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Abstract. MAX-SAT, the optimisation variant of the satisfiability problem in
propositional logic, is an important and widely studied combinatorial optimisa-
tion problem with applications in AI and other areas of computing science. In
this paper, we present a new stochastic local search (SLS) algorithm for MAX-
SAT that combines Iterated Local Search and Tabu Search, two well-known SLS
methods that have been successfully applied to many other combinatorial optimi-
sation problems. The performance of our new algorithm exceeds that of current
state-of-the-art MAX-SAT algorithms on various widely studied classes of un-
weighted and weighted MAX-SAT instances, particularly for Random-3-SAT in-
stances with high variance clause weight distributions. We also report promising
results for various classes of structured MAX-SAT instances.

1 Introduction and Background

The satisfiability problem in propositional logic (SAT) is the task to decide whether
a given propositional formula has a model. More formally, given a set ofm clauses
{C1, . . . , Cm} involving n Boolean variablesx1, . . . , xn the SAT problem is to decide
whether an assignment of values to variables exists such that all clauses are simulta-
neously satisfied. This problem plays a prominent role in various areas of computer
science, mathematical logic and artificial intelligence, but also in many applications [7,
13, 1].

MAX-SAT is the optimisation variant of SAT and can be seen as a generalisa-
tion of the SAT problem: Given a propositional formula in conjunctive normal form
(CNF), the MAX-SAT problem then is to find a variable assignment that maximises
the number of satisfied clauses. Inweighted MAX-SAT, each clauseCi has an asso-
ciated weightwi and the goal becomes to maximise the total weight of the satisfied
clauses. The decision variants of both SAT and MAX-SAT areNP–complete [5]. Fur-
thermore, it is known that optimal solutions to MAX-SAT are hard to approximate;
for MAX-3-SAT (unweighted MAX-SAT with 3 literals per clause),e.g., there exists
no polynomial-time approximation algorithm with a (worst-case) approximation ratio

? To whom correspondence should be addressed.



lower than8/7 ≈ 1.1429. It is worth noting that approximation algorithms for MAX-
SAT can be empirically shown to achieve much better solution qualities for many types
of MAX-SAT instances; however, their performance is usually substantially inferior to
that of state-of-the-art stochastic local search (SLS) algorithms for MAX-SAT (see,e.g.,
[8]).

Many SLS methods have been applied to MAX-SAT leading to a large number of al-
gorithms for unweighted and weighted MAX-SAT. These include algorithms originally
proposed for SAT, which can be applied to unweighted MAX-SAT in a straightforward
way by keeping track of the best solution found so far in the search process. It is not
clear that SLS algorithms that are known to perform well on SAT can be expected to
show equally strong performance on unweighted MAX-SAT and some empirical evi-
dence suggests that this is generally not the case. Therefore, many SLS algorithms were
directly developed for unweighted and, in particular, weighted MAX-SAT or extended
from existing SLS algorithms for SAT in various ways.

The currently best performing SLS algorithms for unweighted and weighted MAX-
SAT fall into three categories: Tabu Search algorithms, Dynamic Local Search algo-
rithms, and Iterated Local Search. Very good performance was reported for Reactive
Tabu Search (H-RTS), a tabu search that dynamically adjusts the tabu tenure, on un-
weighted MAX-SAT instances [2]. High performing Dynamic Local Search algorithms
include DLM by Wah and Shang [19], a later extension called DLM-99-SAT [21], and
Guided Local Search (GLS) [15]. Computational results suggest that GLS is currently
the top performing SLS algorithm for specific classes of weighted MAX-SAT instances,
outperforming DLM and WalkSAT extensions to weighted MAX-SAT [11]. Also note-
worthy is the recent Iterated Local Search by Yagiura and Ibaraki (ILS-YI) [23] that
uses a local search algorithm based on 2- and 3-flip neighbourhoods. Particularly for
MAX-SAT-encoded minimum-cost graph colouring and set covering instances, as well
as for a big, MAX-SAT-encoded real-world time-tabling instance, the 2-flip variant of
ILS-YI performs better than other versions of ILS-YI and a tabu search algorithm im-
plemented by Yagiura and Ibaraki.

