach for Exploration
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(ACE) (Bunt et al., 2001), an intelligent exploratory learning environment
for the domain of mathematical functions. ACE uses the assessment of the
Student Model to provide tailored hints targeted at guiding and improving
the learners’ exploration of the material provided throughout the course of
the interaction.

The outline for the rest of the paper is as follows. Section 2 discusses
the challenges of modelling effective exploratory behaviour and how the
model proposed here addresses these challenges. Section 3 presents the ACE
environment. Sections 4 and 5 describe the design and evaluation of the
first version of the ACE Student Model. Section 6 describes how the first
version has been revised in light of the evaluation results, and section 7
presents a small evaluation of the changes from the previous design. Section
8 is a discussion. Section 9 describes related work, and finally, section 10
concludes.

2. Challenges of Modelling Effective Exploration

Two main challenges make modelling exploratory behaviour in open learning
environments an especially hard problem, which is why it has rarely been
tackled, despite mounting evidence that adaptive support for exploration is
needed.

The first challenge involves the type of skill being modelled. For more
structured educational activities, such as problem solving and question
answering, there is usually a clear definition of correct behaviour that
allows this behaviour to be recognized and formalized in a model. Con-
versely, for exploration, there is still no clear understanding of exactly what
effective exploration consists of or how to categorize learner behaviour as
either good or bad exploration. We address this problem by designing the
model in an iterative fashion. We begin by building an initial model using
our intuition of what constitutes effective exploration in an environment
such as ACE and evaluating its performance with a formal study. The
results of this study are used to gain further insights on what types of
exploratory behaviour enhance learning and how to change the model to
capture these behaviours, or the lack thereof. We then evaluate the changes
to complete the cycle.

The second challenge of modelling exploration is that even with a good
definition of effective exploratory behaviour, it will be difficult to obtain reli-
able information on this behaviour, since open learning environments tend
to provide only low bandwidth information on their users. The bandwidth
issue relates to the amount and quality of information available to a user
model (VanLehn, 1988). Low bandwidth means that there is limited explicit
information on the user traits or behaviours that the model needs to assess,
thus increasing the uncertainty involved in the modelling process.
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Obtaining sufficient bandwidth in open learning environments is partic-
ularly problematic. The types of skills and behaviours relevant to learning
effectively through exploration, such as self-monitoring and self-explanation,
are difficult to observe unless the environment’s interface is designed to force
learners to make them explicit, as has been done by other researchers trying
to monitor meta-cognitive skills (e.g., Conati and VanLehn, 2000). But such
an interface clashes with the unrestricted nature of open learning environ-
ments. Thus, a model for exploratory behaviour is bound to deal with low
bandwidth information, which introduces a high level of uncertainty to the
modelling task. Our model uses Bayesian Networks (Pearl, 1988) to help
manage this uncertainty.

3. The ACE Open Learning Environment - Overview of

Components

The Adaptive Coach for Exploration (ACE) (Bunt et al., 2001) is an intelli-
gent open learning environment for the domain of mathematical functions.
ACE is typical of many open learning environments in that it provides learn-
ers with a set of activities to explore in a free and flexible manner. However,
ACE was also designed to investigate if a purely exploratory learning envi-
ronment could become beneficial for a wider range of learners by adding a
minimum amount of tailored support. By providing this support only when
necessary, this approach has the potential to retain all of the advantages
of pure open learning environments for those learners possessing the skills
necessary to learn effectively from free exploration, while still addressing the
needs of learners who require more structure.

ACE consists of 4 main modules:

1. A GUI designed to allow learners to explore various aspects of mathe-
matical functions (up to polynomial functions).

2. A Knowledge Base that contains information on function-related con-
cepts and interesting cases for exploration.

3. A Student Model designed to assess the effectiveness of a learner’s
exploratory behaviour.

4. A Coach that provides tailored feedback on the student’s exploration
process using the assessment of the Student Model.

In this section we describe the aspects of ACE’s interface, knowledge base
and coaching components that are necessary to understand the design and
application of the Student Model, which is described in the next section.

3.1. The ACE Interface

ACE presents the learner with various activities, divided into units and
exercises. Units are collections of exercises with a common theme, while
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Figure 1. The ACE interface for the Machine Unit

exercises within the units differ in function type and equation. Figure 1 is
a screen shot of the complete interface for one of ACE’s units. The top-
left window is the main interaction window, where the learner works on
the exercises that ACE provides to explore various function concepts. The
right panel is a set of hypertext help pages that contain instructions on how
to use ACE and function-related definitions. The bottom panel displays
messages containing the tailored feedback that can be obtained from the
ACE’s coaching component. A tool bar separates the main interaction panel
from the feedback panel, containing access points to several help features
and navigation tools.

3.1.1. ACE Units

Currently, ACE has three units: the Machine Unit, the Arrow Unit and the
Plot Unit.

The Machine Unit (fig. 1) provides the learner with the opportunity to
explore the relationship between the input and output of a given function.
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Figure 2. The Arrow Unit

The learner can explore this relationship by dragging any number of inputs
displayed at the top of the screen to the tail of the function “machine” (the
large arrow shown in fig. 1). The machine computes the output and spits
it out at the other end of the arrow by encasing the output in an animat-
ed pink ball. If there are multiple steps involved in the computation (e.g.,
substitution and algebraic operations), the learner must repeatedly click the
“step” button (found directly below the machine) to view the equation being
resolved.

The Arrow Unit (fig. 2) is also designed to help the learner explore
the input-output relationship, but requires more active thought on the part
of the learner, who must both select which input to experiment with and
connect it to the correct output. In the particular example shown in figure 2,
the learner has connected the inputs -1 and 0 to the correct outputs 4 and 2.
ACE gives feedback on the learner’s actions by turning correctly connected
arrows green and incorrectly connected arrows red. This is the only activity
within ACE that has a clear definition of correct and incorrect knowledge
application and for which ACE’s Coach provides feedback on the correctness
of the learner’s actions.

The Plot Unit aims to help the learner gain an understanding of the
relationship between the graph of a function and its equation, as well as
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Figure 3. The Plot Unit

become familiar with different properties of graphs, including slopes and
intercepts. The learner can manipulate a function’s graph by either drag-
ging it around the screen (using the mouse) or by editing the equation box
(shown in the bottom-left hand corner of fig. 3). Changes in the position of
the graph are immediately visible in the function’s equation (also shown in
a non-editable form in the top-right hand corner of the screen), and changes
in the equation immediately update the graph. As an example, the learner
could change the first coefficient in the equation from -2 to 2. This action
would change the shape of the graph from concave upward to concave down-
ward, illustrating the effect of positive and negative leading coefficients on
the shape of the graph. The learner can also zoom in and out using the
magnifying glass icons at the bottom of the panel to view the graph from a
variety of different perspectives.

As the description above should show, the Plot Unit is ACE’s most inter-
esting unit in terms of the range of exploration that it permits. However,
although the Machine and Arrow units may not permit the same degree of
exploration, they are still exploratory in the sense that there are a number of
inputs to choose from. This element of choice can cause a variety of learner
behaviours, ranging from being too rushed or timid to explore throughly, to
methodically selecting all of the inputs.
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Figure 4. The Curriculum Browser

3.1.2. Curriculum Navigation

The learner has two ways to navigate through the curriculum. The first is
by clicking on the forward and backward arrows on the tool bar (see fig.
1). The second way is by using the curriculum browser shown in figure 4.
This tool lets the learner jump to any exercise in the curriculum and is built
at run-time using information stored in a text-file. Clicking on the icon in
figure 1 that looks like a scroll activates this tool.

3.2. ACE’s Coach

ACE’s coaching component provides learners with tailored feedback on their
exploration process through hints, which can be obtained by clicking on the
“Get Hint” button (located on the tool bar in fig. 1). Hints are supplied to
the learner at increasing levels of detail, ranging from a generic suggestion
to explore the current exercise more thoroughly to exactly what things to
explore. The Coach uses the Student Model’s assessment to determine if the
learner needs a hint, and if so, which concept the hint should target.

If the learner tries to move on to a new exercise (using one of the naviga-
tion mechanisms) before the Coach feels that the learner has explored the
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current exercise sufficiently, the Coach will generate a warning, suggesting
better exploration of the current exercise. These warnings also remind the
learner of the availability of hints. Since the system is designed to give the
learner as much control as possible, the learner can either choose to follow
the Coach’s advice or to move on. As with hints, the Coach decides whether
or not to generate this warning based on information obtained from the
Student Model.

3.3. The Knowledge Base

ACE’s Knowledge Base contains representations of functions and related
concepts, such as substitution and arithmetic, as well as a representation
of the interesting elements of exploration within a given activity. Since the
exploration-related part of the Knowledge Base is used extensively by the
Student Model to produce its assessment, a description follows. Further
details on the knowledge base can be found in Bunt (2001).

