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Abstract

This paper proposes an efficient sampling
method for inference in probabilistic graphi-
cal models. The method exploits a blessing of
dimensionality known as the concentration of
measure phenomenon in order to derive an-
alytic expressions for proposal distributions.
The method can also be interpreted in a vari-
ational setting, were one minimises an upper-
bound on the estimator variance. The re-
sults on simple settings are very promising.
We believe this method has great potential
in graphical models used for diagnosis.

1 INTRODUCTION

Machine learning is plagued with curses of dimension-
ality, but there are less-known blessings too. The in-
corporation of these blessings in the design of learning
algorithms is a research direction of profound impor-
tance (Donoho 2000). In this paper, we exploit one of
these blessings, namely the concentration of measure
phenomenon, to derive efficient sampling algorithms
for inference in probabilistic graphical models.

Various large deviation results state that probability
measures often concentrate on small sets, specially in
high-dimensions. (In information theory this is know
as the asymptotic equipartition property (Cover and
Thomas 1991).) These results can be exploited to de-
sign optimal sampling algorithms. In the importance
sampling scenario, the large deviation theorems allow
one to surmount the crucial problem of coming up with
good proposal distributions. In particular, Cramér’s
theorem enables us to derive importance proposal dis-
tributions analytically for simple distributions.

Large deviation results for importance sampling ap-
peared initially in the simulation and communications
literature (Sadowsky and Bucklew 1990). These re-
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sults, when applicable, have resulted in powerful sam-
plers (Smith, Shafi and Gao 1997). However, they
have been restricted to simple simulation scenarios. In
this paper, we present these results to a broader com-
munity, while extending them to carry out Bayesian
inference in more complex multivariate probabilistic
models.

Our method has an elegant variational interpreta-
tion. One obtains the proposal distribution for im-
portance sampling (for some restricted scenarios) by
analytically minimising an upper-bound on the esti-
mator variance. This provides a more elegant and ef-
ficient framework for combining variational and sam-
pling methods than the one proposed originally in (de
Freitas, Hgjen-Sgrensen, Jordan and Russell 2001).
This new variational perspective applies to sampling
schemes such as Markov chain Monte Carlo and par-
ticle filtering (Doucet, de Freitas and Gordon 2001,
Robert and Casella 1999). However, for ease of presen-
tation, we focus on importance sampling estimators.

2 IMPORTANCE SAMPLING

We begin the paper with a revision of importance sam-
pling (Hammersley and Handscomb 1968, Rubinstein
1981). In statistics, physics and machine learning one
is often concerned with solving high-dimensional inte-
grals with respect to a probability distribution p(z) of
the form?!

I(f)z/f(w)p(x)dw

Monte Carlo integration algorithms are easy to im-
plement if one can sample directly from p(z). This,
however, turns out to be a hard problem. Importance
sampling overcomes it by introducing a proposal distri-
bution ¢(z) such that its support includes the support

!We use continuous distributions to simplify the expo-
sition, but the results also apply in discrete settings.



of p(z). Then we can rewrite I(f) as follows

=/f(w)w(w)q(w)dw

where w (z) £ ¥ o) Eg is known as the importance weight.

Consequently, if one can simulate N i.i.d. samples
{zD}N | according to g (z) and evaluate w(z(?), a
possible Monte Carlo estimate of I (f) is

N
=>f <x(i)) w(z®)

This estimator is unbiased and, under weak assump-

tions, the strong law of large numbers applies, that

is In (f) N—) I(f). It is clear that this integration
—00

method can also be interpreted as a sampling method
where the posterior density p (z) is approximated by

wa()(s(l x)
=1

where §,.¢) (z) denotes the Dirac delta function. Then,
In(f) is nothing but the function f(x) integrated with
respect to the empirical measure py (z).