In this paper, we propose a new Iterated Local Search (ILS) algorithm and experi-
mentally compare its performance to current state-of-the-art algorithms. The key idea
behind ILS is to alternate between local searches and so-called perturbation phases
which are designed to take the search away from the local optimum reached by the
subsidiary local search procedure. Our new ILS algorithm, Iterated Robust Tabu Search
(IRoTS), uses a Robust Tabu Search (RoTS) algorithm for both the subsidiary local
search and perturbation phases. RoTS is a particular Tabu Search algorithm, originally
applied to the Quadratic Assignment Problem [20], which we adapted to MAX-SAT.

Our empirical evaluation of IRoTS indicates that on a range of well-known bench-
mark instances for weighted and unweighted MAX-SAT this new algorithm performs
significantly better than state-of-the-art MAX-SAT algorithms, such as GLS [15]. This
is particularly the case for weighted MAX-SAT instances with highly variable clause
weight distributions, as well as for highly overconstrained unweighted MAX-SAT in-



procedure Iterated Local Search
s0 = GenerateInitialSolution
s∗ = LocalSearch(s0)
repeat

s′ = Perturbation(s∗)
s∗′ = LocalSearch(s′)
s∗ = AcceptanceCriterion(s∗, s∗′)

until termination condition met
end procedure

Fig. 1.Algorithm outline of ILS.

stance; in both cases, IRoTS reaches quasi-optimal solutions3 up to an order of magni-
tude faster than GLS. IRoTS also performs significantly better than many of the state-
of-the-art algorithms on various classes of structured MAX-SAT instances, although on
these instances it typically does not reach the performance of GLS.

A detailed analysis of the behaviour of IRoTS on individual problem instances
shows that its performance over multiple runs as well as over multiple instances from
the same test-set is typically less variable than that of GLS, which indicates that our It-
erative Robust Tabu Search algorithm escapes more effectively from local optima than
the Dynamic Local Search scheme underlying GLS.

The remainder of this paper is structured as follows. In the next section we introduce
Robust Tabu Search for weighted MAX-SAT and our new Iterated Local Search algo-
rithm, Iterated Robust Tabu Search. In Section 3, we describe the experimental protocol
and benchmark instances used for our empirical analysis, whose results are presented
and discussed in Sections 4 and 5. Finally, in Section 6 we draw some conclusions and
briefly discuss several directions for future work.

2 ILS for MAX-SAT

In this section we describe our Iterated Local Search (ILS) implementation for MAX-
SAT. ILS is a class of algorithms that essentially perform a biased random walk in the
space of the local optima encountered by an underlying local search algorithm [14].
This walk is obtained by iteratively perturbing a locally optimal solutions∗, then ap-
plying local search to obtain a new locally optimal solutions∗′, and finally using an
acceptance criterion to decide from which of the two solutionss∗, s∗′ to continue the
search. An algorithm outline of ILS is given in Figure 1.

Our ILS algorithm for weighted and unweighted MAX-SAT is strongly based on
an adaptation of Robust Tabu Search (RoTS) [20] to MAX-SAT. RoTS is used in the
local search phase and also in the perturbation phase. Since RoTS is actually itself a

3 Many of the test sets we experiment with in this study are intractable for complete solvers, so
we are forced to empirically estimate the optimal solutions for some instances. Details of the
protocol used for this estimation are given in Section 3.



high-performing SLS algorithm for MAX-SAT, we first give some details on the RoTS
algorithm, before describing how it is used in our ILS algorithm.

In each search step, the RoTS algorithm for MAX-SAT flips a non-tabu variables
that achieves a maximal improvement in the total weight of the unsatisfied clauses (the
size of this improvement is also calledscore) and declares it tabu for the nexttl steps.
The parametertl is called the tabu tenure. An exception to this “tabu” rule is made if
a more recently flipped variable achieves an improvement over the best solution seen
so far (this mechanism is called aspiration). Furthermore, whenever a variable has not
been flipped within a certain number of search steps (in our implementation:10n), it is
forced to be flipped. This implements a form of long-term memory and helps prevent
stagnation of the search process. Finally, instead of using a fixed tabu tenure, everyn
iterations the parametertl is randomly chosen from an interval[tmin, tmax] according
to a uniform distribution. The tabu status of variables is determined by comparing the
number of search steps that have been performed since the most recent flip of a given
variable with the current tabu tenure; hence, changes intl immediately affect the tabu
status and tenure of all variables.

