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We present a computational framework designed to improve leaning from examples by
suppating self-explanation —the processof clarifying and making more complete to oreself the
solution of an example. The framework is innovative in two ways. First, it represents the first
attempt to provide computer suppatt to example studying instead of problem solving. Secnd, it
explicitly coaches a domain-general, meta-cognitive skill that many studies in cognitive science
have shown to greatly improve leaning.

The framework includes solutions to three main problems: (1) to design an interface that
effedively monitors and suppats slf-explanation; (2) to devise astudent model that allows the
asessnent of example understanding from reading and self-explanation actions; (3) to
effedively elicit further self-explanation that improves student’s example understanding. In this
paper, we describe how these solutions have been implemented in a computer tutor that coaches
self-explanation within Andes, a tutoring system for Newtonian physics. We aso present the
results of a forma study to evaluate the usability and effectiveness of the system. Finaly, we
discuss ®me hypaotheses to explain the obtained results, based on the analysis of the data
collected during the study.

INTRODUCTION

Research on Intelligent Tutoring Systems (ITS) has been increasingly affeding education.
While for many yeas ITS remained confined to reseach labs, today they have started moving
into the classroom, showing their effectiveness for learning and influencing the structure of
traditional curricula (Koedinger, Anderson, H., & Mark, 19%). However, existing ITS still
target only a limited part of the learning process They generally focus on teaching problem
solving and damain specific cognitive skills.

The long-term goal of our research is to explore innovative ways in which computers can
enhance alucation by covering other learning phases and by helping students acquire meta-
cognitive, damain independent learning skill s. In this paper, we describe our first step in this
direction: acomputational framework designed to support leaning from examples and the meta-
cognitive skill known as sif-explanation — generating explanations to oreself to clarify an
example’ sworked ou solution.

Effectively learning from examples is important because students heavily rely on examples
when learning a new skill (Anderson et al. 1981, Pirolli & Anderson 1985, LeFevre & Dixon
1986,VanLehn 19&). However, the benefits of learning from examples drongly depends on
how students study them. Several studies in cognitive science show that students who
spontaneously self-explain when they study examples learn more (Chi, Bassok, Lewis,
Reimann, & Glaser, 1989; Ferguson-Hesder & Jong, 199Q Pirolli & Recker, 1994; Renkl,
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1997 Renkl, Stark, Gruber, & Mandl, 1998). Furthermore, self-explanations are usualy more
effedive than explanations provided hy others, because (Chi, in press)
 they trigger more cnstructive leaning processes, by requiring students to bring to bear
and actively elaborate their existing knowledge, and

e studentsinitiate self-explanations to address their specific problems in urderstanding
the example, while often external explanations are not tailored to a student’ s individual
needs.

The self-explanation studies also show that most students do rot spontaneously self-explain.
However, students start self-explaining more when they are guided (Bielaczyc, Firalli, &
Brown, 19%; Ryan, 19%) or even just prompted to do so (Chi, Leeuw, Chiu, & LaVancher,
1994). Theseresults suggest that it can be greatly beneficial to integrate computer-based support
to problem solving with individualized guidance to learning from examples through self-
explanation.

To provide this guidance, a wmputer tutor must be ale to monitor students as they study
examples and to elicit further self-explanation that can improve the students understanding.
Two tasks apparently simple, but that entail additional challenges for the traditional ITS
problems: user interfacedesign, student modelling and providing adequate help.

* User interface design. In previous dudies, example studying and self-explanation
consisted of reading and speaking. How can we devise a interface that monitors
students’ attention and allows them to constructively generate their self-explanations,
given that eyetracking technology and retural language processing are still not
powerful and reliable enough to be readily usable in nonlaboratory setting?

e Student modelling. To model a student during example studying requires assessing how
well the student understands the example and learns from it. How can we perform this
asesanent by relying on actions like reading and self-explaining, that are largely
ambiguouws and have lessdired correspondenceto example understanding than problem
solving adions have to problem solutions?

« Providing adequate help. One of the benefits of self-explanation comes from the fact
that spontaneous slf-explainers selectively generate self-explanations to target their
specific learning needs. How can a computer tutor dedde what further self-explanations
can be more beneficia for thase students that do not spontaneously self-explain? When
and hav should the tutor elicit these self-explanations from those students that are
naturally reluctant to self-explain?

Our framework to support self-explanation, know as the SE (Self-Explanation)-Coach,
includes solutions to these problems. The solutions are grounded in existing hypotheses of what
are the salient features that make self-explanation effective for learning and are the result of a
thorough processof iterative design. The framework has been implemented and tested within
Andes, atutoring system for Newtonian physics that supports students during both example
studying and problem solving (VanLehn, 1996). During exampl e studying, the SE-Coadch makes
sure that students thoroughly self-explain the available examples, especialy those parts of the
solutions that may be dallenging and novel to them. Figure 1 shows one of the SE-Coach
examples, which reflects the structure of most examples presented in physics textbodks.

The paper is structured as follows. After discussing related work, we describe the cognitive
science findings that provide the theoretical justification for the SE-Coadh’s design. Then, we
illustrate the SE-Coadh' s architecture and the knowledge representation underlying the system’s
expertise on self-explanation. Next, we describe the menu-based interface that monitors
students’ attention and provides gructured prompting and scaffolding for self-explanation. We
then give an brief overview of the SE-Coadh's student model, based on the probabilistic
reasoning framework of Bayesian network (Pearl, 1988 and we ill ustrate how the SE-Coach
uses the model to dicit further self-explanations that improve example understanding. Finaly,
we discussthe results of aformal study that we performed to evaluate the SE-Coach usability
and eff ectivenessfor learning.



EXAMPLE 1: Boy rescued by SOLUTION
a helicopter Because we wart to find & force, we apply
Jakie, an S0HY undergrad, Mesvton's 2nd lawy to solve this problem.
PfOblem i rescu_ed from a burning buikding e choose Jake a= the body to
by & helicopter. wrhich to apply Mewton's 2nd lawe.
He hangs at the end of arope " . -
Statement ! ! The helicopter's rope exerts 5 tension
dangllng.beneath the helicopter. torce T on Jake.
i th? helcopter ac:c:eln.ar aes, Thetension force T is directed upwards. Worked 011’[
z:ﬂgg%ﬁmﬁwam with respect The other force acting on Jake iz his weight
with an acosleration 2 = 2m/s"2, The wvweight vy is tI:iiret:ied dowermeards. Solu‘t]_ on
FIND: To apply Mewwton's 2nd lav to Jake, we
- choose & coordinsts swstem withthe v axiz
Thetension T exerted by the rope, divected doverward
The % component of Jake's weight v is
Wy =
S]_'t'uat]_ on The componentof lhe-:ension T on Jake is
_y=-T.
Dlagram - The net force scting on Jake along the ¥ @iz is
5 = 2mist2 Rlet-force w =W s + T_y.
l rm = 80Ky Therefore | substituting
Wy =W, oand T_y=-T
FREE BODY DIAGRAM into the net force equation, we abtain
Plet-foree b =W - T,
a = i If e apply NeMDn'S 2nd.LaW toJake,
along the v axis, we obtain:
Free Body Met-force_y = m*a_y
; The ¥ component of Jake's accelerstion s i=
Diagram % ay=a
Therefore, it we substitute a_v and
Jake (= 80Ky Met_force_y =WwW-T
irto
W Met_force-y = mta_y
W ohtain
ey W =T = m*a = (G0*2) Newtons.,
Le i b iH e vt fowr T i

Figure 1: A sample phisics example and its comporents

RELATED WORK

Using explanations to enhance learning has been a prominent research topic in the ITS
community. Most of the work on this subject has focused onhow to enable acomputer tutor to
generate explanations that can facilitate the students' learning (Clancey, 1990; Moore, 19%;
Moore, Lemaire, & Rosenblum, 1996 Vivet, 1987; Woltz, McKeown, & Kaiser, 190). More
reaently, researchers have dtarted investigating computer tods that support learning by
facilitating the exchange of explanations among peas (Baker, 199; Ploetzner & Fehse, 1998).
Although this research, like ours, aims to trigger learning by bringing the students to generate
adive explanations on the target instructiona material, it focuses on a different instructiona
setting: learning through coll aboration with peers. In contrast, the work presented in this paper
focuses on how to help students generate and lean from explanations when there ae no peers
to stimulate and validate the process. Supporting self-explanation is important not only because
learning with peers is not always feasible, but also becaise self-explanation hes two main
pedagogicd differences from generating explanations for others. First, when self-explaining,
learners can target specific problems in their understanding rather then having to concentrate on
what is unclear to someone else. Second, when self-explaining, learners do not need to worry
abou phrasing the explanations properly, and can therefore concentrate on the explanation
content. These differences do not imply that self-explanation is better than explaining to others.
They smply contribute to make self-explanation a different meta-cognitive skill, that can be
useful at different learning stages and that improve astudent’s general learning abil ity.

