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ABSTRACT

Many geometric invariants have been reported in
the literature. For two specific differential scale invari-
ants we discuss the parameters involved and analyze
the accuracy of their computation on real camera data.
Our experimental data show significant errors in the
observed values. Those errors seem to be inherent in
the image formation and scaling process. They indicate
the limitations of local differential computations and,
more generally, the problems of synthetically scaled im-
ages as models for zoomed images.

1. INTRODUCTION

In an earlier work [5], we have proposed differential in-
variants under similarity transformations, plus linear
brightness change. While invariance under translation,
rotation, and brightness change is straightforward to
achieve, invariance under scaling, where scaling refers
to the zooming process of a camera, poses some funda-
mental problems for sampled images.

e The standard sampling theory assumes point sam-
pling. However, a camera is an area based sam-
pler, integrating over the necessarily finite size of
the sensor elements [1].

e It is generally assumed that the signal is ban-
dlimited and sampled above the Nyquist rate, but
with real world scenes, this usually doesn’t hold.

e The concept of derivatives is ill-defined on a ma-
trix of sample points. We have to assume an
underlying continuous image function. However,
there are infinitely many ways to fit a continu-
ous function to given data points. If Gaussian
kernels are used to compute the derivatives, the
value of the differential invariant depends on the
o of the Gaussian (or, equivalently, the window
size) chosen for the computation.

On top of this, we have to consider the usual error
sources that are part of the image formation process,

like noise and lense distortions, or even JPEG com-
pression. Given the long list of potential error sources,
the question is whether local scale invariants can be
computed robustly.

2. THE INVARIANTS

The two differential scale invariants proposed in [5],
based on the idea to form ratios of derivatives such that
the transformation parameters cancel out, are defined
for a 1-d function f(z) as follows.

0 iff2=0A f"=0
Omia(z) = f'(x)2/f"(x) if[f7] < |f"]
@)/ f (@)*  else (1)
0 ifcl
Omiza(x) = (F'(2)f"(x)/f"(x)? if 2

F1(@)2)(f () f(z)) else  (2)

where cl is the condition f”(z) = 0 A f'(z)f"(z) = 0,
and c2 specifies |f'(z)f""(z)| < |f"(z)?|]. Note that
-1<Om12 <1, and 0< Op1a3 <1
The derivative operators are implemented with Gaus-

sian kernels [3, 5, 7]. They are computed over a finite
window size, and, critically, the o of the Gaussian is a
parameter of the computation. In 2-d, the derivatives
in egs. (1) and (2) are replaced by rotationally sym-
metric derivative operators. That is, the first deriva-
tive operator becomes the gradient magnitude, the sec-
ond derivative operator becomes the Laplacian, and the
third derivative operator becomes the cubic variation.
Note that ©,,12 i1s actually invariant under similar-
ity transformations (translation, rotation, scale), while
O;n123 1s also invariant under linear brightness changes.
It is assumed that the scene object of interest is always
in focus, i.e. there are no significant changes in depth
along the object of interest.
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Figure 1: Computation of scale invariants on images of
different size.

3. THE SCALING PROCESSES

In order to analyze the accuracy and variability of the
invariants, we compare the invariants computed at each
pixel of an image 1,1 to the ones of another image I¢ g
of the same scene, but reduced in size. That is, we
take an image of an object, called the alpha-1 image,
move the camera away from the object, and take an-
other image, called the camera scaled (CS) image. In
the CS image, the object of interest is mapped onto
fewer pixels, and the decrease in size defines the scal-
ing factor a.

For the purpose of comparison, we downsample I,
to the same size as Icg, 1.e. by a factor a. This down-
sampling is done by Gaussian prefiltering with parame-
ter 0syn and subsequent resampling using cubic spline
interpolation. We assume a Gaussian model for the
camera scaling process, i.e. the camera’s point spread
function 1s assumed to have approximately the shape
of the Gaussian.'

