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This paper gives an overview of a system for robustly tracking the 3D position and
orientation of a finger using a few closely spaced cameras. Accurate results ar
obtained by combining features of stereo range images and color images. Thi
work also provides a design framework for combining multiple sources of
information, including stereo range images, color segmentations, shape
information and various constraints. This information is used in robust model
fitting techniques to track highly over-constrained models of deformable objects:
fingers. 
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Introduction

Natural hand gestures are fairly low bandwidth for most communications but are p
ularly suitable for indicating spatial relationships. A mouse - a 2 DOF pointer -
proven very useful for HCI; hand gestures could provide 5 DOF or more. Pote
applications include robot and human collaboration, virtual reality interfaces, scien
visualizations, GIS, games, controls for machines such as those used in forestry a
CAD. Maggioni and Kammerer suggest many potential areas of application, inclu
medicine, advertising, harsh environments, video conferencing and virtual touch sc
[19]. As computers become more than screens with keyboards, gestures will l
become increasingly important for user interfaces. 

This paper describes a system that tracks the finger of an unknown user in three d
sions against a cluttered background containing motion and variations in lighting. A
these conditions could easily occur in an information kiosk-type application. T
research has concentrated on developing a robust system and has used multiple c
of information, including stereo range imaging.

Much of the previous work in tracking and recognition has concentrated on rigid mo
of non-natural objects with corners and edges. Visual recognition systems have
exploited these features and the assumption of rigidity. Problems often arise in app
this research to natural objects, such as hands, which lack corners or edges, are 
and deformable, and whose shapes, sizes and colors differ from person to person
1



Previous Work

omes
input

mera.
obust
elp to
oves

rs. It is
od for
trols

ways:
ack-
nta-

ents
 due

tions.
works
rtu-
 color

 uses
ally
nd leg.
es 3D
t the

ored.
 sub-

] and

n fits
t first”

d least
asure-
 not
As 3D vision systems acquire more practical utility, the need for robustness bec
increasingly apparent. This system achieves robustness by combining multiple 
cues, including stereo images, and using these over-constrained models.

Stereo imaging provides a number of advantages over imaging using only one ca
Range images simplify segmentation, which is one of the hardest problems for r
systems. Range images also stabilize the depth component of 3D positions and h
solve the scale problem, in which an object appears smaller in the image as it m
away.

Previous Work

Gesture recognition has attracted the interest of many researchers in recent yea
being explored as a novel human-computer interface (a 3D mouse) [13], as a meth
directing robots [15] and [4], and even as a replacement for television remote con
[9]. A review is provided by Pavlovic et al. [21].

In most of the literature, hand segmentation has been performed in one of four 
using a controlled (uncluttered) background [15]; using a known background (i.e., b
ground subtraction) [13]; using segmentation by motion [16]; or using color segme
tion [8]. 

Using controlled or known backgrounds can be problematic in dynamic environm
where the background can change over time. Motion cues can be difficult to apply
to the false impression of motion caused by changing light and small camera mo
Color segmentation is a fast and fairly robust approach to hand segmentation that 
well under varying lighting conditions and against unknown backgrounds. Unfo
nately it can easily be confused if the background behind the hand is close to the
of the skin. 

Azarbayejani et al. [1] describe work going on in the Pfinder system. This system
“blobs” - oval regions of consistent color and texture - as features to track, typic
attributing one blob to the head, one to the torso and one to each hand, arm, foot a
The Sfinder extension to this system takes tracked blobs from two cameras and giv
tracking data. The system seems to rely heavily on using color to segment ou
objects to track. It also has to “learn” the background image so that it can be ign
Pfinder should therefore suffer from many of the problems that cause background
traction and color tracing to fail. 

Tracking has been facilitated through the use of special markers [7], correlation [9
a combination of color and shape constraints [16]. 

Lowe’s system for model tracking [18] does edge detection on the image and the
lines to the edges. These edges are matched to the model edges using a “bes
search approach. The model parameters are then solved for using a weighte
squares approach. The system’s careful approach to errors in matching and me
ment allows it to quickly find a good match and to weight the residuals so that it is
2 Robust Finger Tracking with Multiple Cameras
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dominated by outliers and converges even with large motions. The system is robu
real-time. 

