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Abstract

Researchers in computer vision have recently demonstrated several systems that interpret
motion and optical flow without using a model of kinematic structure. These non-structural
methods usually integrate a field of motion into a more compact representation. In this
paper, we present the design of an experiment to investigate the relationship between the
non-structural shape-of-motion algorithm and human perception of gait. We take the fea-
tures used by the algorithm, and use them to synthesize gait-like optical flow. A group of
subjects then views the flow stimuli and records their perceptions. The motion stimuli are
designed to differ in structure but have similar shape-of-motion. We wish to show that we
can vary the structure of a stimulus without altering its perception, so long as we maintain
the shape-of-motion. Pilot study results illustrate the experiment design. By performing this
experiment to relate gait perception with gait synthesis, we are able to probe the computer
vision algorithm.

1: Introduction

Recent research in computer vision shows an interest in methods for perception of human
locomotion and other activities. The methods fit into two broad categories: structural and
non-structural. Structural methods use a model of human kinematic structure and possibly
dynamics. In contrast, non-structural methods (sometimes referred to as appearance-based
or model-free) avoid using such models. For example, Little and Boyd demonstrate non-
structural gait recognition using shape-of-motion features [13, 6, 14] (described in Section 2).
Polana and Nelson [15, 16, 17] look at global spatial distributions of motion for a figure
engaged in some activity. They are able to recognize different activities by comparing
motion statistics computed over a coarse mesh. Baumberg and Hogg [3] give a method to
describe the shape of a walking human body as a function of time. In later work [4], they
describe the variation in the shape over time as the changing shape of a vibrating plate.
Bobick and Davis [10] describe another non-structural approach that analyzes the shape
of a motion-energy image (MEI), a summation of optical flow over a sequences of images.
Features that describe shapes in the MEI are used to recognize activities.

A common theme in these non-structural methods is the integration of a field of motion
into a more compact representation. There is evidence in the psychophysics literature to



suggest that spatial integration of motion is also important in human perception of motion.
For example, Williams and Sekuler [20] show that perception of a field of randomly moving
points is related to motion of the field as whole, i.e., spatial integral of the motion. If the
motion of the points is randomly distributed over all directions, then there is no perceived
large-scale motion. However, if they are distributed only over a smaller range of angles, then
there is indeed a perception of the points moving en masse. Boyd and Little [6] sought to
explain other psychophysical observations [2, 5, 11, 12, 18], based on moving light displays
(MLDs), in terms of shape-of-motion features. The explanation was based on a comparison
of psychophysical results and the properties of the shape-of-motion algorithm, indicating
that there are many consistencies. The comparison leads to some conjecture about what
one might observe in human perception if it is indeed related to shape-of-motion.

Our goal is to explore the relationship between non-structural properties of motion and
optical flow. We form the hypothesis that motion stimuli may be treated as a field of optical
flow that can be effectively characterized by a set of global shape-of-motion features. This
paper presents the design of an experiment that tests this hypothesis, focusing on human
locomotion.

The experiment uses the relationship that arises between perception and synthesis. We
create a set of motion stimuli, all but one of which have non-structural shape-of-motion
features like those for a gait, but varying in their underlying kinematic structure. If the
hypothesis is true then we should see that perception is independent from the selection of
stimulus. On the other hand, if the hypothesis is false and structure is critical, then the
stimuli should all be perceived differently.

Although the experiment is primarily psychophysical in nature, it demonstrates a useful
method to test a computer vision algorithm. We start with a computer vision algorithm
that we know can perceive differences in human gaits under a set of controlled conditions.
We then turn around and use that algorithm to synthesize human gaits. If the synthesis is
successful, then we may assume that the algorithm is sensitive to the right things, at least
for a gait. If not, then we know that there is more to the gait than what the algorithm
measures, and perhaps we get a clue as to what else we should look for in the motion. The
quality of the synthesis provides a means to evaluate the algorithm.

