July 20, 1998

Video Switch

Cullen Jennings
FIGURE 1. Completed Project

In a large computer vision application | am working on, | am using multiple video cam-
eras to grab stereo pairs of images. To do this | needed a video multiplexer that takes
inputs from multiple cameras, detects the video sync signals, and switches between the
multiple inputs on each field. | have constructed such a video multiplexer: it accepts 6
inputs and switches them to 3 outputs. It does sync detection and uses a Xilinx 9500
series PLD to implement the switching logic. This PLD is “in system programmable” so

it can be changed to implement various switching schemes such as alternating between
camera inputs every three seconds, every frame, on each field, or on a certain area of the
image. This last scheme would allow a banner from one video input to be superimposed
on top of another video image - and various other picture in picture type applications are
also possible. Although this video multiplexer is primarily designed for NTSC video
applications, the bandwidth is adequate for switching video signals for high resolution
monitors. The switch also implements a simple DAC, which is used to output a video

Concept

test signal that produces an image with a few simple gray bars. This is a useful test
image and demonstrates the simplicity of synthesizing a video signal using a relatively
inexpensive PLD.

This project has been interesting from several points of view. The programming of the
PLD is all done in VHDL, which is very powerful and is becoming much more available

to engineers with small budgets. The project is constructed using surface mount compo-
nents - | will address some of the issues that arise when working with these using only
the type of equipment one might have at home. The PCB is only two layers, which
keeps the price down. Video cameras have become so inexpensive lately that | am sure
their usage will increase in both commercial and noncommercial projects. This circuit is
a useful tool for any project involving multiple video cameras. It is cheap (approxi-
mately $50), the components are widely available, and it is not particularly difficult to
build.

Concept

The block diagram for the circuit is shown in Figure 2. There are three video outputs,
which can choose either three A or three B inputs. The logic block selects the inputs to
use and receives information from the sync detection circuit. The logic block also syn-
thesizes two output video signals that can be used as sync channels or other video test
signals.

FIGURE 2. Block diagram for video switch

OutA

Sync

Logic DAC

Detection OutB

Switch

Video Switch 2

Brief review of RS170 video signals

| connect the A and B channels to two RGB video cameras that are genlocked together,
and connect the output to a video digitizer card in a computer. The PLD is programmed
to switch on each field. When | capture a frame, the even field is from one camera and
the odd field is from the other. In software | separate these into two images and process
them through a stereo correlation algorithm to compute the distance from the cameras to
the objects viewed.

Another application would be to take a certain region of the screen from input A part of
the time and from input B the rest of the time. This would allow a banner or rectangle
from the image A to be overlaid on the image B. The system could also be programmed
to switch inputs every few seconds to allow viewing through two cameras or to put the
view from the first camera in the top half of the image and from the second in the bot-
tom half so that two cameras could be watched at once.

The ability to generate test patterns can be used to time stamp the video. Basically you
generate a test pattern that encodes the frame number as a binary pattern on the image
and then you use the switcher to overlay this image onto the left edge of the input video.
This is really convenient for finding out exactly how many frames your video capture
card is really dropping and whether it ever duplicates frames.

A slight modification of the circuit is required (diode and two resistors) to feed the AC
signal into one of the inputs of the PLD so that it can synchronize the output sync sig-
nals with the AC line signals. Video cameras can then be genlocked to this input signal,
and the video camera captures will synchronize with the flicker of the AC fluorescent
lights. This will significantly improve the image in some cases.

Something | have not looked into but am curious about is whether one could regenerate
portions of the sync signal that had been corrupted by, say, a video copy protection
scheme. It seems like it would be easy just to switch over to the synthesized sync on
those scan lines having a corrupted sync signal.

The project is also quite convenient if your scope does not have a TV trigger. Feed a
video signal into this device, and then use one of the digital outputs from the PLD as a
trigger for your scope. When it comes to video, it slices, it dices; but wait, there’s more -
it comes with a free TV trigger for your scope.

Brief review of RS170 video signals

A video sequence is a series of still images called frames. Each frame consists of 525
horizontal lines called scan lines. The frame is split into two fields with the odd scan
lines in the first field and the even in the second. The video signal transmits one frame
after the next. For each frame, the first field is transmitted followed by the second. The
fields are transmitted by transmitting each of the scan lines with appropriate delays and
signals between each scan line, field, and frame so that the receiving system can tell
what part of the image is being received. The grayscale value of the image at a given
location along the scan line is transmitted by encoding it as a voltage between 0.357 and
1.0v. Consider the example shown in Figure 3. At the start of the scan line, the image is

Video Switch 3

Brief review of RS170 video signals

white so the output voltage is 0.7v. As we move across the image, we hit the gray region
where the output voltage drops to 0.5v, then the black where it drops to 0.3v. The scan
lines occur at a rate of 15,734Hz or about every 633555

FIGURE 3. Video signal for a single scan line.

I= .7 V]
I Sv
I 3v
Ov
HORIZONTAL SYNC At the start of each scan line, a horizontal sync is transmitted so that the system will

know where the scan line starts. This signal is shown in Figure 4. Here we have a back
porch section that is 1.18 long at 0.306v, followed by the actual sync pulse that is
4.7uS long at 0.020v. Finally there is the front porch for B34t 0.306v.

FIGURE 4. Horizontal sync signal between two scan lines.

¢ 2
c

S5 £ o 5 8=

S 85 § S

23 C O a ° 5

DS X N c (o))

=0 m T L =F

VERTICAL SYNC In addition, the first several scan lines in each field are not used for image data but are

used for vertical sync and other purposes. The first three scan lines of the field contain
equalizing pulses, followed by three lines of serration pulses, then three more lines of
equalizing pulses, as shown in Figure 5. The next eleven lines generally contain black
scan lines but might have other information such as closed caption. The equalizing
pulses are 2|85 wide and the serration pulses arqu8.Wwide.