Like the SE-Coadh, aher tutoring systems rely on examples as instructional means. However,
most of these systems use examples to support students as they solve problems, na as a
specific learning phase prior and complementary to problem solving. ELM-PE (Burrow &
Weber, 196 ) and ELM-ART (Weber & Specht, 1997), dlow the student to access relevant
examples while solving LISP programming problems and povide explanations on hov each
example is relevant for the problem solution. SHERLOCK (Gott, Lesgold, & Kane, 1996),
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provides expert solutions to troubleshooting problems, and fhelps students compare these
solutions with their own solutions at the end of each problem solving task. CATO (Aleven &
Ashley, 1997) helps gudents building legal arguments by generating relevant example caes and
by reifying the mnrection between the mntent of the ases and their use in the aguments.
Besides using examples in a different instructional situation, rone of these systems tries to
encourage students to view the examples, nor do they monitor how students study and
understand them. Moreover, the systems themselves, rather than the students, generate
€l aborations on the presented examples.

The Geometry Tutor (Aleven, Koedinger, & Cross, 199) moves a step closer to the SE-
Coad. It explicitly encourages students to explain, in term of geometry axioms, the problem
solving steps they have used to build a geometry proof. However, there ae three main
differences with the SE-Coad. First, the explanations are generated during problem solving.
Semnd, an explanation with the Geometry Tutor consists simply of a selection from a list of
geometry axioms. The student does not have to explain the axiom any further. Third, the tutor
makes the students explain each solution step. It does not take into account the students
knowledge or previous interactions with the system to evaluate if some explanations may be
more beneficial than athers for the students.

PRINCIPLESUNDERLYING THE SE-COACH’SDESIGN

Incremental support to self-explanation

Our framework for self-explanation is designed to provide incremental support to self-
explanation through dfferent levels of prompting and scaffolding, embedded in the interface
design and in the SE-Coach tutorial interventions. These different levels aim to help students
with different self-explanation capabilities slf-explain more, while maintaining as much as
possible the spontaneous, constructive nature of thisleaning adivity.

On the one hand, there ae arguments for giving students the initiative during self-
explanation. Self-explanation enables students to question and repair their understanding (Chi,
in press), in ways that can be different across students and learning situations (Renkl, 1997).
Moreover, students with good self-explanation and self-monitoring skills often can repair what
they do ot understand ketter than teachers can, because teachers generaly canna diagnose &
precisely the students comprehension problems. (Webb, 1989). These arguments call for an
interfacethat leaves much of the initiative to the student.

On the other hand, there ae arguments for giving the initiative to the Coach. Self-
explanation studies how that many students do nd self-explain, for a variety of reasons.

1. Many students are not good at self-monitoring when they study (Chi, in press; Chi et al.,
1989. They tend to overestimate their understanding of examples (Renkl, 199) and
therefore do not initiate self-explanations to improve it.

2. Sometimes dudents are unableto use their domain or common-sense knowledge to generate
meaningful self-explanations. This mainly happens when the examples are cmmplex enough
that most students are avare of having comprehension gaps, but still cannot generate self-
explanations that repair these gaps (Renkl, 1997).

3. EBven students that spontaneously engage in self-explanation do not always generate the
kinds of explanations that are most useful for leaning. For instance, explanations that relate
steps in the example solution to goals in the underlying solution plan generally help learn
highly transferable knowledge (Catrambore, 19%; Pirolli & Redker, 1991; Renkl, 199;
Renkl et a., 1998). However, even spontaneous lf-explainers tend to generate few goal-
oriented self-explanations (Renkl, 1997).

The different levels of prompting and scafolding in the SE-Coadh are designed to
acommodate the varied propensity and capability to self-explain that different students have, so
as to provide each student with the minimum intervention sufficient to trigger constructive and
effedive self-explanations.
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Focus on corred self-explanation

Our self-explanation framework includes the caability of providing feedback for correctness on
the students' self-explanations. The issue of whether such feedbadk should be provided is
controversiad. In al the experiments on self-explanation, any statement that went beyond the
information presented in the worked out solution was classified as slf-explanation, beit correct
or not. In the experiments in which human tutors guided self-explanation, the experimenters
elicited additional clarifications from the students when their self-explanations were incomplete
or incoherent, but did not give feedbadk on their correaness (Bielaczyc & a., 1995 Chi et al.,
1994). In all these experiments, students' problem solving improved, leading some researches to
argue that is the self-explanation process per se, and nd the mrrectness of its outcome, that
elicits learning (Chi, in press Ryan, 199§. In particular, Chi (Chi, in presg argues that
incorrect self-explanations are beneficial exactly because they create flaws in the student’s
knowledge. These flaws may be later contradicted by other elements of the example, triggering
self-explanations to fix the flaws and thus generating better learning.

However, this argument applies only to students that can monitor their understanding and we
know that these students are a minority. The other students may seldom detect the
inconsistencies generated by their incorrect self-explanations. Immediate feedback on self-
explanation correctness protects these students from leaning wrong knowledge from incorrect
self-explanation, and simply makes the other students detect the conflict sooner than they would
on their own. Thus, athouwgh we believe that even incorred and incomplete self-explanations
can improve learning, we agreewith (Renkl et a., 1998 that helping students generate more
correct self-explanation can extend these benefits.

Focuson domain-based self- explanation

In order to provide feedbadk for correctness the SE-Coach needs to have an interna
representation d the relevant, correct self-explanations that can be generated for each avail able
example. It would be unfeasible to encode these explanations by hand, especially becaise we
ultimately want to alow instructors to easily extend the set of avail able examples on their own.
Thus, we identified in the literature two types of self-explanations that can be attomaticaly
formalised in a computational model, given a rule based representation d the underlying
domain knowledge. Thesetypes are:

a) Justifying a solution step in terms of the domain theory, and

b) Relating solution steps to goals in the abstract plan underlying the example solution.

These self-explanations have been shown to highly correlate with learning and were
common aaoss the different instructional domains investigated in the self-explanation
experiments (physics, statistics, programming, physiology of the human circulatory systems).
We label these self-explanations “domain-based” because they involve relating example stepsto
the target domain knowledge, as opposed to self-explanations that involve common sense
knowledge. Common-sense based self-explanations also seem to play an important role in
learning from examples (Chi & VanLehn, 199; Chi et a., 199; Bidlazyc 4 al., 1995; Ryan,
1996. Currently, the SE-Coach cannot support these self-explanations, because doing so would
require a natural language interface and much more complex domain and student models.
However, even if the SE-Coach canna explicitly guide common-sense based explanations,
hopefully it does not prevent the students from generating them sportaneoudly.

Principled design of interface toolsto support self-explanation

After identifying the kinds of self-explanations that the SE-Coach could suppat, we had to
understand which interface could help students generate them. Since using natural language
input was unfeasible, we needed menu-based tools that could still all ow the students to generate
their self-explanations as naturally and constructively as possible. (Chi et a., 1989) analysed the
form of students spontaneous self-explanations and identified two forms that were highly used:
(1) expanding or refining the precondtions of a solution step and (2) explicating and inferring
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additional consequences of a step. Hence, we have designed menu-based tods that scaff old self-
explanations with these forms. The SE-Coach’'s menu-based tools alow students to justify a
solution step by describing the domain rule from which the step derives, in terms of (i) the
preanditions that must be verified to apply the rule; (ii) the results that the rule gplication
generates. This description in terms of preconditions and consequences reflects the SE-Coadh's
rule-based domain representation, and alows the system to provide feadbadk for correctness
based onthis representation.

A student modél to guide the SE-Coach interventions

The sdf-explanation interface is a scafolding tool meant to encourage students to
spontaneously self-explain. However, a framework to support self-explanation must be ale to
provide stronger interventions to help those students who are not receptive to the interface
scaffolding.

One way to provide this stronger scaffolding could be to make the students use the interface
todls to self-explain every example part. This strategy may possbly work with students that
never self-explain, but would end upsuggesting redundant self-explanations to the others. This
coud have negative influence on the students motivation and trust in the system’'s
effediveness, reducing the likelihoodthat students would follow the SE-Coadh's suggestions.
Therefore, it is particularly important that the SE-Coacdh generates tutoria interventions that the
student can perceive & relevant and useful for learning.

The SE-Coadh's student model is designed to assess when students are sportaneously self-
explaining without using the interface tods, in order to avoid burdening students with requests
of sdf-explanations that they have dready generated. It also assesses «if-explanations
generated through the interface tools and uses its assesgment to detect gaps in the student’s
example understanding. The SE-Coadh focuses its interventions on dliciting further self-
explanation that fill s these gaps, as students that are natura self-explainers do.