The two processes to arrive at the invariants are
depicted in fig. 1. The simulated process, called scaling
by simulated optical zooming (SO), is shown on the
left, producing ©%9, and the hardware based camera
scaling process on the right producing ©(5) where ©
is either ©,,19 or O,,123.

The SO process downsamples the alpha-1 image to
the same size as the CS image. So we can expect identi-
cal invariants ©5° and ©(5) if the underlying images,
before the computation of the invariants, are identi-

LOur camera, a Sony DXC 950, shows a certain contrast en-
hancing effect in response to a sharp edge, but the PSF is still
close to the Gaussian.

cal. Therefore, we first compute the difference between
the CS image and the downsampled alpha-1 image and
minimize it by adequate prefiltering.

Let I, (0gyn) be the synthetically downsampled im-
age prefiltered with osy,, and Ics(ocs) the camera
scaled image prefiltered with o¢g. Then the absolute
difference Ag at each pixel location is

Aq(z,y;0cs,05yn) = |les(z,y;0c8) — La(2, y; 0gyn)]
(3)

the maximum absolute difference 1s

~

Ag(ocs, Osyn) = max Ag(z,y;0cs,0syn)

(4)

and if we regard the absolute difference as noise, we
can define the signal to noise ratio

SNRG(ocs, osyn) = 10 logq (Ves / Vag) ()

where Veg is the variance of Ics(z,y; 0cg) and Va, is
the variance of Ag(z,y;0cs, Osyn)-

Let’s assume that ogy, has been set to a certain
value, preferably osy, > a for anti-aliasing purposes.
For the camera scaled image, the corresponding value
of the prefiltering parameter o¢ s depends on both gy,
and «. Since the cascade of two Gaussians of size o
and o9, respectively, is equivalent to one Gaussian of
size \/o? + o2, we have U%yn =a?+ (aocs)? so that
the theoretical size of the prefilter for the zoomed image
1s

" 1
0cs = E J%yn —a? (6)
ocs | Osyn As | SNRg
0 0 127.46 | 11.443
0 1.35 113.80 | 10.546
1.42 | 2.35 27.96 | 20.410
1.72 | 2.35 21.24 | 22.191
227 | 3.35 16.60 | 22.470
2.57 | 3.35 14.76 | 22.857

Table 1: Error measures for Icgs vs. I, for different
prefilter settings.

For the example image Building in fig. 2, table 1
shows the error measures computed according to eqs. (4)
and (5) for different settings of ocg and osyn. If 05yn=0,
aliasing occurs, and the maximum absolute difference
Ag is large. If o5yn=a=1.35, but ocs=0, Ag is still
large because now I, (0sy, = 1.35) is a smoothed im-
age compared to the unfiltered image Ics(ocs = 0).
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Figure 2:

Therefore, both I, and I¢g have to be smoothed. If we
set ogyn=0a+1.0=2.35 and ocs=1.42=6¢s according
to eq. (6), then the SNR increases significantly while
AG decreases sharply. Slight improvements in the SNR,
can be achieved by filtering with a larger ogy,, but
also by filtering with a o¢cs > o¢s. For our cam-
era and our image data, the empirical data suggests
ocs = ocs + 0.3 for maximizing the SNR. The gen-
eral insight is that the minimization of the difference
between scaled images not only depends on the scal-
ing factor but also on the interdependent prefiltering
parameters for both images.

We proceed with the invariants ©,,12 and ©,,123
for Ics and I,. We compute the same error measures
as in eqgs. (3)-(5), where now the intensity values have
been replaced by the invariant values. The results in
table 2 show that the maximum absolute differences
are large, and the SNR has dropped significantly, espe-
cially for ©,,193 which depends on third order deriva-
tives. Fig. 3 shows O,,12 and ©,;,123 computed for I¢g,
and their respective differences when computed for 7.
Not surprisingly, image areas of constant intensity pose
a problem. But for ©,,123, the data is so noisy almost
everywhere that the computation of the invariant be-
comes meaning]less.