Our ILS algorithm, called IRoTS in the following, is initialised by setting each vari-
able independently to true or false with equal probability (the same random initialisation
is used by most other SLS algorithms for SAT and MAX-SAT). As previously stated,
its subsidiary local search and perturbation procedures are both based on the RoTS
algorithm described above. Each local search phase executes RoTS steps until no im-
provement in the incumbent solution has been achieved forescapethresholditerations.
This parameter is set by default ton2/4, which was determined to give robust perfor-
mance over a wide range of test sets. The default tabu tenure for the local search phase
was set ton/10 + 4, which robustly achieves good performance on many of our test
sets. The perturbation phase consists of a fixed number of RoTS search steps (default
value:9n/10) with tabu tenure values that are substantially higher than the ones used in
the local search phase (default tabu tenure for the perturbation isn/2). At the beginning
of each local search and perturbation phase, all variables are declared non-tabu, irre-
spectively of their previous tabu status. If applying perturbation and subsequent local
search to a candidate solutions results in a candidate solutions′ that is better than the
best candidate solution accepted since the search was initialised, the search is continued
from s′. If s ands′ have the same solution quality, one of them is chosen uniformly at
random. In all other cases, the worse of the two candidate solutionss ands′ is chosen
with probability0.1, and the better one otherwise.

The default parameter settings for IRoTS used in this study were determined in
preliminary experiments, in which we also observed that IRoTS typically achieves sig-
nificant performance improvements over RoTS. These default settings were used in
all experiments reported here, with the exception of the experiments on the structured
instances. Details on our experiments (including parameter settings) are given in Sec-
tions 4 and 5.

Throughout this paper, we compare IRoTS to two variants of Guided Local Search
(GLS) as well as the ILS algorithm by Yagiura and Ibaraki (ILS-YI). GLS [15] itera-
tively modifies clause penalties to help the local search escape from local optima. GLS
is based on HSAT [6] as the underlying local search method; in each search step, HSAT



flips a variable with maximal score, breaking ties in favour of the variable which was
flipped longest ago. When trapped in a local optimum, GLS modifies a penalty vector
consisting of penalty valuesclpi for each clauseCi in the given CNF formula. In GLS,
clause weights in weighted MAX-SAT instances are only considered when computing
the utility value of a clause, defined asutil(a,Ci) = wi/(1 + clpi) if clausei is un-
satisfied under the current variable assignmenta and zero otherwise. At each iteration
of GLS, only the penalties of clauses with maximum utility are increased. The clause
penalties are used when computing the variables’ score when evaluating flips. In the
GLS2 variant, all penalty values are regularly decayed, while in the basic GLS penal-
ties never decrease. The reference implementations for GLS and GLS2 used for our
experiments were kindly provided by Patrick Mills.

Yagiura and Ibaraki proposed and studied a simple ILS algorithm for MAX-SAT,
ILS-YI, which initialises the search at a randomly chosen assignment, uses a subsidiary
iterative first improvement search procedure, and a perturbation phase that consists of
a fixed number of (undirected) random walk steps; the acceptance criterion always se-
lects the better of the two given candidate solutions [22, 23]. The ILS-YI algorithm
performs particularly well when using a 2- or 3-flip neighbourhood in the subsidiary
local search procedure. The key to an efficient implementation of ILS-YI with this
2- and 3-flip local search procedure lies in an efficient caching scheme for evalu-
ating moves in the respective larger neighbourhoods. An implementation of ILS-YI
is publicly available athttp://www-or.amp.i.kyoto-u.ac.jp/members/
yagiura/msat-codes/ .