In the Knowledge Base, relevant exploration cases are the salient con-
cepts found in each exercise that should be explored by the learner to gain a
thorough understanding of the target material. The set of concepts consid-
ered to be salient for a particular exercise depends on both which unit the
exercise belongs to and the type of function the learner is exploring within
the exercise.

The rules given in figure 5 define the relevant exploration cases for each
function type within each unit. The first rule (R1 in fig. 5) states that, in
the Machine Unit, if the function is a constant function then the learner
should explore how the function behaves with small positive numbers (S+),
small negative numbers (S-), zero (Z), large positive numbers (L+) and large
negative numbers (L-). The rule is the same for a linear function (R2 in fig.
5). With power and polynomial functions (R3 and R4 in fig. 5), the learners
should also see how the function behaves with a positive and negative version
of the same number (Pos Neg in fig. 5), since a function equation with even
exponents generates the same output in both cases. Large numbers are not
included as relevant exploration cases for either of these functions since
they could cause some learners to get fixated on complicated arithmetic
unnecessarily. The Arrow Unit has the same set of rules (R5-R8 in fig. 5)
since it also deals with the relationship between input and output.

In the plot unit, the rules specify which function manipulations the learn-
ers should explore. For a constant function (R9 in fig. 5), they should view
the graph with both positive and negative intercepts. The rule for linear
functions (R10 in fig. 5) builds on this, adding also positive and negative
slopes along with the zero slope, which turns the function back to a con-
stant one. The relevant exploration cases for a power function (R11 in fig.
5) include shifting (resulting in the learner viewing the graph at a variety of
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S+, S−, Z, L+, L−

small positive scaling, large negative
scaling, small negative scaling, zero
scaling

shift, negative shift, large positive scaling,

positive slope, negative slope, zero slope

S+, S−, Z, L+, L−

S+, S−, Z, Pos_Neg

S+, S−, Z, Pos_Neg

S+, S−, Z, L+, L

S+, S−, Z, L+, L−

S+, S−, Z, Pos_Neg

S+, S−, Z, Pos_Neg

positive intercept, negative intercept

positive intercept, negative intercept

even exponent, odd exponent, positive

of the same number
Positive and Negative version

Pos_Neg

Z Zero

L+ Large Positive Number

L− Lage Negative Number

S+ Small Positive Number

S− Small Negative Number

R1:

R2:

R3:

R4:

R5:

R6:

R7:

R8:

R9:

R11:

R10:

Plot Unit

Arrow Unit

Machine Unit

ConstantFunction 

LinearFunction 

PowerFunction 

PolynomialFunction 

ConstantFunction 

LinearFunction 

PowerFunction 

PolynomialFunction 

ConstantFunction 

LinearFunction 

PowerFunction 

Figure 5. The Knowledge Base rules for the relevant exploration cases

intercepts), scaling (changing the width and orientation of the graph) and
odd and even exponents (changing the shape of the graph). For this unit,
Polynomial functions were not implemented in the version of ACE described
here, but are planned for future versions.

4. ACE’s Student Model - Version I

As stated in the introduction, the main objective of the Student Model is to
generate an assessment of a learner’s exploration of the ACE environment
that allows the coaching component to provide tailored feedback aimed at
guiding and improving this exploration. However, because the ACE interface
maintains a natural, unrestricted interaction style, which gives the learner
full control of the exploration process, the Student Model assessment is rid-
dled with uncertainty. ACE gives the learners the freedom to choose which
exercises to explore and which elements within an exercise to experiment
with, without requiring them to explain the rational behind their actions.
Furthermore, since there are very few activities with any notion of cor-
rect and incorrect behaviour, learners are free from having their skills and
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knowledge tested and evaluated. These freedoms contribute to lowering the
bandwidth of information available to the Student Model, since the interface
provides few indicators of the learner’s actual reasoning and understanding.
In particular, the Student Model can view which items in the interface the
learner experiments with, but this is not always sufficient to determine what
the learner is trying to accomplish with these actions. In addition, it is hard
to infer directly if the learner’s actions are contributing to exploration that is
effective enough to learn the material. For example, the learner may perform
many experiments, but unless they are well selected and unless the learner
is able to draw the right conclusions from them, they will not necessarily
contribute to an overall understanding of the concepts targeted by ACE.
Thus, the assessment task of ACE’s Student Model entails a high level of
uncertainty. We use Bayesian Networks to clearly formulate and process this
uncertainty in a principled way.

This section describes the first iteration of the model’s design and con-
struction, while section 6 discusses a second iteration. The main difference
between the two versions is the treatment of knowledge. The first version uses
evidence of effective exploration in conjunction with direct skill application
to update beliefs of the learner’s knowledge. The second version is geared
more toward incorporating the learner’s explicitly demonstrated knowledge
into the model’s assessment of effective exploration. We describe both the
initial model and its refinement for two reasons. The first reason is that
the design and evaluation of the second model depend on the results of the
first evaluation. The second, more compelling reason, is that discussing the
details of the refinement process helps answer one of the open questions that
this work aims to address: what constitutes effective exploration in an open
environment such as ACE?

4.1. High Level Description of the Model’s Bayesian Networks

ACE’s Student Model is separated into two Bayesian Networks: one for
the input/output units (Machine and Arrow) and another for the graph
manipulation unit (Plot). Separating the model into two networks helps to
both divide the initial design task into two more manageable components
and address some performance concerns. The two networks have a common
high-level design, which this section describes.

The Student Model’s networks formalize a method for obtaining evidence
of good exploration using the relevant exploration cases discussed in section
3.3. Figure 6 provides a high-level description of the interactions among
the different types of nodes in the networks. Each network in ACE’s Stu-
dent Model consists of two types of nodes: exploration nodes and knowledge
nodes.
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Knowledge

Exploration of Units

Correct Behaviour

Exploration of Exercises Exploration of Categories

Relevant Exploration Cases

Figure 6. A high-level description of the Bayesian Networks

Exploration nodes represent the effectiveness of the learner’s exploratory
behaviour, while knowledge nodes represent the learner’s understanding of
relevant domain concepts. Several classes of exploration nodes are present
in the network:

− Relevant Exploration Cases: the exploration of individual exploration
cases in an exercise (e.g., dragging the number 3, a small positive input,
to the back of the function machine in the Machine Unit).

− Exploration of Exercises: the exploration of individual exercises (e.g.,
exercise #1 in the Machine Unit).

− Exploration of Units: the exploration of groups of related exercises (e.g.,
all of the exercises in the Plot Unit).

− Exploration of Categories: the exploration of groups of relevant explo-
ration cases that appear across multiple exercises (e.g., all of the relevant
exploration cases involving small positive inputs).

Each exploration node can take on the value of either True of False. A True
value means that the learner has sufficiently explored the item associated
with the node (i.e., the relevant exploration case, exercise, unit or category),
where sufficient means that the learner has performed enough meaningful
interface actions to indicate thorough exploration.

Knowledge nodes in figure 6 also have binary values, where a True value
represents the probability that the learner understands the domain concepts
covered by the curriculum. Two types of exploration nodes (exploration of
categories in the Machine/Arrow Units and the exploration of units in the
Plot Unit) are used in conjunction with evidence of correct behaviour (when
observable) to assess the learner’s knowledge (see fig. 6). Evidence of good
exploratory behaviour carries less weight than does evidence of correct skill
application, as is reflected in the Student Model’s Conditional Probability
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Tables (CPTs) for knowledge nodes (which we describe in more detail in
sec. 4.4). In ACE’s initial design, however, evidence of correct skill applica-
tion currently comes only in the Arrow Unit. Thus, most of the knowledge
assessment is done using the learner’s exploratory behaviour.

Assessment at different levels of granularity allows the coaching compo-
nent to provide a wide range of tailored feedback. First, the assessment of
individual exploration cases and categories of cases can be used to select
the content of hints, which aim to improve the exploration of individual
exercises. Second, the assessment of individual exercises allows the Coach to
generate a warning when the learner attempts to leave an exercise that has
not been thoroughly explored. Finally, the assessment of how well the learn-
er has explored categories and related exercises can be used to adapt the
curriculum and to provide suggestions as to which exercises to explore next.
Currently, ACE’s Coach does not fully support the latter type of feedback
but, because the relevant assessments are already provided by the Student
Model, it could easily be extended to do so.

4.1.1. Static and Dynamic Parts of the Student Model

Each Bayesian Network in the Student Model has a static portion and a
dynamic portion. The static portion is completely hand-specified ahead of
time, and its structure remains identical for every learner and session. In
addition to this static component, each network has a dynamic portion that
is automatically constructed during a particular interaction.