Video Switch 4

Schematics

FIGURE 5. Vertical sync between two fields.

o —

"1§L§- i

S S
S = =]
o © s ©
T S8 E8 T8 x
. n n
5 So to So S 8o g O
- O3> O > TS L o c (SR
Ao W o Wo m o) 4 (p |

PAL and SECAM are very similar, but the timings change. This is described in detail in
Video Demystifiedl].

Schematics

The video output by the system can be selected from either the A or B video input. The
logic block selects whether to use the A or B input. It can use the information provided
by the sync detection circuit to decide when to switch video inputs. The logic block also
drives a simple DAC that can be used to generate a video output signal on the two sync
out lines. The schematics are shown in Figure 17.

All video signals coming into the system are terminated with a 75 ohm resistor. Depend-
ing on the jumper settings of JP1 and JP2, either the green A signal or the sync A is fed
into the sync detection circuit. First the signal is filtered in the passive RC circuit formed
by R3, C7 and C9. The filtered signal is then passed into the U5 chip. U5 is a National
LM1881 chip [2] that does the sync detection. The frequency response curve for this fil-
ter is shown in Figure 6. This was computed using Electronics Workbench [3], which
forms a convenient front end to SPICE. It has about an -18db attenuation of the color
burst signals but very little effect on low frequency sync signals. This filter is only
required if color signals are being fed into the system. It can be removed from the sys-
tem by simply removing C7 and C9. There is really no need to short R3 because it has
little effect relative to the high input impedance of U5.

Video Switch 5

Schematics

FIGURE 6. Calculated filter response. This will have a nearly -18 dB effect on the
color burst signal while having little effect on the sync signal which is mostly
under 500KHz.

Gain (dB)
o K b

KR
(00]

-21 : : !
10 KHz 100 KHz 1 MHz 4 MHz

The various sync signals are fed into the PLD (U8 in the schematic), which can be pro-
grammed to select the correct input - more on this later. The PLD is a Xilinx 9536 which

is discussed in the Xilinkata Book{4] and Xilinx web page [5]. The PLD also

receives a clock signal from the oscillator and controls two LEDs. JP6 allows the logic
section to be easily connected up to another circuit or to a logic analyzer. Data lines 0 to
7 can be used as general purpose I/O. Data lines 9 and 10 are pulled to certain logic lev-
els with the resistors R22 and R23. They can be pulled to the opposite levels by putting
jumpers on JP6. Digital power is also available on the jumper to power some other cir-
cuit, if desired.

The PLD controls U6, the video switch chip. U6 is a Maxim MAX465 [6] video switch
which controls three channels and can select each channel from one of two inputs. It
amplifies the signal by a factor of two, which conveniently allows us to divide the signal
by two by running it through a 75 ohm resistor before driving the 75 ohm transmission
line. This makes it easy to match impedance and to avoid overdriving the output ampli-
fier even if the output line is shorted to ground - something that seems to happen when |
build cables. It also double terminates the transmission line, greatly reducing reflec-
tions.

The logic block also outputs a two-bit signal into the DAC built by a two resistor net-
work. Resistors R9 and R13 form the DAC for the B input sync while R19 and R20
form the DAC for the output sync. Since the outputs on the PLD can be setto 0, 1, or Z
(tri-stated), there are six possible output voltages from this DAC.

The power supply circuitry was designed to keep the noise on the power to the analog
chips low. | considered using a switching supply because of concerns about heat dissipa-
tion, but | decided the linear power regulator would cause less noise on the video output.

Video Switch 6

Schematics

The digital circuits have their own supply because this was a simple way to reduce tran-
sient noise on the analog lines caused by high speed digital switching. When substitut-
ing capacitors or transformers on the input side of the power regulators, keep in mind
that a 12v AC transformer means 12 RMS, resulting in a DC voltage of 17v. If the volt-
age rating of your capacitor is too low, it will fail much sooner than it should.

The input video signal and the associated outputs of the sync detection circuit are shown
in Figure 7. The top trace is the video input for one scan line with a horizontal sync at
both ends. The second trace is the field which only changes on a vertical sync. The next
trace is the burst which indicates when the color burst signal is active. Finally the bot-
tom trace is the sync, which is active during the horizontal sync.

FIGURE 7. Horizontal sync signals.

J] []

A longer segment of the signal around a vertical sync is shown in Figure 8. This shows
the same signals as Figure 7 but over several lines and a vertical sync. The field changes
at the beginning of the vertical pulse.

Video Switch 7

Board layout

FIGURE 8. Vertical sync signals.

™

——z s

i

A

il

- S—
NS

L T T T T T

——

T
T

Right now the board uses a mini-din style connector that is similar to an SVideo connec-
tor. The advantage of this is that it does not take up much space on the board. The disad-
vantage is that making cables is a pain. It might have been better just to put a bunch of
BNC connectors on the board.

| have designed this circuit such that it should work for NTSC, PAL, and SECAM style
video signals, but | have only tested it with NTSC. The only values that deserve much
consideration are C11 and R10, which form the time constant for vertical sync detec-
tion. The voltage levels generated for output signals by R9, R13 and R19, R20 would
also need to be changed.

This project could easily be done using a Cypress ISP PLD or even an AMD Mach ISP
PLD instead of the Xilinx.

Board layout

The PCB layout was a bit of a challenge. | wanted a ground plane under the whole ana-
log section, but | also wanted to keep costs low by only using a two-layer board. | am
very happy with the results. There are almost no breaks in the ground plane, and | got it
on two layers. The jumper JP5 provides a simple way or controlling where the analog
and digital grounds get connected. This digital lines are kept well separated from the
analog lines. Excellent advice on minimizing noise by proper layout can be found in
High-Speed Digital Desigfv] andNoise Reduction Techniques in Electronic Systems

[8].

The actual board layouts are shown in Figure 9 and Figure 10. The placement of the
components is shown in Figure 11.

Video Switch 8

Board layout

FIGURE 9. PCB top layer. Note the careful separation of analog and digital
signals.

e g

Cullen Jennings
Rev A, June 1988

-‘

'I

-\{ ~
[]

(]

~ e
[

FIGURE 10. PCB bottom layer. Note the ground plane under the whole analog
section.

