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Abstract

This paper presentsinvariants under gamma correction and
similarity transformations. Theinvariantsare local features
based on differentialswhich are implemented using deriva-
tives of the Gaussian. The use of the proposed invariant rep-
resentation is shown to yield improved correlation resultsin
a template matching scenario.

1 Introduction

Invariants are a popular concept in object recognition and
imageretrieval [1, 2, 7, 10, 14, 15]. They aimto provide de-
scriptionsthat remain constant under certain geometric or ra-
diometric transformations of the scene, thereby reducing the
search space. They can be classified into global invariants,
typically based either on a set of key points or on moments,
and local invariants, typically based on derivativesof theim-
age function which is assumed to be continuous and differ-
entiable.

The geometric transformations of interest often include
trandation, rotation, and scaling, summarily referred to as
similarity transformations. In a previous paper [12], build-
ing on work done by Schmid and Mohr [11], we have pro-
posed differential invariants for those similarity transforma-
tions, pluslinear brightness change. Here, we arelooking at
anon-linear brightness change known as gamma correction.

Gamma correction is a non-linear quantization of the
brightness measurements performed by many cameras dur-
ing theimage formation process.! Theideaisto achieve bet-
ter perceptual results by maintaining an approximately con-
stant ratio between adjacent brightness levels, placing the
guantization levels apart by the just noticeable difference.
Incidentally, this non-linear quantization also precompen-
sates for the non-linear mapping from voltage to brightness
in electronic display devices[4, 9].

IHistorically, the parameter gammawas introduced to describe the non-
linearity of photographic film. Today, its main use is to improve the output
of cathode ray tube based monitors, but the gamma correction in display
devicesisof no concernto us here.

Gamma correction can be expressed by the equation
I,=pI" (1)

where I isthe input intensity, 7, is the output intensity, and
p isanormalization factor which is determined by the value
of 4. For output devices, the NTSC standard specifiesy =
2.22. For input devices like cameras, the parameter valueis
just inversed, resulting in atypical value of v = 1/2.22 =
0.45. The camera we used, the Sony 3 CCD color camera
DXC 950, exhibited ¥ ~ 0.6.2 Fig. 1 shows the intensity
mapping of 8-bit data for different values of ~.
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Figure 1: Gamma correction as a function of intensity.
(solid) v = 1; (dashed) v = 0.45; (dotted) v = 2.22.
Note how, for v < 1, the lower intensities are mapped onto
alarger range.

It turns out that an invariant under gamma correction can
be designed from first and second order derivatives. Addi-
tional invariance under scaling requires third order deriva-
tives. Derivatives are by nature trandationally invariant.
Rotational invariancein 2-d isachieved by using rotationally
symmetric operators.

2Martin [6] reports the settings of v = 0.45,0.50,0.60 for the Kodak
Megaplus XRC camera



2 Thelnvariants

The key idea for the design of the proposed invariantsis to
form suitable ratios of the derivatives of the image function
such that the parameters describing the transformation of in-
terest will cancel out. This idea has been used in [12] to
achieve invariance under linear brightness changes, and it
can be adjusted to the context of gamma correction by — at
least conceptually — considering the logarithm of the image
function. For simplicity, we begin with 1-d image functions.

2.1 Invarianceunder Gamma Correction

Let f(z) be theimage function, i.e. the origina signal, as-
sumed to be continuous and differentiable, and f,(z) =
p f(z)7 the corresponding gamma corrected function. Note
that f(z) isaspecial caseof f.,(x) wherey = p = 1. Teking
the logarithm yields

fw(r) =1In(pf(z)") =Ilnp+~vIn f(z) 2
with the derivatives f/ (z) = ~ f'(z)/f(z), and f(z) =
v (f(z) f'(z) — f(z)*)/ f(z)?. We can now define thein-
variant ©12, under gamma correction to be
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The factor p has been eliminated by taking derivatives, and
~ has canceled out. Furthermore, ©,2., turns out to be com-
pletely specified in terms of the original image function and
its derivatives, i.e. the logarithm actually doesn’t have to be
computed. The notation O+, (f(z)) indicates that the in-
variant depends on the underlying image function f(z) and
location xz — the invariance holds under gamma correction,
not under spatial changes of the image function.