The reason for having part of the network be dynamic is that there are
components of the modelling task that vary from session to session. First, the
curriculum is generated automatically at run-time from a text file. This text
file contains a list of exercises for each unit, including the specifics of each
exercise’s function. Although ACE has a recommended curriculum, instruc-
tors can modify the text file to contain a different set of exercises. Thus,
each session could potentially have a different curriculum. Adding nodes
dynamically to the network removes any curriculum-dependent information
from the static portion, avoiding situations where the model designer has
to build a separate network for every conceivable curriculum. In addition to
the structure of the curriculum, the exact nature of each exercise is unknown
ahead of time since the coefficients and exponents of the function equations
are randomly generated. Finally, using ACE’s navigation tools, each learner
may take a different path through the curriculum, choosing to explore some
of the exercises and ignore others.

Most of these issues could be addressed by automatically constructing the
networks to contain all exercises, rather than building the networks dynam-
ically throughout the interaction. This would result, however, in networks
that are unnecessarily large. Furthermore, it is not immediately obvious how
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Unit Exploration

Knowledge Nodes

machineExploration arrowExploration

simpleArithmetic simpleSubstitution

complexSubstitutioncomplexArithmetic

complexArrowOutputsimpleArrowOutput

arrowOutputmachineOutput

IO

Figure 7. The static portion of the Bayesian Network for the Machine and Arrow
Units

to define the semantics of nodes representing items that the learner has nev-
er been exposed to (e.g., particular exercises). Since the learner has yet to
explore these items, their values should somewhat represent the learner’s pre-
dicted performance in future explorations, rather than the learner’s assessed
behaviour and knowledge up to this point. However, representing this dis-
tinction requires either substantially increasing the network complexity, as
done in Murray and VanLehn (2000), or adding an interpretation procedure
external to the network, as done in Conati et al. (2002). We circumvent the
problem by adding only nodes relevant to the exploration that the student
has actually performed - an approach similar to that adopted by the student
model in POLA (Conati and VanLehn, 1996).

In the following subsections we provide more detail on both the static
and dynamic parts of the Student Model’s networks.

4.2. Static Portions of the Student Model

Figure 7 shows the static portion of the network for the Machine and Arrow
Units. This network contains nodes representing the learner’s knowledge of
concepts and skills involved in generating the input and output of a function,
such as substitution and arithmetic operations (see nodes “simpleArith-
metic,” “simpleSubstitution,” “complexArithmetic,” and “complexSubsti-
tution” in fig. 7). In addition, the network contains nodes that represent
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Knowledge Nodes

posIntercept negIntercept posSlope negSlopezeroSlope

slopeintercept

linearFunctionGraphconstantFunctionGraph

Figure 8. Example of knowledge nodes in the network for the Plot Unit

higher-level effective exploratory behaviour of individual units (e.g., “arrow-
Exploration” in fig. 7). In all subsequent figures, the nodes that are labeled
with “exploration” in conjunction with those labeled “ei” and “eiCasei”
refer to exploration nodes, while all of the others refer to knowledge nodes
or instances of correct behaviour.
Figure 8 depicts some of the knowledge nodes in the static part of the net-

work for the Plot unit pertaining to the graphs of constant and linear func-
tions. Understanding the graph of a constant function involves understand-
ing intercepts (positive and negative), while a linear function also involves
understanding different slopes (positive, zero and negative). There are also
nodes in the static part of the Plot Unit’s network for the knowledge related
to power functions, including nodes for concepts such as shifting, scaling and
exponents. The general idea is that more complicated functions have more
complicated knowledge hierarchies in the network.

4.3. Dynamic Portions of the Student Model

The portions of the networks that are added dynamically contain nodes rep-
resenting the exploration of individual exercises (see “Exercise Exploration”
layer in figs. 9 and 10), the exploration of relevant exploration cases (see
“Relevant Case Exploration + Time” layer in figs. 9 and 10), and the explo-
ration of categories (see “Category Exploration” layer in figs. 9 and 10). The
effectiveness of a learner’s exploration of an individual exercise is represented
by the nodes labeled “ei” (e.g., “e1” in fig. 9). These nodes are added to the
network every time a learner visits a new exercise. For instance, the network
in figure 9 shows that the learner has visited three exercises: “e1”, “e2” and
“e3”. As exercise nodes are added to the network, they are linked to their
corresponding unit nodes. As illustrated by figure 9, the nodes “e1” and
“e2” represent exercises in the Machine Unit and the node “e3” represents
an exercise in the Arrow Unit.
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Exercise Exploration

+

Time

Exploration

Category Exploration

Relevant Case

Unit Exploration

exploredSmallPos

machineExploration arrowExploration

exploredSmallNeg exploredPosNeg exploredLargePos exploredLargeNeg exploredZero

Knowledge Nodes

e
1

e
3

e Case
1 1

e Case
1 2

e Case
31

e Case
2 2

e Case
32

e Case
2 1

e Case
3 2

e Case
3 1

e Case
33

e
2

e Time
1

e Time
2

e Time
3

Figure 9. Exploration nodes in the dynamic portion of the Bayesian Network for
the Arrow and Machine Units

The degree to which the learner is considered to have explored an indi-
vidual exercise is influenced by whether or not she has explored all of the
salient cases within that exercise in addition to how long she spent explor-
ing the exercise. This relationship is represented in the network by adding
nodes for each of the relevant exploration cases associated with the func-
tion presented in the exercise (obtained from the knowledge base) and a
node representing exploration time. The relevant exploration case nodes are
labeled “eiCasei” (e.g., “e1Case1” in fig. 9) and the time node is labeled
“eiTime” (e.g., “e1Time” in fig. 9). The time node represents a measure of
how long the learner spent exploring the exercise as a whole, not each indi-
vidual exploration case. A measure of how long the learner spent exploring
each case would be more informative, but ACE’s current interface cannot
reliably tell how long the user has spent focusing on individual items. How
to measure time spent exploring a particular case is discussed at the end of
this paper.

Since the relevant exploration case nodes are instances of exploration
categories of concepts that can appear across multiple exercises, nodes are
added to the network representing the more general effectiveness of the learn-
er’s exploration of these categories (e.g., “exploredSmallPos” in fig. 9). If an
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Figure 10. An example dynamic portion of the Bayesian Network for the Plot Unit

exploration category is not in the network already, it is added dynamically
at the same time as the corresponding relevant exploration case.

Figure 10 is an example of the dynamic portion of the network for the Plot
Unit. There are two differences between the two networks. The first is that
the exploration categories in the Plot Unit (e.g. “exploredPosIntercept”)
form the base of a hierarchy that mirrors the knowledge hierarchy. The sec-
ond difference is the manner in which the knowledge nodes are updated.
In the Plot Unit, there is a meaningful relationship between the exploration
categories and the knowledge targeted by the unit. Therefore, the knowledge
nodes are influenced directly by the appropriate categories (see the “Knowl-
edge Nodes” layer in fig. 10). Knowledge the learners should be acquiring
through exploration in the Machine and Arrow units, on the other hand,
corresponds better to the learner’s exploration of the units as a whole, than
it does to the particular exploration categories, which represent different
types of inputs. Thus, in this network, the knowledge nodes (abstracted by
the box labeled “Knowledge Nodes” in fig. 9) are influenced by the unit
exploration nodes (see “Unit Exploration” layer in fig. 9).
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complexArrowOutputsimpleArrowOutput

complexSubstitutioncomplexArithmetic

simpleSubstitutionsimpleArithmetic

Knowledge Nodes

Correct Behaviour
3e IO

3e IO 3e IO 3e IOCase 1 Case 1 Case 3

Figure 11. Part of the dynamic portion of the Bayesian Network for the Arrow and
Machine Units including knowledge nodes

4.3.1. Correct Behaviour

The final part of the network added dynamically (shown in fig. 11) deals with
the Arrow Unit - the only unit that gives learners the opportunity to demon-
strate their knowledge directly. In this unit, nodes representing proficiency
in correctly mapping the input and output of a function are added to the
network (e.g., e3IO in fig 11). These “eiIO” nodes directly influence knowl-
edge nodes that represent the type of substitution and arithmetic knowledge
needed to generate the correct output for the function in question. When
a learner connects an input to an output in the Arrow Unit, a new node
labeled “eiIOCasei” (e.g., “e3IOCase1” in fig. 11) is attached to the “eiIO”
node and set to “True” if the answer is correct and to “False,” otherwise.

4.4. Conditional Probability Tables

The Conditional Probability Tables (CPTs) and prior probabilities in the
Student Model’s Bayesian Networks were defined using our best estimates
of the corresponding probabilistic dependencies and prior beliefs. As is the
case with all human-designed CPTs, such estimates need to be refined fur-
ther through empirical evaluations. This section highlights some of their key
features.