'
R
K
Y
R
$5%,s"
R

%

oo
X

X2

%%

=2
R
&
SR
K

%

%

%%
0o

55

o
3
RBRR:
%
R

X
0o
N8,
%
RTINS
%%
oFefetel

%
QR

X
R

%
%

TTeseTs
R
K
X
K
R

R
%
2%
%

o07%
oo
XX
2%
e

%

X
358
3

o
%

%
&
R
%%

o%
%

3
%
Soe

ORI
S
IR
SRRRRLR
XS
R

2%

T
22
2
o
s
o ots

%
R

kx>
2
R

%
oooates
R
e
R

ores
P2
%
R
S
S
2%
SR
XKL
S
S

ToTese
R
X
SRS
R
SRS
Sorete
X
X
PR
oSS
P
R
R
QRHRRRRREL
%2

@3
%
oS
KK
8

B2

X%
R
S
%
X
X
%
s

%%
%

R

oo

R
oS
4
K
o
3
e

30793
o42e!
%

%
%

oo,
%

R

N

%
X
o
3
54
%
A
o

)%

)k
5%

R
R
X

s
S

R
SRR

0

R
oo
5

K
0%
%

Poses Josses

0o R

R IR
ORRRRIIANRRRRRR] RSTRALIAR X

o2olatedotetetotetodetetetotetotetel RERRRRRERRRRKK

Video Switch

Construction

FIGURE 11. PCB component placement

(c]

ul

U2

PARTS

|_| u3 u4g | @ L_[t13 N
o = T
us JP6
[C1G] I‘IW
@g femaEa L
i 1 ol [1 N ol
_ g B || R BE
&3 Bd & o
s B EFEs] 1

J1

—

€3]

[]

C4

oy

N y

E] CelRZEs] Al
@
| | | | B

J2 J3 J4
| III Il II ‘

Once my board layout was done, | printed it on a laser printer and then carefully
checked that all the parts fit their footprints. Putting the paper on a piece of styrofoam
and pushing the “through hole” components through the paper is a good way to check
the jacks. The easiest way to get the footprints correct is to take some calipers and mea-
sure the components. Once | created the Gerber plots and NC drill files, | checked them
using GC Preview. This is a great little program for viewing Gerber plot files that you

can download [9]. This is an important step: you check that the Gerber output formats
are as required by the PCB manufacturer and that the drill files align on top of the Ger-
ber plots.

Construction

The first stage of building the board is to order all the components. | tried to select parts
that were available from mail order houses such as Digikey [10], Marshall [11], Insight
[12], Arrow [13], and Nu Horizons [14]. The MAX465 is available from Arrow and Nu
Horizons. With the exception of the filter formed by C7, C9 and R3, none of the values
are super critical. Even the filter values are not that critical, but play with a SPICE
model of the filter before you change them. The data sheet for the LM1881 explains the
goals of this filter. In Table 1 | have listed very approximate costs for the components -

Video Switch 10

BUILDING THE BOARD

Construction

these could vary widely for low volume purchases. | have also added a flux pen which is

very helpful in soldering the QFP.

TABLE 1. Part List

Count Part
10 0.1uF

OR

10uF 35V
1K

200R
33pF
400R
470pF
470uF 35V
4K7
619R
680K
75R0

P P NN PFP NP NDNDN WP

=
N

DIN8
DIODE
HEADER 8X2
JACK

LED Green
LED Yellow
LM1881
MAX465
MC7805
MC7905
0OSC-27Mhz
XC9536
PCB

Box

P P P P P P NP PP PP PDN®

Flux Pen

The next stage is to order the PCB. Gerber and drill plots can be downloaded, or you can
generate your own. | ordered the PCB from Alberta Printed Circuits [15], who did a nice
job. They do not router out the shape of the board, so the first step in construction is to

Designator Footprint

C10C11C12C13C14 C15C16 C17 1206
Cc19Cs8

R5 1206
Ci1C20cC4 7243
R13 R19 1206
R1 R6 1206
Cc7 1206
R20 R9 1206
C9 1206
C5C6 Radial0.2
R22 R23 1206
R3 1206
R10 1206

R14 R16 R17 R18 R21 R11 R12 R15 R21206
R4 R7 R8

J2J3J4
D1 D2 SMB
JP6 IDC16

J1 (MODE 3.5MM R/A PC Mount)
U3 (IDT 5300H5_
U4 (IDT 5300H7)

us S0-8

U6 SOL-24
U1 U9 TO-220
u2 TO-220
u7 OSC-DIP8
U8 (XC9536-15VQ44C(44)) QFP44

(ordered in quantity 10)
(part number Hammond 1599 B)
(Kester 450-B-FLU-PEN)

chop out the cutouts on the board with a dremel tool.

The completed board is shown in Figure 12.

Cost
Each

0.02

0.02
0.37
0.02
0.02
0.12
0.02
0.11
0.30
0.02
0.14
0.02
0.11

2.05
0.58
0.25
0.22
0.63
0.63
3.33
10.79
0.51
0.12
3.47
4.70
13.00
3.20
3.80

Video Switch

ESD (ELECTRONIC STATIC
DISCHARGE)

Construction

FIGURE 12. Completed board

4]
#

LIS

The next step is to solder on all the SMT resistors and capacitors and check that there
are no shorts between VCC, +5, -5, and GND. Then add all the components in the
power supply. Do the big capacitors last - they make it harder to reach other compo-
nents. Check to make sure all the voltages are correct before you start adding expensive
stuff. Next add the chips. At this point | applied power to the board and used my finger
to check that none of the chips got hot. After a few minutes, | was satisfied that nothing
was seriously wrong, so | added all the connectors and remaining components and pro-
grammed the PLD. Programming the PLD is described later in this article. Check that
the input resistance on all the video inputs is 75 ohms. If everything looks good, connect
up a bunch of video signals and go for it.