A shortcoming of O, isthét it is undefined where the
denominator is zero. Therefore, we modify ©4,, to be con-
tinuous everywhere:

0  ifff=0Aff"—F*=0
_ffr / 1" pr2
ff”—f/2 If |ff|<|ff f |
FF A i (4)

7o o=
where, for notational convenience, we have dropped the
varigble . The modification entails —1 < ©p,12¢ < 1.
Note that the modification is just a heuristic to deal with
poles. If all derivatives are zero because the image function

is constant, then differentials are certainly not the best way
to represent the function.

6m12'y =

2.2 Invarianceunder GammaCorrection and

Scaling

If scaling is atransformation that has to be considered, then
another parameter o describing the change of size hasto be
introduced. That is, scaling is modeled here as variable sub-
stitution [11]: the scaled version of f(z) isg(az) = g(u).
So we arelooking at the function

f;(m) =In(pf(z)") =lnp+~vylng(az) = §,(u)

where the derivatives with respect to z are g (u) =
Yoy (u)/g(u), §(u) = v0 (g(u) g (u) — ¢’ (u)?) /g (w)*,
and g/ (u) = va® (9" (u)/g(u) — 3¢'(u) g (u) /g(u)” +
2g'(u)?/g(u)?). Now theinvariant ©123- (¢ (u)) isobtained
by defining a suitable ratio of the derivatives such that both
~ and « cancel out:
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Analogously to eg. (4), we can define a modified invariant
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where condition condl is g2¢’ ¢ — 3g¢'%¢" +2¢'* =0
A g2g"* —2g¢%¢" + ¢'* = 0, and condition cond2 is

< 2 B 4 2 B 2 4
l9°9" 9" =399 9" +29"| <99 — 299" 9" + ¢"|.
Again, this modification entails —1 < ©,,123y < 1.

2.3 An Analytical Example

It is a straightforward albeit cumbersome exercise to verify
theinvariantsfrom egs. (3) and (5) with an analytical, differ-
entiable function. As an arbitrary example, we choose

f(z) = 3zsin(27z) + 30

The first three derivatives are f'(z) = 3sin(27z) +
6rz cos(2nz), f'(z) = 127 cos(2mz) — 12722 sin(27z),
and f"'(z) = —367m2sin(2mz) — 2473z cos(2mz). Then,
according to eg. (3), ©124(f(z)) = (3zsin(2mz) +
30) 3z sin(27z) + 6mwxcos(2mz))/ ((Bxsin(2mrz) +
30) (12w cos(2mz) — 1272z sin(27z)) — (3sin(27z) +
6z cos(2mz))?).

If we now replace f(z) with agamma corrected version,
sy foas(z) = 2551794 . 3zsin(2mz) + 30)045,
the first derivative becomes f ,5(z) =  255%°°
0.45 (3sin(27z) + 30)~%55(3sin(27z) + 67z cos(2mz)),



the second derivative is f{,5(z) = —255%°5
0.45 0.55 (3sin(2mz) + 30)~155(3sin(27z)
6rx cos(2mz))?  + 25555 0.45 (3z sin(27z)
30)%%5(127 cos(2mz) — 12n%zsin(27z)), and the third
is fi"ys(z) = 255%%5 . 0.45 (3sin(2mz) + 30)~%55(1.55 -
0.55 (3sin(2mz) + 30)~2(3sin(27z) + 672 cos(2mz))>
(-3) 0.55 (3sin(27z) + 30)"(3sin(27z
6rx cos(2mz)) (127 cos(2mz) — 127z sin(2nz)
(=367?sin(27z) — 2473z cos(2mz))). If we plug these
derivatives into eg. (3), we obtain an expression for
©12+(fo.45(x)) whichisidentical tothe onefor ©14, (f(x))
above. The algebraically inclined reader is encouraged to
verify the invariant ©1 3., for the same function.
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Figure 2: An analytical example function. (left) f(z) =
3esin(2wz) + 30; (right) f,(x) = pf(z)’, v = 0.45.
(first row) original functions (second row) first derivatives,
(third row) second derivatives, (fourth row) third deriva
tives, (fifthrow) ©,12+; (SiXthrow) ©,,123.