As illustrated in figure 12, the CPTs for the exercise exploration nodes
(e.g., “e1” in fig. 9) are set so that the more relevant exploration cases the
learner explores, the higher the probability of having effectively explored
that function. Spending a sufficient amount of time on the exercise further
strengthens this belief, although sufficient time by itself results in a very
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Figure 12. The Conditional Probability Table for an example exercise exploration
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Figure 13. The Conditional Probability Table for a knowledge node (arrowOutput)
given explicit evidence (simpleArrowOutput and complexArrowOutput) and the
exploration of that concept (arrowExploration).

paperV2.tex; 30/09/2002; 14:52; no v.; p.19



20 A. BUNT AND C. CONATI

low probability of effective exploration. The same technique (minus the time
nodes) is used to update the CPTs for the unit and category exploration
nodes. The CPT for a knowledge node (see fig. 13 for an example) defines the
combined influence of explicit evidence of the learner’s understanding of the
corresponding concept and the learner’s exploration of that concept. If the
learner has only explored the concept well and there is no explicit evidence
of understanding, the model is less confident that the learner understands
it, but still considers good exploration to be an indication of some degree of
understanding.

4.5. The Model’s Operation

Probabilities in the networks change as learners explore relevant exploration
cases, since as they cover these cases, new evidence is introduced. This
evidence then updates the model’s assessment of the learner’s explorato-
ry behaviour and knowledge.

The exploration case nodes are all set to “False” when they are initially
added to the network and are not set to “True” until the learner performs
interface actions that the system considers to be indications that the learner
has explored the associated cases. Each unit has a different interpretation of
which interface actions provide such evidence. In the Machine Unit, dragging
an input that is an instance of a relevant exploration case (e.g., a small
negative number) to the Machine is considered evidence of the learner having
explored that case. In the Arrow Unit, corresponding evidence is introduced
when the learner drags a relevant input to an output. Finally, the learner is
considered to have explored a relevant exploration case in the Plot Unit when
he either drags and drops the graph to an interesting position belonging to a
particular case (e.g. dragging the graph to a location where it has a positive
y-intercept) or edits the function equation to change the graph in a desired
way.

In addition to the relevant exploration case nodes, evidence is also intro-
duced into the network through the time nodes (e.g., “e1Time” in fig. 9),
which are observed as “True” when the time that the learner has spent
exploring an exercise exceeds a pre-specified threshold. Finally, information
regarding correct and incorrect knowledge application is gathered in the
Arrow Unit by setting the values of the nodes for the generation of input
and output (e.g., “e3IOCase3” in fig. 11).

The time threshold for each unit is the minimum length of time necessary
to explore an exercise in that unit in a careful manner. We determined the
threshold for each unit by timing one of the system designers as they used
ACE, followed by pilot testing with two users. These thresholds are not
meant to be definitive measures of the amount of time needed to explore
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Figure 14. An example assessment

each exercise. Instead, they aim to provide another source of information
that the model can use as a sign of good exploration.

4.6. An Example Interaction

As a concrete example (depicted in the example portion of the network in
figure 14), consider the case where a learner is exploring exercise 1 (“e1” in
fig. 14) in the Machine Unit. The learner’s first action is to drag the input
“3” to the back of the function machine. At this point, since 3 is a small
positive input, the node “e1Case1” in figure 14 is set to “True,” increas-
ing the probability that the learner has effectively explored the exercise,
along with the probabilities that the learner has effectively explored the
unit (“machineExploration” in fig. 14”) and the category of small positive
inputs (“exploredSmallPos” in fig. 14). These probabilities remain the same
until the learner covers a different case ( a small negative input or the zero
input).
As the learner covers the relevant exploration cases, the probabilities

for the pertinent knowledge nodes also increase. These increases, however,
are not as substantial as those for the exploration nodes, unless the model
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has some explicit evidence of correct behaviour. In this example interac-
tion, the probability that the student understands I/O (the “IO” node in
fig.14) increases as the learner covers the relevant exploration cases, but only
slightly, since the model does not yet have any explicit evidence of correct
behaviour. If the learner goes on to exhibit good exploration in the Arrow
Unit and correctly connects the inputs to the outputs, the “IO” node then
reaches a very high probability. If the learner simply continues to explore
thoroughly in the machine unit, the probability that the learner understands
I/O will continue to increase (up to a certain point), but never achieves a
very high probability.

We will now illustrate how the Coach generates its feedback using the
example described above. More detail on the Coaching algorithms can be
found in Bunt et al. (2001). As mentioned in section 3.2, ACE’s coach gen-
erates two kinds of feedback. The first type of feedback is in the form of
on-demand hints, which the learner can obtain at any time during the inter-
action. The Coach determines the focus of the hint by querying the explo-
ration categories that are relevant to the current exercise, and hints on a
category which has a probability below a pre-defined threshold (but has
not been explored in the current exercise). Following the example interac-
tion described above, if the learner asks for a hint after performing the first
action, the Coach would hint on either small negative inputs or on the zero
input, but not on small positive inputs.

The second type of feedback is generated when the learner tries to leave
an exercise. At this point, the Coach queries the exercise exploration node.
If the probability that the learner has explored the exercise is below a pre-
defined threshold, the Coach queries the relevant category nodes to see if the
learner has thoroughly explored the corresponding categories over the course
of the interaction. If the Coach can find one category with a probability that
is too low, the Coach generates a warning suggesting that the student explore
the current exercise more thoroughly, and to ask for a hint if needed. Thus,
in the previous example, if the student tries to move on to a new exercise
after performing the described action, the Coach generates a warning since
the exercise node and the categories of small negative inputs and the zero
input all have low probabilities.

5. Evaluation of the First Version of the Student Model

In November 2000, we conducted a user study with ACE to verify the
hypothesis that intelligent support in an open learning environment can
help to make the experience more beneficial for all types of learners. While
analyzing the learners’ behaviour as they used the system gave insight on
the general effectiveness of ACE’s components, this section focuses on quan-
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titative and qualitative results that pertain to the accuracy and assessment
capabilities of the Student Model.

5.1. Participants

The subjects were first-year university students taking a computer literacy
course. ACE’s target population is actually high school students, but because
of unforeseen difficulties in coordinating with a local high school, we were
unable to gain access to this population. The university students we used,
however, are still considered suitable since the teaching assistants for the
course felt that many of their students had very limited math knowledge.
To further ensure that subjects did not have too much knowledge we only
accepted subjects who had not taken a university math course. A total of
14 subjects participated in the study.

5.2. Experiment Design

In the experiment, all subjects used the full ACE environment described
in section 3. We decided not to divide the subjects into a control and an
experimental group because the small subject pool, coupled with the fact
that several subjects turned out to have better knowledge than expected,
would have made it very hard to gain any significant information with a
two-group design.
One to three subjects participated in each session, positioned so that

they could not see each other. Each session was observed by one researcher
who recorded informal observations. Sessions lasted between 60 and 80 min-
utes and consisted of a pre-test phase, a session with ACE and a post-test
phase. The pre-test phase included a paper and pencil test designed to gauge
learners’ knowledge of the topics targeted by ACE. The test consists of
39 questions, divided equally into questions on function output recognition
and generation, graph property recognition, equation property recognition
and graph-equation correspondence. The post-test phase consisted of a test
analogous to the pre-test and of a nine item questionnaire targeted at the
learners’ subjective view of their ACE experience. Several sessions were also
captured on videotape. In addition, ACE was instrumented to produce log
files that capture the sessions at the level of basic interface actions. Table I
summarizes the key interaction events captured in the logs.

5.3. Study Results

Table II displays the average per student and the standard deviation for each
of the event counts described in table I. In addition to these basic, descriptive
statistics, linear regression analysis was used to verify whether there is any
correlation between different aspects of ACE usage and student learning. In

paperV2.tex; 30/09/2002; 14:52; no v.; p.23



24 A. BUNT AND C. CONATI

Table I. Information recorded in the log files
Interaction Event Description

Number of exercises visited The number of exercises the learner chose to
explore.

Number of exercises passed An exercise is passed if ACE let the learner leave
an exercise without a warning to stay and explore
further.

Number of stay events A stay event occurs when a learner follows the
Coach’s suggestion to explore further and remains
in the current exercise.

Number of leave events A leave event occurs when the learner does not
follow the Coach’s warning and chooses to move
on.

Number of hints The total number of hints accessed by the learner.

Number of exploratory actions Actions performed by the learner that the Stu-
dent Model uses as evidence of the exploration of
a relevant exploration case.