If it doesn’t work, start tracing the signal through from the start. | powered up the board
and fed a video signal into the sync input and checked a few points: first, the output of
the filter on pin 2 of U5; then that the field line (pin 7 of U5) was a 30 Hz square wave;
next, the PLD should output the same square wave to pin 2 of connector JP6 - it will
also cause the green LED to flicker at 30 Hz. At this point, check that a signal applied to
the A input gets chopped up at 30 Hz and similarly for B. Check this same signal is
going to U6. Now trace the signals for the video in and out of U6.

A cautionary observation: I've noticed that people with experience in production elec-
tronics tend to be careful with ESD. | guess spending several days tracking down an
intermittent problem on a chip with ESD damage makes one believe that ESD problems
should be avoided. | work on an ESD safe mat that is properly grounded, and | wear a
ground strap. The fact that it rains most of the year where | live means that the relative
humidity is great for electronics, but if you live in a dry place, take more care. Handling
electronics correctly is not hard, so do it right and when something doesn’t work, you
won't have to wonder if it is an ESD problem. There is plenty of information about ESD
on the web [16] and in books [8].

Video Switch 12

SOLDERING

Construction

One word: flux. It's all easy with flux. Surface mount wasn’t designed for hand solder-
ing, but it's easy and quick once you get the hang of it. Very little solder is required; the
solder on the board is enough to tack things down.

Let’s start with the 1206 resistors and capacitors. The hardest part is holding the compo-
nent in place while tacking it down. If you have a tweezer solder iron, just put the com-
ponent on the pad and squeeze the tweezer for a few seconds and release. | use 725°F
(385°C). If you don't have a tweezer solder iron, hold the component with tweezers and
touch each end with the solder iron. | find a 1/16” chisel tip works well. At this point,

we have the component tacked in place but not a good solder. Get the smallest resin core
solder you can find and touch the solder iron tip to the PCB and the end of the compo-
nent, and then feed in a small amount of solder. The goal is a nice concave solder joint,
as shown in Figure 13. Easy inspection of the joint really requires a magnifying glass or
optical loupe. It is important that everything be clean - use that little sponge by your sol-
dering iron and keep it wet.

FIGURE 13. Good and bad solder joints for 1206 SMT package

Good Bad

Solder
Solder _ /
Resistor (Resistor /w
PCB PCB

Enough of the easy stuff. Let's solder the surface mount quad flat packs. The magic trick
is you need a flux pen. The pen | used is listed in the bill of material in Table 1. | have
experimented with a few types and they all seem to work well. Use the flux pen to smear
flux all over the pads on the PCB. Set the chip on the board. Make sure it is at the right
orientation - pin 1 may not be where you think: the chip has a dimple by pin 1, and the
pad on the PCB for pin 1 is square - the rest are rounded. You may laugh, but | have sol-
dered whole QFPs down only to discover that | put them on the PCB wrong - this pretty
much writes off the QFP and the PCB. You've been warned.

Select the finest soldering tip you can find. | use a 1/64 inch conical tip at 725°F
(385°C). Make sure the chip is in about the right place, and then carefully align the two
pins in one corner. Tack one of them down by touching the solder iron to the top of the
pin above the pad. This will melt the solder on the pin and pad and they will bond (see
Figure 14). Now carefully align the opposite corner and tack it down. Carefully check
that all the pins are aligned with the pads - this is the last chance to fix anything. Now
tack down all the corner pins.

Video Switch 13

Construction

FIGURE 14. Tacking down the QFP pins. Apply pressure straight down.

QFP

PCB

It is now time to solder down all the pins. Forget the idea of touching both solder and
iron to the joint - you will just bridge the joints with too much solder. Get your tip to
have a nice tinned coat of solder but not a glob on the end. Touch it to the joint of the
pad and the end of the pin as shown in Figure 15.

FIGURE 15. Soldering the QFP pins. Touch the soldering iron to both the pin and
the pad.

QFP

PCB

Shortly, you will see the solder along the pin melt and go shiny. Hold for a half-second
longer and release. Move on to the next pin. This goes really quickly. The QFPs in this
project are not very fine pitch, and you can likely solder them without a magnifying
glass, but having one makes the soldering easier to check. The ideal thing is a stereo
microscope with a working distance of several inches. This makes the whole process
easy. If you go to solder a very fine pitch SMT such as a 208 pin QFP, you pretty much
need a microscope or optical loupe to check your work. | check my work by taking a 45°
bent dentist probe and pulling sideways on each pin. | pull fairly hard; if it moves, it's
bad. Try this on an unsoldered pin to get an idea of what it looks like. | test each pin
while visually checking that the solder did not bridge two pins. | add solder to the iron
every 10 to 20 pins. Once again, don't try this without flux.

Video Switch 14

VHDL

The soldered QFP is shown in Figure 16. Note that there are not huge amounts of solder.

FIGURE 16. Detail of QFP soldering

VHDL

VHDL is a way of describing the desired operation of a logic device. Although it is a
standard, vendors all choose different parts to implement and add their own quirks. |
chose to use Xilinx PLDs with the Xilinx Foundation tool chain for place and route and
Synopsys FPGA Express for synthesis. This is a very nice way of doing things, and it is
great for large FPGAs, but it is not exactly the cheapest. On the other hand you might
find a free evaluation version of this tool chain [11]. A much cheaper solution that
would have worked just as well for projects using small PLDs is the Cypress WARP2
system [17]. For a few hundred dollars you get a VHDL text book [18], a nice VHDL
synthesis tool, an in system programming cable, and a few PLDs. On an even cheaper
note (like free) one could use the software from AMD and use a MACH PLD. This will
not do VHDL but uses a language at about the level of the PLD equations that | provide
in the next section.

VHDL PRIMER | am not going to attempt to teach VHDL - get a good book [18][19] to really learn it -
but I will show you enough things to make you dangerous. As with all programming
languages, a not all bad way to learn VHDL is to examine and modify other VHDL pro-
grams. In VHDL synthesis, we describe a program that would have the same behavior
as the circuit we wish to create. This program is used by the synthesis tools to create the
configuration file that will configure the specific FPGA or PLD into a correct circuit.