Fig. 2 shows the example function and its gamma cor-
rected counterpart, together with their derivatives and the
two modified invariants. As expected, the graphs of the in-
variants are the same on theright ason theleft. Notethat the

invariants define a many-to-one mapping. That is, the map-
ping is not information preserving, and it is not possible to
reconstruct the original image from its invariant representa-
tion.

2.4 Extensionto 2-d

If ©m12y OF Opi23, are to be computed on images, then
egs. (3) to (6) have to be generalized to two dimensions.
This is to be done in a rotationally invariant way in order
to achieve invariance under similarity transformations. The
standard way isto use rotationally symmetric operators. For
thefirst derivative, we have the well known gradient magni-
tude, defined as

Vigy) =G+ =T (7)

whereI(z, y) isthe2-dimagefunction, and I, I, arepartial
derivatives along the x-axis and the y-axis. For the second
order derivative, we can use the linear Laplacian

Vi@, y) = Lpw + Lyy = 1" (8)

Horn [5] aso presents an alternative second order derivative
operator, the quadratic variation®

QV(z,y) = ,/ng—i—QIgy—i—Igy (9)

Since the QV isnot alinear operator and more expensive to
compute, we use the Laplacian for our implementation. For
the third order derivative, we can define, in close analogy
with the quadratic variation, a cubic variation as

\/ rro + 31351/ + 3lgyy + Igyy = I/“
(10)

Theinvariants from egs. (3) to (6) remain valid in 2-d if
wereplace f/ with I’, f with I, and f"” with I’’’ Thiscan
beverified by going through the same argument asfor the 1-d
functions. Recall that the critical observation in eg. (3) was
that v cancels out, which is the case when al derivativesre-
turn afactor v. But suchisalso the case with the rotationally
symmetric operators mentioned above. For example, if we
apply the gradient magnitude operator to I(z, y), i.e. to the
logarithm of a gamma corrected image function, we obtain

= 12412
== o= VO

I
returning afactor v, and analogously for V2, QV, and CV. A
similar argument holdsfor eq. (5) wherewe haveto show, in
addition, that the first derivative returns a factor «, the sec-
ond derivative returns a factor o?, and the third derivative
returns afactor o, which is the case for our 2-d operators.

—)227

3Actually, unlike Horn, we have taken the square root.



2.5 Differential Operators

While the derivatives of continuous, differentiable func-
tions are uniquely defined, there are many ways to imple-
ment derivatives for sampled functions. We follow Schmid
and Mohr [11], ter Haar Romeny [13], and many other re-
searchersin employing the derivatives of the Gaussian func-
tion asfilters to compute the derivatives of a sampled image
function via convolution. Thisway, derivation is combined
with smoothing. The 2-d zero mean Gaussian is defined as
1 22442

G=—— ¢ 202

2mo?

(1)

Thepartial derivativesup tothird order are G, = —z /o2

Gy =—y/0*G, Gy = (2% — 0?) /0" G, Gy = zy/c* G,
Gyy = (v* — 0?)/0* G, Gpow = (30%z — 2%)/0° G,
Gowy = (0%y — 2%Y)/0° G, Gpyy = (o2 — zy?)/0° G,
Gyyy = (30%y — y*)/0® G. They are shown in fig. 3. We
used the parameter setting o = 1.0 and kernel size 7 x 7.
With these kernels, eg. (3), for example, isimplemented as

[/I®G:)*+ (I®Gy)?
T(T® Gax + 18 Gyy) — (I ® Ga)? + (1 ® Gy)?)