Table II. Statistics on information recorded in the log files.
Interaction Event Average per Learner Standard Deviation

Number of exercises visited 19.86 6.64

Number of exercises passed 12.71 5.36

Number of stay events 5.85 2.71

Number of leave events 5.79 4.14

Number of hints 5.07 3.41

Number of exploratory actions 168.07 60.18

each regression analysis described in this section, post-test scores are used
as the dependent variables and pre-test scores are added to the regression
equation to control for incoming knowledge.

The following event counts are found to be significant positive predictors
of post-test scores (after controlling for pre-test scores):

1. Total number of hints accessed [p = 0.0406, R2 = 84.6%]

2. Number of exercises passed [p = 0.0093, R2 = 87.9%]

The first result provides an initial indication that ACE’s support of the
exploration process, in terms of hints generated using the Student Model’s
assessment, improves learning. The second result provides encouraging evi-
dence that the Student Model’s assessment accurately reflects students’
learning in the environment because the Coach determines that a learner
has passed an exercise when the Student Model indicates that it is likely
the learner has sufficiently explored and understood the relevant skills and
concepts.
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The above results may also be attributable to additional factors that
were not controlled for in the study, including the learner’s general academic
ability and conscientiousness. This seems not to be the case, however, since
there is no significant correlation between the two event counts. A study that
controls for these factors is required to definitely rule out this possibility.

The total number of exploratory actions that learners performed was not
found to be a significant predictor of learning. This may be because of how
the exploratory actions were recorded in the log files. Every interface action
that indicated exploration of a relevant exploration case was counted, even
multiple actions repeated for the same case. The Student Model, however,
uses only one such action to set a relevant exploration case node to “True.”
Subsequent exploratory actions related to the same case are considered by
the Student Model to be redundant. In fact, a few cases of learners perform-
ing redundant explorations are observed, which is consistent with findings
showing that the inability to self-monitor is one of the common problems
in open learning environments (van Joolingen, 1999). If learners don’t have
the self-monitoring skills necessary to understand when they have explored
a concept sufficiently, they likely begin to over-explore that concept rather
than move on.

The learners’ answers to the post-test questionnaires indicate that they
enjoyed using ACE and found it effective. For example, 79% of the learners
found it useful when the Coach suggested that they continue to explore a
certain exercise and 71% prefered to learn in this manner over a textbook
(21% were neutral).

5.4. Utility of the Student Model

The work presented here relies on the assumption that it is beneficial
to include a student model that can assess exploratory behaviour in an
open learning environment because of the tailored support that it permits.
Although this study does not provide conclusive evidence of the validity
of this assumption, anecdotal evidence of subjects’ interactions with ACE
does highlight the importance of developing a model to assess exploration.
To illustrate this point, the following subsections summarize a few key
examples of learners using the system.

5.4.1. Case 1: Succeeding in Uncovering Concepts

This learner scored poorly on the pre-test questions involving negative
slopes. He did not experiment with negative slopes in the Plot Unit until he
received a navigation hint from the Coach. At this point he asked for more
hints and obtained one targeted at negative slopes. As a consequence, he
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performed the appropriate explorations and improved on the post-test. The
benefit of tailored hints was also very noticeable in two other participants.

5.4.2. Case 2: Passive/Timid Learner

On the pre-test, this learner exhibited a lack of understanding of constant
functions. Her exploratory behaviour was adequate in the Machine Unit, but
very poor in the Arrow Unit. In this unit, when she was presented with a
constant function, she tried one input, connected it to the incorrect output,
stared at the screen for a length of time and then tried to leave. When the
Coach issued a warning she remained in the exercise, stared at the screen
for another length of time and then chose to move on despite the Coach’s
second suggestion to stay.

This example illustrates that some learners are passive and/or timid in
an open learning environment, and as a result, fail to improve. Providing
hints upon request may not be the solution for these learners since some do
not always access available help when needed (Aleven and Koedinger, 2000)
(this subject did not access a hint despite the Coach’s suggestions to do so).
Thus, it is even more important to have a student model that can identify
passive learners and allow the system to provide more proactive, unsolicited
guidance when necessary.

5.4.3. Case 3: Learner Failing to Uncover Concepts

This learner was very active in the Plot Unit, but failed to improve on post-
test questions targeted at the zero slope for linear functions. He experiment-
ed with all the relevant exploration cases in the Plot Unit except this one.
The Coach warned him to stay when he tried to leave the exercise. He chose
to stay in the exercise, but did not request a hint from the Coach. Although
he remained an active explorer, he did not end up experimenting with a zero
slope. There were three other participants who showed similar behaviours.
These subjects show the potential benefit of having a model that can assess
the details of a user’s exploratory behaviour. This assessment would have
allowed the Coach to provide hints targeting concepts these learners didn’t
cover, however, had the learners requested them.

The behaviour of these subjects, as well as the behaviour described in
the previous section, confirms that user-initiated hints are not always ade-
quate to elicit more thorough exploration. Furthermore, determining the
appropriate hint level should be informed by the Student Model, since a
generic suggestion to explore further may not be helpful to learners who
have explored all but the more subtle concepts. This is also consistent with
the finding that learners do not always benefit from high-level hints (Aleven
and Koedinger, 2000).
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5.5. Student Model Limitations

The log files also captured many of the Bayesian Network probabilities after
a learner visited an exercise, including those for exercise exploration, unit
exploration, exploration of any relevant categories, and for any pertinent
knowledge nodes. None of these probabilities were significantly correlated
with post-test scores. Observing learners during the sessions and a subse-
quent manual analysis of the log files uncovered some limitations of the first
version of the Student Model that could potentially explain the absence
of these correlations. The more significant limitations include the Student
Model’s treatment of knowledge levels and how it assesses whether or not a
learner has effectively explored a relevant exploration case, as we discuss in
the next subsections.

5.5.1. Knowledge Levels

Having several highly knowledgeable learners among our subjects uncovered
one significant flaw in the model. Learners who already understand certain
concepts should not be expected to explore these concepts as thoroughly
as someone with less knowledge. In fact, observations of the subjects who
appear to be able to self-monitor show that most of these subjects often
explore only concepts they do not completely understand. The first version of
the Student Model had little evidence on the learner’s knowledge with which
to gauge the sufficiency of the learner’s exploration. Since the Machine and
Plot units do not test a learner’s knowledge of relevant concepts directly,
in these units the only actions that can provide evidence of the learner’s
knowledge are exploration actions. Thus, in our study, the Student Model
interpreted signs of the knowledgeable learners’ inactivity in certain exercises
as poor exploratory behaviour and consequently poor knowledge of related
concepts, causing the Coach to intervene when the learners tried to leave.
These unnecessary interventions do not follow ACE’s guiding principle of
intervening only when necessary. In addition, they may be a cause of the
lack of correlation between some of the log data with the post-test scores.
For instance, some knowledgeable learners did follow the Coach’s advice and
stayed in the current exercise. Also, because the unnecessary interventions
were the result of incorrect low probabilities, and often the knowledgeable
students who stayed did not explore enough to increase them, it would be
equally difficult to correlate these probabilities with improvements on the
post-tests.

5.5.2. Exploration of Relevant Exploration Cases

Currently, the Student Model looks only at interface actions to determine if
the learner has explored a particular exploration case and doesn’t incorpo-
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rate more sophisticated factors, such as the learner’s ability to learn from
those actions. This limitation is especially apparent in the Plot Unit. There
were a few learners who performed several of the desired interface actions in
this unit, but did not end up learning the underlying concepts, while oth-
ers learned these concepts after minimal exploratory actions. For example,
some learners experimented with several negative and positive slopes, but
did not learn the difference between the two, while others caught on after
experimenting with only one of each. This observation suggests that effective
exploration is more than just performing the appropriate interface manipu-
lations; the learners must also interpret and reason about the results of those
actions. For example, in the Plot Unit it is possible that learners who did
not learn from their actions were moving the function graph around, but did
not look at the function equation, or looked but did not build a connection
between the graph shape and the equation. Lacking the skills or motivation
to self-explain seems to be a plausible cause for this ineffective behaviour,
but ACE’s Student Model currently has no way to monitor these factors.

5.5.3. Other Limitations

The evaluation also uncovered other limitations of the Student Model that
do not indicate problems with its general design but contributed to reducing
the model’s accuracy.

The first of these limitations is that the model is missing a certain type
of long-term assessment. As we described in section 4.1, the Student Model
assesses exploratory behaviour at several levels of granularity, including exer-
cises exploration, exercise-specific exploration cases, unit exploration, and
categories of exploration cases appearing in multiple exercises. The Student
Model does not, however, provide a long-term assessment of concepts that
span a number of exercises and/or units but do not correspond to specific
exploration cases. For example, a number of subjects thoroughly explored
most of the exercises in the arrow and machine units with the exception of
those targeting constant functions. This type of information, however, could
not be obtained from the original network, since constant function explo-
ration was not one of the relevant exploration cases, which, in these two
units, corresponded to trying different categories of inputs. This limitation
was not as apparent in the network for the Plot Unit, because in that unit,
exploration of different types of functions did correspond to the relevant
exploration categories (see fig. 10).

