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Abstract

To build triangulated approzimations to terrain sur-
faces from dense elevation models, we find structural
lines for the initial skeleton of the triangulation. We
describe the surfaces as regions; the spines of these re-
gions are the structural lines on the surface. We use
these lines as a skeleton of the surface, points and edges
that initialize the triangulation. Simple local curva-
ture analysis of the terrain results in many lines whose
significance is only local. We show how the curvature
analysis can be extended to find local regions around the
structural lines. We use various properties of the re-
gions to assign a significance to the lines, to rank them
for inclusion in the skeleton. We then use the lines to
approzrimate the surface with a compact triangulation.

1 Introduction

We begin with dense terrain data specified on a grid
of points, a digital elevation model (DEM), and derive
a triangulation, a collection of nonoverlapping planar
triangular regions that fit the DEM with minimal error,
often called a Triangulated Irregular Network (TIN).

Many techniques for approximating a surface, usu-
ally a terrain height field, begin by selecting points that
are expected to be critical in the final approximation[5,
11]. From this initial triangulation, the surface is im-
proved by adding points. One particular method [3]
finds in each triangle the point that is most poorly fit
by the current triangulation, and adds that point to the
Delaunay triangulation of the points. Iteratively fol-
lowing this process produces triangulations that even-
tually fit the surface well, but with many fewer points
than the dense source data.

This method is not guaranteed to fit the surface well
at surface discontinuities, or at slope discontinuities,
both of which occur frequently in terrain, and espe-
cially in range maps. The literature [5] abounds with
counterexamples. To avoid these failings, [3] first iden-
tifies ridges and channels, surface lines determined by
the flow of water away from them (ridges) and into
them (channels), by simple local geometric operations.
These structural lines are then fit by a polygonal ap-
proximation and included in the triangulation, by forc-
ing the triangulation to include these lines. Modern
methods allow incremental construction of Delaunay
triangulation constrained by initial line segments[8].

Figure 1: Crater Lake terrain with ridges (black:oc =
1.0, and white:o = 2.5).

However, any errors in the initial points/lines force the
triangulation method to introduce further points, re-
ducing the savings.

Schmitt and Chen[2] have updated this method by
first identifying surface and slope discontinuities and
including these lines in the resulting approximation,
which uses their own triangulation criterion. They
choose lines based on the local differential structure
of the surface, which is independent of the choice of
coordinate system. [7, 4] also inserts “crest” lines into
adaptive meshes to improve stereo-driven surface ap-
proximation. The resulting lines are not in fact ridges,
rather local extrema of curvature (coordinate system
independent). Little and Shi[9] showed how to extract
structural lines based on local curvature descriptions
and use them as the basis for a constrained Delaunay
triangulation of the surface. The structural lines for
a section of the Crater Lake DEM are shown in white
in Fig. 1. Their method of deriving these lines will be
explained in Section 3.

However, surface curvature is a purely local prop-
erty; it measures only the local change in the direction
of the surface normal. At small scales, i.e., when o of
the Gaussian smoothing is small, there are many local



“creases” in the surface (black lines in Fig. 1). Includ-
ing all the lines contradicts the goal of producing a
compact triangulation.

Increasingly triangulated approximations are used in
surface visualization and interaction, where the size of
the triangulation determines its rendering time. In this
paper we will argue that we can treat each structural
line as the spine or skeleton of a region around it. We
then rank each line by a measure of the local region.
Only lines with high measures are explicitly included in
the triangulation. Section 2 describes the triangulation
process and how lines are used. Section 3 shows how
we find the structural lines by local curvature analysis
of the surface and introduces various measures of the
surface regions. Section 4 describes experiments that
show how the significance measures affect the triangu-
lation results.

2 Triangulation

In the original work in this area[3], two innova-
tions were proposed: incremental “greedy” triangula-
tion of a TIN by inserting points based upon the error
in each triangle, and preservation of structural lines
found by marking ridges and channels and then gen-
eralizing these 3D lines. Incremental improvement is
widely used now, together with many variations in cri-
teria for adding points. We include in each triangle
the point (the “worst” point) with most vertical error
in the current approximation. [3] proceeded by insert-
ing every “worst” point if it exceeded a desired error
tolerance, continuing until all points were within this
tolerance. [5] introduced the idea of “batching” up-
dates, collecting the worst points in each triangle, and
only selecting points whose error exceeded some frac-
tion a of the current maximum error. As o approaches
1.0, the triangulation becomes sequential, inserting one
point for each pass over the data.