6127 =

at each pixel (z, y), where ® denotes convolution.
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Figure 3: Partial derivativesof the 2-d Gaussian. (first row)
Gz, Gy, Gz, (second row) Gey, Gyy, Geze; (third row)
Gaay, Goyyr Gyyy-

3 Experimental Data and Results

Weevad uatetheinvariant ©,,12, fromeq. (4) intwo different
ways. First, we measure how much the invariant computed
on an image without gamma correction is different from the
invariant computed on the same image but with gamma cor-
rection. Theoretical, this difference should be zero, but in
practice, it isnot. Second, we compare template matching
accuracy onintensity images, again without and with gamma
correction, to the accuracy achievableif instead theinvariant
representation is used. We also examine whether the results
can be improved by prefiltering.

3.1 Absoluteand RelativeErrors

A straightforward error measure is the absolute error,

Agc(i, j) = 1©ac(i,§) — Oocel(d, 4)] 12)
where” 0GC” refersto theimage without gamma.correction,
and GC stands for either "SGC” if the gamma correction is
done synthetically via eq. (1), or for "CGC” if the gamma
correction is done viathe camera hardware. Like theinvari-
ant itself, the absolute error is computed at each pixel lo-
cation (i, j) of the image, except for the image boundaries
where the derivatives and therefore the invariants cannot be

computed reliably.

Figure 4: Example image WbBA: (a) no gamma correction,
“0GC”; (b) gamma correction by camera, “CGC”; (c) syn-
thetic gamma correction, “ SGC”.

Fig. 4 shows an example image. The SGC image has
been computed from the 0GC image, withy = 0.6. Note
that the gamma correction is done after the quantization of
the 0GC image, since we don’t have accessto the 0GC im-
age before quantization.

Fig. 5 shows the invariant representations of the image
datafrom fig. 4 and the corresponding absoluteerrors. Since
—1 < Oniay < 1,wehave < Age < 2. Thedark points
infig. 5, (¢) and (e), indicate areas of large errors. We ob-
serve two error sources:

e Theinvariant cannot be computed robustly in homoge-
neousregions. Thisishardly surprising, giventhat itis
based on differentials which are by definition only sen-
sitiveto spatial changes of the signal.
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Figure 5: Absolute errors for invariant ©,,12,, NO pre-
filtering. () image WBA, 0GC; (b) ©uac; (€) Acac;
(d) ©cae; (€) Asae; () ©Osae.

e There are outliers even in the SGC invariant represen-
tation, at points of very high contrast edges. They area
byproduct of the inherent smoothing when the deriva
tives are computed with differentials of the Gaussian.
Note that the latter put a ceiling on the maximum gra-
dient magnitude that is computable on 8-bit images.

In addition to computing the absolute error, we can also
compute the relative error, in percent, as

dcae (i, j) = 100 Acgel(i, §) / Ooae (i, §)
(13)

Then we can define the set RP.. of reliable points, relative to
some error threshold ¢, as

RPc = {(i,7)[4(i,j) < ¢} (14)
and PRP., the percentage of reliable points, as
PRP. = 100 |[RP.|/n (15)
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Figure6: Reliablepoints RP, for invariant ©,,1., in black,
image W BA, without and with prefiltering. (a) =0, €=
5.0; (b) 6pr.=0, ¢=10.0; (C) 7pr=0, ¢=20.0; (d) 5p,.=1.0,
¢=5.0; (€) 0pre=1.0, ¢=10.0; (f) pr.=1.0, €=20.0.

where n isthe number of valid, i.e. non-boundary, pixelsin
the image. Fig. 6 shows, in the first row, the reliable points
for three different values of the threshold ¢. The second row
showsthe sets of reliable pointsfor the samethreshol dsif we
gently prefilter the 0GC and CGC images. The correspond-
ing datafor the ten test imagesfromfig. 11 issummarizedin
table 1.