Some proposal distributions ¢(z) will obviously be
preferable to others. An important criterion for choos-
ing an optimal proposal distribution is to find one that
minimises the variance of the estimator Iy (f)- The
variance of f(z)w(zx) with respect to ¢(x) is given by

vary () (f(@)w(z)) = By (F(@)w?(2)) - I*(f)
n(g(x)) — I*(f) (5)

The second term on the right hand side does not de-
pend on ¢(z) and hence we only need to minimise the
first term (n(g(z))) subject to the constraint that ¢(z)
sums to 1. By forming an appropriate Lagrangian and
taking derivatives, we obtain the following optimal im-
portance distribution

(1>

|f () |p(x)
J1f(@)Ip(z)dz

This distribution ensures that vary (f(z)w(z)) = 0.
However, it is not very useful in the sense that it is
not easy to sample from |f(z)|p(z). Yet, it tells us
that high sampling efficiency is achieved when we fo-
cus on sampling from p(z) in the important regions
where |f(z)|p(z) is relatively large; hence the name
importance sampling.

q*(z) =

This result implies that importance sampling esti-
mates can be super-efficient. That is, for a a given
function f(z), it is possible to find a distribution ¢(z)
that yields an estimate with a lower variance than

when using a perfect Monte Carlo method, i.e. with
q(x) = p(z). This property is often exploited for simu-
lation in communication networks (Smith et al. 1997).

When the normalising constant of p(x) is unknown,
it is still possible to apply the importance sampling
method by rewriting I(f) as follows:

I($) = fffw (d.zcdm

where w (z) % is now only known up to a nor-

malising constant. The Monte Carlo estimate of I (f)
becomes

~ _ sz lf(m(')) x(,)
In(f) = NZ; 1“’ x(’)

Zf( (z)) ()

where @(2(?) is a normalised importance weight. For
N finite, Iy (f) is biased (ratio of two estimates) but
asymptotically, under weak assumptions, the strong
law of large numbers applies, that is In (f) Na;_f'go I(f).

Under additional assumptions a central limit theorem
can be obtained (Geweke 1989). In particular, No3, —
vary(,) (f(z)w(z)) as N — oo, where % denotes the
sample estimator of the variance:

S, (£ - In () uwr(a)
(T (@)’

Throughout our experiments, we use this estimate of
the variance as our measure of performance.

7 =

The estimator I (f) has been shown to perform bet-

ter than Ty (f) in some setups under squared error loss
(Robert and Casella 1999).

As the dimension of the z increases, it becomes harder
to obtain a suitable ¢(x) from which to draw sam-
ples. A sensible strategy is to adopt a parameterised
q(z,0) and to adapt 6 during the simulation. Adap-
tive tmportance sampling (AIS) appears to have origi-
nated in the structural safety literature (Bucher 1988),
and has been extensively applied in the communica-
tions literature (Al-Qaq, Devetsikiotis and Townsend
1995, Remondo, Srinivasan, Nicola, van Etten and
Tattje 2000). This technique has also been exploited
recently in the machine learning community (de Fre-
itas, Niranjan, Gee and Doucet 2000, Cheng and
Druzdzel 2000, Ortiz and Kaelbling 2000). A popular
adaptive strategy involves computing the derivative of
the first term on the right hand side of equation (5)

D) = By (F0u(o0) 255"



and then updating the parameters as follows

N .
—p0. _ l 2..(4) (4) 8“)(37('),90
011 =0, OéN ; [, 0) 460,5
where « is a learning rate and () ~ g(z,8). Other

optimisation approaches that make use of the Hessian
are also possible.

Greedy importance sampling is another interesting
strategy (Schuurmans and Southey 2000). Here, one
draws the initial positions of several a blocks of sam-
ples independently. Then, for each initial sample, one
completes the block by taking steps in the direction
of maximum |f(z)|p(z) until a local maximum or a
specified threshold is reached. The computation of
the importance weights in this scenario requires care-
ful thought.

In this paper, we depart from these approximate
strategies. We focus on obtaining analytical expres-
sions for ¢(x) in some restricted, yet important sce-
narios.

3 MEASURE CONCENTRATION

We focus on the problem of estimating set probabilities
Pp 2Pr(z € E) = /]IE(w)p(a:)da: 9)

where p(z) is a distribution that decays exponentially
and [ g(x) = 1if z € E and 0 otherwise (see Figure 1).
This is a ubiquitous problem in the graphical models
literature as it is of fundamental importance in medical
and industrial diagnosis systems.