THE SE-COACH'SARCHITECTURE

ANDES

Authoring Environment SE-Coach

Interface

Graphicd author
interfae Exarple

Destription
[

F’nys'(s and
planning
Rules

N adien || Madel o
| Sdver correct SE
Exarple

Statement

Figure 2: SE-Coadh' s architecture

As we mentioned in the introduction, the SE-Coach has been implemented within the Andes
tutoring system for physics (VanLehn, 1996). Figure 2 shows the SE-Coadh' s architecture. Prior
to run time (left side of Figure 2), an author creates both the graphical description d the
example and the @rresponding coded definition o the example statement. A Problem Solver
uses this definition and the set of physics and planning rules representing Andes' domain
knowledge to automatically generate a model of correct self-explanation for the example
solution. The model is a dependency network that encodes explanations in terms of how
intermediate goals and facts in the example solution are derived from physics and danning
rules.



At run-time, students use the SE-Coadh's interface to interadively study examples and
generate self-explanations. The interface sends the student’s explanations to the Help modue,
which tries to match them with elements of the self-explanation model and provides immediate
feedbadk as to whether the explanations are correct or incorrect. The student’ s interface actions
are aso sent to the Assessor modue, that uses them to updite the SE-Coadh's dudent model.
The student model is a Bayesian network (Peal, 1988) that integrates information on (i) the
student’s actions, (ii) the model of correct self-explanation and (iii) the student’s domain
knowledge (encoded in Andes' long term student model) to assess the student’s understanding
of the example. The SE-Coadh’s help refers to the student model to make dedsions abou what
further self-explanationsto elicit from the student.

THE MODEL OF CORRECT SELF-EXPLANATION

The model of correct self-explanation (SE model from now on) is the are structure of the SE-
Coadv's expertise. This model encodes the knowledge to provide feedback on student’s sif-
explanations, it is used in the student model to assess how the students' self-explanations reflect
example understanding and it guides the SE-Coadh' stutoria interventions.

A Problem Solver automatically generates an SE model for each new example added to the
SE-Coadv's set, starting from Andes rules and from a aded definition of the example problem
statement (seeFigure 2).

R-body-by-force

If thereis agoal to select abody for Newton's 2ndlaw
andthe problem goal isto find aforce on an object

then select as body the object to which the forceis applied

R-try-Newton-2law

If the problem gaal isto find aforce
then set the gaal to try Newton second
Law to solve the problem

R-goal-choaose-body

If thereisagoal totry Newton's sscond law
then set the goal to select a body to which
to apply the law

Figure 3: samplerulesinthe Andes' knowledge base.

Andes rules are based on the representation used by Cascade (VanLehn, Jones, & Chi,
1992, a mgnitive model of learning through self-explanation d Newtonian physics examples.
Andes rules have been developed in collaboration with three physics profesors at the U.S.
Naval Academy, the domain experts for the Andes project. The rules represent qualitative and
quantitative physics knowledge sufficient to solve Newtonian physics problems (see Figure 3,
top bok, for a sample physics rule). They also represent planning knowledge encoding the
abstract planning steps that an expert might use to solve these problems (see Figure 3, center
and hottom box, for sample planning rules). Thus, the Problem Solver produces a hierarchica
dependency network that encodes how an example solution’s qualitative results and equations
derive from physics rules, along with the abstrad plan urderlying the solution.

To generate the SE model, the Problem Solver starts with (i) a set of facts describing the
example initial stuation; (i) one or more goa statements that identify the example sought
guantities. From the initial set of facts and goals, the Problem Solver begins applying rulesin
the knowledge base, generating new sub-goals and facts until it finds all the unknown quantities
necessary to compute the example sought quantities. For instance, consider the segment of SE
model shown in Figure 4, which relates to the example in Figure 1. The Problem Solver starts
with the top-level goal of finding the value of the force on Jake (node G-force-on-Jake in
Figure 4). From this, it applies the rule R-try-newton-2law (defined in Figure 3) and forms the
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sub-goal of using Newton's and law to find the desired force (node G-try-newton-2law in
Figure 4).

Next, it applies the two rules R-goal-choose-body (shown Figure 3) and R-find-forces to
generate the two sub-goals G-god-choose-body and G-find-forces, correspording to two first
level goalsin the plan to apply Newton's sscond law. When the problem solving terminates, the
outcome is a partialy ordered network of goals and intermediate results (or facts) leading from
the top-level goal to a set of equations that are sufficient to solve for the sought quantity, the
magnitude of the force on Jake. Figure 4 shows the section of the SE model up to the
application d the rule R-body-by-force, that selects Jke & the body to which apply Newton's
law (node F-Jake-is-the-body) and of the rule R-tension exists, that identifies the existance of a
tension force on Jake (node F-tension-on-Jake).

ﬂ R -try-Newton-2law. G-force-on-Jake
\ i
l » | RA-try-Newton-2law| | E-hangs-from-rope)

3= ZMmishE
jL o Bl

Find the force exerted
on Jake by the rope.

To solve this problem, we
choose Jake & the body.

Thehelicopter’ srope exterts
atension force T on Jake. R- body-by-force

I/
| G-goal-choose-body| | G-find-for ces|
R-tension-exists
R

= Rule RA-body-by-force RA-tension-exists
E/G_| Fact/Goa = Propcsition

R | RuleApplication [ E-Jake-isthe body | F-tension-on-Jake |

Figure 4: segment of SE model for the partial example solution on the left

Every element of the example statement, worked-out solution and graphics correspords to a
fact or goal (proposition) node in the SE model (proposition nales are labelled with a “E-* or
“G-" prefix in Figure 4). However, the SE model can contain propcsition nods that do not
correspond to any element in the example text, if the example leaves out some details of the
solution derivation. For instance, only the shaded proposition nales in Figure 4 (G-force-on-
Jake F-hangs-fromrope, F-Jake-isthe-body and F-tension-on-Jake) correspond to steps
explicitly expressed in the example solution shown on the left of the figure.

Links in the dependency network encode how each propasition noc derives from physics
and danning rules (nodes labelled with the “R-* prefix in Figure 4) and from the propaosition
nodes that match the rules' preconditions. Derivations of propasition rodes from rules and other
propasitions are explicitly encoded in the network by rule-application rodes (labell ed with the
“RA-" prefix in Figure 4). These derivations correspond exactly to the explanations that the SE-
Coad targets:

* How solution steps can be justified in term of physics principles.

* What goal each solution step accomplishesin the plan underlying the example solution.

Hence the dependency network provides a model of correct self-explanation that the SE-Coach
can use to evaluate the student’s explanations and to decide what further explanations can
improve the student’s understanding. The model is similar in nature to the rule-based damain
(or expert) models that other intelligent tutoring systems use to suppat students during
problem solving (Anderson, Corbett, Koedinger, & Pelletier, 19%; Clancey, 199Q Gertner,
Conati, & VanLehn, 1998). However, because the model explicitly distinguishes between rules
encoding domain knowledge and rules encoding planning knowledge, and kecause it explicitly
represents the application d these rules as nodes in the dependency network , the model is
especialy suitable to represent and monitor the generation of the self-explanations that the SE-
Coad targets, as we will seein the next sections.
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THE SE-COACH'SINTERFACE

As we discussed earlier, the SE-Coach provides incremental support to self-explanation
through different levels of scaffolding. Three of these levels are ambedded in the interface
design, described in this section. A fourth level is provided by the SE-Coadv's tutorial
interventions, as weiillustrate in the next section.

Attention monitoring and control

The first level of scaffolding in the SE-Coadv's interface is provided by a masking
mechanism that presents different parts of the example cvered by grey boxes, ead
corresponding to a “unit” of information (see Figure 5). When the student moves the mouse
over a box, it disappears, revealing the text or graphics under it. While reading a line in the
textual part of the example solution, the student can refer bad to the situation diagram or to the
free body diagram by clicking on the left or right mouse button respectively. Figure 5 shows
how the example in Figure 1 looks in the masking interface, when the student moves the mouse
over the second solutionline and clicks to urcover the freebody diagram.

PANDES Physics Workbench - [Sel.apx] =

£ File View Help -8 x|
EXAMPLE 1: Boy rescued by SOLUTION =
& helicopter
| ‘ Explaiming rale efittis stepimthe sl
e choose Jake as the body to | Self-Explain
wrhich to apply Newton's 2nd law.
]
[ |
1 | l

FREE BODY DIAGRAM:
lﬁ =2miz"2 T ‘ ‘

+

Skt [DiErE

Jake (m = B0Kg) (il o the ] to expand e sten
W [EEuta e eliekar & steptasutaraitit

- | =l [

Figure 5: example in Figure 1 presented with the masking interface

The masking interface #ows the SE-Coad to tradk what the student is looking at, and for
how long. When a new example is added to the SE-Coadh, ead item in the masking interfaceis
linked to the corresponding proposition nade in the SE model. These links all ow the SE-Coach
to attach information on student attention directly onto comporents of the SE model. This
information is one of the parameters the SE Coach uses to assess whether and what the student
is self-explaining, as we will see in the next session. The mapping between interface items and
SE model nodes can be many-to-one, because diff erent items can encode the same fact or goal
(like, for instance, the FreeBody Diagram object labelled as “ Jake’ and the uncovered line “we
choose Jake as the body...” in Figure 5). The many-to-one mapping allows the SE-Coadh to
recognise example parts that call for the same explanation and to avoid dliciting redundant
explanations from the students.