2: Background

2.1: Shape-of-Motion

Figure 1 illustrates the flow of data through the shape-of-motion system to create non-
structural features that are used for recognition of individual gaits [14]. The system begins
with an image sequence of n + 1 images featuring a single pedestrian walking in front of a
static background, and then derives n dense optical flow images. For each of these optical
flow images, the system computes m characteristics that describe the shape of the motion
(i.e., the spatial distribution of the flow), for example, the centroid of the moving points,
and various moments of the flow distribution. Some of these are pixel coordinates, but
all are treated as time-varying scalar values. Table 1 summarizes the scalar values used.
Rearranging the scalar values forms a time series for each scalar. A walking pedestrian
undergoes periodic motion, returning to a standard position after a certain time period
that depends on the frequency of the gait. The system analyzes the periodic structure of
these time series and determines the fundamental frequency of the variation of each scalar.
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Figure 1. The data flow for shape-of-motion gait analysis. The spatial distrib ution of
the optical flow computed for each frame of a video sequence is characteriz ed by a
set of scalars. Over the duration of the sequence , each scalar forms a time series
that is cyclic. The phase relationships among the time series give features that are
useful for gait recognition.

The set of time series for a view shares the same frequency, or simple multiples of the
fundamental, but their phases vary. To make different sequences comparable, the system
subtracts a reference phase, ¢,,, derived from one of the scalars. Each image sequence is
characterized by a vector, F' = (Fy,...,F, 1), of m — 1 relative phase features. Little
and Boyd showed that some of the features are sensitive to individual gaits, and that the
sensitivity can be used for recognition.

At no point in shape-of-motion recognition is the structure of the walking subject recov-
ered. The process operates entirely without a model of human kinematics.

2.2: Human Perception of Gait

Much of the psychophysics literature pertaining to motion perception refers to moving
light displays (MLDs). MLDs are useful because they conceal the underlying structure of
an image so that it cannot be perceived from a static image, only a moving sequence [11,
12]. We have suggested that gait perception from MLDs may not require identification of
kinematic structure [6]. This is based on two observations:

1. the shape-of-motion algorithm applies equally well to both gray-scale images and
MLDs, and

2. various observations concerning human perception of moving light displays can be
explained in terms of the algorithm.

The first observation is based on a comparison of shape-of-motion features derived from
gray-scale sequences and features derived from the equivalent MLD. The features are similar
for the two types images. The second observation is based on the following evidence reported



Description Label Formula

x coordinate of centroid, Ze¢ 2T/ T

y coordinate of centroid, Ye SyT/>T

z coordinate, centroid of |(u,v)| distribution | Zy. > z|(u,v)|T/ Y |(u,v)|T

y coordinate, centroid of |(u,v)| distribution | . > yl(u,v)|T/) > |(u,v)|T

x coordinate of difference of centroids Tq Towe—Le

y coordinate of difference of centroids Yd Ywe—Ye

aspect ratio (or elongation) — ratio of length | a, Amaz [ Amin, Where As are eigen-

of major axis to minor axis of an ellipse yalues of second moment matrix
for motion distribution

elongation of weighted ellipse Qwe as in a., but for weighted dis-
tribution

difference of elongations, aq Ae— Ay

z coordinate, centroid of |u| distribution Tuwe S z|ulT/ Y |u|T

y coordinate, centroid of |u| distribution Yuwe SylulT/ Y |ulT

z coordinate, centroid of |v| distribution Tywe ST/ Y |[v|T

y coordinate, centroid of |v| distribution Yowe Syl|T/ Y |o|T

Table 1. Summary of scalar shape-of-motion descriptor s. Summations are over the
entire image. v and v are the z- and y-direction optical flow values respectivel y. The
function T segments the image. 7" = 1 for pixels that are moving and 7' = 0 for
stationar y pixels.

in the psychophysics literature.

Sumi [18] looked at the effect of inverting the display of an MLD on recognition. His
observations showed that while most people were often able to recognize a gait from an
inverted MLD, they reported that the gait looked odd and failed to recognize that it was,
in fact, a normal gait that was inverted (a perception that is contrary to the kinematic
structure). Inverting the MLD reverses the phase of some, but not all of the shape-of-motion
features. Furthermore, the relative phase of the features is preserved. Thus, the shape-of-
motion is not expected to change much for the inverted image, making the observation
of human perception consistent with the algorithm. Sumi’s subjects often reported seeing
gaits but thought that the gait was odd. Perhaps the oddness represents a failure to map
human structure onto the stimulus once the subject believes that the stimulus represents a
human.

Barclay et al. [2] showed that a detectable amount of gender recognition is possible from
MLDs, although the recognition was only slightly better than chance. This evidence does
not indicate the mechanism used for the recognition, but the success of the shape-of-motion
algorithm suggests that kinematic structure is not necessary. In fact, Little and Boyd [14]
suggest that although shape-of-motion features are not structurally based, they may be
sensitive to variations in the build of the observed person, explaining the algorithm’s ability
to recognize individuals. The MLD evidence does not preclude a non-structural mechanism.