One technique that gets away from explicit models is the Eigen image idea. Blac
Jepson have developed a system that tracks and recognizes simple hand gesture
what they call “EigenTracking” [2]. This system builds a representation of the h
model from training images and uses this representation to compute an Eigen ima
It then finds and tracks these images in a video stream using a pyramid approac
major advance of this work is that it uses Eigen techniques to solve for the view t
formation of the object at the same time that it finds the object’s motion.

Blake and Isard [3] describe a system whose approach to the tracking problem r
bles that in “snakes” but which is based on Kalman filtering. The authors develop a
ger and lip tracking system that uses a Kalman filter to estimate coefficients in
spline. Measurements are made to find the minimum distance to move the spline s
it lies on a maximal gradient portion of the image. These measurements are used
next input to the Kalman filter. More recent work on combining color blob informat
with contour information to track hands has used a condensation approach [12].

Rehg and Kanade describe a system called DigitEyes that tracks a hand at 10 Hz
a 27 DOF model based on cylinders [22]. They describe the implementation of 
mouse. The system fits a model to tracked features using a nonlinear least squa
The model is updated with a Kalman filter. The finger model is used to find the fea
in the next frame by searching orthogonally out from the centre of the finger and l
ing at the gradient of the greyscale image to find the edge of the finger. These co
edges of the fingers are used to establish the current feature location for the finge
authors point out that difficult problems remain in tracking through occlusions 
across complicated backgrounds.

Huttenlocher et al. track flexible objects without using explicit models [10]. First th
system forms an edge image. It then matches this to previous edge images using a
dorff distance metric. The raw Hausdorff distance is converted into a rank order dis
to improve the robustness of the system. One difficulty of a system with no exp
model is that to get the real 3D position of the finger, a model of some sort is
needed.

A similar concept is described by Darrell and Pentland [5]. This system uses view 
polation on training images to do the tracking and recognition. The images are dyn
cally warped to deal with nonrigid objects like hands. The computation is expensive
the system achieves 10 Hz performance for small images. The matching of ima
done using a correlation that is weighted by the variance of each pixel. More re
work by Darrell et al. make heavy use of stereo and color to track faces [6]. 

Overview 

The overall approach in the system described in this paper is to try to detect the 
several different ways, each method being referred to as a channel and compu
some filter. A model is then simultaneously fit to all the channels. This simultaneou
Robust Finger Tracking with Multiple Cameras 3
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ting is key. The model fitting is controlled by projecting the model into the measurem
space of a particular channel and then comparing it to the measured data from the
The channels used are edges from four cameras, range information from stereo c
tion, skin-colored regions from one camera, and areas whose convexity resembles
ger tip. There are seven channels in all.

This system is a generalized method that combines sensor readings from several
ent cameras and types of features. Any system that combines signals from mor
one input to make a measurement needs some sort of model that gives meaning t
is being measured. 

A very abstract model of a finger is used, which consists of the location of the finge
in 3D world coordinates and the direction it is pointing. The model is nothing more 
the definition of its parameters. The system looks for the set of model parameters t
some sense maximizes the likelihood of all the input channels. This requires an
function to estimate the probability of input, given the real solution specified by the
rent model parameters. These error functions must take a less abstract view of the
by projecting the model into a space where it can be compared to the current me
ment for the specific channel. The combination of all the input channels is based p
on the abstract model.

Tracking can be used to speed up the system, but overall quality largely depends 
capacity to reacquire a lost track and initialize where there is no track. Hands
appear and disappear very quickly. Self occlusion is not addressed by this system

Data Flow

The overall flow is illustrated in Figure 1, “Information flow in system.,” on page
First, images are acquired from multiple calibrated cameras. From these images, 
range images are computed, along with color segmentation images and edge ima
convexity feature that is good at detecting finger tips is also computed. The model
then fits the finger model to the data.

FIGURE 1. Information flow in system.

CAMERA CALIBRATION & 
IMAGE ACQUISITION

Camera calibration is currently done using a simple system based on a grid of ta
with known positions. The Triclops stereo system comes with calibration data. 

The system captures images from a color camera and a Triclops camera head wit
black and white cameras. A device, described in [14], is used that takes one field
the color camera and then takes the red, green and blue channels for the next fiel

R ange

E dges

F eatures

M odel F it tingIm age
C orrect ion

R aw
Im ages

S k in
S egm entation
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indicate
the three black and white cameras on the Triclops. This multiplexed signal is fed i
single RGB frame grabber. The result is synchronized images from a single RGB f
grabber at field resolution from all the cameras every 30th of a second. The field
down sampled to 320 x 240 for processing. 