The masking interfaceis arelatively ssimple way to oltain information onstudents' attention,
without using complex eye trading devices. However, we were afraid that this unusual way of
presenting examples could interfere with reading and understanding them. Thus, we performed
a pilot evaluation of the masking interface & an early stage of the system design. Besides
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verifying the usability of the masking interface the evaluation aimed to compare it with an
aternative design in which the example parts were faded instead of masked

Ten first yea college students gudied one example with the masking interface ad a second
example with the faded interface. We dlternated what interface we showed first, to avoid
presentation bias. Then, we asked the students to chocse between the two interfaces to study a
third example. Six students chose the faded interface ad four the masked interface, but almost
al students foundthe two interfaces fairly equivalent. Furthermore, na only were nore of the
students annoyed by the fact the example parts had to be explicitly uncovered. Most students
said that both interfaces helped them study the examples more crefully, because they
encouraged them to focus on a single item at a time. Thus, in addition to traking students
attention, the masking interfaceprovides a first level of scaffolding to increase students self-
explanation.

Since the students did not seem to strongly prefer one interface over the other, we kept the
masking one, because it is quite difficult to adjust the faded interface so that a student can
identify the different parts of an example without reading their content. Furthermore, the right
contrast changes in monitors with dfferent resolution, making it impasghble to find a setting that
works in al situations. We ntinued to probe the students attitude toward the masking
interfacethroughout the successive evaluations of the system, which confirmed the students
positive reaction to the interface The only criticism that some students had concerned not being
able to see more than one line at a time when reading long algebraic derivations. To fix this
problem, we modified the interface so that students can uncover up to threelines at atime, by
pressing the control key as they move the mouse over the lines that they want to see & once.

Promptsto self-explain

The second level of scaffolding is provided by the SE-Coadh's interface through specific
prompts to self-explain. Whenever the student unmasks a piece of the example, if it contains an
ideaworthy of explanation the interfacewill append a button labelled “sdf-explain”. Pressing
the button produces simple prompts to initiate self-explanations in terms of domain principles
(e.g., “this choice is corred because...”) and abstract solution plan (e.g., “the role of this
choicein the solution danisto...”).

SOLUTION -
vz choose Jake as the body to ZETf ¥

wwhich to spply Mewton's 2nd law.

bl & roal era s st it

iz comect because...

L @

The role of thiz choice in the zolution plan iz o,
[ |

SOLUTION -

The helicopter's rope exerts a tension | SeIEERERET;
force T on Jake. = ! (B)
Thisz fact iz true because...

|| The rale of thiz fact in the zalution plan is to...
T TT T

Figure 6: SE-Coach prompts to self-explain
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Figure 6 shows the different prompts associated with the second and third line of the
example solution in Figure 5. These prompts are designed to €licit self-explanation by
stimulating self-questioning (Webb, 198). Sdf-questioning seems to be an effedive gproach
to counteract the students' tendency to overestimate their example understanding, because it
leads the students to (a) ask themselves questions that target important but possibly problematic
knowledge aou the example; (b) initiate self-explanation actions if they cannot answer these
guestions (Chi, in press; Webb, 1989). In particular, by having prompts that trigger plan-related
guestions, the SE-Coach should stimul ate students to generate atype of self-explanation that, as
we discussed earlier, is especially unretural to them but extremely useful for learning.
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Interface toolsto generate self-explanations

The third level of scaffolding in the SE-Coadh interface consists of menu-based toadls that
provide constructive but controllable ways to generate the desired self-explanations. These todls
aim to help those students that would atherwise be unable to self-explain effectively, even if
they reali ze their need to doso (Renkl, 199).

If a student selects the first choice in the prompting menus sown in Figure 6, a Rule
Browser is displayed in the right column of the window (seeFigure 7). If the student selects the
second choice in the prompting menus, then a Plan Browser is displayed (see Figure 10). The
next subsedions describe how the interaction proceeds in the two cases.

The Rule Browser

The Rule Browser (seeFigure 7) contains all the system’s physics rules, organized in atree
structure simil ar to the Windows file system, so that clicking onthe + and — buttons reveds and
hides subtrees of the hierarchy. Using this famili ar interface the student finds and selects arule
that she thinks justifies the currently uncovered example item.

If the student then presses the “submit” button at the bottom of the Browser, the SE-Coadh
will provide feedback to indicate whether the sdlected rule is the one that explains the
uncovered unit of information.

l [y S ———

RLULE BROWSER

| | Explaining why this choice is corect SE M Odd

Wi chooge Jake &3 the body to
which to spply Newton's 2nd law .

SOLUTION

| ¥

Search for & rule that justifies this choice

| ‘ El- Chuusmg a Body -
[ ] VUSING FORCE
[ - USING VELOC\T‘Y?
| ll SING_ACCELERATION
- COMPOUND_BODY_WITH_ SURFACE S~
- COMPOUND_BODY_TIED_TOGETHE?
IZ—ZI-Compound Body Properties
| | - MASS_OF_COMPOUND_BODY
I I ‘- FORCE_OM_COMPOUMD_BODY
#-Describing Forces
| E-Newton's Laws
- Newton's Second Law

I G-force-on-Jake I
|

| G-goal-choose-body |

R-body-by-force

2-New C RA-body-by-force
#-Action Reaction Law =
= Choosing Axes

L HOW_TO_CHOOSE_AXES
#-Finding Yector Components

#- Kinematics =
| 4| | D
Template |

Click on the [+] to expand a Rule Category
Double Click on a Fule to submit it

| F-Jake-is-the-body |

Figure 7: The Rule Browser

Consider the situation in Figure 7, in which the student adivates the Rule Browser to self-
explain the secnd solution line and selects the arrect rule (marked with a diedkmark) after
selecting an incorrect one (marked with a cross). To provide feedback on the student’s slection,
the SE-Coad:

1) retrievesinthe SE model for the arrent example the proposition node correspondng to the
uncovered example part (in this case, the shaded propasition nadein Figure 7).

2) Findsthe dosest rule node anong the ancestors of the propasition node (the node R-body-
by-forcein Figure 7) and checksif it corresponds to the rule that the student seleded.

A green chedkmark will appear beside the Rule Browser selectionif theruleis corred, ared
cross will appear otherwise (seeFigure 7).
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The SE-Coach daes not provide alditional help besides red/green feedbad. This avoids
interfering with what is considered the key factor that makes slf-explanation effedive for
learning: that to generate their self-explanations the students elaborate the avail able material
and knowledge by themselves (Chi, in press). Thus, when awrong ruleis selected, the only way
for the student to correct the mistake is to kegp browsing the hierarchy until the crrect rule is
found. For this reason, the organizaion of rule names in the Browser is crucial to make the
seach for the wrrect rule athought provoking adivity, instead o a frustrating one that may
result in the student clicking exhaustively onall the entries.

The current organization of the rule hierarchy is the result of successive evaluations with
pilot subjects, which helped reduce the anourt of floundering observed in the first versions of
the Browser. A quite interesting behavior that surfaced during these evaluations is that most
students did nat try to click on rule names randomly when they got stuck. Rather, when they
could na find dausible andidates in the category that they had expanded they would stop,
without even trying to browse other parts of the hierarchy. We repeatedly changed the
caegories names and arrangement to maximize the chance that students immediately enter the
right part of the hierarchy. We dso provided crossreferences for rules that could plausibly
belong to dfferent categories, such as the rule encoding the definition of Net Force, which
rightfully belongs to the category Newton's Second Law, but that students often tried to find in
the category Describing Forces (seeFigure 7).

Feadback from the pilot evaluations suggested another important modificaion to the original
interfacedesign: the possibility to go bad and rowse through the example while using the
Rule Browser (or any other tod for self-explanation). In the original design, this was not
allowed, and many pil ot subjeds complained that they needed to review the example solutionin
order to complete their self-explanations with an interface tool. In the airrent interface while
any of the interface tods is open, the student can still  uncover other parts of the example,
beside the one for which self-explanation was initiated. The part that is currently explained turns
pink, to remind the student of what isthe aurrent focus of self-explanation.