Second, the Student Model did not take into account the similarity of
different exercises. If two exercises are similar the learner should not be
expected to explore the second exercise as thoroughly.

Finally, the time nodes did not have their intended influence on the assess-
ment of effective exploration. Almost all learners stayed in the exercises for
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Figure 15. A high-Level description of the second version of the Student Model,
with the changes marked by dashed lines

appropriate lengths of time, increasing the probability that they had effec-
tively explored the exercises. As discussed in the previous section, however,
it is unclear whether or not the time spent contributed to effective explo-
ration. Occasionally, the time was spent staring at the interface, other times
learners were performing many exploratory actions, yet they still failed to
learn. We can provide only a subjective evaluation of the time nodes since
the log files did not record how often they were set to True.

In the next section we discuss a second version of the Student Model that
we built to address some of the limitations uncovered by the first evaluation.

6. Student Model - Version II

The major changes to the network structure (shown in fig. 15) include the
incorporation of knowledge into the assessment of effective exploration, and
the inclusion of another category of exploration nodes that assess how effec-
tively the learner is exploring general concepts across exercises not covered
by the exploration cases. This includes the relationship between the input
and output for each of the different types of functions (constant, linear,
power and polynomial). In addition, the similarity of exercises is now taken
into account and the time nodes have been removed. We now discuss each
of these changes in detail.
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6.1. Knowledge Nodes

As discussed in section 5.5.1, the first version of the Student Model does not
take the learner’s knowledge into consideration when assessing the quality
of learners’ exploration. As a consequence, learners who already had high
knowledge received unnecessary warnings to explore more. The proposed
solution to this problem integrates learner knowledge into the exploration
assessment so that a learner with high knowledge of a concept is not expected
to explore that concept as thoroughly as a learner with low knowledge.

To achieve this behaviour in the second version of the Student Model,
components of the Bayesian Networks that represent exploration nodes are
now influenced by the learner’s knowledge (see fig. 15). More specifically,
most exploration nodes are now influenced by one or more knowledge nodes
representing understanding of related concepts. These knowledge nodes have
a different meaning than those in the first Student Model. In that model,
knowledge nodes represent a general definition of concept understanding,
comprising both performance in more traditional problem-solving tasks and
performance in exploration activities. The second version of the Student
Model separates the representation of student knowledge related to problem-
solving activities from that of understanding gained through exploration.
Thus, in the new model, knowledge nodes are updated only through non-
exploratory actions (which includes evidence from exercises in the Arrow
Unit, and when available, from pre-test activities) and directly contribute
to the assessment of how much further understanding the learner can gain
from exploratory actions.

Consequently, the semantics of the exploration nodes also need to change
in the new model. A “True” value for an exploration node still represents
the probability that the learner has effectively explored that item, but the
definition of effective exploration is now broader than in the previous model.
A learner has effectively explored a concept when the combination of the
learner’s exploration actions and existing knowledge has caused the learner
to understand that concept. A low probability means that the learner should
explore that concept more thoroughly to increase her understanding.

Figure 16 illustrates the influence of knowledge nodes in the new model.
In this simplified example, “e1” is an exercise in the Machine Unit involving a
constant function. Thus, whether or not the learner has effectively explored
the exercise is influenced by the learner’s coverage of the relevant explo-
ration cases (“e1Case1” and “e1Case2”) and any existing knowledge of the
concepts related to that exercise (“simpleArithmetic,” “simpleSubstitution”
and “constantFuncIO”).

The CPTs for exploration nodes are defined so that if the student has
high knowledge of the related concepts, the probability for that exploration
node is also high. Otherwise, the probability of the learner having effectively
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substitutionExp

simpleArithmetic

General Concept
Exploration

Knowledge Nodes

Relevant Case
Exploration

Exercise Exploration

Unit Exploration

constantFuncIOExp

arithmeticExp

complexArithmetic

simpleSubstitution

constantFuncIO

arithmetic

complexSubstitution

substitution

e1

machineExploration

e1Case 1 e1Case 2

Figure 16. The influence of knowledge nodes (shaded nodes) in the second version
of the Student Model

explored the item increases as the learner explores the relevant exploration
cases, as in the first version of the model.

6.2. Additional General Exploration Concepts

The first version of the Student Model assesses learners’ exploratory
behaviour within particular exercises with the nodes representing individual
exercises and their relevant exploration cases. It also assesses the learner’s
behaviour over a longer period of time with the nodes representing unit
exploration and categories of exploration cases appearing in multiple exer-
cises (e.g., small negative inputs and small positive inputs). However, as we
describe in section 5.5.3, the study also uncovers the need to maintain a
long-term assessment of concepts that span a number of exercises and/or
units, but do not correspond to the specific exploration cases, as is the case
for the input and output of different types of functions in the Machine and
Arrow Units.
The model now has additional nodes that represent the learner’s explo-

ration of these additional concepts; they include the exploration of the
input/output relationship for each type of function and how effectively the
learner is exploring the concepts of arithmetic and substitution. These explo-
ration concepts are not associated with particular exploration cases, but with
exercises or units. Whether these exploration concepts are influenced by
exercise exploration nodes or unit exploration nodes depends on the gener-
ality of the particular concept. For instance, as shown in the example portion
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General Concepts
Exploration

Exercise Exploration

Unit Exploration

e2 e3

arrowExploration
machineExploration

constantFuncIOExp

arithmeticExp

linearFuncIOExp

e1

substitutionExp

Knowledge Nodes

Figure 17. Example of nodes representing the exploration of general concepts in the
second version of the Student Model

of the network in figure 17, the exploration of the input/output of constant
functions (“constantFuncIOEx”) relates to certain exercises in which con-
stant functions input/output can be explored. Therefore, it is influenced by
only those exercises (“e1” and “e3” in fig.17) and by knowledge of the related
concepts. On the other hand, exploring the concept of substitution (‘substi-
tutionEx” in fig. 17) is covered by all exercises in certain units, and so is
influenced by the related unit exploration nodes (e.g., “machineExploration”
and “arrowExploration” in fig. 17).

The CPTs for the new concept nodes are designed (as discussed in the
previous section) so that high knowledge of the concept results in a high
probability of the “True” value regardless of the learner’s exploration acti-
vities. If low knowledge exists, the more relevant exercises (or units) the
learner has effectively explored, the higher the probability that the learner
has effectively explored the related general concept.

6.3. Similarity of Exercises

The first version of the Student Model did not take the similarity of exercises
into account in its assessment of effective exercise exploration. If a learner
explores one exercise thoroughly and then chooses to explore a similar exer-
cise, the learner should not be expected to explore this second exercise as
thoroughly. To address this concern, arcs were added between exercise explo-
ration nodes that have some degree of similarity (see “e1”, “e2”, and “e3” in
fig. 17). The strengths of the arcs are determined by similarity scores, which
are computed based on similarity of both the units the exercises belong to
and their function types. For instance, two linear functions in the Machine
Unit have a higher similarity score than one linear function in the Machine
Unit and another in the Arrow Unit.
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6.4. Time Nodes

The final change to the new version of the Student Model consists of remov-
ing the time nodes that, in the previous model, contribute to the assessment
of exercise exploration. How well learners explored exercises did not seem to
depend on time spent in each exercise but on how long they spent reason-
ing about their actions and how long they spent exploring each individual
exploration case. Thus, for the time being, the time nodes have been removed
from the network and will be added again as part of the future research that
incorporates a more sophisticated view of what it means to explore a relevant
exploration case effectively.

6.5. Conditional Probability Tables

Other than those discussed in sections 6.1 and 6.2, no major changes were
made to the CPTs as a result of the first evaluation. The problems uncovered
in the first evaluation did not appear to be related to the CPTs, but rather
to the model’s structure. Some of the CPTs were tuned slightly, but did
not deviate from their original design. Exploration is still assessed in an
incremental manner. As learners explore more relevant items, the probability
that they have explored effectively increases.