Bertenthal and Pinto identify the importance of phase in gait perception [5]. Their
experiments use a stimuli that consists of an MLD for a walker, masked by dots moving in
the background. Some of the stimuli are perturbed by altering the phase of oscillation of
a limb. They observed that perception of gait from the unperturbed stimulus was better
than for the perturbed one, but both were significantly better than chance. Bertenthal and
Pinto assumed that kinematic structure was important and perturbed only the phase of



the motion. Clearly, phase is important for perception of motion in humans, just as it is
for the shape-of-motion algorithm.

2.3: Integrated Features of Cyclic Motion

Boyd and Little [6] offered the following conjecture to explain the psychophysical obser-
vations, based upon the shape-of-motion algorithm. Consider the image of a pedestrian to
be a collection of moving points. As a simple approximation, the motion for each point in
the pedestrian can be expressed as the sum of a linear motion and an oscillatory motion.
For example, let the z-coordinate of an arbitrary point 7 be

zi(t) = zio + vyt + A cos(wt + ¢;), (1)

where x; is a constant, v, is the mean velocity of the person, and A;, w and ¢; are the
amplitude, frequency and phase of the oscillation. ;g + vt is the linear part of the motion.
ATl points share the same frequency, w, but vary in A; and ¢; depending on where they are
in the body. The z-coordinate of the centroid is

z(t) = % Z zi(t) = % Z{wz’o + vt + A; cos(wt + ¢i)}, (2)

2

where n is the number of image points in the pedestrian. As part of extracting a phase
feature we discard the linear portion of the motion leaving

z(t) = % ZAZ- cos(wt + ¢;). (3)

The summation in Equation (3) is the sum of a set of phase vectors, or phasors. Phase

vectors are commonly used to perform computations with rotating vectors that share a

common frequency, such as in electrical power systems. In short, the summation can be

treated as the sum of a set of vectors, each vector having magnitude A; and direction ¢;.
Several conclusions may be drawn from this conjecture:

1. Recognition of objects from MLDs does not necessarily happen because they capture
the structure of objects in a scene, but because they adequately sample the motion
of points in the entire object.

2. If it is only necessary for the dots in an MLD to sample the motion, then perception
of gait should not require that the dots be at joints, since that is purely a structural
concern.

3. Any MLD that has shape-of-motion features corresponding to gait should be perceived
as gait.

The remainder of this paper describes the experiment we designed to to test the conjecture
of Boyd and Little.

3: Experiment Design and Motion Stimuli

The conjecture in the previous section indicates how one should synthesize an optical
flow field so that is has the same characteristics as the field for a human gait. We test the



perception of flow synthesized this way, to see if it is indeed perceived as a human gait.
The use of an algorithm for perception as a tool for synthesis can point to the specific part
of the motion that the algorithm is sensitive to.

We use a factorial experiment to test the perception. Ideally, we should use the posttest-
only control group design described by Campbell and Stanley [7], but the number of un-
ordered combinations of factors is too numerous and forces us to use some repeated mea-
sures. Section 4.1 describes the actual method we used in our pilot study. We discuss a
final design in Section 5.

In the experiment, we present subjects with a motion stimulus and ask them to record,
in not more than two or three words, what they perceive in the motion. We design the
stimuli to have specific properties that are controlled by a set of factors. The factors, our
independent variables, are:

1. the motion: how the motion was created for the stimulus and what its shape-of-
motion features are,

2. encoding: how the motion was encoded into images in video sequence, and

3. duration: how long the subjects view the stimulus.

The following subsections describe these factors in detail.
3.1: Motion

The motion in the stimuli is a critical part of the experiment since we want to relate
our results to the shape-of-motion algorithm. Our intention is to generate synthetic fields
of optical flow with the shape-of-motion features of a human gait. Unfortunately, it is not
a simple matter to create images to such a specification. We must also consider that it
may not be necessary to reproduce all the shape-of-motion features in the stimulus. The
reason for this stems from the difference between recognizing some motion as a gait, and
recognizing and individual gait. In recognition tasks, shape-of-motion features that are
consistent for individual gaits, but vary greatly over the population of gaits are desired. To
simply recognize a gait requires a feature that remains consistent over all gaits, but varies
greatly over the population of all motions. Sorting out what features are important for
what perception is will not be a simple task. We make a start here by focusing on z. and
Ye-

In lieu of an algorithm to create synthetic flow fields to our specification, our strategy is
to start with data for a real pedestrian, and then to distort it in a manner that maintains the
shape-of-motion but may or may not be consistent with the underlying kinematic structure.
Specifically, we generate the five motion patterns as follows:

On Joints (on-joints) The first stimulus is a simple MLD of a walking person. For this
we use the synthetic canonical walker described by Cutting [9], which has the lights placed
on major joints. We relied on a translation of Cutting’s original Fortran program into C
that was used by Bertenthal and Pinto [5].