The syntax is very similar to Ada.

Video Switch 15

AND GATE EXAMPLE

VHDL

The basic building blocks are signals which are virtual wires in a digital circuit. A signal
is declared with code something like:

signal foo: STD_LOGIC;

To take two signals called A and B and feed them into an AND gate and then assign the
output of the AND gate to a signal called C, write code that looks like this:

C<=AandB;

Busses of several wires can also be created with a declaration like:
signal bar: STD_LOGIC_VECTOR (7 downto 0);

This declares a bus with a seven wires labeled bar(7), bar(6),... bar(0). To AND the first
two of these together and assign the result to the signal C, use the following expression:

C <= bar(0) and bar(1);

Other VHDL operators include:

logical : and, or, nand, nor, xor, xnor, not
relational: =, /=, <, <=, >, >=

arithmetic: +, -, *, /, rem, mod, abs, **
concatenation: &

The concatenation can be used to combine signals into signal vectors. For example, if
we had a bus foo and we wanted to shift it left once into a bus called bar and assign the
signal bottom to the bottom bit of bar, we could write something like:

signal bar: STD_LOGIC_VECTOR (7 downto 0);
signal foo: STD_LOGIC_VECTOR (7 downto 0);
signal bottom: STD_LOGIC;

bar <= foo(6 downto 0) & bottom;

Another useful construct is the WHEN operator. This allows us to do conditional assign-
ment. Take for example a MUX that combines signals a and b depending on the value of
the selection signal s into an output signal called result. The code for this would look
like:

result <= a when (s ='1") else b;

Let's look at complete example that creates an AND gate:

library IEEE;

use IEEE.std_logic_1164.all;
library metamor;

use metamor.attributes.all;

These lines just include some standard libraries so that things like STD_LOGIC are
defined:

entity myAndGate is

Video Switch 16

SEQUENTIAL LOGIC

VHDL

port (
a:in STD_LOGIC;
b: in STD_LOGIC;
c: out STD_LOGIC

);

attribute pinnum of a: signal is “8”;

attribute pinnum of b: signal is “44”;

attribute pinnum of c: signal is “77;
end myAndGate;

These lines tell the system that we're going to create an entity called myAndGate. One
can think of an entity as a virtual chip. This circuit will have two inputs called a and b,
and one output called c. The attribute pinnum commands tell the synthesis tool which
physical pin number on the PLD to map a virtual wire to. Difference synthesis tools do
this in completely different ways, and you will have to figure out how to do it in your
tool.

So far we have only told the system that the circuit exists; we have not told it what the
circuit does. The following section tells the synthesis tool what the circuit is supposed to
do:

architecture myAndGate_arch of myAndGate is
signal result: std_logic;
begin
result <=aand b;
c <= result;
end myAndGate_arch;

The result signal is not really necessary. | included it simply to show that more signals
can be declared and used in the description of the circuit. This forms a complete exam-

ple.

So | have only described combinatorial logic but have not addressed the issue of sequen-
tial logic such as flip flops, counters, and latches. These are described using processes.
An example for a D latch would look like:

process (GATE, DIN)
begin
if GATE="1" then --GATE active High
DOUT <= DIN;
end if;
end process;

Here we declare a process that output depends on to input signals called gate and din.
Inside of the process we stipulate that when gate is high the value of din will be assigned
to dout. When gate is low, we do not specify what is assigned to dout - it is assumed that
dout will not change its value when gate is low, regardless of what happens to din:

process (GATE, DIN, RESET)

begin
if RESET="1" then--RESET active High
DOUT <='0";

Video Switch 17

VHDL

elsif GATE="1" then --GATE active High
DOUT <= DIN;
end if;
end process;

We can now create latches. Let's move on to look at clocked circuits such as a D flip
flop:

process (CLK)
begin
if CLK'event and CLK="1" then --CLK rising edge
DOUT <= DIN;
end if;
end process;

CLK'event is a special expression that is only true when CLK changes value. On each
rising edge of CLK, the value of DIN will be assignhed to DOUT.

Next consider a flip flop with asynchronous reset:

process (CLK, RESET)
begin
if RESET="1" then--asynchronous RESET active High
DOUT <='0";
elsif (CLK'event and CLK='1") then --CLK rising edge
DOUT <= DIN;
end if;
end process;

If we wanted a D flip flop with synchronous reset, the code would look like:

process (CLK, RESET)
begin
if CLK'event and CLK="1" then --CLK rising edge
if RESET="1' then--synchronous RESET active High
DOUT <=0
else
DOUT <= DIN;
end if;
end if;
end process;

A slightly more complex example strings 4 D flip flops together to form a 4-bit asyn-
chronous counter:

process (CLK, COUNT, RESET)
begin
if RESET="1" then
COUNT <= “0000";
else
if CLK'event and CLK="1" then
COUNT(0) <= not COUNT(0);
end if;
if COUNT(0)'event and COUNT(0)="0" then
COUNT(1) <= not COUNT(1);

Video Switch 18

VHDL

end if;

if COUNT(1)'event and COUNT(1)="0" then
COUNT(2) <= not COUNT(2);

end if;

if COUNT(2)'event and COUNT(2)="0" then
COUNT(3) <= not COUNT(3);

end if;

end if;
end process;

MORE VHDL This section shows the complete code for the application to switch on each field:

library IEEE;

use IEEE.std_logic_1164.all;
library metamor;

use metamor.attributes.all;