The images thus obtained have considerable radial distortion due to the short
length lenses. This distortion is corrected by using the camera calibration informati
resample the image data into an ideal camera model. The image is resampled us
interpolating lookup. Example images are shown in Figure 2, “Raw image and im
corrected for distortions.,” on page 5. Note that the straight lines along the ceilin
bent in the uncorrected image.

 

FIGURE 2. Raw image and image corrected for distortions.

The four types of channels used by the system for model fitting (range, skin co
regions, convexity features and edges) are described next.

RANGE The Triclops/TGAP1 stereo system is used. It has a multi-baseline algorithm that us
sum of squared differences correlation to compute depth images. The algorithm r
bles the multiple-baseline stereo algorithm described by Okutomi and Kanade 
Figure 3, “Reference image and depth image.,” on page 5 shows a sample range
and the associated reference image. Closer objects are darker, and black areas 
that no match was found in the stereo algorithm. 

 

FIGURE 3. Reference image and depth image.

1. See www.ptgrey.com
Robust Finger Tracking with Multiple Cameras 5
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COLOR SEGMENTATION The color segmentation images are built by considering the hue of the skin and the
intensity. The color segmentation detects the skin reasonably well but often pick
other objects with similar color properties, such as wood furniture and doors. The
mentation is noisy but can be cleaned up with erosions and dilations to the image.
the initial image is found, it could be used to refine the color search class for subse
images. A final segmentation is shown in Figure 4, “Image and color segmentation
page 6.

 

FIGURE 4. Image and color segmentation 

FINGER CONVEXITY 
FEATURES

The features stage combines the segmentation cues to form good higher level h
finger location. A strong geometric constraint is found in the fact that the human fin
tip approximates a half sphere that looks the same from most orientations: segm
shapes with a certain sort of convexity are likely to be fingertips. The finger conve
points are computed by taking the skin segmentation (any reasonable segmen
could be used) of the image and finding all the points on the edge of the segmen
that are locally convex. These points are then clustered with their local neighbors t
the convexity points. 

EDGES Edge detection uses the method developed by Shen and Castan [23]. This metho
vides results similar to the Canny edge detector but is faster to compute. The edge
tion is implemented with recursive filters. 

FIGURE 5. Image and edge detection

MOTION & BACKGROUND 
SEGMENTATION NOT USED

Motion segmentation and background subtraction are not used because simple 
mentations were easily confused by shadows, changing light conditions and 
motions or vibrations of the camera.
6 Robust Finger Tracking with Multiple Cameras
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MODEL COMBINATION This section shows the derivation of the system’s model fitting techniques, which
based on a Bayesian approach to the model and information. 

Let the vector  be a model and  be the belief that  is the correct model

 be state at time  of all the sensors and  be the set of all measurements up to 

So . Many different algorithms, or filters, can be applied to any
the sensor readings (images in this case) to implement some measurement. Thes

are a function, , that computes . Define the set of all measurements a

current time as , and then define the set of all measurements u

the current time as .

Our belief that the model is correct after the measurement at time  is

(EQ 1)

which is the same as 

(EQ 2)

Applying Bayes’s rule we get 

(EQ 3)

Everywhere this equation is used we will be trying to compare different models. S

the denominator is independent of , it can be considered a constant normalizer.

(EQ 4)

The last term in this expression is just the prior belief in the given model, so

(EQ 5)

Now making the standard Markov assumption that the given state of the sen
depends on the current model and is independent of previous sensor readings, we

(EQ 6)

The filters, , must together be sufficiently statistic that they preserve the informa

relevant to the model in the current sensor reading. This sufficiently statistic ass

tions results in . So

(EQ 7)
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It should be noted that the measurements are clearly not completely independent
they come from images of the same scene; but they are not completely correlated 
because each does provide additional information. For simplicity, all the covari
information between the measurements is ignored. This strategy greatly simplifie
problem and amounts to assuming that all the measurements are independent. So

(EQ 8)

Equation 7 thus becomes

(EQ 9)

DEALING WITH THE 

 TERM

At each time increment in the processing of the input channels, if the previous time
has yielded a position estimate, the system uses a prior that is a constant near wh
finger was in the previous time step and zero elsewhere. The vicinity is specifie
terms of the model, rather than sensor coordinates, and is considered to be a c

model space that is 100mm in the x, y and z directions and  in rotation. It is cen
at each of the likely solutions from the previous time step. When the system lac
estimate for the previous time step, such as at the first frame or when tracking has
lost, the prior is set to be a constant over the complete feasible model space.