Off Joints (off-joints) We perturb the on-joints stimulus by moving the points of
light away from the joints and along the limbs. The displacement is random, sampled
from a uniform distribution ranging from —0.75 to 0.75, and scaled by the length of the
appropriate limb. For example, the point at the knee can end up anywhere from three



quarters of the way up the thigh to three quarters of the way down the shin. Points for
head, wrists and ankles can only move towards the shoulder, elbows and knees respectively,
thus ensuring that all points are somewhere on the body, but not necessarily on the specific
joint. Cutting’s algorithm considers occlusions of points in an ad hoc manner. We ignore
these occlusions to simplify the synthesis.

Off Body (off-body) The off-body stimulus is also a perturbation of on-joints, but rather
than keep all the points on the body, we move the points by a constant random displace-
ment in a random direction. We select the magnitude of the displacement from a normal
distribution, mean zero and standard deviation of 20 pixels (the torso of the walker is about
35 pixels). The direction of the displacement is selected from a uniform distribution ranging
from —180° to 180°. We ignore the occlusions.

Oscillating Off Body (osc-off-body) The osc-off-body stimulus is like off-body, with
the exception that the displacement is not constant, but oscillates at the same frequency
as the gait. The effect is one of the light orbiting about a fixed point on the joint of the
walker. We ignore the occlusions here too.

Random Oscillations (random-osc) The random-osc stimulus is the straw man in the
set of motion. It consists of a set of randomly spaced points, placed such that the aspect
ratio is about that of on-joints. The phases of the oscillations are randomly distributed
over —180° to 180°. The amplitudes are normal with standard deviation of one quarter of
the height of the distribution.

Selected frames from the five motions are shown in Figure 2 in MLD form. The perturba-
tions of points in off-joints, off-body and osc-off-body are chosen such that the coordinates
of the centroids should be nearly unchanged. For off-body and osc-off-body, this happens
because the magnitude and direction of the displacement are unbiased. There is a bias
to the direction of displacement for off-joints because the points are restricted to lie on
the limbs, and because points at the extremities can only be displaced towards the center
of the body. It is difficult to predict what will happen to the other features under these
perturbations.

We encountered difficulty computing the shape-of-motion features from the synthetic
stimuli. The first problem was with the motion of the walker with respect to the background.
Previous work on shape-of-motion used sequences of pedestrians walking across a static
background, allowing us to rely on motion to segment the moving figure. The Cutting
synthetic walker data yields points for a static walker before a static background, giving
the impression that the person is walking on a treadmill. This makes the torso nearly
stationary. We were not able to resolve the tiny motions in the torso with the optical flow
algorithm so they could not contribute to the distributions, and gave results that we could
not interpret. We then resorted to computing an ideal optical flow given that we know
the positions of the points and the frame-to-frame correspondences. Still, we could not see
well-defined peaks in the spectra of the features. In the end we added a constant z velocity
to all the points to simulate a walker moving across a static background. This failure of
the synthetic data to behave like the real data that we had used often in the past caught
us off guard and is a weakness in this experiment that we have yet to resolve. Clearly,
the subjects will not see treadmill motion and we have yet to relate shape-of-motion to
treadmill gaits.
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Figure 2. Sample images from motion stimuli: (on-joints) the Cutting canonical
walker MLD sequence , (off-joints) walker with dots on the body, but moved away
from joints, (off-body) walker with dots randoml y displaced from joints, (osc-off-body)
walker with dots displaced from joints by oscillating distance of random amplitude
and phase, and (random-osc) a set of random dots moving cyclically with random
phase and amplitude , same frequenc y as on-joints.