image || 50 | 10.0 | 200 || 5.0 | 10.0 | 20.0
Build| 133|249 | 438 | 16.0 | 29.5 | 49.3
WOBA || 15.6 | 29.0 | 48.2 || 19.0 | 35.7 | 58.9
WBB || 165 | 28.7 | 47.1 || 214 | 37.7 | 58.1
WBC || 185 | 33.6 | 535 | 240 | 414 | 65.3
WBD || 13.0 | 239 | 419 || 16.7 | 32.6 | 55.6
Cycl 154 | 283 | 459 || 226 | 38.8 | 57.6
Sand || 145 | 272 | 447 | 220 | 385 | 57.6
Tool A || 56 | 10.7 | 201 || 74 | 147 | 27.1
Tool B || 61 | 120 | 22.7 || 83 | 15.7 | 28.6
ToolC || 56 | 11.1 | 208|| 7.9 | 151 | 283
median || 13.9 | 26.1 | 44.3 || 17.9 | 34.2 | 56.6
mean 124 | 229 | 389 || 165 | 30.0 | 48.6

Table 1: Percentages of reliable pointsfor ©,,12,, CGCim-
ages, for ¢=5.0, 10.0, 20.0. The three numerical columns
on the left show PRP. without prefiltering, the three right
columns with Gaussian prefiltering, ¢,,.=1.0.

Derivativesare known to be sensitiveto noise. Noisecan
be reduced by smoothing the original data before the invari-
ants are computed. On the other hand, derivatives should be
computed aslocally aspossible. With these conflicting goals



to be considered, we experiment with gentle prefiltering, us-
ing a Gaussian filter of size o,,.=1.0. The size of the Gaus-
sianto computetheinvariant ©,,12- isset to 0 4.,=1.0. Note
thet o, and o4., can not be combined into just one Gaus-
sian because of the non-linearity of the invariant.

With respect to the set of reliable points, we observe that
after prefiltering, roughly half the points, on average, have
arelative error of less than 20%. Gentle prefiltering consis-
tently reduces both absolute and relative errors, but strong
prefiltering does not.

3.2 Template Matching

Template matching is a frequently employed technique in
computer vision. Here, we will examine how gamma cor-
rection affectsthe spatial accuracy of template matching, and
whether that accuracy can be improved by using the invari-
ant ©,,12. An overview of the testbed scenario is given

0GC intensity

CGC intensity

search b

template (correlation)
Oy Oy
Y Y
template (correlation)

OGC invariant CGC invariant
Figure 7: The template location problem: A query template
is cut out from the OGC intensity image and correlated with
the corresponding CGC intensity image. We test if the cor-
relation maximum occurs at exactly the same location asin
the OGC intensity image. The same processis repeated with
the invariant representations of the 0GC and CGC images.

infig. 7. A small template of size 6 x &, representing the
search pattern, istaken from aOGC intensity image, i.e. with-
out gammacorrection. Thisquery templateisthen correlated
with the corresponding CGC intensity image, i.e. the same
scene but with gammacorrection switched on. If the correla-
tion maximum occurs at exactly the location where the 0GC
guery template has been cut out, we call this a correct max-
imum correlation position, or CMCP.

The correlation function s(z, y) employed here is based
on anormalized mean squared difference ¢(z, y) [3]:

s =max(0,1 —¢)
TG iyt d) - D)~ (T(0.4) - T))?
VU iy +5) =12 £, 5T, 5) = T)?

where [ is an image, T' is a template positioned at (z, y),
1(z, y) isthemean of the subimageof I at (z, y) of thesame
sizeasT, T isthemean of thetemplate, and0 < s < 1. The
template location problem then isto perform this correlation
for the whole image and to determine whether the position

of the correlation maximum occurs precisely at (z, y).
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Figure 8: Matched templates, image WOBA: (left) intensity
data; (right) invariant representation. Black box=query tem-
plate, white box=matched template.
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Figure9: Correlation matrices, image WBA. (left) intensity
data; (right) invariant representation.

Fig. 8 demonstrates the template location problem, on
the left for an intensity image, and on the right for its in-
variant representation. The black box marks the position of
the original template at (40,15), and the white box marks
the position of the matched template, which is incorrectly
located at (50,64) in the intensity image. On the right, the
matched template (white) has overwritten the original tem-
plate (black) at the same, correctly identified position. Fig. 9
visualizes the correlation function over the whole image.
The white areas are regions of high correlation.