3 Experiment Design

For the computational experiments conducted in this study, we compare the perfor-
mance of the algorithms described in Section 2 on both random and structured in-
stances. All experiments were run on a 1Ghz Pentium III with 1 GB RAM, 256KB
L2 cache, running Linux RedHat 7.3 and usinggcc-3.2 . We first compared the per-
formance of the algorithms on thewjnh and thebor test sets, which have been previ-
ously proposed and studied in the literature [18, 3, 12]. Thewjnh test set consists of 44
randomly generated instances. The clause lengths vary in size, and the clause weights
are randomly and uniformly chosen integers from the interval [1 . . . 1000]. Several of
the instances are satisfiable — a clear distinction is made between the satisfiable and
unsatisfiable instances when reporting results for this test set. Thebor test set con-
sists of both weighted and unweighted Random 2- and 3-SAT instances, resulting in
four classes of instances{weighted, unweighted} × {2SAT, 3SAT}. Each of these
classes is divided into three test sets consisting of 50, 100, and 150 variable instances
for a total of 12 test sets. The number of instances in each test set is relatively small,
ranging from 2 to 9, and each instance has a different clause to variable ratio (all in-
stances are significantly overconstrained). The clause weights in the weighted test sets
are randomly and uniformly chosen integers from the interval [1 . . . 10].

In order to be able to perform more systematic and detailed empirical evaluations,
we generated twelve new test sets of benchmark instances with 100 instances each. Sev-
eral of these test sets are unweighted, and sampled from the Uniform Random 3-SAT



Name n m

rnd50-250u 50 250
rnd100-500u 100 500
rnd100-700u 100 700
rnd100-850u 100 850
rnd100-1000u 100 1000
rnd200-1000u 200 1000

Name n m µ σ

rnd50-w50 50 250 250 50
rnd50-w250 50 250 250 250
rnd100-w100 100 500 500 100
rnd100-w500 100 500 500 500
rnd200-w200 200 1000 1000 200
rnd200-w1000 200 1000 1000 1000

Table 1. Test-sets of unweighted MAX-SAT instances with varying clause to variable ratios
(left), and weighted MAX-SAT instances with different varianceσ2 of clause weight distribu-
tions (right) used within this study.

distribution [16] for various number of variables and clauses, corresponding to the over-
constrained region of Uniform Random-3-SAT. The remaining test sets were obtained
from this set by adding integer clause weights that were randomly generated accord-
ing to discretised, truncated normal distributions. In all cases, the mean of the clause
weight distribution was chosen asµ = 5n, wheren is the number of variables, and the
distribution was symmetrically truncated such that all clause weights are restricted to
lie in the interval[1 . . . 2µ− 1]. Symmetric truncation guarantees that the actual mean
is close toµ. Within this class of distributions, standard deviationsσ of n and5n were
used for generating our test-sets. The resulting test-sets are summarised in Table 1.

Additionally, we performed experiments on three test sets of structured MAX-
SAT instances; these were obtained by encoding Minimum Cost Graph Colouring and
Set Covering Problems, as well as and Level Graph Crossing Minimisation Problems
into weighted MAX-SAT [23, 4]. We denote these test-sets asYI-GCP , YI-SCP , and
LGCMP, respectively.

To evaluate the relative performance of IRoTS, ILS-YI, GLS, and GLS2, we mea-
sured the distribution of the CPU time (and number of search steps) required by each
algorithm for reaching a certain (typically optimal) solution quality on each given in-
stance. These run-time distributions (RTDs) [10] were measured by running each al-
gorithm 100 times on each problem instance until the specified solution quality was
reached or exceeded. We refer to the median of the RTDs thus obtained as thesearch
cost(sc) for the given algorithm and instance.

With the exception of the experiments on structured MAX-SAT instances, we gen-
erally measured RTDs for reaching provably optimal or best-known solution quali-
ties. Where possible, we used Borcher and Furman’s complete solversmaxsat and
wmaxsat [3] to determine the optimal solution quality for each instance. (These are
the best-performing complete MAX-SAT solvers we are aware of.) However, since the
larger instances become intractable for these solvers, we estimated the quality of the op-
timal solutions by using an “iterative deepening” scheme for IRoTS. IRoTS is run for
basecutoff= 106 steps. Whenever an assignment is found that is better than any previ-
ously found assignment, the cutoff is set to the maximum ofbasecutoffand ten times
the number of search steps taken up to that point. This “iterative deepening” scheme is
repeated 10 times per instance, and the best solution quality found over all 10 runs was
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Fig. 2. RTDs for IRoTS, GLS, and GLS2 on the instance from thernd100-w100 test set with
the mediansc (in terms of run-time for GLS).
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Fig. 3. RTDs for IRoTS, GLS, and GLS2 on the instance from thernd100-w100 test set with
the highestsc (in terms of run-time for GLS).