Table 2 summarizes the shape-of-motion features for the five stimuli, computed using
point correspondences and a constant z velocity added. The right column of the table
indicates the between-person standard deviations for the feature that was measured by
Little and Boyd [14]. y. is the reference phase and is, therefore, always zero. The table



Stimulus

Feature | on-joints  off-joints off-body osc-off-body  random-osc o

T 0.11 0.16(0.8) 0.14(0.6) 0.19(1.3) 0.30(2.8) 0.065
Ye 0.00 0.00 0.00 0.00 0.00 -

Twe 0.05 0.18(2.9) 0.19(3.1) 0.18(2.8) 0.27(4.7) 0.045
Yuwe 0.00 0.26(3.1) 0.23(2.7) 0.18(2.2) -0.07(-0.9) | 0.083
Tq 0.47 -0.31(6.9)  -0.25(8.8) -0.34(5.9) -0.37(5.0) | 0.032
Yd -0.28 -0.18(1.3)  -0.22(0.8) -0.26(0.3) 0.41(-3.9) | 0.077
Qe -0.04 -0.06(-0.2) -0.02(0.3)  -0.06(-0.3) 0.19(2.9) 0.077
Qe -0.04 -0.05(-0.2)  -0.04(0.0)  -0.07(-0.5) 0.27(5.1) 0.063
aq 0.39 -0.14(-2.9)  0.12(-1.5) 0.01(-2.1) -0.09(-2.6) | 0.18
Tuwe 0.04  0.18(3.3) 0.224.1)  0.17(3.0)  0.26(5.1) |0.045
Yuwe 0.00 0.26(2.7) 0.23(2.5) 0.19(2.0) -0.08(-0.9) | 0.094
Tywe 0.08 0.37(2.2) 0.09(0.0) 0.18(0.7) 0.27(1.4) 0.13
Yowe 0.02 0.42(3.7)  -0.07(-0.8)  -0.09(-1.0) 0.16(1.3) 0.11

Table 2. Summary of shape-of-motion features for the five motion stimuli. Values are
phases scaled to lie in the rang e [—0.5,0.5]. Values in the parenthesis are deviations
from the feature value for on-joints scaled by o (in the right column). os are the
between-per son standar d deviation for the feature computed for earlier recognition
experiments. These are used as a rough guide only for comparing features.

verifies that z. and a. values for off-joints, off-body and osc-off-body are similar to that
for on-joints. As expected, the weighted distribution and difference features vary from the
on-joints value the most. random-osc is significantly different from on-joints.

3.2: Encoding

When creating the motion stimuli, we produce a sets of point coordinates (as described
in Section 3.1; one set per time slice in the motion sequence. We encode those points into
a motion stimulus in two ways. The first is to produce the well-know MLD. Each point
coordinate gives an image coordinate for a point of light on a black background in the
frame of a stimulus. The second type of encoding results from an effort to further hide
the structure behind the motion. We create a static binary background image where each
pixel is selected randomly from {black,white}, and P(black) = P(white) = 0.5. Then
rather than represent the pixel coordinates with points of light, we use a small patch of
binary pixels (generated using the same criteria as the background). Although we know
from Johansson [11] that without a priori information regarding the contents of an image,
a single frame of an MLD is difficult to interpret, if one knows that a frame represents
a human, one could connect the dots and guess at the kinematic structure. With our
random background and patch stimulus, a static frame cannot convey any information at
all. All of the pixels are randomly generated. The sequence must be moving in order to see
anything beyond uncorrelated pixels. MLDs have been adequate in the past for evaluating
the perception of motion, and we have no particular reason to believe they would not suffice
for our purposes. We derived this encoding scheme while trying to generate fields of optical
flow, and this experiment offers an opportunity to test it. The encoding variable can have
values M and R for MLDs and random dot patterns respectively. Figure 3 shows a sample



(a)

Figure 3. Examples of images in a motion stimulus illustrating the two encoding
methods: (a) MLD and (b) random dot encoding. Nothing can be seen in the random
dot image without any motion since there is no correlation between pixels.

frame for each of the two encoding methods.
3.3: Duration

In humans, the length of time a stimulus is presented can affect the perception. Presum-
ably, a longer period of time allows slower mechanisms to come into play. Johansson [11],
Barclay et al. [2], and Sumi [18] all cite variations in perception with the duration of the
stimulus. Their observations suggest that a duration from about 1s up to about 4s should
suffice. For the pilot study, we use four durations, 1s, 2s, 4s, and 8s.

4: Pilot Study

We collected data for a pilot study [8] to debug the design of the experiment. This
section presents the experimental method and a sample analysis of the results.