This can be considered a Kalman filter approach. The previous track is projected
the current time frame using trivial dynamics and then diffused to represent the u
tainty in the forward prediction. It is then combined with the new measurements to 
new estimate. 

The condensation method of Isard and Blake [11] provides a successful approa
propagating information forward from a previous step. The method deals with the
tialization, multiple solution and loss of tracking issues that complicate all tracking 
tems. It would deal more cleanly with the priors. My initial experiments w
condensation approaches suggested that adequately representing the prior distr
would require a number of sample points that would be too huge for computationa
sibility in a real time system. These limitations may yet be overcome; future work
explore this further. 

DEALING WITH THE 

 TERM

Computing the individual channel probabilities means knowing something abou
distribution of the  measurements. This distribution is different for each filter funct

The parameters required for the distribution are empirically measured in a calibr
procedure.

The errors are evaluated by projecting the model into the measurement space, w
projection functions, described in Section , then finding the nearest feature in the 
nel image. An error metric is formed from a distance metric on this feature and the
jection of the model. For the edge images, the error metric is simply the sum o
distances from several sample points around the silhouette of the predicted model
nearest edge in the image. For the convexity features it is the distance from the pro
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location of the finger tip to the nearest convexity feature in the image. For the r
image, the error metric is the projected range along the center of the finger compa
the range values in the measurement channel. For the color segmentation, it is the
ber of skin colored pixels that are inside the projected model.

The convexity, range image, and color features produce a fairly Gaussian looking d
bution. The error metric of a single edge feature is not Gaussian, so several are 
together. The resulting distribution does look Gaussian. 

The filter functions have been constructed so that they can be approximated by a n
distribution. One difficulty arises because the tails of a normal distribution are very 
If a filter detects a feature nowhere near the model, the belief in the model’s correc
is not much affected by just how far away the feature actually is. Somehow the no
distribution needs to be modified to reflect this. A mixture of normal distributions co
be a good way to model this. This system models it as a probability that the mea
ment is just plain wrong plus a probability (with normal distribution) of the amoun
error in the measurement if it is not plain wrong. The maximum error of the meas
ment that gets fed into the normal computation is limited, so that, for instance, ev
the error is greater than  it will be considered the same as a point at . The ta
the normal distributions are thus forced to take on constant values at some poin
fact that the distribution no longer integrates to a value of one is taken care of by a
malizer used later. 

All the distributions used require a standard deviation. These were found in calibr
procedure that was run once when the system was developed. Initially a value of 1
used for all variances; the system easily tracked a finger over a simple backgroun
was not the color of the skin, had few edges and lacked motion. From this sample 
variances for this training run were directly calculated. These newly calculated 
ances were used for future runs of the program. The algorithm is relatively insensit
changes in the variance; they can be doubled or halved with little effect on the resu

PROBABILITY 
REPRESENTATION

The software stores the negative log of the probability instead of the actual proba
This causes equation Equation 9 to become

(EQ 10)

Another function projects the model into the measurement space to provide an exp
value of the function. This projection function is called . For a filter function with

normal distribution, this gives

(EQ 11)

The leading term is independent of  so it can be replaced by a normalizer, result
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Equation 10 can now be written in the form 

(EQ 13)

Finding the model that maximizes our belief that it is the correct model is equivale
minimizing

(EQ 14)

This is almost in the form of a least squares problem, except for the 

term. Since  is constant in a feasible region and zero outside it,

 term constrains the solution to be inside the feasible region but ha

other effect. This constraint is embedded into a least squares solver that finds a so
to 

 (EQ 15)

The stabilization methods described by Lowe [17] are used in solving this least sq
problem. These stabilization methods provide a trade-off between moving the cu
solution as little as possible and reducing the overall error in the model fit. Constr
can be added to the least squares solution in two different ways. One is to simply
linear equation representing the constraint to the system of equations being solve
other is to set the partial derivatives to zero outside the feasible region and rely o
stabilization terms to keep the solution from moving around randomly when the solu
is not in the feasible region. This second method is used here to constrain the sea
the feasible configuration space.

The problem is nonlinear because the  projection functions are nonlinear. This no

earity means that the solution will only converge on the global minimum for so
neighborhood in the feasible model space. The program must search the feasible
to find the global solution to Equation 15. The size of the convergence neighbor
determines how closely the search points need to be located. Empirical results sho

the system easily converges over a  rotation and 15mm motion, resulting in a
coarse sampling of the search space that runs quickly.   