reported as optimal. We verified the solution qualities reported as optimal following this
protocol against the true optimal solution qualities for the test sets for which it was still
possible to run the complete solver, and in all cases IRoTS had found the true optimal
solution. We also verified the optimal solutions for a small, randomly selected set of
larger instances (this required running the complete solver for multiple CPU days). In
the remainder of this paper we treat the solutions returned by this protocol as optimal.

4 Results for Random Instances

In this section, we present our results for the randomly generated instances described in
Section 3. Figures 2 and 3 show the run-time distributions of IRoTS, GLS, and GLS2
on the instances from the test setrnd100-w100 with median and maxsc respectively.
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finding optimal solutions.

It is clear from the fat right tails of the RTDs for GLS and GLS2 that both of these algo-
rithms suffer from stagnation behaviour on these instances. This effect is most apparent
in the hard instance (Figure 3), where we see a very pronounced right tail for GLS. The
RTDs for IRoTS are approximately exponential.

This trend was present for all of the random test sets, and results in GLS2 perform-
ing better, in general, than GLS on all of the test sets; therefore we focus on GLS2 in
our analysis. Another result of this stagnation behaviour is that the ratio of the mean
to the median of the RTDs is much higher for GLS and GLS2 than for IRoTS, which
is more “well-behaved”. Because the median is a more stable summary statistic, we
report statistics only of the median in all our results. When considering mean instead
of median run-times, the ratios of the run-times of GLS and GLS2 to IRoTS are even
higher than the ratios that we report.

The ILS-YI algorithm using the 1-flip neighbourhood (ILS-YI(1)) required multiple
orders of magnitude more CPU time than IRoTS on all of the weighted and unweighted
Random 3-SAT test sets, and was unable to solve some instances from thewjnh test set
within 1 CPU hour. The ILS-YI algorithm using the 2-flip neighbourhood (ILS-YI(2))
performed significantly better than ILS-YI(1), though still required greater than an order
of magnitude more CPU time than IRoTS in all cases, and performed particularly badly
on thewjnh test set (there were instances fromwjnh which required greater than 1
CPU hour for ILS-YI(2) to solve). Because of these poor results, for the sake of brevity
we don’t report further details for ILS-YI here.

Figure 4 shows a scatterplot of the median CPU time required for IRoTS and GLS2
for solving each of thewjnh instances. Some of the instances in this test set are actually
satisfiable (in these cases, the clause weights are redundant, since an optimal solution
will have a cost of zero), and have been marked in the plots. We see that the satisfiable
instances tend to be easier for both IRoTS and GLS2. For 39 of the 44 instances in the
test set, GLS requires fewer steps that IRoTS to find an optimal solution; the median
sc for IRoTS is 14896, while the mediansc for GLS2 is 2977 search steps. However,
when we consider the median CPU time required to find an optimal solution we see that
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IRoTS requires less CPU time than GLS2 on 28 of the 44 instances, and the median
CPU time for IRoTS to find a solution is 0.038 seconds, while the median CPU time
for GLS2 is 0.050 seconds. In summary, IRoTS performs on par with GLS, the best
known algorithm for thewjnh instances. Since GLS was shown to perform better than
a variety of earlier proposed algorithms on this test set [18, 19, 21, 11], this fact also
applies to IRoTS.

We ran all of the algorithms on thebor test set, and present a short summary of
these results here. Overall, IRoTS was the best performing algorithm on these test sets.
IRoTS typically required between 1.5 and 5 times less CPU time than GLS and GLS2
for finding optimal solutions. For example, on the 150 variable weighted 3-SAT test
set, the mean run-time for IRoTS, GLS, and GLS2 are 0.0093, 0.024, and 0.018 CPU
seconds, respectively. The instances tend to get easier (as the clause/variable ratio is
increased) for IRoTS but harder for GLS and GLS2 (similar results are reported later
in this section for the unweighted Random 3-SAT test sets). The ILS-YI algorithms
both required over 5 times more CPU time to solve all of the test sets than all of the
other algorithms, with the worst results for the larger test sets. RoTS performed as well
as or better than GLS and GLS2, and worse than IRoTS in almost all cases.