The second innovation of [3] is not often used
since the processing to determine structural lines is
more complex. Fowler and Little forced the struc-
tural lines into the triangulation after inserting points.
Since that time, Constrained Delaunay Triangulation
(CDT) has become well understood, so the struc-
tural lines will be inserted initially as part of the
triangulation. We have the adapted the incremen-
tal CDT software of Dani Lischinski, available at
http://www.cs.huji.ac.il/ danix/ to insert points
based on the error between the current triangulation
and the DEM.

3 Curvature Descriptions

Like [4, 10], we find determine the local surface cur-
vature description, which yields a local frame where
the two curvatures are k; and ks with k; the curva-
ture of maximum absolute value, and t; and t; are vec-
tors in the local tangent plane pointing the direction of
maximal and minimal curvature. To compute curva-
ture, we first locally determine the surface derivatives,
which requires smoothing. A curvature description de-
pends on the scale, o, of the Gaussian smoothing ap-

Figure 2: Principal curvatures and directions.

plied before computing derivatives. At each point, we
determine whether a the maximum curvature k; at the
point is locally maximal, in the associated principal di-
rection. We use non-maximum suppression to identify
these points, looking in the direction of maximal cur-
vature, ;.

We define p-lines, lines connecting points of locally
maximal curvature, where that curvature is positive.
An n-line is such a line with negative curvature. To
find these lines, we track lines and connect the points,
employing hysteresis with thresholding, using the mag-
nitude of the maximal curvature, tracking in the direc-
tion of local minimal curvature.

3.1 Snakes: Deforming Large Scale Lines

Because lines at a fine scale (¢ = 1.0) are too nu-
merous, we use the lines at a coarse scale (o = 2.5), but
these may have been displaced by the smoothing pro-
cess. The crest on an asymmetrical hill, where slope on
one side is significantly steeper than the other, will be
displaced toward the less steep side. When these lines
are used as the skeleton, the triangulation process must
include undesirable “corrective” points near the p-line
to model the actual location of the crest. To move the
coarse-level line to the location of the fine-level line, we
use the “snake” method[6, 1]. The snake method al-
lows the line to deform to minimize the sum of internal
energy, the energy of stretching the line, and external
energy, the attractive force applied by some external
source, in this case the curvature field computed at the
fine scale. See [9] for more details on how structural
lines are corrected.

3.2 Significance of Structural Lines

There still remain lines at the coarse scale that may
not contribute to the approximation. We would like
to use a measure along the line or of the surrounding
region to assess the significance of the line before it is
included in the triangulation. We might use the local
vertical, z, difference along a line as the significance
of the line, but this is only local. Alternatively, since
curvature is our important feature, we can explore us-
ing the Gaussian curvature of the surface. The sign
of Gaussian curvature divides the surface into hyper-
bolic (negative), elliptic (positive) and parabolic (zero)
regions. Typically the lines of zero Gaussian curva-
ture (parabolic lines) partition the surface, but are too
numerous and do not correspond to natural regions
around the features.



Figure 3: P-lines (white) and zero crossings in the max-
imal direction, o = 3.0

Each p-line is locally convex transverse to its tan-
gent direction. Following the transverse lines of curva-
ture (direction ¢ ), we encounter loci where the normal
curvature in this direction passes through zero. We can
track curves from each point on a structural line along
lines of curvature. This creates a domain around the p-
line where the maximal curvature is positive. Similarly,
n-lines have regions of negative maximal curvature sur-
rounding them. The boundaries of these regions form
closed loops on the surface. Since the p-lines are elon-
gated, this, in effect, creates a local cylindrical approxi-
mation to the p-line or n-line, with a non-circular cross-
section. Figure 2 shows a surface with a p-line at the
top; the transverse lines are in the direction of maximal
curvature locally (¢1).

Along the p-lines, the Gaussian curvature can
pass from positive to negative and back, generating
parabolic lines, but we ignore these fluctuations. Only
zero-crossings along the curvature lines transverse to
the direction of the p-lines are counted. Figure 3 shows
the p-lines found at a coarse scale plotted over the ze-
roes of maximal curvature.