7. Version II - Evaluation

7.1. Study Goal

In this second evaluation, the new Student Model is evaluated with a small
group of subjects. Before going to a full scale evaluation, we wanted to inves-
tigate how the major changes in the model influence the subjects’ interac-
tions with the system. A larger, more complete evaluation is needed, but will
be left for future work. Ideally, the changes we made should have the follow-
ing effects. First, the Coach was giving unnecessary warnings to high ability
learners (as we discussed in section 6.1) to explore further. Both the new
influences of the knowledge nodes and the addition of the exercise similarity
should contribute to lowering the number of unnecessary warnings. Thus,
the new model should result in the Coach intervening less frequently with
the high ability learners, without causing the Coach to ignore the learners
who are experiencing difficulty. Second, the removal of the time nodes might
reduce some of the model’s tendency to overestimate exploratory behaviour.
Third, the addition of the new general exploration concepts described in
section 6.2 should allow the model to generate appropriate assessments for
learners who continually fail to explore general concepts, such as the input
and output of specific function types.
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Table III. Unnecessary warnings
Version 1 Version 2

# Subjects 14 5

# Unnecessary Warnings 62 2

Total # warnings 163 42

% of warnings that were unnecessary 38% 5%

Average # of warnings per person 4.4 0.4

7.2. Study Participants

The subject pool for this follow-up study consists of five participants. As in
the previous study, the subjects are first-year university students who have
not taken a university math course.

7.3. Experiment Design

The second study uses essentially the same experimental design as the first
study (see sec. 5.2). The only difference is that we use the results from the
pre-tests to set the values of the knowledge nodes before the subjects start
using ACE, because the second version of the Student Model performs better
if it has some initial indication of the learners’ knowledge.

7.4. Results

The log files of the learners’ interactions with ACE are analyzed to see how
the changes made to the model influence the number of navigation hints
generated by the Coach. We count the number of times the Coach asks the
learner to explore an exercise further despite clear indications from the pre-
tests that the learner understands the concepts associated with the exercise.
We refer to this event count as the number of unnecessary warnings. Since
some of the changes are intended to reduce these unnecessary interruptions
without the model becoming too lenient, we also count the number of times
the Coach allows the learner to leave an exercise without warning, even
though the learner has not learned the associated concepts (as indicated by
the post-test). We refer to this event count as the number of premature pass-
es. Since the only modification that addresses the problem of overestimating
the learners’ exercise exploration is the elimination of the time nodes, we
do not expect the count of premature passes to change significantly from
the previous experiment, but we want to at least make sure that it does not
worsen.

Table III shows that the new Student Model does, in fact, result in a siz-
able reduction in the number of unnecessary warnings. While with the pre-
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Table IV. Premature passes
Version 1 Version 2

# Subjects 14 5

# Premature passes 6 5

Total # exercises to be assessed 154 55

% of premature passes 4% 9%

Average # of premature passes per
person

0.4 1

Table V. Hint seeking
Version 1 Version 2

Average per person 5.07 4.2

Standard Deviation 3.41 3.35

vious version of the model 38% of the Coach’s warnings are unnecessary, the
precentage drops to 5% with the new model. This is an important reduction,
since with the previous version, learners received an average of 4.4 unneces-
sary interuptions per session, while they received an average of less than one
with the new model. As shown in table IV, there is a small increase in the
number of premature passes (from 4% to 9%), indicating that, as expect-
ed, the second model still overestimates the learners’ exploratory behaviour:
when learners perform a large number of exploratory interface actions, the
model assesses this to be good exploratory behaviour, even though some of
these learners do not learn from these actions.

The results of this study provide further evidence that the model needs
to include the capability of assessing the learner’s ability to self-explain
the phenomena observed in the environment to accurately assess effective
exploration. The elimination of the time nodes, the incorporation of exercise
similarity, and the possibly incorrect assessment of the subjects’ prior knowl-
edge also may have caused part of the increase in premature passes, since
all of these changes may have resulted in the model becoming more lenient.
Finally, the study did not provide an evaluation of the change involving the
addition of the general exploration concept nodes, since none of the partic-
ipants in this study chose to ignore any particular high-level concepts, as
was the case in the first study.

Since one of the encouraging results from the first evaluation is that the
number of hints requested by the learners is positively correlated with post-
test improvements, table V shows how the new model affects the rate of
hint seeking. While table V shows the rate decreasing, the sample size is
too small to draw conclusions on aspects of ACE usage that are influenced
by both the behaviour of the system and individual learner characteristics.
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Hint seeking is an example of such an aspect, as some learners have a general
tendency not to ask for help (Aleven and Koedinger, 2000).

8. Discussion

The results of the two evaluations provide encouraging support for the frame-
work of ACE’s Student Model. The fact that the Student Model continues to
over-estimate effective exploratory behaviour, however, means that improve-
ments still need to be made. First of all, to fully assess effective exploration,
the model needs to perform a more sophisticated assessment of what it means
for a learner to explore a relevant exploration case effectively. Currently, the
model bases this assessment only on a combination of the learner’s interface
actions and any explicit evidence of the learner’s knowledge. As our evalua-
tions have shown, however, some students perform the right set of actions,
yet still fail to learn.

Our observations lead us to believe that the model needs to incorporate
additional factors to allow it to better assess whether or not the learner’s
actions are a sign of good exploration. In particular, whether or not learners
are self-explaining the outcomes of their exploratory actions appears to be
a key component of the ability to learn from exploratory actions. Support
for this hypothesis comes from our observations of one learner in particular
who, in the Plot Unit, moved the function graph rapidly around the screen,
without pausing long enough to permit any kind of self-explanation of how
his movements were updating the function equation. According to the post-
test, this learner failed to learn the concepts targeted by this unit.

Factors that the model could use to assess the learner’s self-explanation
behaviour include the amount of time spent reasoning about each case (as
done in Conati et al. (2002)), whether or not the learner is observing the
results of the experiments, and the learner’s tendency to spontaneously self-
explain. Consider, for example, a learner who is continually altering a graph
in the Plot Unit. The model could be more confident that this is a sign of
good exploration if the learner looks at both the graph and the equation as
they change, and leaves the graph at the key positions for long enough to
self-explain the correspondence with the current equation. Knowing a priori
that the learner has a tendency to self-explain (most learners do not, as
shown by many studies summarized in Chi (2000)) could further increase the
model’s confidence that the learner’s behaviours are conducive to learning.
Otherwise, it is possible that the learner is simply dragging the graph around
the screen for entertainment purposes.

We didn’t address these issues after the first evaluation because ACE’s
current interface provides little evidence of the factors indicating self-
explanation. For instance, we could potentially measure time spent on
each case by considering the interval between the action initiating two
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consecutive cases, but we would not be able to tell if, during that interval,
the learner is actually attending to the current case. The use of eye-tracking
could help widen the bandwidth of information coming from the interface,
since knowing where users are focusing their attention provides a more
accurate assessment of how much time they spend on each case and whether
or not they pay attention to the outcomes of their exploration.

What about situations where the users are inactive? Currently the model
can detect these situations, but does not know the cause. The current model
can highlight which concepts need further exploration, but is limited in its
ability to diagnose why these concepts haven’t been explored. There are a
number of possible causes of passivity in open learning environments, includ-
ing the learner’s motivation, personality traits, learner’s knowledge of explo-
ration strategies, as well as domain knowledge. Incorporating these factors,
along with the aforementioned factors affecting self-explanation behaviour,
is expected to improve both the model’s assessment and its diagnostic capa-
bilities, thus allowing the implementation of coaching strategies that can
directly address the causes of poor exploration.

Other directions of future work include opening up the Student Model
to the learners and adding mechanisms for them to indicate the reasoning
behind their actions. Both of these extensions would allow learners to reflect
more on their own exploration process as well as self-explain the results.
Opening up the Student Model would encourage learners to reflect on how
thoroughly they have been exploring and which exercises or concepts they
have tended to ignore. Mechanisms for learners to explain their exploratory
actions, including why they have chosen to explore certain cases and not
others, would not only promote reflection and self-explanation, but would
also provide an additional source of information for the Student Model.
However, without natural language processing capabilities, special care will
have to be taken so that these mechanisms do not cause the interface to
become overly restricted.

9. Related Work

9.1. User Models for Open Learning Environments

Few other researchers have tried to model user performance in open learning
environments. The user model in Veermans and van Joolingen (1998) focuses
on a sub-skill of exploration by assessing a user’s ability to either confirm or
reject a hypothesis. Unlike the ACE’s Student Model, this approach assumes
that users are active enough to generate hypotheses and perform the exper-
imentation necessary to verify these hypotheses. Since the system waits for
the learner to submit work to be evaluated before providing feedback, it is
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unable to model learners who do not submit hypotheses. In addition, the sys-
tem cannot support users who have difficulty covering the exploration space,
where effective coverage involves exploring a wide range of hypotheses.

In Smithtown (Shute and Glaser, 1990), users can perform experiments
involving variables in the domain of microeconomics. In the exploration
phase, the user gathers information and makes observations about vari-
ables in the particular example economy. In the subsequent experimenta-
tion phase, the user forms hypotheses, manipulates variables and draws
conclusions pertaining to the laws of supply and demand. In this latter
phase, the system supports the user’s exploration by monitoring the user’s
behaviour and interrupting if the user consistently violates one of the rules of
good experimentation (e.g., manipulates more than one variable at a time).
The user model in this situation, however, is essentially a set of count-
ers that record the number of times a user has violated the rules in the
knowledge base. Like the previous approach, this type of modelling relies on
the assumption that learners are active experimenters. Furthermore, unlike
ACE, Smithtown does not assist the learner in choosing which experiments
to perform.