Because there are so few instances in each of these test sets, the data presented above
for the bor test set may not be representative of the typical behaviour of these algo-
rithms on random test sets. To address this question, we now consider the performance
of the algorithms on the weighted and unweighted Random 3-SAT test sets described
in Section 3. Again, we report only results for IRoTS and GLS2, which were the two
best performing algorithms on these test sets.

Figure 5 shows a scatter plot of the median CPU time required for IRoTS and GLS2
to optimally solve each instance in thernd100-w100 test set. We see that IRoTS
requires less CPU time than GLS2 on all but one instance. We also notice that the
CPU times are positively correlated, but that there is a significant amount of noise in
the correlation especially for the harder instances. Interestingly, the amount of noise
is proportional toσ2 (the variance in the clause weights) — as the variance in the



run-length [search steps] run-time [CPU sec×10−4]
IRoTS GLS2 IRoTS GLS2

Test Set q50
q90/q10 q50

q90/q10 f.b. s.f. q50
q90/q10 q50

q90/q10 f.b. s.f.

rnd50-250u 113 7.9 142 9.6 0.7 1.3 5 3.5 18 4.7 1.0 3.6
rnd50-w50 274 8.0 448 8.7 0.19 1.7 9 3.8 41 6.2 1.0 4.5
rnd50-w250 574 10.1 754 19.60.37 1.3 13 6.1 68 15.60.99 5.2
rnd100-500u 639 10.3 618 8.1 0.390.97 21 5.6 88 4.6 1.0 4.2
rnd100-w100 2202 7.5 2160 10.60.540.98 52 6.0 207 9.1 0.99 4.0
rnd100-w500 6591 11.1 6126 39.5 0.5 0.93 131 10.6 570 36.70.88 4.4
rnd200-1000u 6630 13.3 5665 23.60.540.85 240 11.2 712 21.20.99 3.0
rnd200-w200 45648 18.7 69523 22.70.56 1.5 1449 18.2 8244 22.10.95 5.7
rnd200-w1000 318836 21.4217964 24.40.260.68 10166 20.928277 27.50.71 2.8

Table 2.Summary statistics of the search cost distribution for IRoTS and GLS2 on the Random
3-SAT test sets;qx denotes thexth percentile;f.b. is the fraction of instances in the test set with
sc(IRoTS)< sc(GLS2);s.f. is the “speedup-factor”,i.e. the ratioq50(GLS2) /q50(IRoTS).

run-length [search steps] run-time [CPU sec×10−4]
IRoTS GLS2 IRoTS GLS2

Test Set q50
q90/q10 q50

q90/q10 f.b. s.f. q50
q90/q10 q50

q90/q10 f.b. s.f.

rnd100-500u 639 10.3 618 8.1 0.390.97 21 5.6 88 4.6 1.0 4.2
rnd100-700u 514 6.2 1016 9.5 0.95 2.0 19 3.5 139 6.8 1.0 7.3
rnd100-850u 612 5.9 1937 6.3 1.0 2.3 24 3.7 288 5.7 1.0 12.0
rnd100-1000u 499 6.3 2193 7.4 0.99 4.4 22 3.1 404 6.4 1.0 18.4

Table 3.Summary statistics of the search cost distribution for IRoTS and GLS2 on 100 variable
unweighted Random 3-SAT test sets with increasing clauses/variables ratio.

clause weight distribution increases, the correlation between thesc of IRoTS and GLS2
decreases.