Before tracking curvature regions, we segregate p-
lines into extrema-bounded subsets by stepping along
the linked p-lines and breaking the line wherever there
is a local maximum (a peak) or a local minimum (a
pass). Tracking transverse to p-lines produces the re-
gions shown in Fig. 4.

We can associate with each region some measure of
the surface as its significance value. There are several
options, each depending on a local differential property:

sum of maximal curvature

sum of magnitude of the gradient
sum of plan area of the region
sum of the local curvature

The first option, summing the total maximal curva-
ture, measures the amount of maximal curvature |k;|

Figure 4: Regions of positive normal curvature sur-
rounding p-lines. Each region is labeled with the num-
ber of the p-line it surrounds. p-lines are shown in

black.
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Figure 5: Total maximal curvature: darkness is pro-
portional to the sum of the maximal curvature over
the surrounding region.
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in the total area; a more “creased” region should have
a higher value. Figure 5 shows this scalar measure on
both p-lines and n-lines; darkness is proportional to to-
tal maximal curvature across the entire region around
the line. The second, magnitude of the gradient, esti-
mates surface area by assuming that the value of the
surface area is proportional to the magnitude of the

gradient: /14 22 +22 (Fig. 6). The third measure

uses the projected “plan” area of the region (Fig. 7).
The fourth estimates the “creasiness” of the line; it as-
cribes to the line the sum of maximal curvature only
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Figure 6: Total surface area: darkness is proportional
to the sum of the magnitude of the gradient over the
surrounding region.
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Figure 7: Total projected area: darkness is propor-
tional to the plan area of the region around the line.

along the line, as shown in Fig. 8.

We ascribe the measure of a line to all points in the
line and then link lines using hysteresis thresholding,
eliminating small lines. Most of these measures reject
the small p-lines found in the (flat?) basin of the Crater
Lake, appearing as long curves in the right of Figure 1.
These lines do not improve the approximation of the
triangulation. However, visual comparison of the mea-
sures reveals differences, but their effect on the surface
approximation can only be determined by experiment.

4 Experiments

To determine whether including structural lines can
improve the resulting triangulation, we compare tri-
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Figure 8: The sum of local maximal curvature along
the structural line.

Figure 9: Lines at 0 = 2.5 in black with the corrected
result in white for o = 1.0

angulations produced by pure “greedy” triangulation,
with no lines (called no lines), with “greedy” con-
strained Delaunay triangulation (CDT) with a variety
of structural lines. Our experiments included lines at
fine scale (noted by fine) and lines derived at a coarse
scale and then deformed (“snaked”) to a fine scale. Un-
less described as fine, structural lines have been de-
rived at a coarse scale and then snaked. The various
feature lines are:

e maximal curvature, along the line (local sum), as
in Fig. 8

e maximal curvature, along the line, at fine scale
(local sum fine)

e maximal curvature, pointwise, (Local)

e maximal curvature, at fine scale (local fine)
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Figure 10: RMS error vs. points.

e plan area of the region (plan), as in Fig. 7

e maximal curvature, summed over the region
(curvature), as in Fig. 5

e gradient estimate of surface area of the region
(gradient), as in Fig. 6

The coarse scale features for local are shown in
black in Fig. 9; the white curves are corrected to fine
scale using snakes to the final curves used in local. In
both of these, only the pointwise maximal curvature is
used in linking, in contrast to local sum, where the
points on the line get the sum along the line.

Our scalar measures provide metric criteria for pre-
ferring some feature lines over others. Reducing the
number of initial lines should improve the fit of the
surface, all other things being equal.

Tests were run on the Crater Lake DEM, run-
ning the batched greedy triangulation (subject to con-
straints provided by structural lines). The triangula-
tion stopped when 5000 points had been included. To
understand the effect of using structural lines in the
triangulation, we plot the root-mean-square (RMS) er-
ror versus the number of points in Fig. 10, at greater
magnification in Fig. 11, and very large in Fig. 12.

The figures showing structural lines in this paper are
of a central 257x257 region from the Crater Lake DEM.
The results shown here are from a larger area contain-
ing this region, with additional gradually sloping ter-
rain. We consider two means of comparison. First, for
a particular target RMS, we can find the lines that use
the smallest number of points. All triangulations using
initial skeletons from the curvature data improve upon
the triangulation with no lines, expect for large RMS
error. Among the structural lines, the gradient mea-
sure worked best, needing only 85-88% as many points
for comparable RMS error.