In this section | simply declare all the signals connected to the PLD and set the pin hum-
bers:

entity vid_sw_top is
port (
syncNot: in STD_LOGIC;
odd_even: in STD_LOGIC;
burstNot: in STD_LOGIC;

cs_out_bar: out STD_LOGIC;
sel_out: out STD_LOGIC;
en_out_bar: out STD_LOGIC;

test: out STD_LOGIC_VECTOR (7 downto 0);

syncOutA: out std_logic_vector (1 downto 0);
syncOutB: out std_logic_vector (1 downto 0);
jumper: in std_logic_vector(1 downto 0);
green: out std_logic;

yellow: out std_logic;

clk: in std_logic

):

attribute pinnum of burstNot: signal is “8”;
attribute pinnum of syncNot: signal is “44";
attribute pinnum of odd_even: signal is “7”;

attribute pinnum of cs_out_bar: signal is “14”;
attribute pinnum of sel_out: signal is “13”;
attribute pinnum of en_out_bar: signal is “12";

attribute pinnum of test: signal is
“27,29,31,36,28,30,32,33";

attribute pinnum of syncOutA: signal is “6,5”;

attribute pinnum of syncOutB: signal is “16,18";

Video Switch 19

VHDL

attribute pinnum of jumper: signal is “22,21";
attribute pinnum of green: signal is “3”;
attribute pinnum of yellow: signal is “2”;
attribute pinnum of clk: signal is “43";

end vid_sw_top;

architecture vid_sw_top_arch of vid_sw_top is
signal vert: std_logic;

signal field: std_logic;

signal horz: std_logic;

signal vertStart: std_logic;

signal burst: std_logic;

signal sync: std_logic;

signal syncGen: std_logic;

signal syncOut: std_logic_vector (1 downto 0);
signal line: std_logic_vector (7 downto 0);
begin

Here | invert some of the signals and set the fixed outputs:
en_out_bar <="0;
cs_out_bar <=0
field <= odd_even;
sync <= not syncNot;
burst <= not burstNot;

This line sets the output to switch on fields:
sel_out <= field;
If the above line were commented out and the following line commented in, the system

would take the first input for scan lines between (binary) 01111111 and 11000000 and
the rest of the image from the other input:

-- sel_out <="1"when ((line >“01111111") and (line <
“110000007)) else '0';

These lines set the green led to always be on and the yellow led to flash at 30Hz as each
field is detected:

green <="'1";

yellow <= field;
Various signals are put out to the test connector so that they can be monitored with a
logic analyzer:

test(0) <= sync;
test(1) <= burst;
test(2) <= field;

test(3) <= horz;
test(4) <= vert;

test(5) <="1"

Video Switch 20

VHDL

test(6) <='0";
test(7) <= clk;

This process detects the vertical sync. It does this by looking at the value of the sync sig-
nal during the color burst phase of the sync:

process (burst)

begin
if burst='0" and burst'event then
vert <= sync;
end if;

end process;

This process generates the horizontal sync signal. It is a flip flop that is set whenever
there is a sync that is not the vertical sync and is reset on the start of the next burst event:

process (burst,sync,vert)
begin
if sync="1" and vert="0' then
horz <="1";
elsif (burst'event and burst='0") then
horz <="'0";
end if;
end process;

This process sets the line to the count of the line in the field that we are on. It counts the
horizontal sync pulses and uses the vertical sync pulse to reset to zero:

process (horz, line, vert)
begin
if vert="1' then
line <= (others =>'0";
else

if horz'event and horz="1' then
line(0) <= not line(0);

end if;

if line(0)'event and line(0)="0' then
line(1) <= not line(1);

end if;

if line(1)'event and line(1)="0' then
line(2) <= not line(2);

end if;

if line(2)'event and line(2)="0" then
line(3) <= not line(3);

end if;

if line(3)'event and line(3)="0' then
line(4) <= not line(4);

end if;

if line(4)'event and line(4)="0" then
line(5) <= not line(5);

end if;

if line(5)'event and line(5)="0' then
line(6) <= not line(6);

end if;

Video Switch 21

VHDL

if line(6)'event and line(6)="0" then
line(7) <= not line(7);
end if;
end if;
end process;

Here the values of the sync out signal are generated. The grey scale value is set depend-
ing on which scan line in the field we are at:

syncGen <= (not burst) when (vert="1") else (not sync);

syncOut(0) <= line(6) when (horz="0" and syncOut(1)="1"
else syncGen;
syncOut(1) <= line(7) when (horz="0") else '0';

The next section just drives the DAC resistors to the correct values specified by the
syncOut signal:

syncOutA(1) <="1" when (syncOut(0) = '1") else '0'; -- 1K
syncOutA(0) <="1"' when (syncOut(1) ='1") else 'Z'; -- 402R

syncOutB(1) <="1" when (syncOut(0) = '1") else '0'; -- 1K
syncOutB(0) <="1"' when (syncOut(1) = '1") else 'Z'; -- 402R

end vid_sw_top_arch;

THE PLD EQUATIONS All of this stuff gets collapsed into logic equations for PLD by the synthesis tools. The
VHDL code from above turns into the following equations:

/cs_out_bar = Vcce
/en_out_bar = Vcc
/green = Gnd
/sel_out = /odd_even
["syncOutA<0>" = Gnd
"syncOutA<0>".TRST = /"test<3>" * line_7
["syncOutA<1>" = ["test<3>" */line_6 * line_7
+ /burstNot * "test<4>" */line_7
+ /syncNot */"test<4>" */line_7
+ /burstNot * "test<3>" * "test<4>"
+ /syncNot * "test<3>" */"test<4>"
["syncOutB<0>" = Gnd
"syncOutB<0>".TRST = /"test<3>" * line_7
["syncOutB<1>" = /["test<3>" */line_6 * line_7
+ /burstNot * "test<4>" */line_7
+ /syncNot */"test<4>" */line_7
+ /burstNot * "test<3>" * "test<4>"
+ /syncNot * "test<3>" */"test<4>"
["test<0>" = syncNot
["test<1>" = burstNot
["test<2>" =/odd_even
["test<3>" := Vcc
"test<3>".CLKF = burstNot
"test<3>".SETF = /syncNot */"test<4>"
"test<3>".PRLD = GND