4.1: Method

The five motion stimuli (on-joints, off-joints, off-body, osc-off-body, and random-osc),
the two motion encodings (M and R) and four durations (1s, 2s, 4s, and 8s) give a total
of 40 separate motion sequences in the factorial experiment. We created digital movies at
a resolution of 240pizels by 320pizels, for each of these sequences using a Silicon Graphics
workstation. We then transferred the sequences onto an SVHS video tape, in a random
order, scaling the images to just fill the entire screen. We selected a group of subjects
(students in a computer vision class) and showed every subject every stimulus in the same
order. Before viewing the stimuli, we gave the subjects a sheet of paper with instructions
saying that:

e they are about to see a series of 40 video clips,
e the clips vary in duration from about one second up to eight, and

e they should indicate what the believe is the cause of the motion in each clip.



They received no other information about the experiment. The paper had 40 numbered
blanks with space for at most 3 or 4 words in which the subjects could record their responses.
We review the responses and categorize them. This is a subjective process, but leaves the
subjects free of expectations about the stimuli.

Once the responses are categorized, the raw data consists of a tuples containing the levels
of the three independent variables, and the dependent variable, the categorized responses.
There are 40 tuples for each subject, barring missing data. We form the data into a 4-way
contingency table and test for dependencies among the variables [19, 8, 1]. Our analysis is
described further in Section 4.2.

We recognize that by showing all subjects identical stimuli in the same order confounds
validity due to the effects of multiple measures. With 40 stimuli it was simply convenient
to show a single group all the stimuli in one shot. While the data in the pilot study may
not lead to valid conclusions, it is sufficient for the purposes of the pilot study. In Section 5
we describe a better method for collecting data that will reduce the problems with multiple
measures in the ultimate experiment.

4.2: Analysis

The first step in analysis of the data was to categorize the subject responses. After
scanning the data, we decided that the responses fell naturally into three categories:
1. a person walking (W),
2. a person walking but in an unusual manner (WS), and
3. a some other motion not related to humans or human locomotion(X).
It was obvious when a subject perceived a normal human gait. Responses that we catego-
rized as walking, but strange included
e the specific response that it was an odd human gait,
e 3 human gait, but the person is carrying something,
e 3 human gait, but the person is stepping back and forth, and
e 3 human running.
Explanations for the randomly oscillating points included:
e points swirling in the wind,
e rotation of some sort,
e random movement,
e 3 vortex,
e cellular motion, and
e rotating DNA helix.
Clearly the stimulus gave the impression of rotation. Although the process of categorizing
the data is subjective, we can give the categories some validity by getting one or two other
people to categorize the responses independently.
To analyze the categorized responses, we form a contingency table and look for depen-

dencies among the variables. Tables 3 and 4 combined show the complete contingency table
for the pilot study data.



encoding duration motion response
w ws X
M 1s on-joints 4 2 0
off-joints 4 1 1
off-body 0 3 3
osc-off-body | 0 3 2
random-osc | 0 0 5
2s on-joints 5 1 0
off-joints 3 3 0
off-body 0 4 2
osc-off-body | 0 4 2
random-osc | 0 0 6
4s on-joints 5 1 0
off-joints 3 1 1
off-body 1 4 1
osc-off-body | 1 4 1
random-osc | 0 0 6
8s on-joints 5 1 0
off-joints 2 3 1
off-body 0 4 2
osc-off-body | 1 4 1
random-osc | 0 0 6

Table 3. Pilot-stud y conting ency table for MLD motion encoding only, showing fre-
quencies split by all variables. Categories for responses are: (W) person walking,
(WS) person walking, but strang ely, and (X) explanations other than human loco-
motion. Duration values are: 1s, 2s, 4s, and 8s. Descriptions for motions are in
Section 3.1.

The first thing we look at in the analysis is to determine if there is any dependency of
the subject responses to the factors. For this we use a two-way contingency table analysis,
comparing the responses against the joint distribution of encoding, duration and motion,
i.e, the concatenation of Tables 3 and 4. We use the x? statistic to test the hypothesis
that the variables are independent. The G statistic [8] is a popular alternative, but for the
pilot study data at least, there are several zero frequencies for which G is undefined. The
result of the test for independence gives x? = 202.6 with degrees of freedom df = 78. The
probability that such values occur if the variables are independent is p < 0.0001. We can
safely conclude that responses depend jointly on encoding, duration and motion. This is
not surprising since a quick scan of the data shows that subjects never mistook random-osc
for a human and rarely thought that on-joints looked like anything other than a human
walking.