The example from figs. 8 and 9 dealswith only one arbi-
trarily selected template. In order to systematically analyze
the templatelocation problem, werepeat the correlation pro-
cess for al possible template locations. Then we can define
the correlation accuracy CA as the percentage of correctly

located templ ates,
CAtnxtm = 100 [CMCPypxtm| / n (16)

wheretn xtm isthesizeof thetemplate, CMCPy,, «¢.,, iSthe
set of correct maximum correlation positions, and », again, is



Figure 10: Binary correlation accuracy matrices, white
pixelssCMC Psxg, image WOBA. (8 intensity image,
opre=0; (b) intensity image, o,,.=1.0; (c) invariant repre-
sentation, o,,.=0; (d) invariant representation, o,,.=1.0.

the number of valid pixels. We compute the correlation ac-
curacy both for unfiltered images and for gently prefiltered
images, with ¢,,. = 1.0. Fig. 10 shows the binary correla-
tion accuracy matrices for our example image. The CMCP
set is shown in white, its complement and the boundariesin
black. We observe a higher correlation accuracy for the in-
variant representation, which isimproved by the prefiltering.

Figure 11: Test images: (@) Bui | d; (b) WbBA; (c) WBB;
(d) WBC; (e) WBD; (f) Cycl; (g) Sand; (h) Tool A;
(i) Tool B; (j) Tool C.

image || Int/0 | Int/2.0 || Inv/O | Inv/1.0
Build| 850 | 780 85.8 89.5
WBA || 555 | 450 75.7 80.4
WBB || 39.3 | 310 52.7 57.6
WBC || 67.2 | 583 68.9 78.7
WBD || 316 | 29.2 480 | 674
Cycl 605 | 454 98.6 99.4
Sand || 50.5 | 40.9 85.2 94.4
Tool A || 41.7 | 35.3 60.2 68.0
Tool B || 295 | 234 45.7 54.1
Tool C || 421 | 27.8 425 | 484
median | 46.3 | 38.1 64.6 73.4
mean || 50.3 | 414 66.3 73.8

Table 2: Correlation accuracies CA, template size6 x 8, left
columns for intensity data, right columns for the invariant
representation, without and with prefiltering.
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Figure 12: Correlation accuracies, (top) templatesize6 x §&;
(bottom) template size 10 x 10. The entries at x=1 refer to
Bui | d, at x=2to WBA, etc. (circles, lower line) intensity
images; (stars, center line) invariant representation, o, =0;
(diamonds, upper line) invariant representation, ¢,,.=1.0.
The markers on the left hand side indicate the means, the
markers on the right hand side the medians.



We have computed the correlation accuracy for all the
imagesgiveninfig. 11. Theresultsare shownin table 2 and
visualized in fig. 12. We observe the following:

e The correlation accuracy CA is higher on the invariant
representation than on the intensity images.

e Thecorrelation accuracy is higher on theinvariant rep-
resentation with gentle prefiltering, ¢, = 1.0, than
without prefiltering. We also observed a decrease in
correlation accuracy if weincrease the prefiltering well
beyond o,,,. = 1.0. By contrast, prefiltering seems to
be always detrimental to the intensity images CA.

e The correlation accuracy shows a wide variation,
roughly in the range 30%...90% for the unfiltered
intensity images and 50%...100% for prefiltered
invariant representations. Similarly, the gain in corre-
lation accuracy ranges from close to zero up to 45%.
For our test images, it turns out that the invariant
representation is always superior, but that doesn’t
necessarily have to be the case.

¢ Themedians and means of the CAsover all testimages
confirm the gain in correlation accuracy for the invari-
ant representation.

e The larger the template size, the higher the correlation
accuracy, independent of the representation. A larger
template size means more structure, and more discrim-
inatory power.

4 Conclusion

We have proposed novel invariants that combine invariance
under gamma correction with invariance under geometric
transformations. In a general sense, the invariants can be
seen as trading off derivatives for a power law parameter,
which makes them interesting for applications beyond im-
age processing. The error analysis of our implementation
on real images has shown that, for sampled data, the invari-
ants cannot be computed robustly everywhere. Neverthe-
less, the templ ate matching application scenario has demon-
strated that a performance gain is achievable by using the
proposed invariant.
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