In this setting the optimal proposal distribution is
g*(z) o« Ig(x)p(x). Since one cannot sample from
g*(z), we adopt a variational strategy to find other
distributions from which it is easy to sample while
minimising the variance of the estimates. In partic-
ular, we introduce and minimise an upper-bound on
7(g(x)). This minimisation results in an “optimal” im-
portance distribution ¢”(x) from which one can obtain
samples easily.

We use the following identity
/@) > Tp(x) (10)

where 6 is a variational parameter chosen so that the
exponent is positive. 6 is optimised to make the bound
as tight as possible. The rate-point v is the point in
the set E where p(z) is maximised. This is illustrated
with a standard Bayesian linear-Gaussian model in
Figure 2.

Figure 1: Importance sampling: one should place more
importance on sampling from the state space regions
that matter. In this particular example one is inter-
ested in computing a tail probability of error (detecting
infrequent abnormalities).
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Figure 2: In this standard Bayesian linear-Gaussian
model, we are interested in calculating P(z > v|data)
for a rate-point v = 2.5.

Our identity yields the following upper-bound on the
variance:

@) 2 By (O ui@) (1)

This bound is minimised by the following proposal dis-



tribution:
_ plw)e®™ 4 plx)et”
T@ = T ME)

— p(w)eam—logM(G) ép(l’)ezo(w) (12)

where M () is the moment generating function. If
p(x) is Gaussian then it is clear that multiplying it by
the term e?? simply implies a shift in the mean. By
optimising the bound we can compute this shift. We
do this next.

Since p(z) decays exponentially, the bound should be
tight at the point of maximum probability, namely v.
(This is where we are exploiting the concentration of
measure blessing.) To achieve this, we optimise 6 so
that Zg(z) is minimised at z = v. We carry out this
optimisation by differentiating and equating to zero:

=0

T=V

= % (0x —log M (9))

r=v
This derivative gives us

v= Mﬁl(H)a]\;—go) = M*I(H)/a:p(w)eazdx = Ep ()

That is, the proposal distribution, q° has its mean lo-
cated at v. So, for a Gaussian distribution N '(u,o?),
the “optimal” proposal distribution to compute P(z >
v) is given by ¢°(v,0%). The results of using this
proposal distribution in the Bayesian linear-Gaussian
problem are shown in Figure 3.
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Figure 3: Estimator variance as a function of the
number of samples for the distributions and rate-point
shown in Figure 2. The Tilted posterior distribution
performs better than the posterior distribution as pro-
posal mechanism. The prior performs poorly.

The shifted distribution arises in the theory of large
deviations in the proof of the lower bound of Cramér’s
theorem (Bucklew 1986, Dembo and Zeitouni 1993).
There it is known as the tilted distribution. The func-
tion supy Zy(z) is known as the large deviations rate
function or Legendre-Fenchel transform. Note that al-
though we focus on Gaussian distributions in this pa-
per, the method applies to other distributions, such as
the Laplace distribution.

The tilted distribution is only optimal within the fam-
ily of upper-bounds that we are minimising. However,
since both the probability of the set E and the tar-
get distribution p(z) decay exponentially, it is possible
to attain asymptotic optimality. This happens when
the terms in equation (5) cancel out as the number of
samples goes to infinity. A more detailed treatment
of asymptotic efficiency is presented in (Sadowsky and
Bucklew 1990).

In some situations, we might encounter more than one
rate-point. In this case, it seems fairly intuitive to use
a mixture of proposal distributions, each with mean at
one of the rate-points. In other situations, we might
not even know the location of the rate-points. We do
not tackle this problem here, but one solution would
be to use constrained optimisation methods to find the
rate-points.