The Rule Templates

SOLUTION = ELLE EROYWEER I:I EEECIar e Bt En ST E SRt
E-Choosing a Body

‘ Bl imin iy e EinlEes eafres The helicopter's rope exerts a lension &-Compound Body Properties

Wi choose Jake 5 the body to force T an Jake. £-Describing Forces
which to apply Newtan's 2nd law Eearch fana e tiat st this chmice

| |@"Chuusing a Body ]

l l | WS e TOREE ‘ “‘TII;FI‘JESI\\IS:SNF_OE;E‘:SET%\RECTION
I .t or: USING-FORCE . e = = f
—
IF we want to find I j C E
|: |F an objectis I j
THEM we can choose that ADIDEIE I j
object as the bochy
THEM there is a tension
force on the ohject
I: EXERTED BY =
an olject outside the compound body
Back Submit Cancel the second ohject
the sarth
the sirin
! I Back i T d TamT | Cancal |
I T

Figure 8: Rule Templates

The Rule Browser lists only rule names, and most students will need to know more aout arule
before they can be sure that it is the explanation they want. To explain more aout arule, the
student can click onthe “Template” button at the bottom of the Rule Browser (Figure 7).

A dialog box comes up, with a partial definition d the rule that has blanks for the student to
fill in (seeFigure 8). The definitionisin terms of the preanditions that need to be verified for
the rule to be gplied and d the cnsequences that the applicaion of the rule generates. The
Templates design reflects how rules are represented in the Andes knowledge base. As we
discus=ed previoudy, this design aims to scaffold self-explanations of the forms that are most
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frequent in students' spontaneous slf-explanations: (i) refine and expand the preconditions of
an action and (ii) explicate andinfer additional consequences of an action.

Clicking on ablank in a Template brings up a menu d possible fillers (Seeright template in
Figure 8). After completing a Template, the student can select “submit” to get immediate
feedbadk. The SE-Coad retrieves the definition of the correspording rule from the Andes
knowledge base and wses it to verify the correctnessof the student’s slections, by matching the
rule preaonditions and consequences with the fillers that the student chose (see Figure 9).

Each template in the interface reflects the content of a physics rule in the knowledge base,
and it is associated to that rule, not to a specific example line. Therefore, adding a new example
to the SE-Coadh’ s set does not require defining new Templates, as long as the example solution
involves only knowledge dready encoded in Andes' rules.

As with the Rule Browser, pilot evaluations were fundamental to improve the usability of
Templates. For instance, we discovered that students tended to ignore template fill ers that were
too verbose, even when they were the obviously correct choices. Also, when the list of possible
fillers is too long, students seldom read the items at the bottom, especialy if they find a
plausible filler earlier in the list. The pilot evaluations also showed that if students are given the
choice of accessing a Template or nat, they tend rot to doit. In the first version of the system
(Conati, Larkin, & VanLehn, 199), oncea correct rule was <lected the student could click ona
Done button and quit withou filling a template. When this option was available, most students
never aacessed Templates. When asked why, they said that they did not remember what a
Template was, athough the experimenter had extensively explained the interface at the
beginning of the evaluation session. The ssimple change of giving only the Template choice after
rule selection (seeFigure 7), increased the percentage of students that filled Templates, despite
the fact that students could till close aTemplate without filling it, by clicking on the Cancel
button at the bottom of the dialogue box (seeFigure 8).

IF e want to find Ithe farce on an ohject =l
R-body-by-force
THEMwe can choose that If thereisagod to select abody to apply Newton's 2ndlaw
object as the body ™~ and the problem god isto find[the forceon an objed
then select as body the object to which the forceis applied

Template for- TEMSION_EXISTS

IF an ohjectis Itied to & string -~ j r-tension-exists
AND the string Iistaut If thereisagod to finddl forces onabody

‘hﬁ p-and thebody is [tied to astring
THEM there is a tension

. and the string

force on the ohject then thereisatensionforce onthe object,
» exerted by | thestring

v o

EXERTED BY [the sting 4— 5

Figure 9: verifying Template correctnessby using Andes rules

The Plan Browser

If the student selects the second item in the prompting menus, (e.g., “The role of this choicein
the solution panis....” in Figure 6a), then the interface displays a Plan Browser instead of a
Rule Browser. The Plan Browser is smilar to the Rule Browser, but it displays a hierarchica
tree representing the solution dan for a particular example, instead of SE-Coad's physics rules.
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For instance, Figure 10 shows the Plan Browser for the ‘boy-hanging-from-an-helicopter’
examples, which displays the plan to apply Newton's Second Law (Reif, 1995. To explain the
role of the uncovered fact in the solution plan, the student navigates through the goa hierarchy
and selects a sub-goal that most closely motivates the fact. Pressing a “submit” button causes
the SE-Coadh to give immediate feedback. To provide this feadbadk, the SE-Coach retrieves
the proposition node rresponding to the uncovered line. If the propasition nod eicodes a
goal, the feedbadk algorithm works like the one for the Rule Browser. If the proposition rode
encodes afact, as the shaded node in Figure 10 does, the feedbadk algorithm

1. retrieves the goal node that is the most immediate ancestor of that fact (node G-find-forces

in Figure 10).

2. retrievesthe rule node that generates that goal node (node R-find-forcesin Figure 10).

Thisrule node, which represents a planning rule, is then used to verify the arrectnessof the
student’s seledion.

There ae no Templates associated with the Plan Browser, because they would simply spell
out information on the plan structure dready encoded in the Browser hierarchy (e.g., If the goal
isto apply Newton's law and we have selected a body, then the next subgod isto describe the
properties of this body.

'

SOLUTION = PLAN BROWSER

Help System «—————

Y

| ‘ Explaining the role of this factin the solution plan

I:I Plan for Newton's 2nd Law

The helicopter's rope exerts a tension
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[ | Choose body
[ ] = Describe body's properties

Describe hody's acceleration .
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B4 dentity all farces on the body} £
[=-¥rite component equations

| | -¥ Choose coordinate axes
‘ | | Find vector components

Wit equations for Newton's 2nd law
‘ | =-Find quantities algebraically

-Find remaining unknowng
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Click on the [+] to expand & step
Double Click on a step o submit it

Figure 10: selectionsin the Plan Browser
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SE-COACH’'SADVICE

As we have seen in the previous sction, the SE-Coadh's interface provides three different
levels of scafolding for self-explanation, implicit in its design. A forth, more explicit level of
scafolding is provided by the SE-Coadh's advice

Initialy, self-explanation is voluntary. The student is freeto decide what self-explanations
to initiate with the interface tods, and the SE-Coach limits its intervention to providing
feadbadk. However, the SE-Coad keeps tradk of the students' progress through the example,
including how much time they looked at a solution item and what they chose to self-explain via
the interface tools. This information is colleded in the SE-Coadv's student model, which
asesEs what parts of the example may benefit from further self-explanation. When the student
tries to close the example, the SE-Coacdh generates tutorial interventions to make the student
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self-explain these parts. In this sction, we briefly describe how the student model generate its
asessnent and then we illustrate the tutorial interaction that this assessment supports. More
detailed information on the structure and functioning of the student model can be found in
(Conati & VanLehn, To appear).

The SE-Coach’s student model

Moddling a student during example studying involves a great ded of uncertainty, becaise the
reading and self-explanation actions the model has access to provide only indirect evidence on
what the student acdtually reads and learns. To hande this uncertainty in a principled way, the
SE-Coadh student model relies on the Bayesian network framework for probabilistic reasoning
(Pearl, 1988).

The student model Bayesian network is built automatically when the student opens a
new example. Figure 11 summarizes this process The structure of the Bayesian network derives
directly from the structure of the SE-Model. The network parameters derive from probabilities
describing the student’s physics knowledge and studying style, maintained in the Andes' long
term student model. These probabilities provide priors for rule nodes and parameters that
automaticdly define the conditional probabilities in the network. (Conati & VanLehn, To

appear).

Andes' long term student model
[Prior probabilities for al rules ]

[ Model of correct self-explanation ]

and studying style
£
Assessor
— [ Student interface actions ]
Initial BNet
Assessor
Updated BNet

Probabilities assessing
example understanding |wp»Low = SE-Coach

& probabilities ~ Nints
knowledge changes

Figure 11: Automatic construction of the student model Bayesian Network.

As gudents perform reading and self-explanation adions, the initial Bayesian network is
updated with nades and conditional probabilities representing how these actions influence the
probability that the student is sif-explaining different example cmporents. Nodes representing
reading adions directly influence the probability that the student is self-explaining derivations
(rule-application nodes) in the SE model. Nodes representing self-explanation adions
performed through the interface tools influence the probability that the student knows the
corresponding physics and planning rules. Thus, at any time during the student’s interaction
with the SE-Coach, the probabilities in the Bayesian network assess how the student’s
knowledge and example understanding change as a @mnsequence of the student’s actions. In
particular, the probabilities associated with rule-appli cation rodes represent the probability that
the student has correctly self-explained the correspording derivations. Rule-application rodes
with probability below a given threshald become the target of the SE-Coach interventions.