To find the source of the dependency, we start by examining the conditional dependence
of subject response on encoding. There are 20 two-way response versus encoding tables
conditioned on the combinations of duration and motion. We compute x? for each table
and the sum over all tables!. This yields x? = 32.6 (df = 29) and p = 0.29. Thus

LA few of the tables had marginal sums of zero making it impossible to compute x2. In those cases we
dropped the all-zero columns and compute x? for the remaining data, adjusting df accordingly.



encoding duration motion response
w ws X
R 1s on-joints 4 2 0
off-joints 4 1 1
off-body 4 0 1
osc-off-body | 3 2 1
random-osc | 0 0 4
2s on-joints 4 1 0
off-joints 5 1 0
off-body 4 1 1
osc-off-body | 3 2 1
random-osc | 0 0 6
4s on-joints 2 3 1
off-joints 2 1 3
off-body 1 4 1
osc-off-body | 0 5 1
random-osc | 0 0 6
8s on-joints 4 1 1
off-joints 4 2 0
off-body 1 4 1
osc-off-body | 2 3 1
random-osc | 0 0 6

Table 4. Pilot study conting ency table for random-dot motion encoding only, show-
ing frequencies split by all variables. Categories for responses are: (W) person
walking, (WS) person walking, but strang ely, and (X) explanations other than hu-
man locomotion. Duration values are: 1s, 2s, 4s, and 8s. Descriptions for motions
are in Section 3.1.

the encoding methods appear to be equivalent. However, an inspection of the individual
conditioned tables suggest that, for the off-body motion at durations of only 1s or 2s, there
is a dependency. A look at the data shows that subjects tended to interpret the off-body
motion as a normal gait with random-dot encoding, but as a strange gait, or non-human,
with MLD encoding. Given the methodological flaws in our data collection, we should still
consider the random dot encoding for the ultimate experiment.

In a similar manner, we test for dependency of subject response on duration. There are
10 two-way response versus duration tables conditioned on the combinations of encoding
and motion. The result is x2 = 37.7 (df = 45) and p = 0.77, indicating that the responses
were independent of duration. This comes as a surprise given the results of others, but can
be attributed to the interference of repeated measures (see Section 5).

Finally, we want to know if there is a dependency between subject responses and the
motion stimulus. This will indicate whether or not perception is tied to shape-of-motion.
Again we produce a set of two-way response versus motion tables, one for every combination
of encoding and duration. The result is x> = 188.0 (df = 64) and p < 0.0001, indicating
a strong dependency. This is the major source of dependency in the data and as stated
previously, because of the random-osc stimulus, that is to be expected. However, what we
really want to know is whether or not maintaining shape-of-motion features while altering



compare to

motion on-joints random-osc

off-joints 12.23(14) | p=0.59 70.42(16) | p < 0.0001
off-body 38.19(16) | p =0.0014 | 55.48(12) | p < 0.0001
osc-off-body | 32.60(16) | p = 0.0083 | 59.81(13) | p < 0.0001

Table 5. Comparison of perception of off-joints, off-body and osc-off-body to on-joints
and random-osc. x? values and the degrees of freedom in parentheses are the sums
x?%s for the two-way comparisons of subject response versus motion conditions on
the joint distrib ution of encoding and duration.

structure still leads to the same perception. To answer this we repeat the analysis, but for
only two motions at a time. For example, when we compare off-joints with on-joints we
get x2 = 12.23 (df = 14) and p = 0.59. In other words, the perception does not appear to
depend of whether or not the dots are on the joints. For completeness, we compare off-joints
to random-osc and get x? = 70.42 (df = 16) and p < 0.0001. Comparisons of off-joints,
off-body and osc-off-body to on-joints and random-osc are summarized in Table 5.

Table 5 shows that for the on-joints and off-joints stimulus, subject response is indepen-
dent of the motion. This is the result we are looking for. However, we do not see the same
independence for on-joints compared to off-body and osc-off-body.

5: Discussion

The purpose of the pilot study was to debug the experiment design. Therefore, we
refrain from drawing conclusions from the data and analysis, and focus on what needs to
be changed before collecting data in the final version.