Table 2 shows summary statistics of the distribution of search costs for IRoTS and
GLS2 on the Random 3-SAT test sets. Clearly, IRoTS performs better than GLS2 on
these test sets; IRoTS requires fewer flips for 4 out of the 9 test sets, and less CPU
time than GLS2 in all cases. Table 3 shows the relative performance of IRoTS and
GLS2 on the unweighted 100 variable Random 3-SAT test sets as the clauses/variables
ratio increases. Note that the relative performance of IRoTS vs. GLS2 increases with
the clauses/variables ratio. Furthermore, the instances become progressively easier for
IRoTS as the level of constrainedness increases, while at the same time they become
more and more difficult for GLS2. For the most overconstrained test sets, the median
CPU time for finding optimal solutions is more than an order of magnitude less for
IRoTS than for GLS2.

It may be noted that many of the Random-3-SAT instances are optimally solved
within the first RoTS local search phase of the IRoTS algorithm (which is terminated
aftern2/4 iterations without improvement), indicating that in these cases, RoTS alone
is sufficient for finding optimal solutions. This is, however, not generally true for the



YI-GCP YI-SCP LGCMP
Algorithm q50

q90/q10 q50
q90/q10 q50

q90/q10

GLS 0.36 1.180.35 0.9511.15 1.07
GLS2 2.12 1.181.27 0.9211.56 1.07
IRoTS 4.46 1.753.39 1.05 1.18 0.92
ILS-YI(1) – – – – 2.79 0.93
ILS-YI(2) 0.78 1.19 – – 16.38 1.10
RoTS – – – – 1.96 0.93

Table 4. Summary statistics of search costs distribution on test sets of structured instances for
each of the algorithms, measured in CPU seconds. Entries marked with a ‘–’ indicate that the
respective algorithm was unable to find the desired solution quality within 1 CPU hour.

hardest instances, where IRoTS shows substantially improved performance over RoTS;
this performance advantage of IRoTS over RoTS is even more pronounced for the struc-
tured instances considered in the next section.

5 Results for Structured Instances

For the MAX-SAT encoded graph colouring, set covering, and crossing minimisation
instances [4], IRoTS with the default parameters performs rather poorly. This is not sur-
prising, since these instances are quite different from the previously considered random
instances in terms of their syntactic properties (such as clause length and weight distri-
butions). To obtain better performance, we changed theescapethresholdparameter to
100 steps, and used a different perturbation mechanism, in which instead of performing
RoTS with a large tabu tenure, each variable is flipped independently at random with
probability 0.05. The latter modification was motivated by the observation that using
RoTS in the perturbation phase resulted in stagnation of the search process. We believe
that the reason for this lies in the fact that RoTS is based on a greedy heuristic, and even
though when using RoTS for perturbation the tabu tenure is set very high, the underly-
ing greedy search mechanism seems to be unable to escape from the deep local optima
that appear to be encountered when solving these instances.

Due to the extremely large computation times required by some algorithms for find-
ing optimal (or best known) solutions of the structured instances considered here, we
performed our comparative analysis based on RTDs for suboptimal solution qualities.
For each instance, we ran the worst-performing of IRoTS, GLS, and GLS2 10 times
with a fixed cutoff of 10 seconds. Then we chose the 90th percentile of the solution
quality distribution observed for that run-time as a target for all of the algorithms, and
report statistics on the time required to find the respective (typically sub-optimal) solu-
tion quality.

The results from these experiments are shown in Table 4. The relative performance
of IRoTS, GLS, and GLS2 is similar for the graph colouring and set covering instances,
with GLS performing best by a large margin. IRoTS was able to solve all of the in-
stances in these two test sets, but required approximately an order of magnitude more
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Fig. 6. SQT for a typical 125 node crossing minimisation instance. The y-axis shows the median
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the median absolute solution quality reached at timet andsq∗ is the best quality solution ever
found by any of the algorithms studied in this paper.

CPU time than GLS. The performance of GLS2 and IRoTS was more comparable, but
GLS2 was still better by a factor of more than 2. Interestingly, the 2-flip ILS-YI algo-
rithm performed very well on the graph colouring instances, but not on the set covering
instances.

IRoTS shows more promise on the MAX-SAT encoded crossing minimisation in-
stances, where it requires less than an order of magnitude less CPU time to find solutions
of the given quality than GLS, GLS2, and the 2-flip ILS-YI algorithm. The 1-flip ILS-
YI algorithm also performs well on these instances, though IRoTS is still a factor of 2
better than ILS-YI. Interestingly, this is the only test set where the 1-flip ILS-YI algo-
rithm was among the best performing, indicating that Iterated Local Search in general
may be well-suited to this type of MAX-SAT instances.