3.1 DIAGNOSIS NETWORKS

In the remainder of the paper, we shall focus on the
problem of probabilistic inference in graphical models
used for diagnosis. Figure 4 shows a typical network.
This network has the same structure as the well known
QMR medical diagnosis network (Jaakkola and Jordan
1999). We are interested in determining the probabil-
ity that one of the variables (e.g. pressure or temper-
ature) exceeds a particular value.

Figure 4: Diagnosis network: the y nodes correspond
to findings while the x nodes can correspond to fault
states or diseases.

For some graphical models, we might not be able to
compute the posterior of a particular node of inter-
est (the one with the constraint). However, one can



use either the tilted prior distribution or run adaptive
importance sampling (ais) to estimate the posterior
distribution of the node and then tilt this estimate.
In some cases, however, it is possible to compute the
posterior of the node of interest analytically, even if
we cannot compute the posterior of the entire network.
That is, we simply condition on the rest of the network
to compute the marginal posterior of interest. Finally,
we apply the appropriate tilting to the this marginal
posterior.

4 EXPERIMENTS

4.1 TWO-NODE NETWORK

We first consider a network consisting of a single mul-
tivariate node z and a multivariate node y. We con-
sider two types of constraints. First, each dimension
of x is constrained and we compute Pr(z; > v,z2 >
U,...,zq > v|y). Second, only the first dimension is
constrained and we compute Pr(z; > v|y).

We tried 6 methods with different proposal distribu-
tions, namely the prior, posterior, approximate poste-
rior, and their tilted counterparts. The approximate
posterior was computed with one step of adaptation
using an adaptive importance sampling method for
graphical models proposed in (Cheng and Druzdzel
2000). We ensure that the means of the tilted dis-
tributions correspond to the rate-points v.

We run each method for different dimensions and rate-
points. We set the number of samples to 1000. In each
case, we repeated the experiment 20 times to obtain
the mean and variance of the estimator variance and
the effective number of samples (the number of sam-
ples that falls in the set of interest).

We chose a Gaussian prior p(x) = N(0,I) and a Gaus-
sian likelihood p(y|z) = N(Az,I). The posterior was
obtained using standard analytical calculations. The
evidence was simply y = 3.

The mean estimator variances obtained in both exper-
iments are shown in Tables 1 and 2. In both cases, the
tilted distributions performed better than the other
methods. In the multi-constraint case, the tilted prior
outperformed the tilted posterior. This is a result of
the fact that the set of interest is decaying exponen-
tially as we increase the dimension of z. That is, there
are two exponential decays, one due to the Gaussian
decay and one due to the fact that the set becomes
increasingly more constrained. Since the tilted prior
has a higher variance it provides better results. But
eventually, this double exponential decay results in a
depletion of samples as shown in Figure 5. If the con-
strained set is held fixed, there is no depletion of sam-

ples when using the tilted distributions as shown in
Figure 6. This is an encouraging result.

v prior tilted
= = posterior tilted
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Effective Sample Size

150
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Figure 5: Effective sample size in multi-constraint
case. The fact that both the Gaussian and set of in-
terest are decaying exponentially eventually results in
a depletion of samples. Note the prior and posterior
are very close.
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Figure 6: Effective sample size in single-constraint
case. Since the the size of the constrained regions does
not decay with increasing dimension, the tilted distri-
butions allow us to sample effectively despite the in-
creasing dimension.

4.2 MULTI-NODE NETWORK

In this experiment, we adopt the network shown in
Figure 4, with bivariate nodes z and y. Our goal is to
compute Pr(z1; > v,212 > v|y). That is, only the first



Table 1: Mean estimator variance for rate-point v =4 and sample size 1000 with a 2-node network and o single
constraint. We show the rank of the estimator in brackets. The symbol — indicates that no samples were obtained

in the set of interest.