P fi
t

m
t( )( )log– ηi

fi
t

σi
2

-----
µ i m

t( )

σ i
2

---------------–
 
 
  2

+=

Belpost m( )( )log–

η Belprior m
t( )( )log–

fi
t

σ i
2

-----
µ i m

t( )

σi
2

---------------–
 
 
  2

i 1=

n

∑+

=

Belprior m
t( )( )log–

fi
t

σ i
2

-----
µi m

t( )

σ i
2

---------------–
 
 
  2

i 1=

n

∑+

Belprior m
t( )( )log

Belprior m
t( )

Belprior m
t( )( )log

fi
t

σi
2

-----
µ i m

t( )

σ i
2

---------------–
 
 
  2

i 1=

n

∑

µi

10
°

10 Robust Finger Tracking with Multiple Cameras



Data Flow

ing
from
move
rations
ter of

er in
 upper
 the
ction

found
ce for
is not
it that
ormally

ach

Equa-
 with
 how-
lities,

d and

ple-
ance
 keep

ares
tem
. The
an be

to be

. Mod-
n step
ept. 
TRACKING & SEARCHING One the problems with tracking fingers is that they move very quickly. Most track
systems allow the track to be no more than a few pixels off the predicted motion 
one frame to the next. This just does not work for fingers. Most people can easily 
their fingers at 4 m/s; a baseball pitcher can reach 10 times that speed. The accele
are also very impressive. Even at 30 fps, the motion will be several times the diame
the finger. The model from the previous frame may not even overlap with the fing
the current frame. Unless the frame rate is much higher than 30 fps, no reasonable
limits on the finger’s acceleration or velocity can confine the possible location of
finger to a small area. For this system, the finger can move up to 5 cm in any dire

between two frames and can change its orientation by . If no finger has been 
in the previous frame, the whole work space is searched. The radius of convergen
the model is about half the diameter of the finger. This makes sense: if the model 
on the finger, it is difficult to match up the correct features and do a least squares f
gets closer to the correct model. This means that I step across the search space (n

100 mm by 100 mm by 100 mm by ) in steps of 15 mm and . Fortunately e
model is quick to evaluate.

The model evaluation consists of doing a least squares fit on the model to solve 
tion 15. The system numerically computes partial derivatives of each error metric
respect to each degree of freedom in the abstract model. An important twist here,
ever, increases the robustness of the whole system. The conditional operabi

, for each channel are examined. The two least likely channels are ignore

not used for forming the equation to be solved in the least squares fit. This sim
minded approach to robust statistics works well and greatly improves the perform
of the system. Often one of the channels is completely wrong; this process helps to
a wrong channel from corrupting the end result. 

The partial derivatives are put into a matrix to solve Equation 15 for the least squ
solutions. Lowe’s stabilization method [17] is highly advantageous here: if the sys
lacks constraints in some direction, the solution does not move all over the place
least squares solution usually converges after only a few iterations. Constraints c
embedded in the system simply by adding additional equations to the matrix 
solved. 

At the end of this search stage, each model has a certain likelihood of correctness
els below a certain threshold (10%) are thrown out, and a non-maximal suppressio
is applied so that if two models have converged to the same solution, only one is k

35
°

35
°

10
°

P fi
t

m
t( )
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ROBUSTNESS

 

FIGURE 6. Image sequence with tracks (view downward and then left to right)

Figure 7, “Difficult image (all four camera views),” on page 13 shows a challeng
image from a sequence containing a cluttered background with many edges and
son walking around. The door directly behind the finger is wood and shows up a
same color as the skin. As shown, the system correctly tracks the finger. (A large 
ber of images from the sequence are shown in Figure 6, “Image sequence with 
(view downward and then left to right),” on page 12.)
12 Robust Finger Tracking with Multiple Cameras
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FIGURE 7. Difficult image (all four camera views) 

The system has also been tested under changing ambient lighting conditions and
the camera moves. Neither situation causes any problems, as is expected beca
system does not carry any state information about lighting from one frame to the 
Similarly, as long as the camera motion does not cause an apparent motion of the
that is larger than the track region, there is no state information about the finger.
system will therefore work even if the cameras are sitting on a desk that vibrates. O
other hand, in the situation in Figure 7, “Difficult image (all four camera views),” 
page 13, a shift in the main color of the monitor, which casts a considerable amou
light on the finger, will drastically change the lighting and color consistency of the 
ger. The system has been tested with screen colors of white, red, blue, green and
in a setting with about 50% of normal ambient light. The skin detection colors ar
wide enough that this does not cause any problems. 