One reason for the low SNR has to do with the finite
area of physical sensors. They are aperture samplers
which integrate over a certain area of the imaged ob-
ject. Both the object area that is mapped onto a spe-
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Figure 3: ©(¢9) vs. 059, o=1.35. (a) @f,fl‘;)(acg =

2.28); (b) Ae,...; (c) O 3h(ocs = 2.28); (d) Ae,,,.
a H Ae,., | SNRe,.,, ‘£®m123 SNRe ;.5

1.09 || 1.961 6.444 0.995 5.288
1.18 || 1.860 6.837 0.992 6.016
1.27 || 1.936 4.837 0.998 3.619
1.35 || 1.854 5.121 0.998 4.111

Table 2: Error measures for ©(C5) vs. @59 for differ-
ent values of a, image Building, for ©,,12 and O,,123.
Prefiltering with ¢,,=3.0, ccs = 7¢s+0.3.

cific pixel and the relative phase between object and
sensor elements change as the scale changes. These
changes can produce significant imaging artifacts, as
demonstrated in fig. 4. The image taken of a chess-
board pattern, at a certain distance, shows gray lines
that are not part of the chessboard pattern. The emer-
gence of these gray lines can be simulated by integrat-
ing over the chessboard with the appropriate ground
area, as indicated by the overlayed dashed grid where
the length of the integration area is seven eighths of the
length of a black or white square. The resulting pat-
tern is shown on the right. Clearly, such artifacts that
may appear and disappear any time as the distance be-
tween camera and objects changes limit the robustness
of any local computation.

A similar problem exists even in 2-d Gaussian scale
space, as pointed out in [2] and illustrated in fig. 5.
Although the Gaussian has been shown [7] to have the
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Figure 4: Area based sampling of a chessboard pattern.
(a) synthetic chessboard pattern with overlayed grid;
(b) image of chessboard pattern taken by a camera;
(c) simulated aperture scanning.

Figure 5: Creation of new extrema in 2-d: (left) before
(right) after Gaussian smoothing.

causality property of not adding new intensity levels
when filtering an image with increasing o, it is still
possible that new extrema emerge. Fig. 5 shows two
cones, connected by a narrow ridge, with a maximum
in the center. Smoothing removes that maximum and
creates two new maxima at the peaks of the cones. The
previous global maximum has been turned into a saddle
point. Again, such events distort the derivatives.

Problems with the robustness of the computation
of local features when the image undergoes a scale
change have been reported in a related context. In [4],
Schmid et al. try to identify key points. They apply
various key point detectors to an image, record the
key points, change the scale of the image by chang-
ing the focal length of the camera, and apply the same
key point detectors again. Then they measure the
so-called repeatability rate, i.e. the percentage of key-
points found in both images within a distance of € from
each other. They report repeatability rates of less than
5% at «=2.0 for the best key detectors for e=0.5. When
e=1.5, the repeatability rates are higher, but they drop
quickly to below 40% at a=2.0. This again indicates
that the robust computation of local features under
scale change is challenging.

4. CONCLUSION

We have compared images at different scales, both in
terms of their intensities and in terms of differential
scale invariants computed on them. The scaling pro-
cess not only involves the scaling factor «, but also
prefiltering of both images involved. For a Gaussian
model, we showed how the prefiltering parameters are
related.

Even with an optimized parameter setting, the dif-
ferences between a camera scaled image and an image
of same size downsampled from an image of larger size
remains remarkably large. Taking ratios of derivatives
aggravates the problem. The poor results question the
usefulness of differential invariants under scaling.

Some reasons for these negative results have been
pointed out. Most notable, area based sampling caus-
ing unwanted artifacts is inherent in the nature of the
imaging process and plays a major role as the scale
changes.

However, it should not be concluded that differen-
tial invariants are generally of limited usefulness. For
example, in [6] we have shown how differential invari-
ants can be employed to increase retrieval performance
if the transformation of interest is gamma correction.
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