A key fedure of the SE-Coad student model is that students do not have to use the interface
todls to have their self-explanations adknowledged. If a student spends enough time viewing a
solution item and if, according to the model, the student has aufficient knowledge to self-explain
that item, the model will predict that the student very likely self-explained the item correctly
(Conati & VanLehn, To appear). Asking students to always use the interface tools to make their
explanations explicit would alow more accurate assessment, but may also burden the students
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who are natural self-explainers with unnecessary work, passibly compromising their motivation
to use the system.

When a student closes an example, the new probabilities that rule nodes reached during the
student interaction with the systems are used to updite Andes' long term student model. These
probabilities will affect al the subsequent example studying and problem solving interadions of
this gudent with Andes.

The SE-Coach’sinterventions

As we mentioned at the beginning of this sdion, while astudent studies an example self-
explanation is voluntary. However, if a student tries to close the example when the student
model indicaes that there ae still some linesleft to self-explain, then the SE-Coadh will tell the
student:

“You may learn more by self-explaining further items. These items are indicated by pink
cova's'.
and colors ome of the boxes pink (dark grey in Figure 12) instead of grey. It also attaches to
ead item a more specific prompt such as “ Salf-explain with the Rule Browser”, “ Salf-explain
with both the Rule and the Plan Browser” or “Read more carefully”’, depending on what self-
explanation the student model predicts to be missng for that item. The more specific prompt
appears in place of the simple self-explain button when the item is uncovered (see Figure 12).
The color of the boxes and the related messages change dynamicdly as the student performs
more reading and self-explanation actions that change the probabilities of the mrrespording
nodes in the student model. If the student tries to close the example when there are still some
pink covers left, the SE-Coadh generates a warning such as “ There are still some items that you
could self-explain. Are you sure you want to exit?”, but it lets the student quit if the student
wantsto.

SOLUTION = SOLUTICN =
‘ ‘ E:(p|f| ‘ = e =11l
wie choose Jake as the body to [ Saif-Explain with the Plan. |- =] B fir
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Figure 12: SE-Coadh interventions to elicit further self-explanation

As we discussed earlier, one of the dalenges of designing the SE-Coach tutoria
interventions is that they must motivate to self-explain students that have low propensity to do
so. Pilot evaluations were fundamental to find an effective modality of intervention for the SE-
Coad. Inthe origina version of the system (Conati et a., 1997), the SE-Coach would point out
lines that required self-explanations one at a time, instead of indicating them all at once by
changing their color. When the student tried to close the example, the SE-Coach would generate
afirst, generic warning such as “There are still some items that you could self-explain. Do you
want to try?” The student could either (a) rejed the alvice, (b) accept it and go badk to study
the example without any further indication d what to self-explain, (c) ask for more specific
hints. If the student chase the latter, the SE-Coadh would say, for instance, “Why dorit you try
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to use the Rule Browser to explain this line?”, and it would urcover the line. At this point, the
student would go badk to the example, and passibly explain the line & indicated, but the only
way for the student to get additional suggestions from the Coach would be to try and close the
example ajain.

The rationale behind this design was to stimulate @& much spontaneous lf-explanation as
possible. We thought that direding the student to a particular line in the example culd be
enough to also trigger explanations on other lines. This did not happen. Either students were
natural self-explainers and explained most of the example the first time through, o they strictly
followed individual SE-Coach hints but rarely initiated any additional self-explanation. For
non-sportaneous slf-explainers, the interaction with the Coach would quickly become quite
uninspiring. After doing what the Coadh had suggested (e.g., finding a rule name in the Rule
Browser), they would immediately try to close the example. They would then get another hint
(“thereis omething el se that you could self-explain, do you want me to show you?”), suggesting
further explanation either onthe aurrent line via Template/Plan Browser or on a different line. A
student would have to repeat this cycle to acessead new pieceof advice and most students
lost interest and chose to close the example after the first couple of hints.

The current design, based on the aloring of example lines, allows the students to see at once
al the parts that they should further self-explain and what interface todls they shoud use to do
it. It also gives gudents better feedbadk on the progresss that they are making, becaise line
color and the attached hints change dynamicdly as gudents generate more self-explanations.

EMPIRICAL EVALUATION OF THE SE-COACH

After iteratively improving the system design through pilot evaluations, we performed a study
to test both the system’ s usability and its effectivenessfor learning.

Experiment design

The study was conducted with 56 college students who were taking introductory physics classes
at the University of Pittsburgh (20), Carnegie Mellon University (14), Allegheny County
Community College (5) and U.S.Naval Academy (17). The design had two conditions:

o Sdf-Explanation (SE): 29 students studied exampl es with the complete SE-Coad.

e Control: 27 students gudied examples with the masking interface and Plan Browser
only. They had noaccessto the Rule Browser and Templates, nar they receved
feedbadk or coaching.

The evaluation consisted of one session about three-hour long, in which students: 1) took a
paper and pencil pre-test, consisting of four problems on Newton's Second Law; 2) studied
examples on Newton's Second Law with the system; 3) took a paper and pencil post-test with
problems equivalent but not identicd to the ones in the pre-test; 4) filled out a questionraire
designed to asessthe students impressions on the system.

Because SE-Coach dees not provide any introductory physics instruction, to evaluate the
system adequately we needed subjeds who arealy had the appropriate level of domain
knowledge for using it. Students generally benefit more from examples when they are studying
a new topic, whereas as the students' knowledge improves, problem solving becomes more
effedive for leaning (Nguyen-Xuan, Bastide, & Nicaud, 1999). Hence, we needed subjects
with enough knowledge to urderstand the topic of the examples, but nat so much knowledge to
find the examples not worthy of attention. However, because we had to coordinate the study
sessions to acaommodate students from four different colleges, the best we could do in terms of
getting subjects with adequate knowledge was to make sure we run the subjects after their first
class on Newton's Second Law and before they took a class test on the topic.

In order to roughly equate time on task, students in the control condition studied 6 examples
and students in the experimental condition studied 3 examples. Despite this, there is a
statistically significant difference between the average time on task of the experimental group
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(52) and the aontrol group (42° 32"). However, we found naosignificant correlation of time on
task with post-test scores.

Usability of the SE-Coach

During the study, we recorded log fil es of the students' interaction with the SE-Coadh. We then
analysed the log data to understand hav the subjects used the interface self-explanation tools
(Rule Browser, Plan Browser and Templates) and how they reacted to the SE-Coadch
interventions.

Usage of the SE-Coach’ s self-explanation tools

For each interface todl, we computed the following data summaries, shown in

Table 1. Initiated: percentage of the explanations that students initiated out of all the
explanations that could be generated with that tod for the available examples. Corred:
percentage of the initiated explanations that were generated correctly. Attempts before correct:
average number of attempts the students needed to achieve a ©rred self-explanation. An
attempt is the submisgon o an incorrect self-explanation. Max # attempt: average maximum
number of attempts nealed to achieve a correct self-explanation. Abandmed: percentage of
initiated self-explanations that were abandoned. Attempts before abandm: average number of
attempts before dandoning a self-explanation. Time on abamoned: average anourt on time
spent on self-explanations that were eventuall y abandored.

Table 1: Statistics on SE tools usage

Rule Browser Templates PlanBr owser

initiated 62% 55.5% 41.6%
corred 87% 97% 85%
attemptsbefore orred 1.27 0.5 1

max # attempts 9.2 2.5 3.8
abandoned 13% 3% 15%
attempts before abandon 4.4 1.9 14
time on abandoned 241 sec. 59 sec. 29 sec.

Rule Browser usage. As Table 1 shows, on average students accessed the Rule Browser
quite frequently, initiating 62% of the possible Rule Browser explanations. They usually
completed the Rule Browser explanations correctly, successully selecting the crrect rule 87%
of the times. Also, they usually foundthe correct rule without floundering too much, requiring
onaverage only 1.27attemptsto find the correct selection. However, for most students at least
one rule selection required a large number of attempts (average maximum of 9.2 attempts per
student). Rule Browser acaesses in which the student failed to find the correct rule required an
average of 4.4 attempts. However, these attempts resulted in an average of only 4 minutes that
students gent on failed Rule Browser explorations, a minor fraction of the average total time on
task (52 minutes).

These data indicate that the Rule Browser was generally successful at stimulating the
students to initiate self-explanations and was easy to use. However, there were afew situations
in which using the Rule Browser may have caised dstraction and frustration, because the
student floundered substantially before finding the arrect rule, or could not find it at all. Thus,
the SE-Coach may benefit from an additional form of help that supports students in searching
the Rule Browser. This was, in fact, the suggestion that appeared most frequently in the
students’ questionnaire. Otherwise, the majority judged the Rule Browser to be very useful and
easy to use.