DIMENSIONS METHODS
1 ) 10 15 20 50
4.30e-05(6) | - - - - - prior
2.14e-07(4) | - - - - ais
3.32e-08(3) | 9.16e-04(4) | 1.71e-03(4) | 7.59e-03(4) | 9.48e-03(4) | - ais tilted
2.00e-06(5) | 9.99e-07(2) | 9.99e-07(2) | 9.99¢-07(2) | 9.99e-07(2) | 9.99e-07(2) | posterior
3.18¢-09(1) | 7.61e-06(3) | 4.33e-05(3) | 1.55¢-03(3) | 3.81e-03(3) | 5.81e-05(3) | prior tilted
3.02e-08(2) | 2.87e-08(1) | 2.24e-08(1) | 2.13e-08(1) | 3.13e-08(1) | 3.04e-08(1) | posterior tilted

Table 2: Mean estimator variance for rate-point v = 4 and sample size 1000 with 2-node network and multiple-
constraints. We show the rank of the estimator in brackets. The symbol — indicates that no samples were obtained

in the set of interest.

DIMENSIONS METHODS
1 2 5 7 10 15
4.30e-05(6) | - - - - - prior
2.14e-07(4) | - - - - - ais
3.32e-08(3) | 1.52e-12(3) | 3.28e-16(3) | 1.13e-11(3) | - - ais tilted
2.00e-06(5) | - - - - - posterior
3.18e-09(1) | 6.30e-15(1) | 6.20e-31(1) | 8.17e-44(1) | 7.66e-50(1) | 6.90e-94(1) | prior tilted
3.02e-08(2) | 4.22e-13(2) | 8.20e-25(2) | 3.25¢-34(2) | 2.19¢-49(2) | 5.74e-70(2) | posterior tilted

Table 3: Mean estimator variance for rate-point v = 3 and sample size 1000 with diagnosis network as the

number of nodes increases.
samples were obtained in the set of interest.

We show the rank of the estimator in brackets.

The symbol — indicates that no

TOTAL NUMBER OF NODES METHODS
3 11 21 41 71
- - - - - prior
- - - - - ais
5.07e-05(4) | 5.07e-06(3) | 1.14e-03(3) | - - ais tilted
8.42e-06(3) | - - - - posterior
2.47e-06(2) | 1.36e-08(1) | 7.19e-08(1) | 1.13e-05(1) | 5.34e-03(1) | prior tilted
1.95e-06(1) | 7.07e-08(2) | 1.71e-07(2) | 2.14e-05(2) | 2.08e-06(2) | posterior tilted

bivariate node is constrained. This is a more realistic
model as often we need to carry out multiple diagnosis
while being very careful that one of the variables (say
temperature or pressure) does not exceed a specified
threshold.

Instead of varying the dimension of the nodes, we kept
it constant and varied the number of nodes in the net-
work. The number of z nodes is always one node less
than the number of y nodes. The z nodes have the
same prior as in the two-node network. The same is
true for the likelihood models. Evidence (y = 3) was
entered on all the y nodes. We adopted a fully con-
nected network.

The mean estimator variances are shown in Table 3.
Within variance (not shown), the prior and posterior
tilted methods seem to perform similarly. The effective
number of samples for both techniques is also very sim-
ilar, as shown in Figure 7. Once again, it was encour-
aging to find out that the effective number of samples
does not decay with dimensionality when using the
tilted distributions. Note that standard proposal dis-
tributions failed catastrophically. This is not surpris-
ing as we are sampling in high-dimensional settings.
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Figure 7: Effective number of samples for diagnosis
network with a varying number of nodes. Again, the
effective number of samples for the tilted distributions
does not decay as the dimensionality of the problem
increases. The tilted prior and posterior distributions
tend to exhibit less variance than the tilted adaptive
posterior.

5 CONCLUSIONS

We presented an efficient sampling method for prob-
abilistic inference in an important class of graphical
models. The method is based on a blessing of di-
mensionality known as the concentration of measure
phenomenon. The experiments indicate that for some
graphical models and sets of interest, the tilted prior
and posterior distributions work well despite increas-
ing dimensions. In addition, the number of effective
samples seems to remain fairly constant.

In the future, we would like to extend the method
and test in real domains. One immediate extension
is to adopt the variance expressions for Markov chain
Monte Carlo and particle filtering described in (An-
drieu and Robert 2002, Doucet and Tadic 2002) and,
subsequently, apply our variational upper-bound min-
imisation scheme.
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