Additional experiments indicate that GLS and GLS2 perform better on the MAX-
SAT encoded crossing minimisation instances when searching for higher quality solu-
tions. Figure 6 shows the development of solution quality over time (SQT) for a 125
node crossing minimisation instance. We see that IRoTS finds much higher quality so-
lutions than either GLS variant in short runs (this is reflected in the results reported in
Table 4), but that both GLS variants find higher quality solutions if sufficiently long
run-times are allowed. The results for random instances (where IRoTS outperforms
GLS and GLS2) are qualitatively different, as Figure 7 shows. It is encouraging to note
that IRoTS eventually finds solutions within 1% of the best known solution qualities,
and that we see no evidence of stagnation for IRoTS in the SQTs.

The results of IRoTS on the structured instances also show a very strong improve-
ment over RoTS at least for the graph colouring and set covering instances. This is
further evidence that the underlying RoTS algorithm can be significantly improved by
embedding it into the Iterated Local Search framework.
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6 Conclusions and Future Work

In this work we introduced a new stochastic local search algorithm for MAX-SAT, It-
erated Robust Tabu Search (IRoTS). This algorithm combines two SLS methods that
have been used very successfully for solving a variety of other hard combinatorial op-
timisation problems, Iterated Local Search (ILS) and Robust Tabu Search (RoTS). Our
empirical analysis of IRoTS on a range of MAX-SAT instances, including weighted
and unweighted as well as randomly generated and structured instances, shows that in
many cases IRoTS outperforms GLS, one of the best-performing MAX-SAT algorithms
currently known, and ILS-YI, an earlier and simpler Iterated Local Search algorithm.
However, we also observed cases in which the performance of IRoTS did not reach that
of GLS, such as MAX-SAT-encoded Minimum Cost Graph Colouring and Set Covering
problems.

Like most other papers on MAX-SAT algorithms in the literature, we have focused
mainly on randomly generated MAX-SAT instances and present only limited results
on structured instances. We are currently extending this evaluation to additional sets of
MAX-SAT-encoded instances from other domains with the goal of obtaining a better
understanding of how the behaviour of state-of-the-art MAX-SAT algorithms differs
between structured and random instances. Given an increased recent interest in using
MAX-SAT algorithms for solving encoded instances of other combinatorial problems,
such as MPE finding in Bayes Nets [17], the results from such a study should be highly
relevant for the assessment and future development of MAX-SAT algorithms.

Our experimental results indicate that IRoTS performs particularly well on un-
weighted instances that are highly overconstrained, and therefore have optimal solu-
tions with a large number of unsatisfied clauses, and on weighted instances with high
variability clause weight distributions. In future work, we plan to further investigate
how the performance of IRoTS and other MAX-SAT algorithms, in particular GLS, de-



pend on features of the given problem instance. An important part of this is the analysis
of the underlying search spaces.

We recently developed generalisations of Novelty+, a state-of-the-art SLS algo-
rithm for SAT [9], to weighted MAX-SAT. Preliminary experimental results indicate
that in many cases, including thewjnh instances as well as some of the structured in-
stance sets considered here, these algorithms outperform GLS and IRoTS. In many of
the cases in which IRoTS is particularly successful, these Novelty+ variants don’t reach
its performance. On the other hand, we have presented limited evidence in this paper
that IRoTS does not achieve state-of-the-art performance on SAT instances. This sug-
gests that inherently different SLS strategies are required for efficiently solving SAT
and at least certain types of MAX-SAT instances. This hypothesis will be further in-
vestigated in future research and might shed new light on the fundamental differences
between solving decision and optimisation problems.

Overall, we see this present work as the first in a series of empirical studies that char-
acterise and improve the state-of-the-art in solving MAX-SAT while providing deeper
insights into the MAX-SAT problem and the behaviour of high-performance SLS algo-
rithms for combinatorial optimisation problems. The fact that even at this early stage,
we improved over state-of-the-art algorithms on a wide range of instances is very en-
couraging and, in our mind, illustrates the overall potential in this line of work.
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