Video Switch 22

VARIATIONS

In system programming of the PLD

["test<4>" := syncNot
"test<4>".CLKF = burstNot
"test<4>".PRLD = GND

["test<5>" = Gnd

["test<6>" = Vcc

["test<7>" =/clk

/yellow =/odd_even

lline_0 := line_0
line_0.CLKF = "test<3>"
line_0.RSTF = "test<4>"
line_0.PRLD = GND

lline_1 := line_1
line_1.CLKF = /line_0
line_1.RSTF = "test<4>"
line_1.PRLD = GND
lline_2 := line_2
line_2.CLKF = /line_1
line_2.RSTF = "test<4>"
line_2.PRLD = GND
lline_3 := line_3
line_3.CLKF =/line_2
line_3.RSTF = "test<4>"
line_3.PRLD = GND
lline_4 := line_4
line_4.CLKF = /line_3
line_4.RSTF = "test<4>"
line_4.PRLD = GND
lline_5 := line_5
line_5.CLKF = /line_4
line_5.RSTF = "test<4>"
line_5.PRLD = GND
lline_6 := line_6
line_6.CLKF =/line_5
line_6.RSTF = "test<4>"
line_6.PRLD = GND
lline_7 := line_7
line_7.CLKF = /line_6
line_7.RSTF = "test<4>"
line_7.PRLD = GND

To switch every N frames, just set up a counter to count even fields and then switch
when it hits an appropriate value. Similarly, to switch part way through a scan line, set
up a counter that is reset by the horizontal pulse and then counts clock ticks from the
oscillator, switching the output when it hits an appropriate value.

In system programming of the PLD

JTAG is a protocol originally designed for testing the connection between chips. It has
proven to be useful for many things including debugging and programming devices.
Basically it is a serial protocol. Each device has 4 wires, a TMS signal that puts the

Video Switch 23

Downloading the design

device into test mode, a TCK line that clocks the serial data into the system, and a TDI
test data in and TDO test data out. The TMS and TCK are all connected together and
controlled by the master device doing the testing. The TDI and TDO are daisy chained
together to form one long string with all the devices through which the serial data
passes. Different commands can be sent to each device, including commands just to
pass the data through on the serial line to the next device along the chain. Basic com-
mands allow the chip to set the output level of any pin on the chip and read the logic
level of pins on other chips. This allows a JTAG test system to check that all the traces
between chips are correctly connected and there are no shorts. Extended commands
allow us to program the PLD via the JTAG interface. This in system programming is
very convenient: there is no need to own a programmer that has sockets for many differ-
ent SMT parts, pins don't get bent as parts go in and out of the programmer, and there is
no need to socket the part on the board so that it can be reprogrammed. It's all very nice
- and, for the development budget-conscious - cheap.

The simplest way to program the PLD is to use the XChecker cable from Xilinx along
with their software. Simply connect up the JTAG pins on the cable and the ground but
not the Vcc, power up the board, and program it. There are more comments on this in
the Xilinx application note XAPP069 [5].

If you do not have the Xilinx software and are going to use the configurations files |
have provided, life will be more interesting. Get the application note XAPP058 from the
Xilinx web site [5] and the associated software for PCs. Wire up a cable so that you can
use your parallel port data lines to drive the TDO, TMS, and TCK lines, and read the
TDI line by connecting it to the ERROR line. With this circuit, there is no need to buffer
the signals. Have a look in section 10.20°bé Art of Electronic§0] for more infor-

mation. Use the software in the application note to program the PLD. You will need to
modify the port access code to match the wiring of your parallel cable. Examples of how
to do this can be found in section 29.1.9bé Indispensable PC Hardware B4dau].

Downloading the design

All of the files associated with this project are available for downloading, including the
schematics in Protel, net lists, bills of materials, Gerber and Postscript plots of the PCB,
drill files, VHDL code for the PLD, reduced equations of the PLD that could be imple-
mented in a language other than VHDL, and configuration images for programming the
PLD for those who do not want to synthesize their own PLD programs.

Conclusion

I've enjoyed building this project, and it works great. | hope it works for you - send me
some email about new applications you find for it. A few people | would like to thank
for help and advice along the way are Stewart Kingdon, Rod Barman, Lyndsay Camp-
bell, and Alan Hawrylyshen who took all the photographs in this article.

Video Switch 24

References

References

1 Keith JackyVideo Demystified2nd ed. (San Diego: High Text, 1996).

National Semiconductor LM1881 Video Sync Separator Data Sheet - http://
www.national.com/ds/LM/LM1881.pdf

N

http://www.interactiv.com
Xilinx, The Programmable Logic Book Data Bd@&an Jose: Xilinx, 1998).
http://www.xilinix.com

Maxim Max463-470 Two Channel, Triple/Quad RGB Video Switches and Buffers
http://www.maxim-ic.com/efp/AllParts.htm

7 Howard W. Johnson and Martin Graha#igh-Speed Digital Design: A Handbook
of Black Magic(Englewood Cliffs, NJ: Prentice Hall, 1993).

o a0 b~ W

8 Henry W. OttNoise Reduction Techniques in Electronic Systéms ed. (New
York: Wiley, 1988).

9 http://www.graphicode.com

10 http://www.digikey.com

11 http://www.marshall.com

12 http://www.insight-electronics.com
13 http://www.arrowamericas.co

14 http://www.nuhorizons.com

15 http://www.apcircuits.com

16 http://www.eosesd.org

17 http://www.cypress.com

18 Stefan Sjoholm and Lennart LindiIDL for DesignergLondon: Prentice Hall,
1997).

19 Keven SkahillyHDL for Programmable Logi(Reading, MA: Addison-Wesley,
1996).

20 Paul Horowitz and Winfield HillThe Art of Electronic2nd ed. (Cambridge, MA:
Cambridge UP, 1989).

21 Hans-Peter Messmdihe Indispensable PC Hardware Book: Your Hardware
Questions Answere@nd ed. (Wokingham, UK: Addison-Wesley, 1995).