Template usage. Students accessed 55.5% of the template material in the SE-Coadch. Since
Template access is mandatory after a crrect seledion in the Rule Browser, these data are not
indicative of how effectively Templates stimulate self-explanation. More indicative is the faa
that students completed almost all (97%) of the presented Templates correctly, athough it is not
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mandatory to fill a Template dter opening it. Students needed on average only 0.5 attempts to
fill a Template crrectly, with an average maximum of 2.5 attempts. Students spent only 59
seconds trying to fill Templates for which they could not find the @rrect answer.

These data indicate that our repeated efforts to improve Template usage through pil ot
evaluations were successful, in terms of both making them easy to use and providing atod that
encourages «lf-explanation. The results are backed up by the students questionreire
comments, that judged the Templates to be very easy to use and relpful to better understand the
examples.

Plan Browser usage. Students accessed 416% of the possble Plan Browser explanations.
Students did not have many problems using the Plan Browser. Most of the initiated explanations
(85%) resulted in the selection of the arred plan step, and required only 1 attempt, on average,
to find the step. Students spent on average only 29 seconds on Plan Browser aacesses that did
not lead to a correct explanation. However, the fact that an average maximum of 3.8 attempts
were needed to find the right selection, indicates that the Plan Browser does produce some
degree of flounding. Hence, the Plan Browser could also benefit from a browsing help
analogous to the one suggested for the Rule Browser.

Although the &ove results indicate that the Plan Browser is easy to use, students did na use
it quite as much as the Rule Browser and many students wrote in the questionnaire that they did
not understand its utility. This outcome is not surprising. As we have aready mentioned, goal-
related explanations are largely unfamiliar to students. The Plan Browser is designed to
complement instruction that initiates gudents to the notion o solution planning, but our subjeds
had not received such instruction in the classoom. In the short time avail able for instructions
during the study, the experimenter did not have time to make the students understand the
concept and importance of solution planning. This stuation likely acountsfor the lower usage
of thistool.

Response to the SE-Coach interventions to elicit further self-explanations

To verify how students reacted to the SE-Coadch explicit prompts to further self-explain (by
using the Rule Browser, the Plan Browser or by reading more caefully), we computed from log
data how often students followed these prompts. The results are summarized in Table 2. For
ead type of prompt, the table reports: (i) the maximum number of prompts the SE-Coadch could
generate for the three examplesin the study. These ae the prompts the system would generate if
there was no student model to guide it; (ii) the number of prompts the SE-Coadch adualy
generated by relying on the student model; (iii) how many of these prompts the students
followed.

The numbersin Table 2 show that the aurrent design for the SE-Coadh intervention, based on
dynamicdly changing the wlor of example lines and the dtached prompts, works considerably
better than the original design described in the sub-sedion onthe SE-Coadh intervention. While
with the original design students rarely followed more than a wuple of the SE-Coad
suggestions, with the current design students foll owed an average of 38.6% of the Rule Browser
prompts, 42% of the Plan Browser prompts and 34% of the prompts siggesting to read more
caefully. However, the numbers also show that there is gill room from improvement, because
students ignored more than half of the SE-Coad's suggestions. This could have happened for
two reasons.

Table 2: Statistics on SE-Coad interventions

Rule Browser prompts (max. 43) 22.6
Followed 38.8%
Plan Browser prompts (max. 34) 22.4
Followed 42%
Reading prompts (max. 43) 7
Followed 34%
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The first is that students did not follow the SE-Coadh's suggestions becaise they had
spontaneously self-explained the related example parts. The student model assessment of
spontaneous Hf-explanation strongly depends on estimates of student’s initiad physics
knowledge (Coneti & VanLehn, To appear). At the time of the evaluation, we did not have
acarate etimates and we asigned to every rule aprobability of 0.5. Thus, it may be that
students explained more than the model estimated, and were rightly ignoring those prompts
asking them for redundant explanations.

The secondreason is that students did not follow the SE-Coadh's suggestions because they
were overestimating their understanding and thus dismissed the SE-Coadh's prompts as
irrelevant, even when they were well justified. To deal with these students, it might be
necessary to make the SE-Coadh suggestions mandatory. This option may work better when
more acairate priors on the students' physics knowledge ae available, for instance from the
results of the student’ s pre-test. However, it would be interesting to try it even with less accurate
priors. The benefits of having the students generate more explanations may still be worth the
annoyancethat redundant prompts may cause to some students.

Eff ectivenessof the SE-Coach

To evaluate the effediveness of the SE-Coadh for learning, we first compared haw the students
in the SE condition learned in comparison to the students in the control condition. The pre-test
scores of the two conditions held no significant differences, indicating that subjects had been
successfully randamised over their physics knowledge.

The gain scores measuring the difference between post-test and pre-test scores were higher
for the SE condition, but the difference between gain scores of SE and control conditions was
not statistically significant.

We then restricted the analysis to the subgroups of subjects coming from different colleges:
Carnegie Méllon University (CMU), Community College of Allegheny Courty (CCAC),
University of Pittsburgh (PITT) and U.S. Naval Academy (USNA). We found that the
experimental condition & CMU and CCAC students performed significantly better than the
cortrol condition. In cortrast, in both the Pitt and USNA subgroups, students in the control
condtion performed dlightly better than students in the SE condition. The commonality of
behaviour between CMU and CCAC is quite surprising, because the two schools are supposed
to be, respectively, the best and the worst of the four colleges in the study, and this ranking is
confirmed by the pre-test scores. However, there is one characteristic that CMU and CCAC
have in common and that distinguishes them from Pitt and USNA students. They start the
semester at least a week later than Pitt and USNA. Therefore, athough all the students
participated in the experiment after they had their lectures on Newton's laws and Lefore they
took a dasstest on the topic, Pitt and USNA students were aead in the course schedule and had
likely spent more time on Newton's laws than CMU and CCAC students when they participated
in the study. This could have generated dfferences in the badkgroundknowledge and/or in the
way the two subgroups used the system, aff ecting how the students benefited from it.

To test this hypothesis, we @ntinued ou analysis by comparing the subgroup consisting of
CMU and CCAC students with the subgroup including Pitt and USNA students. Within the

CMU-CCAC group, the 12 students in the SE condition
Table3: ANCOVA forpost-  (mean gain score = 7.5, st.dev. = 52) performed

test scores significantly better (p = 0.021) than the 13 students in the
Source F-ratio Prob control condition (mean = 3.2, st.dev.= 3). The 14 Pitt-
Const 2541 <0.0001 USNA students in the cntrol condition performed dlightly
pretest 54.544 <0.0001 better (mean = 6.7, st.dev. = 4.8) than the 17 in the SE
SAT_math 1.3207  0.2575 condtion (mean = 5.0, st.dev. = 3.7) but the difference is
SAT_verbal 0.63487  0.4304 qy ggtigtically significant (p > 0.2).
subgroup 0.37289 0.545

condition 0.15014 07005 . . _To verif_y if these results were due to differences in
subgroup'cond. 76089  0.00gg INitid physics and keckground knowledge, we ran an
ANCOVA with post-test as dependent variable, subgroup
and condition as main factors, and pre-test and SAT scores
as covariate. The ANCOVA (seeTable 3) still givesa significant interaction between subgroup
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and condition (p < 0.01), indicaing that prior physics and badground knowledge do ot
acount for the different behavior of the two subgroups.

To verify if students in the two subgroups used the system differently, we compared their
performance and study behavior within eat condition. As Figure 14 shows, in the SE
condtion CMU-CCAC students performed better than Pitt-USNA students, although the
difference is nat statistically significant (p > 0.1). In the Control condition, Pitt-USNA students
performed significantly better than CMU-CCAC students (p < 0.03). As a matter of fact they
performed almost as well as CMU-CCAC students in the SE Condition. These results could be
due to two reasons:

¢ Inthe SE condtion, CMU-CCAC students used the SE-Coach self-explanation tools

more extensively and effedively than the Pitt-USNA students did.

« Inthe Control condition, Pitt-USNA students goontaneously self-explained considerably
more that CMU-CCAC students did.

BEcmu-ccac
Epitt-usna

N w B ()] o ~ [ee)
| | | |

=
I

control SE

Figure 14: Gain scores for CMU-CCAC and Pitt-USNA students within the two condtions

Sudying the behavior of the two subgroups in the SE condition

To verify whether CMU-CCAC students in the SE condition used the SE-Coach self-
explanation tools better than the Pitt-USNA students in the same cndtion, we @wmpared the
two subgroups with respect of time on task and the system usage statistics described in the
previous subsedion. We found a gtatisticaly significant difference only in the arerage number
of attempts tried before giving up ona Template explanation (Conati & VanLehn, 2000). This
difference suggests that CMU-CCAC students had a higher level of motivation to learn from the
SE-Coadh, because they started learning Newton's scond laws later than Pitt-USNA students
and thus perceived studying example on this topic to be more useful, consistently with the
findings described in (Nguyen-Xuan et a., 1999.