Our data collection method is prone to multiple-treatment interference affecting the ex-
ternal validity (the ability to generalize the results) of the experiment [7]. For the full
factorial experiment, each subject views 40 motion sequences, but there are only five differ-
ent motions in all. A look at the randomized order in which the subjects view the stimuli
shows that by the 12th sequence the subjects had viewed all five motions for at least two
seconds. By the 19th sequence that rises to four seconds. It was clear from the responses
that the subjects had identified the five motions and could quickly relate them to the previ-
ous sequences. This confounds the effect of duration in particular. Once a subject has seen
the stimulus for four seconds or more, a brief exposure of one or two seconds is likely to
produce the same response. In this light, it is not surprising to see that observations did not
depend much on duration. Therefore, in the final experiment, we will reduce the number
of levels of duration to three (1s, 2s and 4s), then split the stimuli by duration, and show
any individual subject only sequences of a single duration. This gives us the control we
need over duration, but leaves interference within the motion factor. After subjects have
seen what is obviously a human, it affects their subsequent responses. To address this we
will present the stimuli to subjects in varying order, i.e., a counterbalanced design [7]. So
long as there is not a complex interaction among the various motions, this method should
be adequate.

Although we do not want to put too much emphasis on the pilot study data, it did
suggest that the random dot stimulus was nearly equivalent to the moving light display.



For the final experiment we will use the random dot stimulus only. It is truer to our original
intention of generating fields of optical flow, and there was a hint in the pilot data that the
ability of the random dot stimulus to conceal structure may yet prove significant. In the
worst case, it will make no difference at all. Using only the single encoding scheme also
simplifies the analysis by removing a factor.

Another concern is that the straw-man stimulus, random-osc, is too feeble. In the small
sample, no subject ever mistook it for a human. All descriptions suggested a perception
of some sort of rotation. In the final experiment, we will replace the random elliptical
oscillations with random pendular oscillations. Pendular oscillations should give us a straw-
man stimulus that is not drastically different from the other stimuli. This will also give
more credibility to one of our desired conclusions, that the failure to perceive the random
pattern as human is because of shape-of-motion, and not for some other reason.

Finally, our goal is to learn about the shape-of-motion algorithm, and improve it by
understanding its relationship with human perception, if there is one. To achieve this we
need a better way to relate the stimuli to shape-of-motion. We have taken two steps to
accomplish this:

1. perturb a known gait stimulus in such a way that we can predict the effect on at least
some of the shape-of-motion features, and

2. compute (as best we could) the features of the the resulting randomly perturbed
stimuli.

We did see that the z. and a. features for on-joints, off-joints, off-body and osc-off-body
matched well, and did not match random-osc. However, we had no control over any of
the weighted-distribution and difference features. Several questions remain to be answered
about shape-of-motion features in this experiment, including;:

1. how do we compute shape-of-motion not only for a walker moving across the field of
view, but also when the field of view tracks the walker, and when the walker is on a
treadmill,

2. why does the Cutting synthetic stimulus exhibit optical flow that is so differently
from that observed for real stimuli, and

3. which shape-of-motion features are important?

This last item is particularly important since the list of shape-of-motion features is based
purely on intuition about what is important for recognizing motion. Not everything on the
list is likely to important, particularly for human observers, and almost certainly there are
omissions form the list.

The experiment described tests a computer vision algorithm for recognition of gaits, by
seeing whether or not it can be turned around and used to synthesize gait-like optical flow.
It is unlikely that we will find, as a result of this experiment, that we can synthesize a
completely realistic gait just from shape-of-motion features. It will be necessary to follow-
up by refining the representation of the flow field used for synthesis, to get more gait-like
perception. We can then proceed to repeat the cycle, producing a new algorithm that
recognizes the features that were good for synthesis, and so on.



6: Conclusions

We present the design of an experiment that evaluates the quality of a computer vision
algorithm by using the algorithm as a guideline for the synthesis of a stimulus, and then
evaluating the quality of the resulting stimulus. In a factorial experiment, a group of
subjects views a set of synthetic motion stimuli and records their perceptions. The factors
that we control are actual motion, the length of time a subject views a stimulus, and how the
motion is encoded into images. Four of the motions have the same shape-of-motion features
as a walking person, but differ in structure, while the fifth contains random motion. We
wish to show that we can vary the structure of a synthetic stimulus without altering its
perception, so long as we maintain the shape-of-motion.

Pilot study results showed flaws in our method of data collection affecting the external
validity of the experiment. To correct the flaws we propose the following changes for the
final experiment:

e show each subject only sequences of a single duration, and

e show the stimuli to different subjects in different orders.

These changes address the interference of repeated measures that confounds our ability to
generalize the results. We also encountered difficulty relating the stimuli to shape-of-motion
because the algorithm behaved differently when applied to synthetic data than it did for
real data.
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