Second, for a given number of points, we find the
type of structural line that yields the smallest RMS
error. Almost all triangulations using initial skeletons
from the curvature data improve upon the triangula-
tion with no lines.
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Figure 11: RMS error vs. points (close-up).
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Figure 12: RMS error vs. points (very close-up).

The results can be presented in a tabular form, as
shown in Tables 1 and 2. Table 2 shows the ratio of
the RMS error for each type of line over the RMS er-
ror using no lines. The values are not measured at a
point, but represent the average ratio of the RMS error
from the given value up to 5000. The entry for 1000
is the average ratio from 1000 to 5000. The gradient
produces an RMS 92% of no lines, on average.

Table 1 shows the ratio of the number of points for
each type of line to the number for no lines. An en-
try under x is not just a point sample of the ratio at
RMS=z, but shows the average ratio for the range x to
x4+ 1.0. The gradient uses only 88% as many points
as no lines, on average.

Table 3 shows the ratio of the number of points for
each type of line to number for no lines, using the mean
absolute error, which reduces the effect of large errors
compared with RMS error. The gradient uses only
84% as many points as no lines, on average.

5 Discussion

Using structural lines as a skeleton for the triangula-
tion reduces the number of points needed to achieve a



RMS 5.1 4.5 3.9 3.3 2.7

local sum 0.982 | 0.961 | 0.933 | 0.921 | 0.947
plan 0.908 | 0.889 | 0.875 | 0.878 | 0.898
curvature 0.935 | 0.914 | 0.912 | 0.902 | 0.909
gradient 0.903 | 0.885 | 0.864 | 0.858 | 0.887
local fine 1.175 | 1.104 | 1.230 | 0.968 | 0.959
local 0.910 | 0.895 | 0.881 | 0.875 | 0.895
local sum fine | 0.996 | 0.952 | 0.940 | 0.920 | 0.925

Table 1: The ratio of the number of points in the trian-
gulation produced using each type of structural line to
the number of points in a triangulation with no lines,
for various RMS values.

Points 1000 | 2000 | 3000 | 4000
local sum 0.964 | 0.951 | 0.950 | 0.963
plan 0.924 | 0.911 | 0.915 | 0.927
curvature 0.936 | 0.929 | 0.927 | 0.940
gradient 0.922 | 0.903 | 0.906 | 0.921
local fine - 1.019 | 0.969 | 0.968
local 0.932 | 0.913 | 0.913 | 0.928
local sum fine | 0.988 | 0.947 | 0.940 | 0.952

Table 2: The ratio of the RMS of the triangulation of
each type of structural line to that using no lines; each
entry is the average RMS from the given number up to
5000. The “local fine” starts with 1743 points.

given error. It is clear, also, that the gradient measure
selects lines that yield the most compact triangulations,
both for attaining a specific RMS error with minimal
points, and for minimizing the RMS error for a given
number of points.

Further work will address the issue of how the areal
and volumetric measures of the terrain approximation
relate to the linear scale used in the curve approxima-
tion for the structural lines. Moreover, we still must
determine how to understand the perceptual fidelity of
the approximation: how structure is preserved.

We have advanced a method of assigning a signifi-

MAE 5.0 4.2 3.6 3.3 2.7

local sum 1.010 | 0.986 | 0.974 | 0.936 | 0.949
plan 0.848 | 0.843 | 0.850 | 0.840 | 0.882
curvature 0.888 | 0.903 | 0.910 | 0.899 | 0.914
gradient 0.863 | 0.828 | 0.825 | 0.821 | 0.863
local fine 0.943 | 1.144 | 1.024 | 0.921 | 0.896
local 0.863 | 0.844 | 0.835 | 0.828 | 0.866
local sum fine | 1.003 | 0.988 | 0.957 | 0.914 | 0.917”

Table 3: The ratio of the number of points in the trian-
gulation produced using each type of structural line to
the number of points in a triangulation with no lines,
for various mean absolute errors (MAE).

cance to structural lines by, first, finding a region of lo-
cal positive maximal curvature surrounding structural
lines, and, second, aggregating various measures of the
region for ranking the structural line. We have built
triangulations using them, and shown how they can
improve the selection of initial surface structure, lead-
ing to more compact triangulations.
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