Browser selections and template filling are recall tasks not as congtructive @& generating
explanations verbally, unless sudents actively reflect on the result of their actions. We argue
that, because CMU-CCAC students were more motivated to study the SE-Coacdh examples, they
reasoned more on what they were doing with the SE-Coad interface. Thus, they learned more,
athough they did na use the SE tools more frequently or more essily than Pitt-USNA students
did. We can corroborate this argument by computing the arrelation between: (i) the number of
rules in the student model that have reached high probability to be known through correct SE
adions; (ii) post-test scores. The correlationisvery low (r < 0.1) for Pitt-USNA and it is higher
(r = 0.33 for CMU-CCAC, indicding that correct SE actions reflect knowledge more
acaurately for CMU-CCAC students than they do for the Pitt-USNA ones.
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Sudying the behavior of the two subgroupsin the Control condition

Verifying whether Pitt-USNA students in the aontrol condition spontaneously self-explained
more that CMU-CCAC students is not easy, because students could not communicate their
explanations to the wntrol version of the SE-Coadh. The only measures that can indicate self-
explanation in the log files include: (i) mean and standard deviation of multiple accesses to
example lines"; (ii) mean and standard deviation d the time spent on each example line; (iii)
mean number of aacesses and selectionsin the Plan Browser.

Within the Pitt-USNA control group, we founda marginally significant corrdation of post-
test scores with mean (p < 0.09) and standard deviation (p < 0.06) of line acesses (see
Table 4).

Table4

Analysis of Variance For posttest This correlation is not significant for the
cases selected according to Pitt-USNA CMU-CCAC control group. The
Source F-ratio Prob hypot_h&sis that _Pitt-USNA student_s_ self-
Const 786.68  <0.0001 explained more in the ntrol condition is
mean-line-accesses 3.6978  0.0834 consistent with the fact that Pitt-USNA
pretest 16.488  0.0023 students had started studying Newton's
st-dev-line-acecsses 46118 0.0573

Laws earlier and had probably gained more
knowledge on the topic. This knowledge was not strong enough to make Pitt-USNA students
perform better in the pre-test. However, it was sufficient to enable Pitt-USNA control subjects
to generate dfective self-explanations under the minimal scaffolding provided by the masking
interface We ague that it is indeed the minimality of the scaffolding that allowed Pitt-CMU
control students to bring to bea their knowledge & best. Because of their more advanced
learning stage, spontaneous sf-explanation triggered by the masking interface likely came
quite effortlessly to Pitt-USNA control students. Thus, their tendency to self-explain was not
suffocated by the lower level of motivation that prevented Pitt-USNA students in the SE
condtionto learn effectively from the SE-Coac self-explanation tools.

Sunmary

The results that we have presented suggest the following conclusions on the dfectivenessof
the SE-Coadh and, in general, on the effediveness of support for self-explanation during
example studying.

« Rich scafolding for self-explanation, like the one provided by the complete SE-Coach
in the experimental condition, can improve students performance at an ealy learning
stage. At this stage, students are still unfamiliar with the subject matter. Hence, they
benefit more from structured help in using domain knowledge to generate effective self-
explanations and are more motivated to pu substantial effort in exploiting this help at
best.

* As gudents become more proficient in the subjed matter, even minimal prompting, like
that provided by the masking interfacein the control condition, can help improve their
self-explanations. At this stage, more daborate scaffolding can adually be less
effedive, if it requires gudents to put too much effort in studying examples, because
they may lad the motivation to doso.

Of course, more data ae necessary to confirm these mnclusions. The data should be
gathered in the mntext of classroom instruction, where it is easier to control at what learning
stage students use the system. These data would provide valuable insights on the issue of how
much prompting and scaffolding is necessary to elicit self-explanation. Although dfferent
studies have shown that both simple prompting and more elaborate scaff olding improve self-
explanation (Bielaczyc & al., 19%; Chi et al., 199), no study has yet addressed the explicit
comparison d different kinds of intervention.

A high standard deviation indicates that students were seledively reviewing only some of the example linesto
generate their self-explanations.
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The study described in this paper did not provide specific results on the eff ectiveness of the
Plan Browser. Limits onthe length of the study sessions prevented us from inserting in the pre-
test and pat-tests items edficaly tapping the planning knowledge the Plan Browser is
designed to improve. Furthermore, students did not use the Plan Browser as much as they used
the other interfacetools becaise they did not understand its function (as most students wrote in
the study questionreire). This was to be expected. The Plan Browser is designed to stimulate
reasoning about solution plans from students that already have abasic understanding of the
topic. Our subjects most likely did not have such understanding, because they had not received
any classroom instruction onsolution planning. Thus, many subjects ended up either ignoring
the Plan Browser or using it without really understanding the underlying planning knowledge.
However, we fourd a significant correlation (after controlling for pre-test scores) between post-
test results and percentage of SE-Coach hints to self-explain with the Plan Browser that the
students foll owed (Conati & VanLehn, To appear). This correlation gives an initial indication
that Plan Browser might in fact improve learning, bu only a new evaluation with more
appropriate subjects and more informative pre/post-test can provide reliable data on thisissue.

CONCLUSIONSAND FUTURE WORK

The research presented in this paper represents a step toward exploring innovative ways in
which computers can enhance elucation and learning. Most existing ITS support students
during problem solving and teach damain specific skills. We have devised a computational
framework that supports learning from examples and that coaches the general learning skill
known as slf-explanation - generating explanations and justifications to oneself when studying
an example. Our framework, known as the SE-Coadh, aims to provide the individualized
monitoring and guidance to self-explanation that has been proven so beneficial when
administered by human tutors. The framework has been implemented and tested within Andes, a
tutoring system that helps gudents learn Newtonian plysics through both example studying and
problem solving.

We believe that a combination of theoretica founditions and empirical studies is
fundamental for the development of effective instructional systems. This is especialy true for
systems that, like the SE-Coach, focus on a learning process whose underlying mechanisms are
still unclear and under investigation. In this paper, we described how the system’s design is
grounded in Cognitive Science findings about the features that make self-explanation eff ective
and howv the design evolved through a careful process of iterative design. In particular, we
described two fundamental elements of the system: (a) the SE-Coadh interface, that provides
specific tods to stimulate and scaffold self-explanation and (b) the SE-Coadh's advice, which
uses the assesgnent of a probabili stic student model to dlicit self-explanations that can improve
the students’ example understanding. We conclude by discussing the results of aformal study to
test the usability and eff ectiveness of the system.

Log data from the study indicate that the SE-Coad"' s interfaceis easy to use, and that both
the interface and the SE-Coadh' s advice ae generdly successful in stimulating self-explanation.
The analysis of data on students' learning provide interesting initial insights on the educational
effediveness of the SE-Coach and on suppat for self-explanation. The results suggest that
structured scaffolding of self-explanation can be more beneficial at ealy learning stages, while
as students become more proficient in the subject matter, even simpler forms of prompting can
successfully trigger self-explanation. Further studies to confirm these findings should be
performed in a dassroom setting, where it is easier to control when students use the system.
These studies would contribute to urderstanding how much prompting and scafolding is
necessary to effectively dicit self-explanation. This iswe is still  under investigation in
Cognitive Science and is highly relevant to understand what level of sophistication is worth the
eff ort when developing a tutoring system that supparts self-explanation.

In principle, the framework underlying the SE-Coadh is general enough to support self-
explanation in any domain in which problem solving can be formalized as a rule-based
cognitive model of the solution process(e.g., math, statistics, geometry, programming, medica
diagnaosis, troubleshooting). In practice, generating the cognitive model for a new domain can
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be very labour intensive, as very labour intensive can be to cdibrate the parameters for the

probabilistic student model. Do the flexibility and adaptability that these comporents provide

justify their cost? The results that we have presented provide aninitial indication that they do, at

least in certain learning stages. We plan to seek further evidence by:

e comparing versions of the SE-Coach with and withou feedback for correctness, to
understand what are the benefits of this feedbadk for learning.

e comparing versions of the SE-Coach with and withou the student model, to evaluate the
benefits of targeting the SE-Coad interventions to the students' needs versus making the
students generate dl the self-explanations relevant to an example.

Anather issue that we plan to explore is the role of the masking interface in the self-
explanation process. As we discussed in the paper, most of our pilot subjects reported that the
masking interface not only did not bother them, bu helped them study the examples more
caefully. But, of course, these subjective opinions do na provide formal evidence that the
masking interface does not interfere with learning. As a matter of fact, we believe that the
masking interface does interfere with leaning for some students. Therefore, we are exploring
the possibility of using eye-tradking to monitor students' attention, given that this technology
is becoming increasingly acairate and ron-invasive. We plan to perform studies to understand
what types of learners benefit more from the interface that uses eye-tradking and what learners
benefit more from the additional scaffolding provided by the masking interface, to dynamicaly
adapt the interaction mode to the learner type.
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