The user model in the ALI system (D’Souza et al., 2001) shares many
aspects in common with the ACE model. Although the techniques are differ-
ent (ALI has a overlay model while the ACE student model uses Bayesian
Networks), the model in ALI contains information on whether or not the
learners encounter all of the important domain concepts, in addition to
whether or not they are able to understand them through their experi-
mentation. The main difference, however, is that instead of making infer-
ences through the learner’s behaviour in the environment, ALI generates its
assessment based on explicit evidence obtained by engaging the learner in
dialogues and having the learner complete small quizzes. Thus, ALI departs
from the open-ended and learner-directed style of interaction typical of pure
open learning environments, which ACE’s Student Model aims to preserve.

Other user models in open learning environments have focused less on
assessing the user’s exploration of the available material and more on assess-
ing the user features that permit the environment to preemptively guide
the user’s exploration in a tailored manner. For example, the user model
in Hypadapter (Hohl et al., 1996), a hypertext system, includes information
on user characteristics such as curiosity level and material presentation pref-
erences, which are obtained from a questionnaire. The model also assesses
users’ knowledge of topics as they explore, although it relies on the strong
assumption that following a link for a topic results in increased knowledge
of the topic. The model is used by the system to restrict the amount of
information and links available for the user to explore. The user model in
ELM-ART (Weber and Brusilovsky, 2001), an adaptive hypermedia system
designed to support learning LISP programming, also tries to assess the
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users’ evolving knowledge as they explore the available lessons and exercis-
es. The authors, however, do not agree with the assumption that knowledge
can be inferred from followed links, and instead assess knowledge through
more explicit activities and tests.

9.2. Probabilistic User Models

Bayesian Networks have become a popular formalism in user modelling
because of their ability to model uncertainty (Jameson, 1996). They have
been used extensively for knowledge assessment (e.g., Mayo and Mitrovic,
2000; Millan and de-la Cruz, 2002; Mislevy and Gitomer, 1996; VanLehn
and Martin, 1998), plan recognition (e.g., Albrecht et al., 1998; Charniak and
Goldman, 1993; Horvitz et al., 1998; Huber et al., 1994) or both (e.g, Conati
et al., 2002; Conati and VanLehn, 1997; Murray and VanLehn, 2000). There
have also been some interesting applications of Bayesian Networks that have
extended beyond knowledge assessment and plan recognition, including a
model to assess how effectively the learner is self-explaining (Conati and
VanLehn, 2001), models of collaborative behaviour (Singley et al., 1999;
Zapata-Rivera and Greer, 2001) and models of users’ emotions (Conati and
Zhou, 2002; Ball and Breese, 1999). A model of attention is proposed in
Horvitz et al. (1999), and a model that detects when a user is experiencing
cognitive overload is discussed in Muller et al. (2001).

Recently, systems have also begun to use an extension to Bayesian Net-
works known as Dynamic Decisions Networks (Russell and Norvig, 1995),
a framework that supports rational decision making. Examples of systems
that have employed this decision-theoretic approach to tailored interaction
can be found in Murray and VanLehn (2000), Mayo and Mitrovic (2001),
Horvitz and Paek (2001), and in Jameson et al. (2001).

10. Conclusions

In this paper, we have presented research aimed at creating a student model
that can assess the effectiveness of a learner’s exploratory behaviour in an
open learning environment. This work addresses a substantial limitation of
open learning environments: their effectiveness for learning strongly depends
on learner-specific features that influence the learners’ ability to explore ade-
quately. The Student Model we present is designed to support the provision
of tailored feedback on a learner’s exploration process in ACE, an open
learning environment for mathematical functions. The aim is to make the
open learning environment beneficial even for those learners who do not
already possess the skills relevant to effective exploration. The model is also
designed to monitor the learners’ actions in the environment unobtrusively,
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in order to maintain the unrestricted nature of the interaction that is one
of the key assets of open learning environments.

Our model relies on the probabilistic framework of Bayesian Networks to
handle the large amount of uncertainty involved in monitoring the learner’s
exploratory behaviour. This uncertainty stems from the freedom the envi-
ronment gives the learner, which makes it difficult for the model to assess
the reasons behind a learner’s interface actions and whether or not these
actions contribute to exploration that is truly effective. The model performs
its assessment by relying on a Knowledge Base that defines the relevant
exploration cases within each activity that ACE supports and by monitor-
ing the learner’s exploration of these cases. Nodes in the Bayesian Networks
that correspond to these relevant exploration cases form the basis of the rest
of the Student Model’s assessment, including the effectiveness of the learn-
er’s exploration of exercises, of units and of concepts. Exploration nodes are
influenced by a set of related knowledge nodes, incorporating explicit evi-
dence of the learner’s knowledge into the assessment of effective exploration.

One of the major challenges in building the model was the lack of a
clear definition of what constitutes effective exploratory behaviour. We have
described how the model’s representation of effective exploration has evolved
through an iterative design process. The first version of the model followed
the assumption that effective exploration can be assessed based solely on
interface actions. But the empirical study we performed on the model showed
that monitoring sheer activity level is most likely not sufficient to accurately
assess effective exploration. The learners’ existing knowledge and the amount
of reasoning they do as they perform the exploratory actions also appeared
to be crucial elements for assessing exploratory behaviour and for diagnosing
the causes of poor exploration. Thus, in the second model we present here,
we made learner knowledge one of the predictors of effective exploration.
We discussed what additional factors (e.g., the learner’s self-explanation
behaviour) could be added to improve the assessment of learner reasoning,
but we have yet to perform the actual modifications to the model.

Since our model uses Bayesian Networks, an alternative to the iterative
design and evaluation approach would be to use machine learning techniques.
This would also involve building and evaluating an initial version of the
model. But, rather than using human judgment to refine the model, machine
learning algorithms would be run on traces of the learners’ interactions with
ACE to learn the network structure and/or the CPTs. While this is an
attractive alternative, since it removes a great deal of the subjectivity, it
requires a large amount of data, and dealing with the additional challenge
due to the fact that our model has many hidden variables.

The empirical study also revealed that relevant cases could not form
the basis of assessing all types of exploration. There are certain concepts
that appear across multiple exercises and units, but that do not correspond
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directly to relevant exploration cases. These types of nodes have been added
to the second version. The first version did not take exercise similarity into
account, which has been addressed in the second model. Finally, the eval-
uation demonstrated that the way in which time spent exploring was used
to assess effective exploration was not sufficient, thus, the time nodes were
removed.

In addition to giving insight into how to improve the model, the evalu-
ation provided initial indications of the Student Model’s accuracy and the
benefits of having tailored support. As far as accuracy is concerned, there are
two statistically significant correlations with improvement on post-tests. The
first is that the more hints the learners access, the more they improve. Since
the content of the hints was selected based on the assessment of the Student
Model, this result is an initial indication that the Student Model generates
an accurate assessment of which concepts need further exploration. The sec-
ond is that the number of exercises the Student Model assessed as being
effectively explored is positively correlated with the learners’ improvements
from pre-tests to post-tests, also an indication of the model’s assessment
accuracy.

The evaluation also provides support for the idea of including a model
that can assess effective exploration in an open learning environment. Obser-
vations from the study illustrate that it is important for an open learning
environment to identify learners who are not actively exploring and to give
them specific suggestions targeted at improving their exploration. These
observations show that some learners are inactive despite having low knowl-
edge of the concepts available to be explored, and others need guidance to
completely cover the exploration space effectively. Without such guidance
they are unable to learn important domain concepts.

The Student Model that we presented here was specifically tailored to
the ACE environment, but its high-level design has the potential to general-
ize to other open learning environments. Whether or not the approach can
be generalized is highly dependent on the environments’ definition of “good
exploration”. If the definition is similar to the one discussed here, then the
high-level structure of the model can be applied to any open learning envi-
ronment with a set of activities and exploration concepts of interest within
those activities. This generalizable high-level structure includes the repre-
sentation of exploration using the classes of nodes described here, as well as
the high-level dependencies between exploration and knowledge.

Assessing effective exploratory behaviour has applications beyond edu-
cational settings. It is applicable in any system that is rich with features
or information, but relies on the user’s ability to explore. Examples include
the World Wide Web and large word processing systems. Since some users
have difficulty coping with the lack of direction that these systems provide,
modelling effective exploration and providing tailored feedback is important
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to their usefulness. We believe that the research we have presented in this
paper helps to highlight both how to approach the solution to the problem
and future directions that this work can take.
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