The system also works well where there is no texture for stereo detection. In these
the range information is poor but the edge information tends to be good because 
absence of background clutter.

The model finding for the initialization sequence takes about three times as long to
pute as a normal tracking frame, but it is important that this be robust and reaso
easy to compute because a finger can disappear from a scene at any time and m
quickly reacquired when it reappears. The initialization model fit was run on each fr
and compared with the tracked results. In almost all cases the result was the same

The two possible error types are that the system may find the wrong thing or may
nothing even though there is a finger in the scene. These errors are basically con
by setting a single probability threshold for throwing out models. This test was run 
a threshold that ignored any solution with a likelihood of less than 5%. No erro
either type occurred. 
Robust Finger Tracking with Multiple Cameras 13
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The system performs poorly in two situations. The first is when the finger is occlude
the arm or hand. Occlusion is possible because the cameras are mounted close to
In future work this problem may be solved by mounting the cameras so that they 
the scene from very different angles. The other failure case is when the finger p
almost straight at the cameras. This could be dealt with by positioning the came
the side of the user, so that such an action is awkward or, again, separating the c
so that a user could not point to them all at once.

ACCURACY The system was tested with the hand moving over a volume 500mm high, 500mm
and 800mm deep, where the depth axis moves away from the cameras. This volum
responds approximately to the work space in front of a computer monitor. A large n
ber of hand rotations were tested in this volume. Ground truth was gathered by put
ruler in the scene, moving the finger to a particular point on the ruler and taking 
surements. The distance between two measurements from the system was com
with the ground measurements from the ruler. 

This method of measuring ground truth data is not especially accurate - the ground
is probably accurate only to 5mm. The accuracy in the plane of the camera ima
quite good, usually less than the 5mm limit of the ground truth data. Occasionall
system does not track all the way out to the end of the finger and causes a finger t
placement of up to 10mm. No data in the test sequence exceeded 15mm and alm
the data was under 5mm.

On the depth axis (moving away from the cameras) the accuracy is worse. The av
error was 25 mm while the maximum error was 40 mm. Given the baseline of the 
eras, the 40mm error represents an error of about 1.5 pixels in the image. It will be
to improve this beyond about a 0.5 pixel error; much better depth resolution will req
a wider baseline or higher resolution images. It is difficult to obtain ground truth for
rotation angles. Examining the model overlaid on the images reveals that none 

rotation angles exceed . 

Given the size of the work space, the system’s accuracy is about 5% for the wors
data and about 3% for most of the frames. If the depth component is ignored, the
age accuracy is around 1%.

SPEED The system was run on a Pentium Celeron 400 Mhz processor running Linux. The
varies up to 10% for a given frame, but the average time per frame is shown in Ta
“Average computation time per frame,” on page 14. Frames where the track is los
the system must reinitialize the tracking take three times as long.

5
°

TABLE 1. Average computation time per frame

Task Time (ms)
Capture frame 40
Scaling, unwarping, and image correction 80
Stereo processing 80
Edge detection 25
Convexity features 10

Total 300
14 Robust Finger Tracking with Multiple Cameras
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The current speed of about 3 fps is not great real time, but with some tuning and 
500Mhz Pentium III processor, the system could probably achieve 15 fps.

If the frame rate doubles, the distance the finger can move between frames halve
the volume of the search space diminishes by a factor of 8. Each frame requires
less computation. Because of the large overhead in capturing, unwarping frame
stereo processing, the system does take more CPU cycles as the frame rate increa
the relationship is less than linear. 

Conclusion & Future Work 

This paper has demonstrated a highly robust system that can accurately track a fin
three dimensions. It can deal with motion in the camera and with complex backgro
containing motion, skin colored objects and many edges. The same techniques 
applied to a wide range of tracking problems. The system deals quickly with the in
ization case and recovering when tracking has been lost. The technique is suitab
real time systems. 

Future plans include investigating how to update parameters, such as variance,
system runs. Skin color, for example, could be measured in the current frame on
hand was found and could then be used for finding similarly colored regions in su
quent frames. Using condensation offers important possibilities. 
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