22 http://www.iii.ca

23 http://www.cs.ubc.ca/spider/jennings

Video Switch 25

Biography

Biography

Cullen Jennings works for Image Integration Inc. [22], a computer consulting company.
For the last seven years Image Integration Inc. has developed software and network
solutions for oil companies and software for air traffic control. Cullen has an M.Sc. in
Computer Science and is currently a Ph.D. candidate at the University of British Colum-
bia [23]. Cullen can be reached at c.jennings@ieee.org.

Video Switch 26

27

Appendix A - Schematics

Appendix A - Schematics

FIGURE 17. Schematics

v 7 3 z T
SBuLUSE UIIND g UMeid | HOS 7S QI GNOHVD EIE]
TI0TO 18uS | 8661-NC-9 1eq
1ana7
q 8NIa
uoIsinay JaquinN 2zIs C
8NIa 8NIa
youms Jexajdnnw ospip ,,, || D@ &t o
N — OO © OO, OO,
€ [wat e 8 M 5 ®O® ©® ®® ©®
INEE"| N
e g freEpIE= A ©OOE 0]0]0;
o o
€d 9 0|
§ ~L = 38%28¢0s P8¢ 088 0d
g o a aancoasSa coascaansSa
- - +|8 300
N za 0852< 0852< 0852< 0dSLK 0UGLS 0HGL« — _ _ AN _ _ _
3 T o e sk ST N Y P frofeo] & crl |~ o0
- L3 17 11
BN
o 10 < M.ﬁ) e uiznig
4 d
] NSE u_:OHq—l o
S 3 Ho
080N 8 = ot [UFA0)
ns? mn "I mnZ Q € URG) A SRS |
1q =
= & 8 uizpeyd
S NOWS 97 T utpay
Z nopad 8T | O - . } o g
~ i an €2 = = 3
oV 3 Gmees s oS =
9 $V ss 3% so RS il
g Asepnor afs 08 ®a3]_w _| a3
020 + S SToanto_[anto] AZSR
G SOBLOW Z10== 510 L N 5 i en
B 6n_ T F Ty s [anto - e
SOA g o= €10 E R
o
1T H00Z ¥00Z
~ G+ 9 Y
z T
EETO SIS
sdr
229 o 1y
©oo O Tt 3l
ot Ol ol I
]
85| @porronst-asseox O &
I3
a/LsHa
g o ol
L o o —a—S2 S NA3Iao
zeaoe | O Ol 2T oeus g | ONASA
aed 0) ol ONASAIND
oredg 6¢ 8 1sing T
| eeg gz | O ol U5r3PP0
L ea_e | S 3 RS
€| Q) 8n 3 AN
Greq cc |) o 2P nT'0
— / £l
BRAiL o £409/01 e 01O
ol 2409/01 & =
6T Y SuAsdwd =
Zs19/01 HO9/0!
Ve e >0 G+
= o] IS0 << ~
dor - o L oraee | #5900 888
T 550 20N
2oA——q v1 T &t Sarr— lnoat %35 ;émw 080
g &
AL m =
oar 3¢ el g P _ 303
1eq K3 anvd antd ant 3
oreq 58 © un
Sked 4, 9dr ¢ sad_erd e
7ea ae
oA
SOn
v €

Video Switch

Appendix B - Data Sheets

Appendix B - Data Sheets

Video Switch

28

Appendix C - Application notes

Appendix C - Application notes

Video Switch

29

Appendix D - Figure Captions

Appendix D - Figure Captions

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

Completed Project

Block diagram for video switch

Video signal for a single scan line.

Horizontal sync signal between two scan lines.

Vertical sync between two fields.

FIGURE 6. Calculated filter response. This will have a nearly -18 dB effect on the
color burst signal while having little effect on the sync signal which is mostly under
500KHz.

FIGURE 7. Horizontal sync signals.

FIGURE 8. Vertical sync signals.

FIGURE 9. PCB top layer. Note the careful separation of analog and digital signals.
FIGURE 10. PCB bottom layer. Note the ground plane under the whole analog section.
FIGURE 11. PCB component placement

FIGURE 12. Completed board

FIGURE 13. Good and bad solder joints for 1206 SMT package

FIGURE 14. Tacking down the QFP pins. Apply pressure straight down.

FIGURE 15. Soldering the QFP pins. Touch the soldering iron to both the pin and the
pad.

FIGURE 16. Detail of QFP soldering

FIGURE 17. Schematics

Video Switch 30

	FIGURE 1.� Completed Project
	Concept
	FIGURE 2.� Block diagram for video switch

	Brief review of RS170 video signals
	FIGURE 3.� Video signal for a single scan line.
	Horizontal Sync
	FIGURE 4.� Horizontal sync signal between two scan lines.

	Vertical Sync
	FIGURE 5.� Vertical sync between two fields.

	Schematics
	FIGURE 6.� Calculated filter response. This will have a nearly -18 dB effect on the color burst s...
	FIGURE 7.� Horizontal sync signals.
	FIGURE 8.� Vertical sync signals.

	Board layout
	FIGURE 9.� PCB top layer. Note the careful separation of analog and digital signals.
	FIGURE 10.� PCB bottom layer. Note the ground plane under the whole analog section.
	FIGURE 11.� PCB component placement

	Construction
	parts

	TABLE 1. Part List
	Building the board
	FIGURE 12.� Completed board

	esd (Electronic Static Discharge)
	soldering
	FIGURE 13.� Good and bad solder joints for 1206 SMT package
	FIGURE 14.� Tacking down the QFP pins. Apply pressure straight down.
	FIGURE 15.� Soldering the QFP pins. Touch the soldering iron to both the pin and the pad.
	FIGURE 16.� Detail of QFP soldering

	VHDL
	VHDL Primer
	And Gate Example
	Sequential Logic
	MORE VHDL
	The PLD equations
	Variations

	In system programming of the PLD
	Downloading the design
	Conclusion
	References
	Biography
	Appendix A - Schematics
	FIGURE 17.� Schematics

	Appendix B - Data Sheets
	Appendix C - Application notes
	Appendix D - Figure Captions

